2012年上海初三数学一模试卷及答案(静安)

合集下载

2012年上海中考一模数学 分析

2012年上海中考一模数学 分析

中等 中等
18、旋转
22、三角比实际应 24、角相等+分类讨论(相似三 用(仰角、俯角) 角形)
中等
18、函数图 像平移 18、旋转 18、旋转 18、翻折
18、翻折
21、三角比实际应 用(仰角、俯角)
24、分类讨论(相似三角形)
24、三角比实际应 用(方向角) 23、三角比实际应 用(仰角、俯角) 22、三角比实际应 用(行程问题) 22、三角比实际应 用(仰角、俯角)
区县 普陀
阅读理解题
虹口
嘉定
杨浦、静 安、闵行、
松江
浦东
宝山金山 25、斜坐标系 奉贤崇明
徐汇 闸北
长宁
23、斜度线、 倾角
黄浦
图形运动题 17、翻折
实际应用题 22、三角比实际应 用(解三角形) 22、三角比实际应 用(解三角形) 21、三角比实际应 用(仰角、俯角)
2012 年上海中考一模数学 函数综合题
24、三垂直模型+相似三角形的性 质
25、矩形的性质和等腰三角形的性 质线 三等角模 型+分类 讨论(相 似三角 形)
中等 较难 中等 中等 中等
中等
中等 Knoxham
25、A、X 型模型
25、角相等+分类讨论(相似三 角形)
24、分类讨论(相似三角形)
24、三角形面积+分类讨论(相 似三角形)
23、三角比实际应 25、分类讨论(旋转方向)+分 用(解三角形) 类讨论(三角形面积)
23、三角比实际应 用(方向角)
24、角相等
25、重心的性质+ A 型模型+相似 三角形的性质+分类讨论(等腰三 角形) 26、解三角形+A 型模型+有公共 边的斜 A 型+面积变换 24、A 型模型+三角形面积 25、斜 A 型模型+分类讨论(相似 三角形) 25、翻折+分类讨论(相似三角 形)+分类讨论(重叠部分面积)

2012上海市中考数学全真模拟试卷(一)

2012上海市中考数学全真模拟试卷(一)

FAx x x2012上海市中考数学全真模拟试卷(一)数学卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题:第一大题选择题,共6题;第二大题填空题,共12题;其余为综合大题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,满分24分)下列各题的四个结论中,有且只有一个结论是正确的1()A. B. 2 C. D.2.下列方程中有实数解的是()A. 210x x-+= B. 1=- C.21xx x-=-D. 25x y+=3.下列命题中真命题的是()A.二直线被第三条直线所截,同位角相等B.既是中心对称又是轴对称的多边形是正多边形C.如果三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形D.如果一直线截三角形二边所得的三角形与原三角形相似,那么这条直线平行于三角形的第三边4.如图,在平行四边形ABCD中,E是AD一点,联结CE并延长交BA的延长线于点F,则下列结论中错误是()A. AEF DEC∠=∠B. ::FA CD AE BC=C. ::FA AB FE EC=D. AB DC=5.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采集了10课树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元。

用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为()A.200千克,3000千克B.1900千克,28500元C.2000千克,30000元 D.1850千克,27750元6. 如图,在平行四边形ABCD中,DAB∠=60︒,AB=5, BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动,设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y 随x的变化而变化,在下列图像中,能正确反映y与x的函数关系的是( )ABC二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7.计算:243x x ⋅= 8.分解因式:229a b -=9.上海市某污水处理厂的污水处理能力可以达到每日1684000吨,将1684000吨用科学记数法表示为 吨10.如果反比例函数的图像经过点1-2(,),那么这个反比例函数的解析式为 。

2012年上海市中考数学试卷及答案解析课件.doc

2012年上海市中考数学试卷及答案解析课件.doc

2012 年上海市中考数学试卷一.选择题(共 6 小题)1.(2012 上海)在下列代数式中,次数为 3 的单项式是()2 3 3 3A.xyB.x +y C..x y D..3xy考点:单项式。

解答:解:根据单项式的次数定义可知:2的次数为3,符合题意;A、xy3 3B、x +y 不是单项式,不符合题意;3C、x y 的次数为4,不符合题意;D、3xy 的次数为2,不符合题意.故选A.2.(2012 上海)数据5,7,5,8,6,13,5 的中位数是()A.5 B.6 C.7 D.8考点:中位数。

解答:解:将数据5,7,5,8,6,13,5 按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012 上海)不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2考点:解一元一次不等式组。

解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012 上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。

解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012 上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。

解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合, A 、C、D 都不符合;是中心对称图形的只有B.第 1 页共10 页故选:B.6.(2012 上海)如果两圆的半径长分别为 6 和2,圆心距为3,那么这两个圆的位置关系是()A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。

解答:解:∵两个圆的半径分别为 6 和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12 小题)7.(2012 上海)计算= .考点:绝对值;有理数的减法。

2012年上海市中考数学试题及答案(解析版)

2012年上海市中考数学试题及答案(解析版)

ACDB EO2012年上学期第一次学力检测九年级数学试题卷温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --. 一、 选择题(本大题共10小题,每小题3分,共30分。

每小题都有四个备选答案,请把你认为正确的一个答案的代号填在答题纸的相应位置). 1、13-的倒数是( )A .3B .-3C .13D .13-2、今年2月,随着第四条水泥熟料生产线的点火投产,浙江尖峰水泥熟料已达年产6000000吨,用科学记数法可记作( )A .80.610⨯吨 B . 70.610⨯吨 C . 6610⨯吨 D . 7610⨯吨 3、下面简单几何体的左视图是( )4、已知同一平面内的⊙O 1、⊙O 2的直径分别为6cm 、2cm ,且O 1O 2=4cm ,则两圆的位置关系为( ) A .外切 B .内切 C .相交 D .以上都不正确5、抛物线23(2)32y x =---的顶点坐标是( )A. (2, -3)B. (2,3 )C. (-2, 3 )D. (-2,-3 )6、一次函数5+-=x y 图象与反比例函数xy 6=图象的交点情况是( ) A. 只有一个交点,坐标是(2,3) B. 只有一个交点,坐标是(-1,6) C. 有两个交点,坐标是(2,3)、(3,2) D. 没有交点 7、如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC , 若5OC =,8CD =,则tan COE ∠=( ) A .35B .45C .43D .34 8、将半径为30cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .20cmC .30cmD .60cm9、在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位:N )与铁块被 提起的高度x (单位:cm )之间的函数关系的图象大致是( )A .B .C .D . 正面Oy x Oy x Oy xOyx10.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:( ) ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE += 其中正确的是 A .②④; B .①④;C .②③;D .①③.二、填空题(本大题共6题,每题4分,共24分.请把答案填在答题纸中相应的横线上) 11、分解因式:x 2-9= .12、某校组织了一次数学竞赛活动,其中有4名学生的平均成绩为80分,另外有6名学生的平均成绩为90分,则这10名学生的平均成绩为 _________ 分.13、已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为 _________ .14. 如图是圆锥的主视图(单位:cm), 则圆锥的表面积为________cm 2(结果保留π). 15、如图所示,将边长为2的等边三角形沿x 轴正方向连续翻转2012次,依次得到点P 1,P 2,P 3…P 2012. 则点P 2012的坐标是 _________ .16、如图,矩形OABC 的两边OA ,OC 在坐标轴上,且OC =2OA ,M ,N 分别为OA ,OC 的中点,BM 与AN 交于点E ,且四边形EMON 的面积为2,(1)△ABE 的面积是 .(2)经过点B 的双曲线的解析式为三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)(2)解方程: 12111xx x -=--17、(1)计算:18、如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点O , AB = DC ,AC = BD. (1)求证: ΔABC ≌ΔDCB ;(2) Δ0BC 的形状是 。

上海市(2006-2012)历年中考数学试卷(含答案)

上海市(2006-2012)历年中考数学试卷(含答案)

