2017考研数学之线代公式大总结

合集下载

线代公式总结

线代公式总结

线代公式总结
线性代数中有很多重要的公式,以下是其中一些主要的公式:
1. 逆矩阵公式:对于一个矩阵A,如果存在一个矩阵B,使得AB=BA=I (单位矩阵),那么矩阵B称为矩阵A的逆矩阵,记作A^(-1)。

2. 行列式公式:对于一个n阶方阵A,其行列式记作det(A),定义为所有
取自不同行不同列的元素的乘积的代数和,即det(A)=a11a22...ann。

3. 特征值公式:对于一个n阶方阵A,如果存在一个数λ和一个非零向量x,使得Ax=λx成立,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特
征值λ的特征向量。

4. 转置矩阵公式:对于一个矩阵A,其转置矩阵记作A^T,定义为将矩阵
A的行列互换得到的矩阵。

5. 行列式性质公式:对于一个n阶方阵A,有det(A^T)=det(A),
det(kA)=k^ndet(A),det(AB)=det(A)det(B)。

6. 向量点乘公式:对于两个向量a和b,其点乘记作a·b,定义为
a1b1+a2b2+...+anbn。

7. 向量叉乘公式:对于两个向量a和b,其叉乘记作a×b,定义为一个新
的向量c,其中c的每个分量c_i是a和b各个分量乘积的和,即
c=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。

这些公式是线性代数中最重要的部分,可以帮助我们解决很多问题。

线代公式汇总

线代公式汇总

线代公式汇总
线性代数公式汇总是一系列用于解决线性代数问题的公式的集合。

这些公式可以帮助我们计算出矩阵、向量和其他相关数学实体之间的关系,使我们能够对线性代数中的各种不同问题有更深刻的理解。

例如:矩阵乘法公式:如果A和B是两个m×n和
n×p维度的矩阵,则A*B=C,其中C是一个m×p维度的矩阵。

另一个例子是向量的点积公式:如果u = (u1,
u2,…, un)和v = (v1, v2,…, vn)是两个向量,则它们的点积是u·v=u1v1 + u2v2 + … + unvn。

此外,还有矩阵的逆矩阵公式,行列式公式,单位矩阵公式,向量空间公式等等。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。

