最新-竞赛专题--欧拉定理、费马小定理、孙子定理 精品
中学数学竞赛中常用的几个重要定理
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDCD塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1=••PACPNCBNMBAM塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1=••PACPNCBNMBAM,则AN、BP、CM相交于一点.【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F,过D作DN∥CG交BG于N,△DGL及△FGM是正三角形.求证:△LMN为正三角形.GCLMEDFN【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F 求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G 是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPE【练习2】 在△ABC 中,∠ABC 和∠ACB 均为锐角.D 是BC 边BC 上的内点,且AD 平分∠BAC ,过点D 作垂线DP ⊥AB 于P ,DQ ⊥AC 于Q ,CP 于BQ 相交于K. 求证:AK ⊥BCCCC托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值HABCEFAXYPOQ【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.【例1】过正△ABC 外接圆的弧AC 上点P 作P D ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.CABPEFD HABP1P2CP三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BCC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CD垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.BCB【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.CD【例2】AD是直角△ABC斜边BC上的高(AB<AC),I1,I2分别是△ABD,△ACD的内心,△A I1 I2的外接圆⊙O分别交AB,AC于E,F,直线FE与CB的延长线交于点M.证明:I1,I2分别是△ODM的内心与旁心.相交两圆的性质与应用【例1】证明:若凸五边形ABCDE中,∠ABC=∠ADE,∠AEC=∠ADB. 证明:∠BAC=∠DAEE【例2】已知⊙O1与⊙O2相交于A,B,直线MN垂直于AB且分别与⊙O1与⊙O2交于M,N,P 是线段MN的中点,Q1,Q2分别是⊙O1与⊙O2上的点,∠AO1Q1=∠AO2Q2求证:PQ1=PQ2【练习】梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK,求证:∠DMA=∠CKBA其他的一些数学竞赛定理1、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+2、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、 正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线.。
全国高中数学联赛竞赛大纲(修订稿)及全部定理内容
全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它抽屉原理。
容斤原理。
极端原理。
集合的划分。
初中数学竞赛中常用重要定理
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两局部4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同始终线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线相互垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的间隔之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以随意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
高二数学竞赛讲义 欧拉、威尔逊定理 2
高二数学竞赛班二试讲义第2讲 欧拉定理、威尔逊定理班级 姓名一、知识点金1.算术基本定理:任何一个正整数n ,都可以唯一分解成素因数乘积的形式, 其中1212k k n p p p ααα=⋅⋅⋅。
12,,,k p p p ⋅⋅⋅均为素数,12,,,k ααα⋅⋅⋅为非负整数。
记()n τ是n 的正约数的个数,()n σ是n 的正约数的和,则1()(1)(1)k n ταα=+⋅⋅⋅+,11+1+1111111()(1)(1)11k kkk k k p p n p p p p p p αααασ--=++⋅⋅⋅+⋅⋅⋅++⋅⋅⋅+=⋅⋅⋅--2.n 为平方数的充分必要条件是()n τ为奇数 3.完系和缩系:在模m 的m 个剩余类中各任取一个数作为代表,这样的m 个数称为模m 的一个完全剩余系,简称完系。
如果i 和m 互素,则易知同余类i M 中所有数都和m 互素,这样的同余类称为模m 缩同余类,我们将模m 缩同余类的个数记作()m ϕ,称为欧拉函数。
在()m ϕ个缩同余类中各任取一个数作为代表,这样的()m ϕ个数称为模m 的一个缩剩余系,简称缩系(也称简系)。
4.设(,)1a m =,b 是任意整数。
(i ),2,3,,(1),a a a m a ma ⋅⋅⋅-是模m 的完系。
a 叫做模m 的生成元。
(ii )若12,,,m c c c ⋅⋅⋅是模m 的完系,则12,,,m ac b ac b ac b ++⋅⋅⋅+也是模m 的完系。
(iii )若12(),,,m r r r ϕ⋅⋅⋅是模m 的缩系,则12(),,,m ar ar ar ϕ⋅⋅⋅也是模m 的缩系。
证明:(,)1a m =,(i )假设(mod )ia ja m ≡,j i ≠,则|m ia ja -,因为(,)1a m =,所以|m i j -,矛盾! (ii )假设(mod )i j ac b ac b m +≡+,j i ≠,则|()i j m a c c -,所以|i j m c c -,矛盾! (iii )(,)1,(,)1i j ar m ar m ==,假设(mod )i j ar ar m ≡,j i ≠,则|i j m r r -,矛盾! 5.欧拉函数()n ϕ,它表示不大于n 且与n 互素的正整数的个数,设1212k aaak n p p p =⋅⋅⋅,12,,,k p p p ⋅⋅⋅均为素数,则11()(1)ki in n p ϕ==-∏。
全国高中数学联赛竞赛大纲
全国高中数学联赛竞赛大纲一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
初中数学竞赛中常用重要定理
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
竞赛专题--欧拉定理、费马小定理、孙子定理
欧拉定理、费马小定理、孙子定理1、设m>0,则模th有?n个剩余类Mj={/+km\k eZ},i=0,1,2,•••,w-1如果]与〃互质,那么•中每一个数均与,〃互质,这样的同余类共有仞(〃?)个,伊(〃?)是1,2,…,〃呻与用互质的个数,称为欧拉函数:2、欧拉定理:设zn>1,(。
,=1,则。
枫=l(mod〃?);3、缩系的几种性质:(1)、模的一组缩系含有次个数:(2),若%、。
2、…七是侦时个与〃7互质的整数,则角、代、…财2是模〃7的一组缩系的充要条件是《三a{(modm)t(i*/);(3)、若(am)=l,H是通过模〃,的缩系,则or也是通过模〃?的缩系:4、费马小定理:若p为素数,则a p=t?(modp);5、若〃的标准分解为:〃=•••]■,则:(p(n)=n(l--)(1--)-(1---)P\Pi Pk6、孙子定理:设叫、是&个两两互质的正整数,=m i M i,(i=1,2»…,A),M=m x m2…俱t叫+i…叫测同余方程组x=b x(mod m x)x=b2(modm2)x=b k(mod m k)有唯一Mr=M\M x b x+M2M2b2 +•••+其中=l(mod/«;),/=1,2,…,&例1、设《、…和4、如、…如分别是〃的一组完全剩余系,且2|〃,求证:a】+九、a2+b2^-a n+h n不是〃的一组完全剩余系。
证:v a P缶、是〃的一组完全剩余系,则:小《.n(n+1)n=L Z =—;—三:(mod〃)r=I j=1巳L同理有:£6三*(mod〃)i=i2ft/.£(《•+b)三〃(mod〃)三0(mod n)i=l又•.•另一方面(q+々)也是一组完全剩余系,则有:选句《奥林匹克数学》高三分册%£(《.+")M?(mod〃)r=!2=0十〃,•.上式不成立,.•.原命题成立:选自《奥林匹克数学》高三分册P«例2、证明:数列{2”-3}中有一个无穷子数列,其中任意两项互素:证明:设数列{2”-3}中已有R 项是两两互素的,记为如,蜘,•••,",作〃小=2川吟"|_3其中次x)是欧拉函数,由欧拉定理有:2曲吁侦=2心)心>■*)三 l(modz/,.),! <i<k:.-3 = -l(mod 《),l <i<k数列绮,〃2,•••,〃*、"Z 是& + 1项两两互素的子数列,依此方法一直下去数列{2”-3}中一定有一个任意两项互素的无穷子数列{虬}例3、在1,2,.•矿中有多少个数是与p 。