2012年上海市初中毕业统一学业考试- 1 -2006年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)题号一二 三 四总分 17 18 19 20 21 22 23 24 25 得分考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤. 一.填空题:(本大题共12题,满分36分) 【只要求直接写出结果,每个空格填对得3分,否则得零分】 1.计算:4=__________. 2.计算:12x x+=__________.3.不等式60x ->的解集是__________. 4.分解因式:2x xy +=__________. 5.函数13y x =-的定义域是__________.6.方程211x -=的根是__________.7.方程2340x x +-=的两个实数根为1x ,2x ,则12x x = __________.8.用换元法解方程2221221xx x x-+=-时,如果设221xy x =-,那么原方程可化为__________.9.某型号汽油的数量与相应金额的关系如图1所示,那么这种汽油的单价是每升__________元.10.已知在A B C △和111A B C △中,11AB A B =,1A A =∠∠,要使111ABC A B C △≌△,还需添加一个条件,这个条件可以是__________.11.已知圆O 的半径为1,点P 到圆心O 的距离为2,过点P 引圆O 的切线,那么切线长是__________.12.在中国的园林建筑中,很多建筑图形具有对称性.图2是一个破损花窗的图形,请把它补画成中心对称图形.金额(单位:元)509100 数量(单位:升)图1图22012年上海市初中毕业统一学业考试- 2 -二.选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列方程中,有实数根的是( ) A.2310x x ++=B.411x +=- C.2230x x ++=D.111x x x =--14.二次函数()213y x =--+图象的顶点坐标是( ) A.()13-,B.()13,C.()13--,D.()13-,15.在A B C △中,A D 是B C 边上的中线,G 是重心.如果6A G =,那么线段D G 的长为( )A.2 B.3 C.6 D.12 16.在下列命题中,真命题是( )A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 三.(本大题共5题,满分48分) 17.(本题满分9分)先化简,再求值:2111x x x -⎛⎫+÷ ⎪⎝⎭,其中2x =.18.(本题满分9分) 解方程组:23010x y x y --=⎧⎨++=⎩,.2012年上海市初中毕业统一学业考试- 3 -19.(本题满分10分,每小题满分各5分)已知:如图3,在A B C △中,A D 是边B C 上的高,E 为边A C 的中点,14B C =,12AD =,4sin 5B =.求(1)线段D C 的长;(2)tg EDC ∠的值.20.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某市在中心城区范围内,选取重点示范路口进行交通文明状况满意度调查,将调查结果的满意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识.今年五月发布的调查结果中,橙色与黄色标识路口数之和占被调查路口总数的15%.结合未画完整的图4中所示信息,回答下列问题:(1)此次被调查的路口总数是__________;(2)将图4中绿色标识部分补画完整,并标上相应的路口数;(3)此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随机样本?答:____________________.21.(本题满分10分)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得B C 长为240米,A 到B C 的距离为5米,如图5所示.请你帮他们求出滴水湖的半径.AECDB图 340 30 20 10 01 841红橙黄 蓝绿路口数标识图 4BAC图52012年上海市初中毕业统一学业考试- 4 -四.(本大题共4题,满分50分)22.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图6,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A .(1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且O B A B =,求这个一次函数的解析式.23.(本题满分12分,每小题满分各6分)已知:如图7,在梯形A B C D 中,A D B C ∥,A B D C =.点E ,F ,G 分别在边A B ,B C ,C D 上,A E G F G C ==.(1)求证:四边形A E F G 是平行四边形;(2)当2F G C E F B =∠∠时,求证:四边形A E F G 是矩形.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图8,在直角坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg 2OAB =∠.二次函数22y x m x =++的图象经过点A ,B ,顶点为D .(1)求这个二次函数的解析式;yAxO 图6BE A DGC图7F2012年上海市初中毕业统一学业考试- 5 -(2)将O A B △绕点A 顺时针旋转90 后,点B 落到点C 的位置.将上述二次函数图象沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图象的函数解析式; (3)设(2)中平移后所得二次函数图象与y 轴的交点为1B ,顶点为1D .点P 在平移后的二次函数图象上,且满足1PBB △的面积是1PD D △面积的2倍,求点P 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P 在线段A B 上,点O 在线段A B 延长线上.以点O 为圆心,O P 为半径作圆,点C 是圆O 上的一点.(1)如图9,如果2A P P B =,P B B O =.求证:C AO BC O △∽△; (2)如果A P m =(m 是常数,且1m >),1BP =,O P 是O A ,O B 的比例中项.当点C 在圆O 上运动时,求:A C B C 的值(结果用含m 的式子表示);(3)在(2)的条件下,讨论以B C 为半径的圆B 和以C A 为半径的圆C 的位置关系,并写出相应m 的取值范围.yB AxO图8CA PB O图92012年上海市初中毕业统一学业考试- 6 -2006年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分. 2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数.评分时,给分或扣分均以1分为单位. 答案要点与评分标准一.填空题:(本大题共12题,满分36分)1.2; 2.3x ; 3.6x >; 4.()x x y +;5.3x ≠;6.1;7.4-;8.2210y y -+=(或12y y+=); 9.5.09;10.1B B =∠∠(或1C C =∠∠,或11AC A C =); 11.3;12.答案见图1.二.选择题:(本大题共4题,满分16分) 13.A; 14.B; 15.B;16.C.三.(本大题共5题,满分48分) 17.解:原式211x x x x+-=÷················································································(2分)()()111x x x x x +-+=÷····································································(2分)()()111x xxx x +=+-·······································································(1分)11x =-, ·························································································(2分)当2x =时,原式12121==+-. ·····················································(2分) 18.解:消去y 得220x x +-=, ········································································(3分)图12012年上海市初中毕业统一学业考试- 7 -得12x =-,21x =, ··············································································(3分) 由12x =-,得15y =-, ········································································(1分) 由21x =,得22y =-, ··········································································(1分) ∴原方程组的解是1125x y =-⎧⎨=-⎩,;2212x y =⎧⎨=-⎩,.····················································(1分) 19.解:(1)在R t B D A △中,90BDA = ∠,12AD =,4sin 5A DB A B==, ····(1分)15AB ∴=. ······························································································(1分) 222215129B D A B A D ∴=-=-=. ··················································(2分) 1495D C B C B D ∴=-=-=. ································································(1分)(2)[方法一]过点E 作EF D C ⊥,垂足为F ,EF AD ∴∥. ·············(1分)A E E C = ,1522D F D C ∴==,162E F A D ==. ······························(2分)∴在R t E F D △中,90EFD = ∠,12tg 5E F E D C D F==∠. ····················(2分)[方法二]在R t A D C △中,90ADC = ∠,12tg 5A D C D C==. ··············(2分)D E 是斜边A C 上的中线,12D E A C E C ∴==. ··································(1分)E D CC ∴=∠∠. ·····················································································(1分)12tg tg 5E D C C ∴==∠. ·········································································(1分)20.(1)60; ·······································································································(3分) (2)图略(条形图正确,得2分;标出数字10,得2分); ····························(4分) (3)不能. ·····································································································(3分) 21.解:设圆心为点O ,连结O B ,O A ,O A 交线段B C 于点D . ·····················(1分) A B A C =, AB AC ∴=.O A B C ∴⊥,且11202B D DC B C ===.················································································································(1分) 由题意,5D A =. ··················································································(1分) 在R t BD O △中,222OB OD BD =+, ··················································(2分) 设O B x =米, ························································································(1分) 则()2225120x x =-+, ·········································································(2分)1442x ∴=. ·······················································································(1分) 答:滴水湖的半径为1442.5米. ·····························································(1分) 四.(本大题共4题,满分50分) 22.解:(1)由题意,设点A 的坐标为()3a a ,,0a >. ······································(1分)2012年上海市初中毕业统一学业考试- 8 -点A 在反比例函数12y x=的图象上,得123a a=, ·································(1分)解得12a =,22a =-, ··············································································(1分) 经检验12a =,22a =-是原方程的根,但22a =-不符合题意,舍去. ·····(1分) ∴点A 的坐标为()26,. ·············································································(1分) (2)由题意,设点B 的坐标为()0m ,. ···················································(1分) 0m > ,()2262m m ∴=-+. ····························································(2分) 解得103m =,经检验103m =是原方程的根,∴点B 的坐标为1003⎛⎫⎪⎝⎭,.····(1分)设一次函数的解析式为103y kx =+,··························································(1分)由于这个一次函数图象过点()26A ,,10623k ∴=+,得43k =.···············(1分)∴所求一次函数的解析式为41033y x =+. ·················································(1分)23.证明:(1) 在梯形A B C D 中,A B D C =,B C ∴=∠∠.························(2分)G F G C = ,C G F C ∴=∠∠.······························································(1分)B G FC ∴=∠∠,A B G F ∴∥,即A E G F ∥. ······································(1分) A E G F = ,∴四边形A E F G 是平行四边形.··········································(2分) (2)过点G 作G H F C ⊥,垂足为H .····················································(1分) G F G C =,12F G H F G C ∴=∠∠.·····················································(1分)2F G CE F B = ∠∠,F G H E F B ∴=∠∠. ···········································(1分)90FGH GFH +=∠∠,90EFB GFH ∴+=∠∠. ···························(1分) 90EFG ∴=∠. ·······················································································(1分) 四边形A E F G 是平行四边形,∴四边形A E F G 是矩形. ························(1分) 24.解:(1)由题意,点B 的坐标为()02,, ························································(1分)2O B ∴=,tg 2OAB = ∠,即2O B O A=.1O A ∴=.∴点A 的坐标为()10,. ····························································(2分)又 二次函数22y x m x =++的图象过点A ,2012m ∴=++.解得3m =-, ····························································································(1分) ∴所求二次函数的解析式为232y x x =-+. ·············································(1分)2012年上海市初中毕业统一学业考试- 9 -(2)由题意,可得点C 的坐标为()31,, ····················································(2分) 所求二次函数解析式为231y x x =-+. ·····················································(1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111BB D D ==. ···········································(1分)点P 在平移后所得二次函数图象上,设点P 的坐标为()231x x x -+,. 在1PBB △和1PD D △中,112PBB PD D S S = △△,∴边1B B 上的高是边1D D 上的高的2倍.①当点P 在对称轴的右侧时,322x x ⎛⎫=-⎪⎝⎭,得3x =,∴点P 的坐标为()31,; ②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ⎛⎫=- ⎪⎝⎭,得1x =, ∴点P 的坐标为()11-,; ③当点P 在y 轴的左侧时,0x <,又322x x ⎛⎫-=-⎪⎝⎭,得30x =>(舍去), ∴所求点P 的坐标为()31,或()11-,. ························································(3分)25.(1)证明:2A P P B P B B O P O ==+= ,2A O P O ∴=.2A OP OP O B O∴==.·····················································································(2分)P O C O = , ····························································································(1分) A O C O C OB O∴=.C O A B O C = ∠∠,C AO BC O ∴△∽△. ····················(1分)(2)解:设O P x =,则1OB x =-,O A x m =+,O P 是O A ,O B 的比例中项, ()()21x x x m ∴=-+, ·············································································(1分)得1m x m =-,即1m O P m =-. ··································································(1分)11O B m ∴=-.··························································································(1分)O P 是O A ,O B 的比例中项,即O A O P O PO B=,O P O C = ,O A O C O CO B∴=. ····································································(1分)设圆O 与线段A B 的延长线相交于点Q ,当点C 与点P ,点Q 不重合时,。

2012年上海中考数学真题卷含答案解析

2012年上海中考数学真题卷含答案解析

2012年上海市初中毕业统一学业考试数学3A(满分:150分 时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A.xy 2B.x 3+y 3C.x 3yD.3xy 2.数据5,7,5,8,6,13,5的中位数是( ) A.5 B.6 C.7 D.83.不等式组{-2x <6,x -2>0的解集是( )A.x>-3B.x<-3C.x>2D.x<24.在下列各式中,二次根式√a -b 的有理化因式是( ) A.√a +b B.√a +√b C.√a -bD.√a -√b5.在下列图形中,为中心对称图形的是( )A.等腰梯形B.平行四边形 C .正五边形 D.等腰三角形6.如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( ) A.外离 B.相切 C.相交 D.内含第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:|12-1|= . 8.因式分解:xy-x= .9.已知正比例函数y=kx(k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 (选填“增大”或“减小”).10.方程√x+1=2的根是.11.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是.12.将抛物线y=x2+x向下平移2个单位,所得新抛物线的解析式为.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表格的信息,可得测试分数在80~90分数段的学生有名.0~9090~1000.25⃗⃗⃗⃗ =a,AB⃗⃗⃗⃗ =b,那么AC⃗⃗⃗⃗ =(用a,b表示).15.如图,已知梯形ABCD,AD∥BC,BC=2AD,如果AD16.在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么边AB的长为.17.我们把两个三角形的重心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为 .18.如图所示,Rt △ABC 中,∠C=90°,BC=1,∠A=30°,点D 为边AC 上的一动点,将△ADB 沿直线BD 翻折,点A 落在点E 处,如果DE ⊥AD,那么DE= .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:12×(√3-1)2+1√2-1+312-(√22)-1.20.(本题满分10分)解方程:x x+3+6x 2-9=1x -3.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在Rt △ABC 中,∠ACB=90°,D 是边AB 的中点,BE ⊥CD,垂足为E. 已知AC=15,cos A=35. (1)求线段CD 的长;(2)求sin∠DBE的值.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元)与生产数量x(吨)的函数关系式如图所示.(1)求y与x的函数关系式,并写出其定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)3B23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在菱形ABCD中,点E、F分别在边BC、CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DFFC =ADDF时,求证:四边形BEFG是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数y=ax2+6x+c过点A(4,0)和B(-1,0),并与y轴交于点C,点D在线段OC上,设DO=t,点E在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD于F.(1)求二次函数的解析式;(2)用含t的代数式表示EF和OF的长;(3)当∠ECA=∠CAO时,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知扇形AOB中,∠AOB=90°,OA=OB=2,C为AB⏜上的动点,且不与A、B重合,OE⊥AC于E,OD⊥BC于D.(1)若BC=1,求OD的长;(2)在△DOE中,是否存在长度保持不变的边?若存在,求出该边的长;若不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y与x的函数关系式及定义域.2012年上海市初中毕业统一学业考试一、选择题1.A根据单项式定义,可知选项A、C、D中的代数式均为单项式,又由单项式的次数定义可知次数为3的单项式是xy2,故选A.评析本题主要考查了单项式和单项式次数的定义,属于容易题.正确理解两个概念是解决此类问题的关键,易混易错之处是当计算单项式的次数时,常常忽略指数是1的字母,导致确定单项式的次数有误.2.B根据中位数的定义,先把该组数据排序,若有奇数个,则中位数是中间的那个数;若有偶数个,则中位数是中间两个数的平均数.显然在给出的7个数据中,排序后最中间的数据是6,故选B.3.C解不等式-2x<6得x>-3,解不等式x-2>0得x>2,∴不等式组{-2x<6,的解集为x>2.故选C.x-2>04.C根据有理化因式的定义,只要二次根式√a-b乘一个适当的因式,能将其转化为有理式即可.而√a-b·√a-b=a-b,故选C.评析 本题主要考查有理化因式的概念,有理化因式的形式分为两种:①√a 的有理化因式是√a ;②√a ±√b 的有理化因式是√a ∓√b ,属简单题. 5.B 因为绕一个点旋转180度后能与自身重合的图形是中心对称图形,所以选项中的四种图形,只有平行四边形是中心对称图形,故选B.6.D 设R=6,r=2,d=3,则R-r=6-2=4>3,即R-r>d,所以两圆内含.故选D. 二、填空题7.答案 12解析 根据有理数的运算法则和绝对值的意义,得|12-1|=|-12|=12. 8.答案 x(y-1)解析 本题运用提取公因式法进行因式分解,所以xy-x=x(y-1). 9.答案 减小解析 ∵点(2,-3)在函数图象上,∴把(2,-3)代入y=kx(k ≠0)中,得-3=2k,解得k=-32,显然k<0,故y 随x 的增大而减小.评析 本题综合考查了待定系数法求函数的解析式、正比例函数的性质等知识点.熟练掌握正比例函数的性质是解题关键,属容易题. 10.答案 x=3解析 可以把无理方程转化成算术平方根,2是x+1的算术平方根,则x+1=4,易得x=3. 11.答案 c>9解析 由题意得Δ=b 2-4ac<0,即(-6)2-4×1×c<0,解得c>9.. 12.答案 y=x 2+x-2解析 因为二次函数的图象平移时遵循“上加下减,左加右减”的规律,所以向下平移2个单位后,所得抛物线的解析式是y=x 2+x-2. 13.答案 13解析 P(恰好为红球)=红球的个数白球的个数+红球的个数=36+3=13. 14.答案 150解析根据频数、频率分布的知识可知,所有的频数之和等于总数,所有频率之和等于1,则得分数在80~90分数段分数在80~90分数段的学生的频率为1-0.2-0.25-0.25=0.3,由频率=频数总数的学生有0.3×500=150(名).15.答案2a+b解析利用向量的加法法则易知AC⃗⃗⃗ =AB⃗⃗⃗⃗ +BC⃗⃗⃗ =2a+b.16.答案3解析∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴S △ADE∶S△ACB=AE2∶AB2,即4∶9=22∶AB2,∴AB=3..17.答案4解析如图1和图2所示,等边三角形的重心是它三条中线的交点,交点分每一条中线得到的两条线段的比值(短∶长)为1∶2,当两个等边三角形一边重合时,重心距是两条短线段之和,所以每条短线段的长度为1,长线段的长度为2.因此当两个等边三角形的一对角成对顶角时,重心距为2+2=4.评析本题主要考查了等边三角形的重心及其性质,属中等难度题.18.答案√3-1解析如图,由翻折的性质可知AD=DE,∠ADP=∠EDP.又由AD⊥ED 得,∠ADP=∠EDP=45°,所以∠BDC=45°,因为∠C=90°,所以BC=CD=1,又因为∠A=30°,BC=1,所以AB=2,AC=√3,所以DE=AD=√3-1.评析本题涉及的知识点有对折、等腰直角三角形、垂直、解直角三角形,有一定区分度,属中等难度题.三、解答题19.解析原式=12×(4-2√3)+√2+1+√3-√2(8分)=2-√3+√2+1+√3-√2=3.(10分)评析本题主要考查了实数的混合运算、分数指数、负指数以及分母有理化、完全平方公式等,均是中考常考的基础知识,但是学生容易马虎丢分,属中等难度题.20.解析去分母,得x(x-3)+6=x+3,(3分)整理,得x2-4x+3=0,(5分)解得x1=1,x2=3.(9分)经检验,x=3是增根,x=1是原方程的根.所以原方程的根是x=1.(10分)21.解析(1)在Rt△ABC中,∠ACB=90°,AC=15,cos A=ACAB =35,(1分)∴AB=25.(2分)∵D是AB的中点,∴CD=AB2=252.(4分)(2)在Rt△ABC中,BC=√AB2-AC2=20.(5分)∵BD=CD=AB2=252,∴∠DCB=∠DBC.(6分)∴cos∠DCB=cos∠ABC=BCAB =45.(7分)在Rt△CEB中,∠E=90°, CE=BC·cos∠BCE=16.(8分)∴DE=CE-CD=72.(9分)在Rt△DEB中,∠DEB=90°,∴sin∠DBE=DEBD =725.(10分)22.解析(1)设函数解析式为y=kx+b,(1分)得{10=10k+b,6=50k+b.(2分)解得{k=-110,b=11.(3分)∴y与x的函数关系式为y=-110x+11,(4分)定义域是10≤x≤50.(5分)(2)由题意,得xy=280,(6分)即x(-110x+11)=280,(7分)整理,得x2-110x+2800=0,(8分)解得x1=40,x2=70.(9分)x=70不合题意,舍去.答:该产品的生产数量为40吨.(10分)评析本题主要考查了利用函数图象获取信息、建立函数模型、确定函数解析式和定义域.属中等难度题.23.证明(1)∵∠BAF=∠DAE,∴∠BAE+∠EAF=∠DAF+∠EAF,∴∠BAE=∠DAF.(1分)∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADF.(3分)∴△ABE≌△ADF,(4分)∴BE=DF.(5分)(2)∵DFFC =ADDF,DF=BE,∴DFFC=ADBE.(6分)∵AD∥BC,∴DGGB =ADBE,(7分)∴DFFC =DGGB,(8分)∴GF∥BC.(9分)∵BE=DF,BC=DC,∴BEBC =DFDC,(10分)∴EF∥BD.(11分)∴四边形BEFG是平行四边形.(12分)24.解析(1)由二次函数y=ax2+6x+c过点A(4,0)、B(-1,0),得{0=16a+24+c,0=a-6+c.(1分)解得{a=-2,c=8.(2分)∴二次函数的解析式为y=-2x2+6x+8.(3分)(2)∵点D在线段OC上,点E在第二象限,∠ADE=90°,EF⊥OD,∴∠EDF+∠ADO=∠DAO+∠ADO=90°,∴∠EDF=∠DAO,∴Rt△DFE∽Rt△AOD,(4分)∴EFDO =DFAO=DEAD.(5分)在Rt△ADE中,∠ADE=90°,tan∠DAE=DEAD =1 2 ,∴EFDO =DFAO=12,∴EF=12DO,DF=12AO.(6分)∵DO=t,∴EF=t2,(7分)∵点A的坐标为(4,0),∴AO=4,DF=2,∴OF=t-2.(8分)(3)由(1)得,点C的坐标为(0,8).延长CE交x轴于点G,设点G的坐标为(x,0).∵∠ECA=∠CAO,∴CG=AG,(9分)∴√x2+82=√(x-4)2,解得x=-6,∴GO=6.(10分)由已知,可得点F在线段OD上,又∵OF=t-2,∴FC=OC-OF=10-t.(11分)∵EF∥GO,∴EFGO =CF CO,∴t26=10-t8,解得t=6.(12分)评析本题主要考查了二次函数解析式的确定、相似三角形的判定与性质、三角函数、勾股定理等知识的综合应用.本题共有3个小题,第(1)小题较易,第(2)小题难度适中,把相似三角形和三角函数结合起来求解较为简便,第(3)小题偏难,利用勾股定理列方程是解题关键.25.解析(1)在扇形AOB中,∵OD⊥BC,∴BD=12BC.(1分)∵BC=1,∴BD=12.(2分)∵OB=2,∴OD=√OB2-BD2=√152.(3分)(2)存在,边DE的长度保持不变.(4分)连结AB,∵∠AOB=90°,OA=OB=2,∴AB=√OB2+OA2=2√2.(5分)∵OD⊥BC,OE⊥AC,∴CD=BD,CE=AE,(7分)∴DE=12AB=√2.(8分)(3)连结OC,∵点C在AB⏜上,∴OC=OB.∵OD⊥BC,∴∠COD=12∠BOC,同理,∠COE=12∠AOC,(9分)∴∠DOE=12∠BOC+12∠AOC=12∠AOB,∵∠AOB=90°,∴∠DOE=45°.(10分)过点D作DH⊥OE,垂足为H.在Rt△OBD中,OD=√OB2-BD2=√4-x2.在Rt△ODH中,∠DOH=45°,OH=DH=OD·sin45°=√2√4-x2.(11分)2x.(12分)在Rt△DEH中,HE=√DE2-DH2=√22∴OE=OH+HE=√2√4-x2+√22x.2OE·DH,∵S△DOE=12,(13分)∴函数解析式为y=4-x2+x√4-x24定义域为0<x<√2.(14分)评析本题是几何与代数综合的压轴题,综合考查了垂径定理、勾股定理、三角形的中位线的性质、等腰直角三角形的性质以及利用三角形面积进行函数建模,综合性比较强,尤其是第(2)问存在性问题设计得比较巧妙.。