初中数学竞赛中常用重要定理
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ∙∙=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FB AF EA CE DC BD ∙∙=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=∙∙PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=∙∙PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R Cc B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。
数学竞赛中几个重要定理
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ∙∙=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FB AF EA CE DC BD ∙∙=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=∙∙PA CP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=∙∙PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+6、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有AC AB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、正弦定理、在△ABC中有RCcBbAa2sinsinsin===(R为△ABC外接圆半径)余弦定理:a、b、c为△ABC的边,则有:a2=b2+c2-2bc·cosA; b2=a2+c2-2ac·cosB; c2=a2+b2-2ab·cosC;10、西姆松定理:点P是△ABC外接圆周上任意一点,PD⊥BC,PE⊥AC,PF⊥AB,D、E、F为垂足,则D、E、F三点共线,此直线称为西姆松线。
初中数学竞赛讲座——数论部分9(费马小定理)
第9讲费尔马小定理一、基础知识:法国数学家费尔马在1640年提出了一个有关整数幂余数的定理,在解决许多关于某个整数幂除以某个整数的余数问题时非常方便有用,在介绍这个定理之前,我们先来看一些具体的同余式,请同学们注意观察,发现这些同余式符合什么规律.3≡1(mod 2),5≡1(mod 2),7≡1(mod 2)…22≡1(mod 3),42≡1(mod 3),52≡1(mod 3)…24≡1(mod 5),34≡1(mod 5),44≡1(mod 5)…26≡(23)2≡1(mod 7),36≡(33)2≡1(mod 7),46≡(43)2≡1(mod 7)…这些同余式都符合同一个规律,这个规律就是费尔马小定理.费尔马小定理:如果p是质数,(a,p)=1,那么a p-1≡1(mod p)与费马小定理相关的有一个中国猜想,这个猜想是中国数学家提出来的,其内容为:当且仅当2p-1≡1(m od p),p是一个质数。
假如p是一个质数的话,则2p-1≡1(m od p)成立(这是费马小定理的一个特殊情况)是对的。
但反过来,假如2p-1≡1(m od p)成立那么p是一个质数是不成立的(比如341符合上述条件但不是一个质数)。
如上所述,中国猜测只有一半是正确的,符合中国猜测但不是质数的数被称为“伪质数”。
对于中国猜测稍作改动,即得到判断一个数是否为质数的一个方法:如果对于任意满足 1 < b< p的b下式都成立:b p-1≡1(m od p),则p必定是一个质数。
实际上,没有必要测试所有的小于p的自然数,只要测试所有的小于p的质数就可以了。
这个算法的缺点是它非常慢,运算率高;但是它很适合在计算机上面运行程序进行验算一个数是否是质数。
(一)准备知识:引理1.若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(m od m)可得a≡b(mod m)引理2.若m为整数且m>1,a1,a2,a3,a4,…a m为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。
初中数学竞赛讲座——数论部分费马小定理
初中数学竞赛讲座——数论部分(费马小定理)————————————————————————————————作者:————————————————————————————————日期:第9讲费尔马小定理一、基础知识:法国数学家费尔马在1640年提出了一个有关整数幂余数的定理,在解决许多关于某个整数幂除以某个整数的余数问题时非常方便有用,在介绍这个定理之前,我们先来看一些具体的同余式,请同学们注意观察,发现这些同余式符合什么规律.3≡1(mod 2),5≡1(mod 2),7≡1(mod 2)…22≡1(mod 3),42≡1(mod 3),52≡1(mod 3)…24≡1(mod 5),34≡1(mod 5),44≡1(mod 5)…26≡(23)2≡1(mod 7),36≡(33)2≡1(mod 7),46≡(43)2≡1(mod 7)…这些同余式都符合同一个规律,这个规律就是费尔马小定理.费尔马小定理:如果p是质数,(a,p)=1,那么a p-1≡1(mod p)与费马小定理相关的有一个中国猜想,这个猜想是中国数学家提出来的,其内容为:当且仅当2p-1≡1(mod p),p是一个质数。
假如p是一个质数的话,则2p-1≡1(mod p)成立(这是费马小定理的一个特殊情况)是对的。
但反过来,假如2p-1≡1(mod p)成立那么p是一个质数是不成立的(比如341符合上述条件但不是一个质数)。
如上所述,中国猜测只有一半是正确的,符合中国猜测但不是质数的数被称为“伪质数”。
对于中国猜测稍作改动,即得到判断一个数是否为质数的一个方法:如果对于任意满足1 < b< p的b下式都成立:b p-1≡1(mod p),则p必定是一个质数。
实际上,没有必要测试所有的小于p的自然数,只要测试所有的小于p的质数就可以了。
这个算法的缺点是它非常慢,运算率高;但是它很适合在计算机上面运行程序进行验算一个数是否是质数。
高中数学竞赛专题讲座---同余理论及其应用(二)
数论定理一. 知识要点1. 欧拉定理和费尔马小定理缩系的定义:设m 为正整数,一个模m 的剩余类称为与模m 互素的余类,如果它中的数与m 互素.在与模m 互素的各个剩余类中分别取一个代表所构成的集合称为模m 的一组缩系.很显然,缩系具有以下性质:(1)模m 的缩系中含有ϕ(m )个数(ϕ(m )是小于m 的正整数中且与m 互素的个数).(2)设()m r r ϕ ,1是ϕ(m )个与m 互素的整数,则()m r r ϕ ,1模m 两两不同余.(3)设()1,=m a ,且()m r r ϕ ,1是模m 的一组缩系,则()m ar ar ar ϕ,,,21 是模m 的一组缩系.欧拉(Euler )定理:设m 是大于1的整数,a 为整数,且()1,=m a ,则()()m a m mod 1≡ϕ.For personal use only in study and research; not for commercial use解:设()m x x x ϕ,,,21 是模m 的缩系.因为()1,=m a ,所以()m ax ax ax ϕ,,,21 也是模m 的缩系.这两个缩系分别乘起来得()()()m x x x ax ax ax m m mod ·2121ϕϕ ≡,且()()1,21=m x x x m ϕ .从而()()m a m mod 1≡ϕ )()m a m mod 1≡ϕ.特别地,取m 为质数p ,有费尔马(Fermat )小定理:设p 为质数,a 为整数,p a ,则()p a p mod 11≡-.它也常常写成()p a a p mod ≡.这里不需假定p a ,但p 应为素数.For personal use only in study and research; not for commercial use2. 中国剩余定理(孙子定理)中国剩余定理:设k m m m ,,21是两两互质的正整数,k a a a ,,,21 是任意整数,则同余方程组()()()⎪⎪⎩⎪⎪⎨⎧≡=≡.mod ,mod ,mod 2211k k m a x m a x m a x 对模k m m m 21有唯一解. 解:设()k i m m m m M iki ,,2,121 ==.依题设,有()1,=i i m M ,由裴蜀定理知,存在整数i b ,使得()i i i m b M mod 1≡,k i ,2,1=.对k k k M b a M b a M b a x +++= 222111,其中i i i M b a 能被k i i m m m m ,,,,111+-整除,而被i m 除的余数恰为i a .从而∑==ki i i i M b a x 1是同余方程组的解.又设x ,y 均为同余方程组的解,则有y x m -1,y x m -2,…,y x m k -,即y x m m m k - 21,亦即()k m m m y x 21mod ≡.