2010-2012上海数学中考一模大题汇总

2010-2012上海数学中考一模大题汇总

2010黄浦区2009学年度第一学期期终基础学业测评24、(本题12分)已知二次函数k x k x y -++-=)1(2的图像经过一次函数4+-=x y 的图像与x 轴的交点A .(如图) (1)求二次函数的解析式;(2)求一次函数与二次函数图像的另一个交点B 的坐标;(3)若二次函数图像与y 轴交于点D ,平行于y 轴的直线l 将四边形ABCD 的面积分成1∶2的两部分,则直线l 截四边形ABCD 所得的线段的长是多少?(直接写出结果)25、(本题14分)在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1) (1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF 交于点P .(如图2)①求证:BDE ∆∽BCF ∆;BCDA BCDPEFA ②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明; ③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.(图1) (图2) 宝山24.(本题满分12分,共3小题,每小题满分各4分)如图8,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的 交点为点C ,试在x 轴上找点D ,使得以点 B ′、C 、D 为顶点的三角形与ABC △相似.25. (本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图9,矩形ABCD 中,2AB =,点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F .(1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形?2010年上海市初中毕业统一学业考试数学卷24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(备用图)DCBA EFD CBA EF(图9)A yO B C Dx25.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备用)奉贤24.(本题满分12分,每小题4分)如图,在平面直角坐标系中,点O为坐标原点,已知点A的坐标为(2,2),点B、C 在y轴上,BC=8,AB=AC,直线AB与x轴相交于点D,(1) 求C、D的坐标;(2)求经过A、C、D三点的二次函数解析式;(3)求∠CAD的正弦。

2012年上海市初中毕业统一学业考试数学

2012年上海市初中毕业统一学业考试数学

2012年上海市初中毕业统一学业考试数学一、选择题(本大题共6题,每题4分,满分24分) 1、在下列代数式中,次数为3的单项式是( )2333()()()()3A xy B x y C x yD xy +2、数据5,7,5,8,6,13,5的中位数是( )()5()6()7()8A B C D .3、不等式组2620x x -<⎧⎨->⎩的解集是( )()3()3()2()2A x B x C x D x >-<-><4、 )((((A B C D 5、 在下列图形中,为中心对称图形的是( )()A 等腰梯形 ()B 平行四边形 ()C 正五边形 ()D 等腰三角形6、如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的位置关系是( )()A 外离 ()B 相切 ()C 相交 ()D 内含二、填空题(本大题共12题,每题4分,满分48分) 7、计算112-= 8、因式分解xy x -=9、已知正比例函数y kx =(0k ≠),点()2,3-在函数上,则y 随x 的增大而 (增大或减小)102的根是11、如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实数根,那么c 的取值范围是12、将抛物线2y x x =+向下平移2个单位,所得新抛物线的表达式是13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是14、某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表1所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可得测试分数在80-90分数段的学生有 名15、如图1,已知梯形,//,2ABCD AD BCBC AD =,如果,AD a AB b == ,那么AC = (用,a b表示)图1B16、在ABC ∆中,点,D E 分别在,AB AC 上,AED B ∠=∠,如果2AE =,ADE ∆的面积为4,四边形BCDE 的面积为5,那么边AB 的长为图2CBEDA17、我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为18、如图3,在,90,30,1Rt A B C C A B C ∆∠=∠==,点D 在AC 上,将ADB ∆沿直线BD翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为图3CAB三、解答题:(本大题共7题,满分78分)19、(本题满分10分)12121322)-⨯+-20、(本题满分10分) 解方程:261393x x x x +=+--21、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图4,在Rt ABC △中,90ACB ∠= ,D 是边AB 的中点,BE CD ⊥,垂足为点E 。

(高清版)2012年上海市中考数学试卷

(高清版)2012年上海市中考数学试卷

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前上海市2012年中考数学试题数 学一、选择题(本大题共6小题,每小题4分,满分24分) 1.在下列代数式中,次数为3的单项式是( )A .2xyB .33x y +C .3x yD .3xy 2.数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .8 3.不等式组2620x x -⎧⎨-⎩<>的解集是( ) A .3x ->B .3x -<C .2x >D .2x < 4.在下列各式中,( )ABCD5.在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6.如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是 ( ) A .外离B .相切C .相交D .内含二、填空题(本大题共12小题,每小题4分,满分48分) 7.计算1|1|2-= . 8.因式分解xy x -= .9.已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而 (增大或减小).10.2的根是 .11.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实根,那么c 的取值范围是 .12.将抛物线2y x x =+向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在15.如图,已知梯形ABCD ,AD BC ∥,2BC AD =,如果AD a =,=AB b ,那么AC =(用,a b r r表示).16.在ABC △中,点D 、E 分别在AB 、AC 上,ADE B ∠=∠,如果2AE =,ADE △的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为.18.如图,在Rt ABC △中,90C ∠=o,30A ∠=o,1BC =,点D 在AC 上,将ADB △沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .三、解答题(本大题共7小题,满分78分) 19.(本小题满分10分)121211)32-⨯+-.20.(本小题满分10分) 解方程:261393x x x x +=+--.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt ABC △中,90ACB ∠=o ,D 是边AB 的中点,BE CD ⊥,垂足为点E .已知15AC =,3cos 5A =. (1)求线段CD 的长; (2)求sin DBE ∠的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示. (1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本⨯生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,BAF DAE ∠=∠,AE 与BD 交于点G .(1)求证:BE DF = (2)当要DF ADFC DF=时,求证:四边形BEFG 是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分) 如图在平面直角坐标系中,二次函数26y ax x c =++的图象经过点(4,0)A 、(1,0)B -,与y 轴交于点C ,点D 在线段OC 上,OD t =,点E 在第二象限,90ADE ∠=o ,1tan 2DAE ∠=,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当ECA OAC ∠=∠时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 如图,在半径为2的扇形AOB 中,90AOB ∠=o,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD BC ⊥,OE AC ⊥,垂足分别为D 、E . (1)当1BC =时,求线段OD 的长;(2)在DOE △中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD x =,DOE △的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.上海市2012年中考数学试题数学答案解析一、选择题1.【答案】A【解析】由单项式次数的概念:∴次数为3的单项式是2xy 所以本题选项为A .数学试卷 第5页(共14页)数学试卷 第6页(共14页)【解析】根据绝对值的定义,∵1111222-==.所以本题答案为12. 【提示】首先计算出绝对值里面的结果,再根据:a 是负有理数时,a 的绝对值是它的相数学试卷 第7页(共14页) 数学试卷 第8页(共14页)3193=. 【提示】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红【解析】解:设等边三角形的中线长为a ,则其重心到对边的距离为:3a , ∵它们的一边重合时(图1),重心距为2,∴223a =,解得3a =, ∴当它们的一对角成对顶角时(图2)重心距443433a ==⨯=.【提示】先设等边三角形的中线长为a ,再根据三角形重心的性质求出a 的值,进而可数学试卷 第9页(共14页) 数学试卷 第10页(共14页)(3)63x x x -+=+,整理,得2430x x -+=,解得11x =,23x =.经检验:3x =是方程的增根,1x =是原方程的根, 故原方程的根为1x =.【提示】观察可得最简公分母是(3)(3)x x +-,方程两边乘最简公分母,可以把分式方程数学试卷 第11页(共14页)数学试卷 第12页(共14页)(2)关键是证明EDF DAO △∽△,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;(3)如解答图,通过作辅助线构造一对全等三角形:GCA OAC △≌△,得到CG 、AG的长度;然后利用勾股定理求得AE 、EG 的长度(用含t 的代数式表示);最后在【提示】根据OD BC ⊥可得出22BD BC ==,在Rt BOD △中利用勾股定理即可求出OD 的长;(2)连接AB ,由AOB △是等腰直角三角形可得出AB 的长,再根据D 和E 是中点可得出DE =(3)由BD x =,可知OD =,由于12∠=∠,34∠=∠,所以2345∠+∠=︒,数学试卷 第13页(共14页) 数学试卷 第14页(共14页)过D 作DF OE ⊥,DF =EF =即可得出结论. 【考点】垂径定理,勾股定理,三角形中位线定理.。

2012年上海初三数学一模试卷及答案(杨浦静安闵行松江崇明)

2012年上海初三数学一模试卷及答案(杨浦静安闵行松江崇明)

上海市部分学校九年级数学抽样测试试卷 2012.1.5(测试时间:100分钟,满分:150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列函数中,属于二次函数的是 (A )32-=x y ; (B )22)1(x x y -+=; (C )x x y 722-=;(D )22xy -=.2.抛物线422-+-=x x y 一定经过点 (A )(2,-4); (B )(1,2);(C )(-4,0);(D )(3,2).3.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 (A )αsin 3; (B )αcos 3; (C )αsin 3;(D )αcos 3.4.在平面直角坐标系xOy 中有一点P (8,15),那么OP 与x 轴正半轴所夹的角的正弦值等于 (A )178; (B )1715; (C )158; (D )815.5.如果△ABC ∽△DEF ,且△ABC 的三边长分别为3、5、6,△DEF 的最短边长为9,那么△DEF 的周长等于 (A )14;(B )5126; (C )21; (D )42.6.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC 相似的个数有 (A )1个;(B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.如果35=y x ,那么yx y x -+3= ▲ .A C B8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,53=ABAD ,那么CEAE 的值等于 ▲ .9.已知P 是线段AB 的一个黄金分割点,且AB =20cm ,AP >BP ,那么AP = ▲ cm . 10.如果抛物线k x k y ++=2)4(的开口向下,那么k 的取值范围是 ▲ . 11.二次函数m x x y ++=62图像上的最低点的横坐标为 ▲ .12.一个边长为2厘米的正方形,如果它的边长增加x 厘米,面积随之增加y 平方厘米,那么y 关于x 的函数解析式是 ▲ .13.如图,已知在△ABC 中,AB =3,AC =2,D 是边AB 上的一点,∠ACD =∠B ,∠BAC 的平分线AQ 与CD 、BC 分别相交于点P 和点Q ,那么AQAP 的值等于 ▲ .14.已知在△ABC 中,AB =AC =5cm ,BC =35,那么∠A = ▲ 度.15.已知在△ABC 中,∠C =90°,BC =8,AB =10,点G 为重心,那么GCB ∠tan 的值为 ▲ . 16.向量a 与单位向量e 的方向相反,且长度为5,那么用向量e 表示向量a 为 ▲ . 17.如果从灯塔A 处观察到船B 在它的北偏东35°方向上,那么从船B 观察灯塔A 的方向是 ▲ .18.将等腰△ABC 绕着底边BC 的中点M 旋转30°后,如果点B 恰好落在原△ABC 的边AB 上,那么∠A 的余切值等于 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知抛物线32++=mx x y 的对称轴为x =-2. (1)求m 的值;(2)如果将此抛物线向右平移5个单位后,求所得抛物线与y 轴的交点坐标. 20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,已知在△ABC 中,点D 在边AC 上,CD ∶AD =1∶2,a BA =,b BC =. (1)试用向量b a ,表示向量BD ; (2)求作:a b -21.(不要求写作法,但要指出所作图中表示结论的向量)ABD P(第13题图)C(第20题图)21.(本题满分10分,其中每小题各5分)已知:如图,在△ABC 中,AB =6,BC =8,∠B =60°.求:(1)△ABC 的面积;(2)∠C 的余弦值.22.(本题满分10分)已知:如图,矩形DEFG 的一边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,AH 是边BC 上的高,AH 与GF 相交于点K ,已知BC =12,AH =6,EF ∶GF =1∶2,求矩形DEFG 的周长.23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,斜坡AP 的坡度为1∶2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)24.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,在△ABC 中,AD 是边BC 上的中线,点E 在线段BD 上,且BE =ED ,过点B 作BF ∥AC ,交线段AE 的延长线于点F .(1)求证:AC =3BF ;(2)如果ED AE 3=,求证:BE AC AE AD ⋅=⋅.(第24题图)CA PBCQ(第23题图)A B CD HE FG K(第22题图)ABC(第21题图)25.(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy 中,二次函数c bx x y ++-=231的图像经过点A(-1,1)和点B (2,2),该函数图像的对称轴与直线OA 、OB 分别交于点C 和点D .(1)求这个二次函数的解析式和它的对称轴;(2)求证:∠ABO =∠CBO ;(3)如果点P 在直线AB 上,且△POB 与△BCD 相似,求点P 的坐标.(第25题图)yxO AB11-1 -1上海市部分学校九年级数学抽样测试参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 7.9; 8.23; 9.10510-; 10.k <-4; 11.-3;12.x x y 42+=;13.32;14.120;15.43; 16.e 5-; 17.南偏西35°; 18.3.三、解答题:(本大题共7题,满分78分) 19.解:(1)由题意,得22-=-m .……………………………………………………(2分)∴m =4.…………………………………………………………………………(2分) (2)此抛物线的表达式为1)2(3422-+=++=x x x y .……………………(2分) ∵向右平移5个单位后,所得抛物线的表达式为1)3(2--=x y ,即862+-=x x y .………………………………………………………………(2分) ∴它与y 轴的交点坐标为(0,8).……………………………………………(2分)20.解:(1)∵CD ∶AD =1∶2, ∴CA CD 31=,得CA CD 31=.…………(2分)∵b a BC BA CA -=-=. ………………(2分) ∴b a b a CD 3131)(31-=-=………………(1分)∴b a b a b CD BC BD 3231)(31+=-+=+=.…………………………(1分)(2)a b AM -=21.……………………………………(画图正确3分,结论1分)21.解:(1)作AH ⊥BC ,垂足为点H .在Rt △ABH 中,∵∠AHB =90°,∠B =60°,AB =6,∴BH =3,33=AH .………(2分,2分) ∴S △ABC =31233821=⨯⨯.…………………………………………………(1分)(2)∵BC =8,BH =3,∴CH =5. ………………………………………………(1分) 在Rt △ACH 中,∵33=AH ,CH =5,∴132=AC .………………………………………(2分)∴261351325cos ===ACCH C .………………………………………………(2分)ABDM22.解:设EF =x ,则GF =2x .∵GF ∥BC ,AH ⊥BC ,∴AK ⊥GF . ∵GF ∥BC ,∴△AGF ∽△ABC .………………………………………………(2分) ∴BCGF AHAK =.…………………………………………………………………(2分)∵AH =6,BC =12,∴12266x x =-.……………………………………………(2分)解得x =3.………………………………………………………………………(2分)∴矩形DEFG 的周长为18.……………………………………………………(2分)23.解:(1)过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1∶2.4,∴125=PHAH .…………………………………(2分)设AH =5k ,则PH =12k ,由勾股定理,得AP =13k .∴13k =26. 解得k =2.∴AH =10.………………………………………………………………………(2分) 答:坡顶A 到地面PQ 的距离为10米.………………………………………(1分) (2)延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .…………………………………………(1分) ∴四边形AHDC 是矩形,CD =AH =10,AC =DH .……………………………(1分) ∵∠BPD =45°,∴PD =BD . …………………………………………………(1分) 设BC =x ,则x +10=24+DH . ∴AC =DH =x -14. 在Rt △ABC 中,ACBC =︒76tan ,即0.414≈-x x .…………………………(2分)解得356=x ,即19≈x .………………………………………………………(1分)答:古塔BC 的高度约为19米.………………………………………………(1分)24.证明:(1)∵BF ∥AC ,∴BECE BFAC =.………………………………………………(2分)∵BD =CD ,BE =DE ,∴CE =3BE .……………………………………………(2分)∴AC =3BF .………………………………………………………………………(1分) (2)∵ED AE 3=,∴223ED AE =.…………………………………………(1分) 又∵CE =3ED ,∴CE ED AE ⋅=2.……………………………………………(1分)∴CE AE AE ED =.……………………………………………………………………(1分)∵∠AED =∠CEA ,∴△AED ∽△CEA .………………………………………(1分) ∴AEED ACAD =.…………………………………………………………………(1分)∵ED =BE ,∴AEBE ACAD =.……………………………………………………(1分)∴BE AC AE AD ⋅=⋅.…………………………………………………………(1分)25.解:(1)由题意,得⎪⎩⎪⎨⎧++-=+--=.2342,311c b c b ………………………………………………(1分)解得⎪⎩⎪⎨⎧==.2,32c b ……………………………………………………………………(1分)∴所求二次函数的解析式为232312++-=x xy .……………………………(1分) 对称轴为直线x =1.……………………………………………………………(1分)证明:(2)由直线OA 的表达式y =-x ,得点C 的坐标为(1,-1).…………………(1分)∵10=AB ,10=BC ,∴AB =BC .………………………………………(1分) 又∵2=OA ,2=OC ,∴OA =OC .………………………………………(1分) ∴∠ABO =∠CBO .………………………………………………………………(1分)解:(3)由直线OB 的表达式y =x ,得点D 的坐标为(1,1).………………………(1分)由直线AB 的表达式3431+=x y ,得直线与x 轴的交点E 的坐标为(-4,0).……………………………………(1分) ∵△POB 与△BCD 相似,∠ABO =∠CBO ,∴∠BOP =∠BDC 或∠BOP =∠BCD . (i )当∠BOP =∠BDC 时,由∠BDC ==135°,得∠BOP =135°.∴点P 不但在直线AB 上,而且也在x 轴上,即点P 与点E 重合.∴点P 的坐标为(-4,0).………………………………………………………(2分) (ii )当∠BOP =∠BCD 时, 由△POB ∽△BCD ,得BCBD BOBP =.而22=BO ,2=BD ,10=BC ,∴1052=BP .又∵102=BE ,∴1058=PE .作PH ⊥x 轴,垂足为点H ,BF ⊥x 轴,垂足为点F . ∵PH ∥BF ,∴EFEH BEPE BFPH ==.而BF =2,EF =6,∴58=PH ,524=EH .∴54=OH .∴点P 的坐标为(54,58).……………………………………………………(2分)综上所述,点P 的坐标为(-4,0)或(54,58).。