所以同余方程组对模k m m m 21有唯一解.3. 威尔逊(wilson )定理威尔逊(wilson )定理:设p 为质数,则()()p p mod 1!1-≡-.解:对于任意整数a ,且1≤a ≤p -1,由裴蜀定理知,存在整数a ’,使得()p aa mod 1'≡.称a ’为a 的数论倒数,且不妨设1≤a ’≤p -1.若有整数b ,满足()p ba mod 1'≡,则将此式两边同乘以a ,有()p a b mod ≡.这说明对于不同整数a ,1≤a ≤p -1,对应着不同的数论倒数a ’.又若整数a 的数论倒数是它自身,则()p a a mod 1≡⋅,亦即()()()p a a mod 011≡-+,故1≡a 或()p mod 1-.当2=p 时,显然有()()p p mod 1!1-≡-.当p >2时,有2,3,…,p -2这p -3个数恰好配成互为数论倒数的23-p 对数,故它们的积()()p p p mod 1123223≡≡-⨯⨯⨯- .于是()()()p p p mod 1111!1-≡-⨯⨯≡-.4. 拉格朗日定理设p 为质数,n 是非负整数,多项式()01a x a x a x f n n +++= 是一个模p 为n 次的整系数多项式(即p a n ),则同余方程()()p x f mod 0≡ (※),至多有n 个解(在模p 的意义下).证明:我们对n 用归纳法.当0=n 时,()0a x f =,因为p a 0,故同余方程(※)无解,命题成立.设当l n =时命题成立,则当1+=l n 时,若命题不成立,即同余方程(※)至少有2+l 个解,设为()p c c c x l mod ,,,221+≡ ①,我们考虑多项式()()()()()11111111c x a c x a c x a c f x f l l l l l l -++-+-=-+++ )()111c x a c l l-++- ()()()()x h c x x a c x l l 111-=+-=+ ②,其中()x h 是l 次多项式并且首项系数1+l a ,满足1+l a p ,从而由归纳假设知l 次同余方程()()p x h mod 0≡ ③,至多有个l 个解,但由①,②可知同余方程③至少有l +1个解.()p c c c x l mod ,,,232+≡ ,矛盾!故当1+=l n 时命题成立.综上所述,命题得证.二. 典型例题例1. 已知正整数k ≥2,k p p p ,,,21 为奇质数,且()1,21=k p p p a .证明:()()()111121----k p p p a 有不同于k p p p ,,21的奇质因数.证明:由()1,21=k p p p a ,有()1,1=p a .由费尔马小定理,()11mod 11p ap ≡-.又k ≥2,p p p ,,,32 k p p p ,,,32 为奇质数,则()()()211121---k p p p 为正整数,从而()()()()12111mod 121p ak p p p ≡--- ,即()()()12111121----k p p p ap .同理,()()()1211121--⋯--k p p p a能被P 2,P 3,…P k 整除,从而()()()1211121+-⋯--k p p p a不能被k p p p p ,,,,321 整除.注意到()()()211121---k p p p 是一个偶数,则()()()0211121≡---k p p p a或1(mod4),因此4不整除()()()1211121+---k p p p a,故()()()1211121+---k p p p a异于k p p p ,,,21 的奇质因数.所以()()()()()()⎪⎪⎭⎫ ⎝⎛-=-------1121111112121k k p p p p p p a a()()()⎪⎪⎭⎫⎝⎛+---1211121k p pp a有异于k p p p ,,,21 的奇质因数.例2. 对于自然数n ,如果对于任何整数a ,只要1-n a n ,就有12-na n ,则称n 具有性质P .(34届IMO预)(1)求证:每个素数n 都具有性质P . (2)求证:有无穷多个合数也都具有性质P .证:(1)设p n =为素数且1-p a p ,于是()1,=p a .由费尔马小定理知11--p a p ,而()()1111-+-=--a a a a p p .故1-a p ,即()p a m o d 1≡.因此,()p a i mod 1≡,1,,2,1,0-=p i .上述p 个同余式累和,得()p p a a a p p mod 0121≡≡++++-- .故()()11212++++---a a a a p p p ,即12-pa p .(2)设n 是具有性质P 的合数.若1-na n ,则()1,=a n .由欧拉定理,有()()n a n mod 1≡ϕ,又因()n a n mod 1≡,由阶的性质知,()()()n a n n mod 1,≡ϕ.如果()()1,=n n ϕ,则()n a mod 1≡,于是利用(1)中证明可得12-na n .因此,问题化为求无穷多个合数n ,使()()1,=n n ϕ.对任何素数p ≥5,取p -2的素因数q ,并令pq n =.这时()()()11--=q p n ϕ.因为()2-p q ,所以q (p -1).又因q ≤p -2<p ,故p (q -1).因此,有()()1,=n n ϕ.对于每个这样的合数n ,若()1-na n ,则()1-a n ,因而()n a k mod 1≡,,2,1,0=k .故()12-n a n .因为对于每个素数p ≥5都可按上述程序得到具有性质P 的相应合数()p n ,且p <()p n <p 2,所以,有无穷多个合数n 具有性质P .例3. 求所有整数n ≥2,满足:对所有的整数a ,b ,且()()1,,==n b n a ,()n b a mod ≡的充分必要条件是()n ab mod 1≡.(第41届IMO 预选题)解:若n 有奇素因子p ,设n p a||,记1n p n a⋅=,N a ∈.由中国剩余定理知,存在Z x ∈,使()n x mod 1≡,()a p x mod 2≡,则()1,=n x .取x b a ==,即知()n x mod 12≡,从而()a p mod 14≡,故3=p ,且1=a .因此()1,5=n .取5==b a ,即知()n mod 125≡,从而24n ,故,12,8,6,4,3,2=n 24,12,8,6,4,3,2.下证:当n 取上述值时,满足条件.注意到,当2 a 时,有()8mod 12≡a ;当3 a 时,有()3mod 12≡a ,又24n ,32243⨯=,故必有()n a mo d 12≡(因为()1,=n a ).对Z b a ∈,,且()()1,,==n b n a ,()n b a mod ≡,则()n ab mod 1≡.对Z b a ∈,,且()()1,,==n b n a , ()n ab mod 1≡,则()n ab a mod 12≡≡.从而()a b a n -又()1,=n a ,有()b a n -,即()n b a mod ≡.综上,所求n 的值为2,3,4,6,8,12,24.例4. 求所有正整数n ,满足对所有的正整数n ,存在一个整数m ,使12-n是92+m 的因子.(第39届IMO 预选题)解:引理1:若p 为4k -1(k ≥2)型质数,则不存在Z m ∈,使()p m mod 92-≡.证明:设)p m m mod 31≡()p m m mod 31≡(∵()13,=p ,∴m 1存在),N m ∈1.又∵()p m mod 912-≡, ∴)(mod 121p m -≡.由费马小定理知,()()()p m m p p p mod 11121212111-=-≡=≡---,矛盾.引理2:当1≤i <j 时,有()112,1222=++ji )112,12=++j,且()13,122=+i .证明:∵()()()()12mod 211121222222+≡+-≡+=+--i i j ij ij ,∴()()12,1212,12222=+=++ij i )()12,1212,122=+=++i j.又∵()()3mod 2111222≡+-≡+i i ,∴()()13,23,122==+i.对于原题,若()()9122+-m n,n ≥2.设t n S ⋅=2,2 t .若t ≥3,则()()1212-+n t ,从而()()9122+-m t .又必存在4k -1型素数p ,且3≠p ,()12-tp (否则,()4mod 1111121≡⨯⨯⨯≡-≡- t ,矛盾).此时()92+m p ,与引理1矛盾.故t =1,从而S n 2=,且()()()1212123121212222+++⋅=--S S.由引理2及中国剩余定理知,存在N m ∈1,使()()12m o d 22211+≡-ii m ,i =1,2,…,s -1.故()((2m o d0121222211≡+≡+-i m )()()12mod 0122221+≡+≡-ii .令13m m =,有()()()12mod 013922122-≡+=+Sm m .因此,()()9122+-m n .综上,所求正整数n 为2的幂次2i (i =1,2,…).数论中存在性问题是最常见的,除了运用数论存在性定理来解决外,还需要有直接构造的能力.例5. 证明:每个正有理数能被表示成3333d c b a ++的形式,且其中a ,b ,c ,d 是正整数.(40届IMO 预选题)证明:设该正有理数为p .(1)当⎪⎭⎫⎝⎛∈2,21p 时,()()()()333321121p p p p p -++-++=,其中2p -1,2-p ,p +1+∈Q .(2)当p ≥2时,由于⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛1,41323,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21323p n,由(1)有333333333322132132213223⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .(3)当⎥⎦⎤ ⎝⎛∈21,0p 时,由于()4,1233∈⎪⎭⎫ ⎝⎛,故有N n ∈,使⎪⎭⎫ ⎝⎛∈⋅⎪⎭⎫ ⎝⎛2,21233p n ,由(1)有333333333232123123212332⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=p p p p p n n n n n .综上,总有+∈Q d c b a m 1111,,,,,使()()31313131313131313d c mb ma d c b a m p ++=++⋅=,设ma 1,mb 1,c 1,d 1的分母公倍数为n ,则取N mna a ∈=1,N mnb b ∈=,N nc c ∈=1,N nd d ∈=1,且3333dc b a p ++=.结论成立. 说明:这里是直接构造证明,首先发现恒等式()()()()333321121p p p p p -++-++=,进一步对p ≥2,或0<p ≤21构造.例6. 证明:不存在非负整数k 和m ,使得()mk k !14848+=+.证明:注意到0=k 或0=m 时,上述不定方程无解,于是,可设满足上述方程的k ,m 为正整数.(1)若1+k 为合数,设pq k =+1,2≤p ≤q ,注意到,应有48 | k !.故k≥6,于是1<2p ≤k ,故(1+k )| k !,进而(1+k )| 48,结合1+k ≥7,可知1+k =8,12,24或48,分别代入,两边约去48后,可得矛盾.(2)若1+k 为质数,由威尔逊定理,可知k !()1mod 1+-≡k ,于是,1+k | 47,进而1+k =47,这要求46!+48=48×47m ①,从而m >1,两边除以48可知m 47148!46=+,两边模4,可知()()4mod 11≡-m ,故m 为偶数.设m =2k ,则由①可知2()()14714748!46+-=k k ,由232 |48!46,而()23mod 2147≡+k,故232 | 147-k,利用二项式定理()()223mod 146123247+≡+⨯=k k,从而23 | k ,进而m ≥46,这时,①式右边比左边大.矛盾.注:一般地,若n >4,且n 为合数,则n |(n -1)!,依此可以证明威尔逊定理的逆定理也成立. 例7. 设p 是质数,证明:存在一个质数q ,使得对任意整数n ,数p n p-不是q 的倍数.(第44届IMO 试题)证明:由于()212mod 1111p p p p p p p p p +≡++++=--- .则11--p p p 中至少有一个质因子q ,满足q 对2p 的模不等于1。
费马定理、欧拉定理、威尔逊定理(讲稿)(优.选)
欧拉定理、费马定理、威尔逊定理1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数.①欧拉函数值的计算公式:若m =p 1α1p 2α2…p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n) 例如,30=2·3·5,则.8)511)(311)(211(30)30(=---=ϕ②若p 为素数,则1()1,()(1),k k p p p p p ϕϕ-=-=-若p 为合数,则()2,p p ϕ≤-③不超过n 且与n 互质的所有正整数的和为1()2n n ϕ;④若(,)1()()(),a b ab a b ϕϕϕ=⇒= 若()()a b a b ϕϕ⇒⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()ndϕ, 同时()()d nd nn d n dϕϕ==∑∑;例1、证明:φ(n )=14n 不可能成立.不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k kk k k k k k k k k k 41)4()1()1)(1(4)1()1)(1(22)1()1)(1(2241)(,,),2(,2|441)4(41)4(212121112112122211212121212121212121=∴∴∴---=---=---==≥===----ϕϕαϕϕαααααααααααααααααααα例2、证明:数列{2n -3}中有一个无穷子数列,其中任意两项互质.}{}32{1,,,1),(mod 1321),(mod 122)(32,,,,}32{}32{21211)()((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u ki u ki u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))-+∴≤≤-≡-∴≤≤≡-=--++++ ϕϕϕϕϕϕϕ例3、已知p 为质数,在1, 2, …, p α中有多少个数与p α互质?并求φ(p α). 直接用性质②例4 将与105互素的所有正整数从小到大排成数列,求出这个数列的第2010项.解:1~105的所有正整数中共有(105)(3)(5)(7)48ϕϕϕϕ==个与105互素,他们从小到排列为:12345481,2,4,8,11,,104a a a a a a ======. 对于任一的n a ,由带余除法存在唯一的q , r 使得105,0,0105n a q r q r =+≥≤<,由(a n ,105)=1,可得(r ,105)=1,即1248{,,,}r a a a ∈.反之,对于任意固定非负整数q , 1248{,,,}r a a a ∈有(105q +r ,105)=1,于是105q +r 都是数列的项,从而存在正整数n ,使得105n a q r =+. 因此数列{}n a 仅由105(1,2,,48)n q a n +=的数由小到大排列而成的.因为2010=48*41+42,所以有2010424842201010541,104,89,4394a a a a a =⨯+===而由求得所以. 2、(欧拉定理) 若(a , m )=1,则a φ(m )≡1(mod m ).证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系,又∵(a , m )=1,∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ),又∵(r 1·r 2·…·r φ(m ), m )=1,∴a φ(m )≡1(mod m ). 注:这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题. 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ).2、(定义1) 设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ), 我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: ⑴ 设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡v (mod k ), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然.必要性:设,u l u νν>=-,由(mod )ua a m ν≡及(,)1a m =知1(mod )la m ≡. 用带余除法,,0,l kq r r k =+≤<故1(mod )kqra a m ⋅≡,∴1(mod )ra m ≡,由k 的定义知,必须0r =,所以(mod ).u v k ≡⑵ 设(a , m )=1,k 是a 模m 的阶,则数列a , a 2, …, a k , a k +1,…是模m 的周期数列,最小正周期为k , 而k 个数a , a 2,…, a k 模m 互不同余.⑶ 设(a , m )=1,k 是a 模m 的阶,则k |φ(m ),特别地,若m 是素数p ,则a 模p 的阶整除p -1. (4) 设(a , p )=1, 则d 0是a 对于模p 的阶⇔0da ≡1(mod p ), 且1, a , …, a do −1对模p 两两不同余. 特别地, d o =φ(p )⇔1, a ,…, a φ(p )−1构成模p 的一个简化剩余系. 定理:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s≡,则s 必为l 的倍数. 例5、设a 和m 都是正整数,a >1. 证明:).1(|-ma m ϕ证明:实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-ma m ϕ 例6:设m , a ,b 都是正整数,m >1,则(.1)1,1),(-=--b a bam m m证明:记).1,1(--=bam m d 由于(a , b )|a 及(a , b )|b ,易知1|1),(--a b a m m及1|1),(--b b a m m ,故d mb a |1),(-, 另一方面设m 模d 的阶是k ,则由)(m od 1),(m od 1d m d m b a ≡≡推出,k |a 及k |b ,故k |(a ,b ). 