2012年上海市中考数学试卷及答案解析

2012年上海市中考数学试卷及答案解析

2012年上海市中考数学试卷一.选择题(共6小题)1.(2012上海)在下列代数式中,次数为3的单项式是()A. xy2B. x3+y3C..x3y D..3xy考点:单项式。

解答:解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2.(2012上海)数据5,7,5,8,6,13,5的中位数是()A. 5 B. 6 C. 7 D. 8考点:中位数。

解答:解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012上海)不等式组的解集是()A. x>﹣3 B. x<﹣3 C. x>2 D. x<2考点:解一元一次不等式组。

解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。

解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。

解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.6.(2012上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是() A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。

解答:解:∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12小题)7.(2012上海)计算= .考点:绝对值;有理数的减法。

解答:解:|﹣1|=1﹣=,故答案为:.8.因式分解:xy﹣x= .考点:因式分解-提公因式法。

2012年上海市初中毕业考试模拟试卷(一)1

2012年上海市初中毕业考试模拟试卷(一)1

2012年上海市初中毕业考试模拟试卷(一)数学试卷(满分150分,考试时间:100分钟) 2012.6考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.考试不使用计算器.一、选择题(本大题共6题,每题4分,共24分)一、选择题:1、下列计算正确的是( )、A 632623a a a =⋅ 53282-a a B -=)、( 63282-a a C -=)、( 222)(b a b a D +=+、 2.下列各式中,是分式的是( )(A )722; (B )32a ; (C ) x x ; (D )xx 12- . 3.下列图形中,既是中心对称图形又是轴对称图形的是( )(A )等边三角形 (B ) 平行四边形;(C )抛物线; (D ) 双曲线4.关于抛物线()322-+-=x y 的图像,下列说法不正确的是( ) (A )当2-≥x 时,y 的值随着x 的增大而减小; (B ) 图像的开口向下;(C )图像的最高点是(-2,-3); (D ) 图像在y 轴上的截距是3-5、针对“四边形”,在以下的说法中,正确的是( )(A )连接四边形ABCD 各边的中点的连线所得的四边形是菱形的条件是BC AC ⊥(B )连接四边形ABCD 各边的中点的连线所得的四边形是矩形的条件是CD AB =(C )对角线相等且互相垂直的四边形是正方形;(D )对角线相等且互相平分的四边形是矩形;6.下列各说法中正确的个数是( )①、正n 边形的对称轴只有n 条; ②、不是正多边形的多边形的各个角不相等;③、弦心距相等的弦相等; ④、等弧所对的弦长相等;(A )1个 (B )2个 (C )3个 (D )4个二、填空题(本大题共12题,每题4分,共48分)7.计算:12733-=__________. 8.因式分解:22a ab c cb --+=_______________.9.如图3)2(,)(=-=f xk x f ,那么=k _____________; 10.当x __________时,分式321+-x x 无意义. 11.将一次函数b x y --=2过点)3,1(-A ,则该函数图象在y 轴上的截距是_________;12.二次函数222++=bx x y 的图像的顶点在x 轴上,则b=_________________;13.甲与乙两个同学做“剪刀,石头,布”的游戏,则在第一个回合中,甲获胜的概率是__________14.某小区2012年屋顶绿化面积比2010年屋顶绿化面积增长%21.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________(用百分比表示). 15.在梯形ABCD 中,BC AD //,已知,,,AD a BC b E F == 分别是边AB,DC 的中点,则向量FE =_________(结果用a 、b 表示).16.如图1,ABC Rt ∆中,6,8,90===∠BC AC C .正方形CDEF 的两边在直角边上,点E 在AB 上,则正方形CDEF 的边长是_____________17.如图2,将半径为4的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长是_________18.在平行四边形ABCD 中,对角线BD=2,且对角线所夹的角 60=∠BOA ,现将BOA ∆沿着AO 所在的直线翻折,翻折后B 的对称点记为'B ,连接D B CB AB ',',',则='DB _________.图1图2三、解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:)(11b a a b b b a ++++.其中,215,215-=+=b a20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+<-≤--212235)1(21x x x 并把解集在数轴上表示出来;21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)已知:AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连接EF,EO ,若 45,32=∠=DPA DE ;(1)、求⊙O 的半径长;(2)、求图中阴影部分的面积;22.(本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分)某地区为了了解当年春游时学生的个人消费情况,从其中一所学校的初三年级中随机抽取了部分学生春游消费情况进行调查,并将这部分学生的消费额绘制成频率分布直方图.已知从左至右第一组的人数为12名.请根据所给的信息回答:(1)被抽取调查的学生人数为 名;(2)从左至右第五组的频率是 ; (3)假设每组的平均消费额以该组的最小值计算,那么被抽取学生春游的最低平均消费额为 元; (4)以第(3)小题所求得的最低平均消费额来估计该地区全体学生春游的最低平均消费额,你认为是否合理?请说明理由.23.(本题满分12分,每小题满分各6分)如图,在直角梯形ABCD 中,AD //BC ,CD BE CD BC AD AB ⊥=⊥,,垂足为点E ,点F 在BD 上,连接AF,EF(1)、求证:AD=ED(2)、如果AF//CD ,求证:四边形ADEF 是菱形;0.0050.010 0.0150.0200.025 0.03010 20 30 40 50 60 消费额(元) 组距频率 (每组可含最小值,不含最大值)24.(本题满分12分,每小题满分各4分)已知二次函数42++=bx ax y 中的a,b 互为相反数,且图像经过点)1,4(--P ,与y 轴交于点A ,点B 在x 轴的正半轴上,AB BC ⊥,交此二次函数图像于点C ;(1)、求此二次函数42++=bx ax y 的解析式;(2)、如果点G 是ABC ∆的重心,且x GB ⊥轴,求点G 的坐标;(3)、在第(2)问的条件下,延长BG 交AC 于点E ,若点M 是在直线CA 上的一点,则在抛物线上是否存在点N ,使得以点M,N,B,E 为顶点的四边形是以EB 为边的平行四边形,若存在,求出点N 的坐标,若不存在,请说明理由;25.(本题满分14分,第(1)小题满分4分,第(2)、(3)每题小题满分各5分)已知在三角形ABC 中,AB=AC=5,BC=6,P 是边BC 上的一点,将这张三角形纸片折叠,使点A 与P 重合,折痕交边AB 于点M (与端点不重合),交射线BC 于点N(1)、如图,当点P 于点B 重合时,求BN 的长;(2)、设BP=x ,AM=y ,求y 关于x 的函数解析式,并写出它的定义域;(3)、在(2)的条件下,当BPM ∆与ABC ∆相似时,求BP 的长;。

2012年上海中考数学试卷及参考答案

2012年上海中考数学试卷及参考答案

2012年上海中考数学试题一、选择题(本大题共6小题,每小题4分,满分24分).1.(2012上海市,1,4分)在下列代数式中,次数为3的单项式是()A.xy2B.x3-y3C.x3yD.3xyA本题考察了单项式的概念,需要学生掌握单项式的次数概念才能够获得正确答案.根据单项式次数的概念求解.由单项式次数的概念:∴次数为3的单项式是xy2.所以本题选项为A.⑴单项式的定义:由数字与字母或字母与字母的相乘组成的代数式叫做单项式⑵单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数2.(2012上海市,2,4分)数据5,7,5,8,6,13,5的中位数是()A.5B.6C.7D.8B本题考察了中位数的求解方法,需要学生掌握中位数的求解方法才能够获得正确答案.根据中位数的求解方法.由中位数的求解方法①将一组数据从小到大或者从大到小整齐排列;②进行中位数求解;数据排列:5,5,5,6,7,8,13数据个数:7个∴中位数是:6所以本题选择B中位数求解的前提是有顺序地将数据排列清楚,然后按照数据的个数进行求解当数据个数为奇数时,中位数就是最中间的那个数当数据个数为偶数时,中位数就是最中间的两个数的平均数3.(2012上海市,3,4分)不等式组2620xx-ìí-î<>的解集是()A.x>-3B.x<-3C.x>2D.x<2C本题考察了一元一次不等式组求解方法,需要学生掌握不等式组的求解方法才能获得正确答案.根据不等式组的求解方法先将两个一元一次不等式单独求解出来,然后结合数轴把答案表示出来∵2620xx-ìí-î<①>②由①,得-3x>由②,得>2x∴>2x所以本题选择C⑴不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

⑵最后的结果要取两个不等式公共有的部分4.(2012上海市,4,4分)在下列各式中,二次根式a b -的有理化因式是()A .a b+B .a b+C .a b-D .a b-C本题考察了有理化因式的定义,需要学生掌握有理化因式的定义才能获得正确答案.根据有理化因式的概念由有理化因式的定义,∵()()a b a b a b -·-=-所以本题选择C判断是否是某个二次根式的有理化因式,最好的方法就是将选项分别和这个二次根式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

2012年上海市初中毕业统一学业考试数学卷

2012年上海市初中毕业统一学业考试数学卷

易知 它是锐角, 以所 所
图2
求的直线有且仅有2 ( 条 图3中 的直 线 a ) 、b, 且 直线 m 是直线 a 所 形成 的一对对 顶角 的 、b
平分 线. 由此可知 () 成立. 3③
解: 如 图 2 ,过 点 (作 直 线 l/,得 直 二 ) 'l /
线 Z与 其 在 平 面 O内 的射 影 m 所 成 的 角 为 . L
函数 Y=a x+c x +6 的图像经过点A 40、 (,1
B( ,) 一10 ,与 轴 交 于 点 ,点 D在 线 段 《 二 ) 上, OD = t E在 第 二 象 限 , ADE = 9 。 ,点 Z 0,
tnZDAE = , a EF上。D, 足 为 点 F. 垂
不 .
1 0 5 a( 0 吨)




图7
()求 这个 二 次 函数 的解 析 式 ; 1

()求 线 段 EF、DF的长 ( 含 t 2 用 的代 数
图5
式表示) ; () 3 当
= 0 时, t 求 的值.