因此.1|),(m od 1),(),(-≡b a b a m d d m 即综合两方面可知,.1),(-=b a md 证毕.3、(费尔马小定理) 若p 是素数,则a p ≡a (mod p ) 若另上条件(a ,p )=1,则a p −1≡1(mod p ) 证明:设p 为质数,若a 是p 的倍数,则)(m od 0p a a p≡≡.若a 不是p 的倍数,则1),(=p a 由欧拉定理得:)(mod 1,1)()(p ap p p ≡-=ϕϕ,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得.4、(威尔逊定理) p 为质数 ⇔ (p -1)!≡-1 (mod p )证明:充分性:若p 为质数,当p =2,3时成立,当p >3时,令x ∈{1, 2, 3, …, p −1},则1),(=p x ,在x p x x )1(,,2,- 中,必然有一个数除以p 余1, 这是因为x p x x )1(,,2,- 则好是p 的一个剩余系去0. 从而对}1,,2,1{},1,2,1{-∈∃-∈∀p y p x ,使得)(mod 1p xy ≡;若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,这不可能. 故对于不同的}1,,2,1{,21-∈p y y ,有1xy ≡/)(m od 2p xy .即对于不同的x 对应于不同的y , 即1,,2,1-p 中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12p x ≡,即与它自己配对, 这时)(m od 012p x ≡-,)(mod 0)1)(1(p x x ≡-+,∴1-=p x 或1=x .除1,1-=p x 外,别的数可两两配对,积除以p 余1.故)(mod 11)1()!1(p p p -≡⋅-≡-.必要性:若(p -1)!≡-1 (mod p ),假设p 不是质数,则p 有真约数d >1,故(p -1)!≡-1 (mod d ),另一方面,d <p ,故d |(p -1)!,从而(p -1)!≡0 (mod d ),矛盾! ∴p 为质数.5、算术基本定理:任何一个大于1的整数都可以分解成质数的乘积. 如果不考虑这些质因子的次序,则这种分解法是唯一的. 即对任一整数n >1,有n =p 1α1p 2α2…p k αk ,其中p 1<p 2<…<p k 均为素数, α1、α2、…、αk 都是正整数.①正整数d 是n 的约数⇔ d =p 1β1p 2β2…p k βk ,(0≤βi ≤αi , i =1, 2, …, k )② 由乘法原理可得:n 的正约数的个数为r (n )=(α1+1)(α2+1)…(αk +1) ③ n 的正约数的和为S (n )=(1+p 1+…+p 1α1)(1+p 2+…+p 2α2)…(1+p k +…+p k αk )④ n 的正约数的积为T (n )=1()2r n n⑤ n 为平方数的充要条件是:r (n )为奇数.(2) 判断质数的方法:设n 是大于2的整数,如果不大于n 的质数都不是n 的因子,则n 是质数. (3) n !的标准分解:设p 是不大于n 的质数,则n !中含质数p 的最高次幂为:).]([][][][)!(132+<≤++++=m m m p n p pnp n p n p n n P 从而可以写出n !的标准分解式.例7、证明:当质数p ≥7时,240|p 4-1.1|2401|531653161|51|31),5(,1),3(16422)1)(1)(1(1111,1,1)1)(1)(1(1,72401744442242244-∴-⋅⋅--∴==⋅⋅++-=-+-++-++-=-∴≥-≥p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:和均为偶数,且又是奇数素数证:整除;能被时,、证明当素数例例8、求20052003被17除所得的余数.解:()2005200520052003171141414(mod17),=⨯+≡因为(17,14)1,=所以由费马小定理得16141(mod17),≡ 故()()()()()5420052005161255520031414143334312(mod17),⨯+≡≡≡≡-≡--≡--≡所以20052003被17除所得的余数是14.变式拓展:已知a 为正整数,a ≥2,且(a , 10)=1,求a 20的末两位数字.解:∵(a , 10)=1,∴a 为奇数,∴a 20=a φ(25)≡1(mod 25),又∵a 2≡1(mod 4)⇒ a 20≡1(mod 4), 又∵(25, 4)=1,∴a 20≡1(mod 100),∴a 20的末两位数字01.例9、证明:方程325y x =+无整数解.解:若y 是偶数,则8 |3y ,x 2≡3(mod 8)不可能. 故必有y 一定是奇数,从而x 是偶数.令x =2s ,y =2t +1得t t t s 36422232++=+, 知t 是偶数,令t =2j ,代入得s 2+1=j (16j 2+12j +3) 由(16j 2+12j +3)≡3(mod 4) 知存在4k +3型的奇素数p ,使得p |(16j 2+12j +3),从而p | s 2+1,即s 2≡-1(mod p ),有(s ,p )=1, 21212)1()(---≡p p s (mod p ),于是 1-p s ≡-1(mod p )与费尔马小定理矛盾.例10、 试证:对于每一个素数p ,总存在无穷多个正整数n ,使得p |2n -n.. 证明:若p =2,则n 为偶数时结论成立.若p >2,则(2,p )=1,由费尔马小定理2 p -1≡1(mod p ),故对于任意m ,有2 m (p −1)≡1(mod p ). ∴2 m (p −1)-m (p -1)≡1+m (mod p ),令1+m ≡0(mod p ),即m =kp -1, 则对于n =m (p -1)=(kp -1)(p -1)(k ∈N *),均有2 n -n 被p 整除例11、设a , b 为正整数,对任意的自然数n 有n na nb n ++,则a =b . 证明:假设a 与b 不相等. 考虑n =1有11a b ++,则a <b .设p 是一个大于b 的素数,设n 是满足条件的正整数:1(mod(1)),(mod ),n p n a p ≡-≡- 由孙子定理这样的n 是存在的,如 n =(a +1)(p -1)+1. 由费马定理(1)1(mod ),nk p a aa p -+=≡所以0(mod ),n a n p +≡也即,(mod )n n p b n b n b a p ++≡-再由费马定理,所以p b a -,矛盾. 例12、设p 是奇素数,证明:2 p -1的任一素因了具有形式x px ,12+是正整数.证明:设q 是2 p -1的任一素因子,则q ≠2. 设2模q 的阶是k ,则由)(m od 12q p≡知k |p ,故k =1或p (因p 是素数,这是能确定阶k 的主要因素).显然k ≠1,否则),(m od 121q ≡这不可能,因此k =p .由费马小定理)(mod 121q q ≡-推出.1|,1|--q p q k 即因p 、q 都是奇数,故q -1=2px (x 是个正整数).例13、设p 是大于5的素数, 求证:在数列1, 11, 111, …中有无穷多项是p 的倍数.证明: 因5p >是素数, 故(,10) 1.p =由费马小定理1101(mod ),p p -≡故对每一个正整数l 有()11010(mod ),l p p --≡ 而()()()1111019999111,l p l p l p ----==⨯个个因()1(,9)1,101,l p p p -=- 故()111 1.l p p -个例14、证明:若0(mod ),ppm n p +≡则20(mod ),ppm n p +≡这里p 是奇素数.证明:因p 是奇素数,故由费马定理得,(mod ),(mod ).ppm m p n n p ≡≡于是,(mod ).ppm n m n p +≡+ 故可由已知条件0(mod )ppm n p +≡得0(mod ).m n p +≡故存在整数k 使得,.m n pk n pk m +==- 因此()()()()()()()12122111210(mod ).p p p p p p p p p rp rrrp p ppm n m pk m pk C pk m C pk m Cpk m Cpk m p -----+=+-=-+++-++≡例15、(2004第36届加拿大奥林匹克) 设p 是奇质数,试证:∑-=-+≡11212)(mod 2)1(p k p p p p k例16、(第44届IMO ) 设p 是质数,试证:存在一个质数q ,使对任意整数n ,数n p −p 不是q 的倍数.例17、已知p是给定的质数,求最大正整数m满足:⑴1≤m≤p−1;⑵∑-=≡11) (modpkm p k.例18、(2006国家集训队测试题) 求所有的正整数对(a, n),使得n|(a+1)n−a n课外练习题:1、①证明:f (x )=15x 5+13x 3+715x 是一个整值多项式. ②求证:f (n )=15n 5-32n 2+1310n -1被3除余2.①则只需证=)(15x f x x x 75335++是15的倍数即可. 由3,5是素数及Fetmat 小定理得)5(mod 5x x ≡,)3(mod 3x x ≡,则)5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x而(3,5)=1,故)15(mod 075335≡++x x x ,即)(15x f 是15的倍数, 所以)(x f 是整数. 2、 证明:2730|n 13-n (n ∈N *))(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()1)(1)(1)(1)(1()1)(1)(1()1)(1(),(|13),(,)(1375322730)(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式都是故由于可知则由费马小定理,,若记=证明:【练习】证明:-=-=-=-=++-+++-=++-=+-=-∈-=⋅⋅⋅⋅∈-3、 已知有正整数b a b a ab ba b a ++++的最大公约数不超过与是整数,求证:使得11,.证明:由于a +1b +b +1a =a 2+b 2+a +b ab……①,设(a , b )=d ,则d 2|a 2+b 2,显然d 2|ab ,由①得,d 2|a +b于是a +b ≥d 2,a +b ≥d ,即 (a , b )≤a +b .4、求最小的正整数k ,使得存在非负整数m ,n 满足k =19m -5n5、将与105互素的所有正整数从大到小排列,试求出这个数列的第1000项;法一:由105=3×5×7;故不超过105而与105互质的正整数有105×(1-13)(1-15)(1-17)=48个.1000=48×20+48-8, 105×20=2100. 而在不超过105的与105互质的数中第40个数是86. ∴ 所求数为2186. 法二:6.设n m ,为正整数,具有性质:等式(171,)(171,)k m k n -=-对所有的正整数k 成立. 证明:17rm n =,其中r 是某个整数.最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改。
初中数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
初中数学竞赛讲座——数论部分费马小定理
初中数学竞赛讲座——数论部分(费马小定理)————————————————————————————————作者:————————————————————————————————日期:第9讲费尔马小定理一、基础知识:法国数学家费尔马在1640年提出了一个有关整数幂余数的定理,在解决许多关于某个整数幂除以某个整数的余数问题时非常方便有用,在介绍这个定理之前,我们先来看一些具体的同余式,请同学们注意观察,发现这些同余式符合什么规律.3≡1(mod 2),5≡1(mod 2),7≡1(mod 2)…22≡1(mod 3),42≡1(mod 3),52≡1(mod 3)…24≡1(mod 5),34≡1(mod 5),44≡1(mod 5)…26≡(23)2≡1(mod 7),36≡(33)2≡1(mod 7),46≡(43)2≡1(mod 7)…这些同余式都符合同一个规律,这个规律就是费尔马小定理.费尔马小定理:如果p是质数,(a,p)=1,那么a p-1≡1(mod p)与费马小定理相关的有一个中国猜想,这个猜想是中国数学家提出来的,其内容为:当且仅当2p-1≡1(mod p),p是一个质数。
假如p是一个质数的话,则2p-1≡1(mod p)成立(这是费马小定理的一个特殊情况)是对的。
但反过来,假如2p-1≡1(mod p)成立那么p是一个质数是不成立的(比如341符合上述条件但不是一个质数)。
如上所述,中国猜测只有一半是正确的,符合中国猜测但不是质数的数被称为“伪质数”。
对于中国猜测稍作改动,即得到判断一个数是否为质数的一个方法:如果对于任意满足1 < b< p的b下式都成立:b p-1≡1(mod p),则p必定是一个质数。
实际上,没有必要测试所有的小于p的自然数,只要测试所有的小于p的质数就可以了。
这个算法的缺点是它非常慢,运算率高;但是它很适合在计算机上面运行程序进行验算一个数是否是质数。
费马定理、欧拉定理、威尔逊定理(讲稿)
欧拉定理、费马定理、威尔逊定理1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数.①欧拉函数值的计算公式:若m =p 1α1p 2α2…p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n) 例如,30=2·3·5,则.8)511)(311)(211(30)30(=---=ϕ②若p 为素数,则1()1,()(1),k k p p p p p ϕϕ-=-=-若p 为合数,则()2,p p ϕ≤-③不超过n 且与n 互质的所有正整数的和为1()2n n ϕ;④若(,)1()()(),a b ab a b ϕϕϕ=⇒= 若()()a b a b ϕϕ⇒⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()ndϕ, 同时()()d nd nn d n dϕϕ==∑∑;例1、证明:φ(n )=14n 不可能成立.不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k kk k k k k k k k k k 41)4()1()1)(1(4)1()1)(1(22)1()1)(1(2241)(,,),2(,2|441)4(41)4(212121112112122211212121212121212121=∴∴∴---=---=---==≥===----ϕϕαϕϕαααααααααααααααααααα例2、证明:数列{2n -3}中有一个无穷子数列,其中任意两项互质.}{}32{1,,,1),(mod 1321),(mod 122)(32,,,,}32{}32{21211)()((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u ki u ki u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))-+∴≤≤-≡-∴≤≤≡-=--++++ ϕϕϕϕϕϕϕ例3、已知p 为质数,在1, 2, …, p α中有多少个数与p α互质?并求φ(p α). 直接用性质②例4 将与105互素的所有正整数从小到大排成数列,求出这个数列的第2010项.解:1~105的所有正整数中共有(105)(3)(5)(7)48ϕϕϕϕ==个与105互素,他们从小到排列为:12345481,2,4,8,11,,104a a a a a a ======. 对于任一的n a ,由带余除法存在唯一的q , r 使得105,0,0105n a q r q r =+≥≤<,由(a n ,105)=1,可得(r ,105)=1,即1248{,,,}r a a a ∈.反之,对于任意固定非负整数q , 1248{,,,}r a a a ∈有(105q +r ,105)=1,于是105q +r 都是数列的项,从而存在正整数n ,使得105n a q r =+. 因此数列{}n a 仅由105(1,2,,48)n q a n +=的数由小到大排列而成的.因为2010=48*41+42,所以有2010424842201010541,104,89,4394a a a a a =⨯+===而由求得所以. 2、(欧拉定理) 若(a , m )=1,则a φ(m )≡1(mod m ).证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系,又∵(a , m )=1,∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ),又∵(r 1·r 2·…·r φ(m ), m )=1,∴a φ(m )≡1(mod m ). 注:这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题. 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ).2、(定义1) 设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ), 我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: ⑴ 设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡v (mod k ), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然.必要性:设,u l u νν>=-,由(mod )u a a m ν≡及(,)1a m =知1(mod )la m ≡.用带余除法,,0,l kq r r k =+≤<故1(mod )kqra a m ⋅≡,∴1(mod )ra m ≡,由k 的定义知,必须0r =,所以(mod ).u v k ≡⑵ 设(a , m )=1,k 是a 模m 的阶,则数列a , a 2, …, a k , a k +1,…是模m 的周期数列,最小正周期为k , 而k 个数a , a 2,…, a k 模m 互不同余.⑶ 设(a , m )=1,k 是a 模m 的阶,则k |φ(m ),特别地,若m 是素数p ,则a 模p 的阶整除p -1. (4) 设(a , p )=1, 则d 0是a 对于模p 的阶⇔0da ≡1(mod p ), 且1, a , …, a do −1对模p 两两不同余. 特别地, d o =φ(p )⇔1, a ,…, a φ(p )−1构成模p 的一个简化剩余系. 定理:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s≡,则s 必为l 的倍数. 