等边三角形 , 果当它们 的一边 重合 时重心距 如 为 2 那么 当它们 的一 内角成 对顶 角 时重心 距 ,


— —

1 .如 图 3 在 R △ B 中, C = 9 。 8 , t 0,

— —
1.某 校 5 0 学 生 参 加 生 命 安全 知 识 测 4 0名
( 用 、 表示) .
( >一3 () <一 ; A) ; B 3
() 2 C > ; ( X<2 D) . 4 .在下 列各式 中, 次根 式 二

静安区2012年初中毕业统一学业模拟考试卷及评分标准

静安区2012年初中毕业统一学业模拟考试卷及评分标准

静安区“学业效能实证研究”学习质量调研 2012.4一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列运算正确的是()(A )3931= (B )3931±= (C )3921= (D )3921±=2.关于x 的方程012=--mx x 根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 C )没有实数根 (D )不能确定的 3.函数x k y )1(-=中,如果y 随着x 增大而减小,那么常数k 的取值范围是( )(A )1<k (B )1>k (C )1≤k (D )1≥k4.在一个袋中,装有除颜色外其它完全相同的2个红球和2个白球,从中随机摸出两个球, 摸到的两个球颜色不同的概率是( ) (A )41 (B ) 21 (C )31 (D )32 5.对角线互相平分且相等的四边形是( )(A )菱形(B )矩形 (C )正方形 (D )等腰梯形 6.如果⊙O 1的半径是5,⊙O 2的半径为8,421=O O ,那么⊙O 1与⊙O 2的位置关系是( ) (A )内含 (B )内切 (C )相交 (D )外离 二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.计算:2)23(-= . 8.化简:=÷3a a 366. 9.不等式组⎩⎨⎧<-≤-32,01x x 的整.数解..是 . 10. 方程x x =+6的根为 . 11.函数3223+-=x x y 的定义域为 .12.已知),0(0222≠=-+y y xy x 那么=yx.13.如果点A 、B 在一个反比例函数的图像上,点A 的坐标为(1,2),点B 横坐标为2,那么A 、B 两点之间的距离为 . 14. 数据3、4、5、5、6、7的方差是 .15.在四边形ABCD 中,AB =CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)16.在△ABC 中,点D 在边BC 上, CD =2BD ,b BC a AB ==,,那么=DA . 17.如图,点A 、B 、C 在半径为2的⊙O 上,四边形OABC 是菱形,那么由BC 和弦BC 所组成的弓形面积是 . 18.如图,在△ABC 中,∠C=90°,点D 为AB 的中点,BC=3,31cos =B ,△DBC 沿着CD 翻折后, 点B 落到点E ,那么AE 的长为 .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)化简:012)2()1(231-+-++--x x x x ,并求当13+=x 时的值.(第17题图)(第18题图)OCA20.(本题满分10分)解方程组:⎪⎪⎩⎪⎪⎨⎧=+-+=+++.116,21322yx y x y x y x21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 已知:如图,在□ABCD 中,AB =5,BC =8,AE ⊥BC ,垂足为E ,53cos =B . 求:(1)DE 的长; (2)∠CDE 的正弦值.22.(本题满分10分第(1)小题满分6分,第(2)小题满分4分)20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:(第21题图)(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式; (2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图,在梯形ABCD 中,AD //BC ,AB =CD =AD , 点E 在BA 的延长线上,AE=BC ,∠AED=α.(1)求证:∠BCD =2α; (2)当ED 平分∠BEC 时,求证:△EBC 是等腰直角三角形.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)如图,一次函数1+=x y 的图像与x 轴、y 轴分别相交于点A 、B .二次函数的图像与y 轴的正半轴相交于点C ,与这个一次函数的图像相交于点A 、D ,且1010sin =∠ACB . (1) 求点C 的坐标; (2) 如果∠CDB =∠ACB ,求这个二次函数的解析式.(第23题图)ABCDE25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点E,设OA=x,CD=y.(1)求BD长;O(2)求y关于x的函数解析式,并写出定义域;E(3)当CE⊥OD时,求AO的长.A C D B(第25题图)静安区质量调研九年级数学试卷参考答案及评分标准2012.4.12一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 3.B ; 4.D ; 5.B ; 6.C .二.填空题:(本大题共12题,满分48分)7.32-; 8.32a ; 9.1,0,1-; 10.3=x ;11.23-≠x ; 12.2-或1;13.2; 14.35; 15.AB //CD 或AD =BC 、∠B +∠C =180º、∠A +∠D =180º等; 16.a 31--; 17.332-π; 18.7.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式=111)2)(1(1+-+--x x x ……(3分) =)2)(1(23212--+-+-+x x x x x ………(2分)=)2)(1(122--+-x x x x ………………(1分) =21--x x .…………………………(1分)当13+=x 时,原式=233133213113+=-=-+-+.…………………………(3分) 20.解:设b y x a yx =+=+1,12,…………………………………………………………(2分) 则⎩⎨⎧=-=+,16,23b a b a ………………………(2分) ⎪⎩⎪⎨⎧==.1,31b a ……………………(1分) ⎪⎪⎩⎪⎪⎨⎧=+=+,11,3112yx y x ………………………(1分) ⎩⎨⎧=+=+,132y x y x ……………………(1分) 解得⎩⎨⎧=-=⎩⎨⎧-==.2,1,1,22211y x y x ………………………………………………………………(2分)经检验:它们都是原方程组的解.……………………………………………………(1分)所以原方程组的解是⎩⎨⎧=-=⎩⎨⎧-==.2,1,1,22211y x y x 21. 解:(1) ∵Rt △ABE 中,ABBEB =cos ,…………………………………………………(1分) ∴BE=AB 3535cos =⨯=B . ……………………………………………………(1分) ∴AE =4352222=-=-BE AB ,…………………………………………(2分)∵□ABCD 中,AD //BC ,∴∠DAE =∠AEB =90º,AD =BC =8,………………(1分) ∴DE=54842222=+=+AD AE .………………………………………(1分) (2)∵CD =AB =5,CE =BC –BE =8–3=5,∴CD =CE ,………………………………(1分)∴∠CDE =∠CED=∠ADE .………………………………………………………(1分) ∴sin ∠CDE =sin ∠ADE =55544==DE AE .……………………………………(2分) 22.解:(1)丙种商品装()20y x --个集装箱,…………………………………………(1分)∴120)20(568=--++y x y x ,…………………………………………………(4分) ∴x y 320-=.………………………………………………………………………(1分) (2)当5=x 时,55320=⨯-=y ,10552020=--=--y x .………………(1分)∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,相应的每个集装箱装载商品总价值分别为96、90、100万元.………………(1分)20个集装箱装载商品总价值从小到大排列后第10、11个分别是96、100万元.………………………………………………………………………………………(1分) ∴每个集装箱装载商品总价值的中位数是98210096=+(万元).……………(1分)23.证明:(1)联结AC ,………………………………………………………………………(1分)∵梯形ABCD 中,AD //BC ,∴∠EAD =∠B .……………………………………(1分)∵AE =BC ,AB =AD ,∴△DEA ≌△ABC .………………………………………(1分) ∵∠AED=α,∴∠BCA =∠AED =α.…………………………………………(1分) ∵AD =CD ,∴∠DCA =∠DAC =∠ACB =α.……………………………………(2分)∴∠BCD =∠DCA +∠ACB = 2α.…………………………………………………(1分)(2)∵ED 平分∠BEC ,∴∠AEC =2∠AED =2α.∵梯形ABCD 中,AD //BC ,AB =CD ,∴∠EAD =∠B=∠BCD = 2α=∠AEC .…………………………………………(1分) ∴CE=BC=AE .……………………………………………………………………(1分) ∴∠ECA =∠EAC =∠EAD +∠DAC =3α.…………………………………………(1分) ∴∠ECB =∠ECA +∠ACB =4α.∵∠B +∠BEC +∠BCE =180º,∴2α+2α+4α=180º,…………………………(1分) ∴∠ECB = 4α=90º.………………………………………………………………(1分) ∴△EBC 是等腰直角三角形.24.解:(1)A (1-,0),OA =1,……………………………………………………………(1分) 在Rt △AOC 中,∵1010sin ==∠AC AO ACB ,AC =10,…………………………(2分) ∴OC =311022=-=-AO AC ,∴点C 的坐标(0,3).……………………(1分) (2)当点D 在AB 延长线上时,∵B (0,1),∴BO =1,∴222=+=BO AO AB ,∵∠CDB =∠ACB ,∠BAC =∠CAD ,∴△ABC ∽△ACD .………………………(1分) ∴AB AC AC AD =,∴21010=AD ,∴25=AD .…………………………………(1分) 过点D 作DE ⊥y 轴,垂足为E ,∵DE //BO ,∴ABADAO AE OB DE ==, ∴5225===AE DE .∴OE =4,∴点D 的坐标为(4,5).…………………(1分) 设二次函数的解析式为32++=bx ax y ,∴⎩⎨⎧++=+-=,34165,30b a b a …………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=.25,21b a ∴二次函数解析式为325212++-=x x y .…………………………(1分)当点D 在射线BA 上时,同理可求得点D (–2,–1),…………………………(2分) 二次函数解析式为342++=x x y .………………………………………………(1分)评分说明:过点C 作CG ⊥AB 于G ,当点D 在BG 延长线上或点D 在射线GB 上时,可用锐角三角比等方法得CG =2(1分),DG =32(1分),另外分类有1分其余同上.25.解:(1)∵OC =OD ,∴∠OCD =∠ODC ,∴∠OAC =∠ODB .………………………(1分)∵∠BOD =∠A ,∴△OBD ∽△AOC .……………………………………………(1分)∴ACODOC BD =,………………………………………………………………………(1分) ∵OC =OD =6,AC =4,∴466=BD ,∴BD=9.……………………………………(1分)(2)∵△OBD ∽△AOC ,∴∠AOC =∠B .……………………………………………(1分)又∵∠A =∠A ,∴△ACO ∽△AOB .………………………………………………(1分)∴ACAOAO AB =,………………………………………………………………………(1分) ∵13+=++=y BD CD AC AB ,∴413xx y =+,………………………………(1分)∴y 关于x 的函数解析式为13412-=x y .…………………………………………(1分) 定义域为10132<<x .