例5、设a 和m 都是正整数,a >1. 证明:).1(|-ma m ϕ证明:实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-ma m ϕ 例6:设m , a ,b 都是正整数,m >1,则(.1)1,1),(-=--b a bam m m证明:记).1,1(--=bam m d 由于(a , b )|a 及(a , b )|b ,易知1|1),(--a b a m m及1|1),(--b b a m m ,故d mb a |1),(-, 另一方面设m 模d 的阶是k ,则由)(m od 1),(m od 1d m d m b a ≡≡推出,k |a 及k |b ,故k |(a ,b ). 因此.1|),(m od 1),(),(-≡b a b a m d d m 即综合两方面可知,.1),(-=b a md 证毕.3、(费尔马小定理) 若p 是素数,则a p ≡a (mod p ) 若另上条件(a ,p )=1,则a p −1≡1(mod p ) 证明:设p 为质数,若a 是p 的倍数,则)(m od 0p a a p≡≡.若a 不是p 的倍数,则1),(=p a 由欧拉定理得:)(mod 1,1)()(p ap p p ≡-=ϕϕ,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得.4、(威尔逊定理) p 为质数 ⇔ (p -1)!≡-1 (mod p )证明:充分性:若p 为质数,当p =2,3时成立,当p >3时,令x ∈{1, 2, 3, …, p −1},则1),(=p x ,在x p x x )1(,,2,- 中,必然有一个数除以p 余1, 这是因为x p x x )1(,,2,- 则好是p 的一个剩余系去0. 从而对}1,,2,1{},1,2,1{-∈∃-∈∀p y p x ,使得)(mod 1p xy ≡;若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,这不可能. 故对于不同的}1,,2,1{,21-∈p y y ,有1xy ≡/)(m od 2p xy .即对于不同的x 对应于不同的y , 即1,,2,1-p 中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12p x ≡,即与它自己配对, 这时)(m od 012p x ≡-,)(mod 0)1)(1(p x x ≡-+,∴1-=p x 或1=x .除1,1-=p x 外,别的数可两两配对,积除以p 余1.故)(mod 11)1()!1(p p p -≡⋅-≡-.必要性:若(p -1)!≡-1 (mod p ),假设p 不是质数,则p 有真约数d >1,故(p -1)!≡-1 (mod d ),另一方面,d <p ,故d |(p -1)!,从而(p -1)!≡0 (mod d ),矛盾! ∴p 为质数.5、算术基本定理:任何一个大于1的整数都可以分解成质数的乘积. 如果不考虑这些质因子的次序,则这种分解法是唯一的. 即对任一整数n >1,有n =p 1α1p 2α2…p k αk ,其中p 1<p 2<…<p k 均为素数, α1、α2、…、αk 都是正整数.①正整数d 是n 的约数⇔ d =p 1β1p 2β2…p k βk ,(0≤βi ≤αi , i =1, 2, …, k )② 由乘法原理可得:n 的正约数的个数为r (n )=(α1+1)(α2+1)…(αk +1) ③ n 的正约数的和为S (n )=(1+p 1+…+p 1α1)(1+p 2+…+p 2α2)…(1+p k +…+p k αk )④ n 的正约数的积为T (n )=1()2r n n⑤ n 为平方数的充要条件是:r (n )为奇数.(2) 判断质数的方法:设n 是大于2的整数,如果不大于n 的质数都不是n 的因子,则n 是质数. (3) n !的标准分解:设p 是不大于n 的质数,则n !中含质数p 的最高次幂为:).]([][][][)!(132+<≤++++=m m m p n p pnp n p n p n n P 从而可以写出n !的标准分解式.例7、证明:当质数p ≥7时,240|p 4-1.1|2401|531653161|51|31),5(,1),3(16422)1)(1)(1(1111,1,1)1)(1)(1(1,72401744442242244-∴-⋅⋅--∴==⋅⋅++-=-+-++-++-=-∴≥-≥p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:和均为偶数,且又是奇数素数证:整除;能被时,、证明当素数例例8、求20052003被17除所得的余数.解:()2005200520052003171141414(mod17),=⨯+≡因为(17,14)1,=所以由费马小定理得16141(mod17),≡ 故()()()()()5420052005161255520031414143334312(mod17),⨯+≡≡≡≡-≡--≡--≡所以20052003被17除所得的余数是14.变式拓展:已知a 为正整数,a ≥2,且(a , 10)=1,求a 20的末两位数字.解:∵(a , 10)=1,∴a 为奇数,∴a 20=a φ(25)≡1(mod 25),又∵a 2≡1(mod 4)⇒ a 20≡1(mod 4), 又∵(25, 4)=1,∴a 20≡1(mod 100),∴a 20的末两位数字01.例9、证明:方程325y x =+无整数解.解:若y 是偶数,则8 |3y ,x 2≡3(mod 8)不可能. 故必有y 一定是奇数,从而x 是偶数.令x =2s ,y =2t +1得t t t s 36422232++=+, 知t 是偶数,令t =2j ,代入得s 2+1=j (16j 2+12j +3) 由(16j 2+12j +3)≡3(mod 4) 知存在4k +3型的奇素数p ,使得p |(16j 2+12j +3),从而p | s 2+1,即s 2≡-1(mod p ),有(s ,p )=1, 21212)1()(---≡p p s (mod p ),于是 1-p s ≡-1(mod p )与费尔马小定理矛盾.例10、 试证:对于每一个素数p ,总存在无穷多个正整数n ,使得p |2n -n.. 证明:若p =2,则n 为偶数时结论成立.若p >2,则(2,p )=1,由费尔马小定理2 p -1≡1(mod p ),故对于任意m ,有2 m (p −1)≡1(mod p ). ∴2 m (p −1)-m (p -1)≡1+m (mod p ),令1+m ≡0(mod p ),即m =kp -1, 则对于n =m (p -1)=(kp -1)(p -1)(k ∈N *),均有2 n -n 被p 整除例11、设a , b 为正整数,对任意的自然数n 有n n a n b n ++,则a =b . 证明:假设a 与b 不相等. 考虑n =1有11a b ++,则a <b .设p 是一个大于b 的素数,设n 是满足条件的正整数:1(mod(1)),(mod ),n p n a p ≡-≡- 由孙子定理这样的n 是存在的,如 n =(a +1)(p -1)+1. 由费马定理(1)1(mod ),nk p a aa p -+=≡所以0(mod ),n a n p +≡也即,(mod )n n p b n b n b a p ++≡-再由费马定理,所以p b a -,矛盾. 例12、设p 是奇素数,证明:2 p -1的任一素因了具有形式x px ,12+是正整数.证明:设q 是2 p -1的任一素因子,则q ≠2. 设2模q 的阶是k ,则由)(m od 12q p≡知k |p ,故k =1或p (因p 是素数,这是能确定阶k 的主要因素).显然k ≠1,否则),(m od 121q ≡这不可能,因此k =p .由费马小定理)(mod 121q q ≡-推出.1|,1|--q p q k 即因p 、q 都是奇数,故q -1=2px (x 是个正整数).例13、设p 是大于5的素数, 求证:在数列1, 11, 111, …中有无穷多项是p 的倍数.证明: 因5p >是素数, 故(,10) 1.p =由费马小定理1101(mod ),p p -≡故对每一个正整数l 有()11010(mod ),l p p --≡ 而()()()1111019999111,l p l p l p ----==⨯个个因()1(,9)1,101,l p p p -=- 故()111 1.l p p -个例14、证明:若0(mod ),ppm n p +≡则20(mod ),ppm n p +≡这里p 是奇素数.证明:因p 是奇素数,故由费马定理得,(mod ),(mod ).ppm m p n n p ≡≡于是,(mod ).ppm n m n p +≡+ 故可由已知条件0(mod )ppm n p +≡得0(mod ).m n p +≡故存在整数k 使得,.m n pk n pk m +==- 因此()()()()()()()12122111210(mod ).p p p p p p p p p rp rrrp p ppm n m pk m pk C pk m C pk m Cpk m Cpk m p -----+=+-=-+++-++≡例15、(2004第36届加拿大奥林匹克) 设p 是奇质数,试证:∑-=-+≡11212)(mod 2)1(p k p p p p k例16、(第44届IMO ) 设p 是质数,试证:存在一个质数q ,使对任意整数n ,数n p −p 不是q 的倍数.例17、已知p是给定的质数,求最大正整数m满足:⑴1≤m≤p−1;⑵∑-=≡11) (modpkm p k.