…………………………………………………………(1分) (3)∵OC =OE ,CE ⊥OD .∴∠COD =∠BOD =∠A .∴∠AOD =180º–∠A –∠ODC=180º–∠COD –∠OCD=∠ADO .……………(1分) ∴AD =AO ,∴x y =+4,……………………………………………………………(1分) ∴x x =+-413412.…………………………………………………………………(1分) ∴1022±=x (负值不符合题意,舍去).………………………………………(1分)∴AO =1022 .友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市松江区2012届九年级上学期期末质量调研考试数学2012.1.5(测试时间:100分钟,满分:150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列函数中,属于二次函数的是 (A )32-=x y ;(B )22)1(x x y -+=; (C )x x y 722-=;(D )22x y -=. 2.抛物线422-+-=x x y 一定经过点 (A )(2,-4);(B )(1,2);(C )(-4,0);(D )(3,2).3.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 (A )αsin 3;(B )αcos 3;(C )αsin 3; (D )αcos 3. 4.在平面直角坐标系xOy 中有一点P (8,15),那么OP 与x 轴正半轴所夹的角的正弦值等于 (A )178; (B )1715; (C )158; (D )815. 5.如果△ABC ∽△DEF ,且△ABC 的三边长分别为3、5、6,△DEF 的最短边长为9,那么△DEF 的周长等于 (A )14;(B )5126; (C )21; (D )42.6.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC 相似的个数有(A )1个; (B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.如果35=y x ,那么y x yx -+3= ▲ . 8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,53=AB AD ,那么CEAE的值等于 ▲ .9. 已知P 是线段AB 的一个黄金分割点,且AB =20cm ,AP >BP ,那么AP = ▲ cm . 10.如果抛物线k x k y ++=2)4(的开口向下,那么k 的取值范围是 ▲ . 11.二次函数m x x y ++=62图像上的最低点的横坐标为 ▲ .12.一个边长为2厘米的正方形,如果它的边长增加x 厘米,面积随之增加y 平方厘米,那么y 关于x 的函数解析式是 ▲ .13.如图,已知在△ABC 中,AB =3,AC =2,D 是边AB 上的一点,∠ACD =∠B ,∠BAC 的平分线AQ 与CD 、BC 分别相 交于点P 和点Q ,那么AQAP的值等于 ▲ . 14.已知在△ABC 中,AB =AC =5cm ,BC =35,那么∠A = ▲ 度.15.已知在△ABC 中,∠C =90°,BC =8,AB =10,点G 为重心,那么GCB ∠tan 的值为 ▲ .16.向量a 与单位向量的方向相反,且长度为5,那么用向量e 表示向量a 为▲ .17.如果从灯塔A 处观察到船B 在它的北偏东35°方向上,那么从船B 观察灯塔A的方向是 ▲ .18.将等腰△ABC 绕着底边BC 的中点M 旋转30°后,如果点B 恰好落在原△ABC 的边AB上,那么∠A 的余切值等于 ▲ .三、解答题:(本大题共7题,满分78分)(第13题图)19.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知抛物线32++=mx x y 的对称轴为x =-2. (1)求m 的值;(2)如果将此抛物线向右平移5个单位后,求所得抛物线与y 轴的交点坐标.20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,已知在△ABC 中,点D 在边AC 上,CD ∶AD =1∶2,=,=.(1)试用向量,表示向量BD ;(2)求作:-21.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,其中每小题各5分)已知:如图,在△ABC 中,AB =6,BC =8,∠B =60°. 求:(1)△ABC 的面积; (2)∠C 的余弦值.22.(本题满分10分)已知:如图,矩形DEFG 的一边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,AH 是边BC 上的高,AH 与GF 相交于点K ,已知BC =12,AH =6,EF ∶GF =1∶2,求矩形DEFG 的周长.23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)C(第22题图)ABC(第21题图)(第20题图)已知:如图,斜坡AP 的坡度为1∶2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)24.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,在△ABC 中,AD 是边BC 上的中线,点E 在线段BD 上,且BE =ED ,过点B 作BF ∥AC ,交线段AE 的延长线于点F .(1)求证:AC =3BF ; (2)如果ED AE 3=,求证:BE AC AE AD ⋅=⋅.25.(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy 中,二次函数c bx x y ++-=231的图像经过点A (-1,1)和点B (2,2),该函数图像的对称 轴与直线OA 、OB 分别交于点C 和点D .(1(2)求证:∠ABO =∠CBO ;(3)如果点P 在直线AB 上,且△POB与△BCD 相似,求点P 的坐标.(第24题图) (第23题图)(第25题图)数学抽样测试参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分)7.9; 8.23; 9.10510-; 10.k <-4; 11.-3; 12.x x y 42+=; 13.32; 14.120; 15.43;16.e 5-; 17.南偏西35°;18.3三、解答题:(本大题共7题,满分78分) 19.解:(1)由题意,得22-=-m.………………………………………………(2分) ∴m =4.……………………………………………………………………(2分) (2)此抛物线的表达式为1)2(3422-+=++=x x x y .………………(2分) ∵向右平移5个单位后,所得抛物线的表达式为1)3(2--=x y ,即862+-=x x y .………………………………………………………(2分) ∴它与y 轴的交点坐标为(0,8).………………………………………(2分)20.解:(1)∵CD ∶AD =1∶2,∴CA CD 31=,得31=.…………(2分)∵-=-=. ………………(2分)∴3131)(31-=-=………………(1分) ∴b a b a b CD BC BD 3231)(31+=-+=+=.…………………………(1分)(2)a b AM -=21.………………………………(画图正确3分,结论1分)21.解:(1)作AH ⊥BC ,垂足为点H .在Rt △ABH 中,∵∠AHB =90°,∠B =60°,AB =6,∴BH =3,33=AH .……………………………………………(2分,2分)M∴S △ABC =31233821=⨯⨯.……………………………………………(1分) (2)∵BC =8,BH =3,∴CH =5. ……………………………………………(1分)在Rt △ACH 中,∵33=AH ,CH =5,∴132=AC .……………………………………………………………(2分)∴261351325cos ===AC CH C .…………………………………………(2分) 22.解:设EF =x ,则GF =2x .∵GF ∥BC ,AH ⊥BC ,∴AK ⊥GF .∵GF ∥BC ,∴△AGF ∽△ABC .………………………………………(2分)∴BCGFAH AK =.……………………………………………………………(2分) ∵AH =6,BC =12,∴12266xx =-.………………………………………(2分) 解得x =3.…………………………………………………………………(2分) ∴矩形DEFG 的周长为18.……………………………………………(2分)23.解:(1)过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1∶2.4,∴125=PH AH .……………………………(2分) 设AH =5k ,则PH =12k ,由勾股定理,得AP =13k .∴13k =26. 解得k =2.∴AH =10.……………………………………(2分) 答:坡顶A 到地面PQ 的距离为10米.………………………………………(1分) (2)延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .……………………………………(1分) ∴四边形AHDC 是矩形,CD =AH =10,AC =DH .………………………(1分) ∵∠BPD =45°,∴PD =BD . ……………………………………………(1分) 设BC =x ,则x +10=24+DH .∴AC =DH =x -14. 在Rt △ABC 中,AC BC =︒76tan ,即0.414≈-x x.……………………(2分)解得356=x ,即19≈x .…………………………………………………(1分) 答:古塔BC 的高度约为19米.…………………………………………(1分)24.证明:(1)∵BF ∥AC ,∴BECEBF AC =.………………………………………(2分) ∵BD =CD ,BE =DE ,∴CE =3BE .………………………………………(2分) ∴AC =3BF .………………………………………………………………(1分) (2)∵ED AE 3=,∴223ED AE =.…………………………………(1分) 又∵CE =3ED ,∴CE ED AE ⋅=2.……………………………………(1分) ∴CEAEAE ED =.……………………………………………………………(1分) ∵∠AED =∠CEA ,∴△AED ∽△CEA .…………………………………(1分)∴AEEDAC AD =.……………………………………………………………(1分) ∵ED =BE ,∴AEBEAC AD =.………………………………………………(1分) ∴BE AC AE AD ⋅=⋅.…………………………………………………(1分)25.(1)解:由题意,得⎪⎩⎪⎨⎧++-=+--=.2342,311c b c b ………………………………………(1分)解得⎪⎩⎪⎨⎧==.2,32c b ………………………………………………………………(1分)∴所求二次函数的解析式为232312++-=x x y .……………………(1分) 对称轴为直线x =1.………………………………………………………(1分)(2)证明:由直线OA 的表达式y =-x ,得点C 的坐标为(1,-1).…………(1分)∵10=AB ,10=BC ,∴AB =BC .…………………………………(1分) 又∵2=OA ,2=OC ,∴OA =OC .………………………………(1分) ∴∠ABO =∠CBO .………………………………………………………(1分)(3)解:由直线OB 的表达式y =x ,得点D 的坐标为(1,1).………………(1分)由直线AB 的表达式3431+=x y , 得直线与x 轴的交点E 的坐标为(-4,0).………………………………(1分) ∵△POB 与△BCD 相似,∠ABO =∠CBO , ∴∠BOP =∠BDC 或∠BOP =∠BCD .(i )当∠BOP =∠BDC 时,由∠BDC ==135°,得∠BOP =135°. ∴点P 不但在直线AB 上,而且也在x 轴上,即点P 与点E 重合.∴点P 的坐标为(-4,0).…………………………………………………(2分) (ii )当∠BOP =∠BCD 时, 由△POB ∽△BCD ,得BCBDBO BP =. 而22=BO ,2=BD ,10=BC ,∴1052=BP . 又∵102=BE ,∴1058=PE . 作PH ⊥x 轴,垂足为点H ,BF ⊥x 轴,垂足为点F .∵PH ∥BF ,∴EFEHBE PE BF PH ==. 而BF =2,EF =6,∴58=PH ,524=EH .∴54=OH .∴点P 的坐标为(54,58).………………………………………………(2分)综上所述,点P 的坐标为(-4,0)或(54,58).。

相关文档
最新文档