例18、(2006国家集训队测试题) 求所有的正整数对(a, n),使得n|(a+1)n−a n课外练习题:1、①证明:f (x )=15x 5+13x 3+715x 是一个整值多项式. ②求证:f (n )=15n 5-32n 2+1310n -1被3除余2.①则只需证=)(15x f x x x 75335++是15的倍数即可. 由3,5是素数及Fetmat 小定理得)5(mod 5x x ≡,)3(mod 3x x ≡,则)5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x而(3,5)=1,故)15(mod 075335≡++x x x ,即)(15x f 是15的倍数, 所以)(x f 是整数. 2、 证明:2730|n 13-n (n ∈N *))(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()1)(1)(1)(1)(1()1)(1)(1()1)(1(),(|13),(,)(1375322730)(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式都是故由于可知则由费马小定理,,若记=证明:【练习】证明:-=-=-=-=++-+++-=++-=+-=-∈-=⋅⋅⋅⋅∈-3、 已知有正整数b a b a ab ba b a ++++的最大公约数不超过与是整数,求证:使得11,.证明:由于a +1b +b +1a =a 2+b 2+a +b ab……①,设(a , b )=d ,则d 2|a 2+b 2,显然d 2|ab ,由①得,d 2|a +b于是a +b ≥d 2,a +b ≥d ,即 (a , b )≤a +b .4、求最小的正整数k ,使得存在非负整数m ,n 满足k =19m -5n5、将与105互素的所有正整数从大到小排列,试求出这个数列的第1000项;法一:由105=3×5×7;故不超过105而与105互质的正整数有105×(1-13)(1-15)(1-17)=48个.1000=48×20+48-8, 105×20=2100. 而在不超过105的与105互质的数中第40个数是86. ∴ 所求数为2186. 法二:6.设n m ,为正整数,具有性质:等式(171,)(171,)k m k n -=-对所有的正整数k 成立. 证明:17rm n =,其中r 是某个整数.。
初中数学竞赛中常用重要定理.doc
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ∙∙=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FB AF EA CE DC BD ∙∙=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=∙∙PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=∙∙PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC; 10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。
初中数学竞赛中常用重要定理
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=••PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉定理、费马小定理、孙子定理
函数;
互质的个数,称为欧拉中与,,,是个有互质,这样的同余类共中每一个数均与互质,那么与如果个剩余类有,则模、设m m m m m M m i m i Z k km i M m m m i i 21)(,)(1
,,2,1,0},|{01
);(m od 1,1),(12)(m a m a m m 则,、欧拉定理:设
k
i m M M m b M M b M M b M M x m b x m b x m b x m m m m m M k i M m m m m m m k m m m p p p n n p p p n n p a a p m ax m x m a i i m a a m a a a m m a a a m m i i i k k k k k k i i i i i k k k
k p i i m m k ,,2,1),(mod 1)
(mod )
(mod )(mod )(mod ,),,,2,1(,,6)1
1()11)(11()(5);
(mod 4,1),()3();
(),(mod )()2()()1(3''22'
211'12211112121212121212121
其中有唯一解则同余方程组
设个两两互质的正整数,是、、、孙子定理:设,则:
的标准分解为:、若为素数,则、费马小定理:若的缩系;也是通过模的缩系,则是通过模且、若的充要条件是的一组缩系是模、、互质的整数,则个与是、、、若个数;
的一组缩系含有、模、缩系的几种性质:
)( 原命题成立;上式不成立,则有:
也是一组完全剩余系,另一方面又同理有::
的一组完全剩余系,则是、、证:的一组完全剩余系。
不是、、求证:,的一组完全剩余系,且分别是、、和、、、设例
,2
0|2)(mod 2
)()()
(mod 0)(mod )()(mod 2
)(mod 22)1(|211
1
1
11
2122112121n n
n n n
b a
b a n n n b a n n
b n n
n n i a n a a a n b a b a b a n n b b b a a a n
i i i
i i n
i i i n i i n
i n i i n n n n n
}
{}32{1,,,1),(mod 1321),(mod 122)(3
2,,,,}32{}32{21211)()
((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u k
i u k
i u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:
是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))
)11()(321,2,1)(,2,1),(,2,13111p
p p p p p p p p p p p p p p p p p p p p p
互质其他的数均与个共有,,,,的倍数有:中是在又互质,并求中有多少个数是与问题即为:为素数
解为素数。
互质,并求中有多少个数是与、在例
不可能成立;
【练习】证明:n 4
1
)4(
1
|2401
|531653161
|51
|31
),5(,1),3(16422)1)(1)(1(1111,1,1)
1)(1)(1(1,72401744442242244 p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:
和均为偶数,且又是奇数
素数证:整除;能被时,、证明当素数例
)(,|273013N n n n 【练习】证明:
j
i l n m q p q p n k m k p q q a n k p
p a m k a N k k a a p a a p q p q p n m l q p j i p n p m n m l n k m k k n m j i j i
l j i l ,11),111(),111()11,(),111()11,(),111(|11),(,111)11(mod 1)
(mod 0,1)11,(,
11|11,|11,,11,11111111115即:=也不成立
同理,产生矛盾,假设不成立=另一方面:
又且使得:,整数由孙子定理有:存在正假设,只需证明,使为证明存在某个整数为非负整数,且其中证:设。
,使在某个整数的最大公约数,证明存
具有相同与和与,意自然数是自然数,满足:对任
和、设例
某个素数平方所整除。
,即能被个都含有二重的素因子个连续整数,使得每一【练习】是否存在1000000
不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:
设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k k
k k k k k k k k k k 4
1
)4()
1()1)(1(4)
1()1)(1(22)1()1)(1(2241)(,,),2(,2|44
1
)4(4
1
)4(21212111
21121222112121212121212
1212
1
)
(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()
1)(1)(1)(1)(1()
1)(1)(1()
1)(1(),
(|13),(,)(1375322730)
(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式
都是故由于可知则由费马小定理,,若记=证明:【练习】证明:
个连续整数;
的则可得到满足条件要求取子,即有每个都有一个二重素因个连续整数则存在一解,设此解为定理,下列同余式组
个相异的素数,由孙子是证明:令某个素数平方所整除。
,即能被个都含有二重的素因子个连续整数,使得每一【练习】是否存在1000000,1000000|,,2,1)
(mod )
(mod 2)(mod 1,,1000000222
2
2121 s i n p s n n n s n
p s x p x p x s p p p i s s。