线性代数公式总结大全

线性代数公式总结大全

线性代数公式1、行列式1.n 行列式共有n 2个元素,展开后有n !项,可分解为2n 行列式;2.代数余子式的性质:①、A ij和a ij的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3.代数余子式和余子式的关系:M ij=(-1)i +j Aij4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为D 1,则D 1=(-1)n (n -1)2A ij=(-1)i +j MijD ;D ;将D 顺时针或逆时针旋转90,所得行列式为D 2,则D 2=(-1)将D 主副角线翻转后,所得行列式为D 4,则D 4=D ;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积⨯(-1)n (n -1)2n (n -1)2将D 主对角线翻转后(转置),所得行列式为D 3,则D 3=D ;;③、上、下三角行列式(◥=◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积⨯(-1)⑤、拉普拉斯展开式:n (n -1)2;A O A C C A O A==A B 、==(-1)m n A BC B O B B O B C⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于n 阶行列式A ,恒有:λE -A =λn +∑(-1)k S kλn -k ,其中S k为k 阶主子式;k =1n7.证明A =0的方法:①、A =-A ;②、反证法;③、构造齐次方程组Ax =0,证明其有非零解;④、利用秩,证明r (A )<n ;⑤、证明0是其特征值;2、矩阵8.A 是n 阶可逆矩阵:⇔A ≠0(是非奇异矩阵);⇔r (A )=n (是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组Ax =0有非零解;⇔∀b ∈R n ,Ax =b 总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A T A 是正定矩阵;⇔A 的行(列)向量组是R n 的一组基;⇔A 是R n 中某两组基的过渡矩阵;9.对于n 阶矩阵A :AA *=A *A =A E 无条件恒成立;10.(A -1)*=(A *)-1(AB )T =B T A T(A -1)T =(A T )-1(AB )*=B *A *(A *)T =(A T )*(AB )-1=B -1A -111.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;12.关于分块矩阵的重要结论,其中均A 、B 可逆:⎛A 1若A =⎝A2⎫⎪⎪,则:⎪⎪A s⎭A s;-1A 2Ⅰ、A =A 1A2⎛A 1-1 -1Ⅱ、A =⎝-1⎫⎪⎪;⎪⎪A s-1⎪⎭O ⎫⎪;(主对角分块)B -1⎭B -1⎫⎪;(副对角分块)O ⎭⎛A -1⎛A O ⎫②、 ⎪=O B ⎝⎭⎝O ⎛O ⎛O A ⎫③、 ⎪= -1⎝B O ⎭⎝A-1⎛A -1⎛A C ⎫④、 ⎪=O B ⎝⎭⎝O -1-1-A -1CB -1⎫⎪;(拉普拉斯)B -1⎭O ⎫;(拉普拉斯)-1⎪B ⎭⎛A -1⎛A O ⎫⑤、 ⎪= -1-1C B ⎝⎭⎝-B CA3、矩阵的初等变换与线性方程组13.一个m ⨯n 矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:F = r⎝O 对于同型矩阵A 、B ,若r (A )=r (B )⇔A B ;14.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;15.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(A ,E )(E ,X ),则A 可逆,且X =A -1;②、对矩阵(A ,B )做初等行变化,当A 变为E 时,B 就变成A B ,即:(A ,B )~(E ,A -1B );-1c r⎛E O ⎫⎪;O ⎭m ⨯n等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;③、求解线形方程组:对于n 个未知数n 个方程Ax =b ,如果(A ,b )(E ,x ),则A 可逆,且x =A -1b ;16.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;⎛λ1λ2②、Λ=⎝⎫⎪⎪,左乘矩阵A ,λ乘A 的各行元素;右乘,λ乘A 的各列元素;i i ⎪⎪λn⎭-1r⎛1⎫⎛1⎫⎪ ⎪③、对调两行或两列,符号E (i ,j ),且E (i ,j )-1=E (i ,j ),例如: 1⎪= 1⎪; 1⎪1⎪⎝⎭⎝⎭-1⎛1⎛1⎫11 ⎪-1④、倍乘某行或某列,符号E (i (k )),且E (i (k ))=E (i ()),例如: k ⎪= k k ⎪1 ⎝⎭⎝-1⎫⎪⎪(k ≠0);⎪1⎪⎭k ⎫-k ⎫⎛1⎛1 ⎪ ⎪=1⑤、倍加某行或某列,符号E (ij (k )),且E (ij (k ))-1=E (ij (-k )),如: 1⎪ ⎪(k ≠0);1⎪1⎪⎝⎭⎝⎭17.矩阵秩的基本性质:①、0≤r (A m ⨯n)≤min(m ,n );②、r (A T )=r (A );③、若AB ,则r (A )=r (B );④、若P 、Q 可逆,则r (A )=r (PA )=r (AQ )=r (PAQ );(可逆矩阵不影响矩阵的秩)⑤、max(r (A ),r (B ))≤r (A ,B )≤r (A )+r (B );(※)⑥、r (A +B )≤r (A )+r (B );(※)⑦、r (AB )≤min(r (A ),r (B ));(※)⑧、如果A 是m ⨯n 矩阵,B 是n ⨯s 矩阵,且AB =0,则:(※)Ⅰ、B 的列向量全部是齐次方程组AX =0解(转置运算后的结论);Ⅱ、r (A )+r (B )≤n⑨、若A 、B 均为n 阶方阵,则r (AB )≥r (A )+r (B )-n ;18.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;⎛1a c ⎫⎪②、型如 01b ⎪的矩阵:利用二项展开式; 001⎪⎝⎭二项展开式:(a +b )=C a +C a b +注:Ⅰ、(a +b )n 展开后有n +1项;n (n -1)(n -m +1)n !=123m m !(n -m )!m nn -mnnnn1nn -11+C am nn -mb +m +Cn -11n -1na b m m n -m ;+C b=∑Cna b n nnm =0n Ⅱ、C nm=0n C n=C n=1Ⅲ、组合的性质:C =C Cm n +1=C +Cm nm -1n∑Cr =0n r n=2nr r -1rC n=nC n -1;③、利用特征值和相似对角化:19.伴随矩阵:⎧n⎪①、伴随矩阵的秩:r (A *)=⎨1⎪0⎩r (A )=n r (A )=n -1;r (A )<n -1②、伴随矩阵的特征值:③、A *=A A -1、A *=A Aλ(AX =λX ,A *=A A -1⇒A *X =AλX );n -120.关于A 矩阵秩的描述:①、r (A )=n ,A 中有n 阶子式不为0,n +1阶子式全部为0;(两句话)②、r (A )<n ,A 中有n 阶子式全部为0;③、r (A )≥n ,A 中有n 阶子式不全为0;21.线性方程组:Ax =b ,其中A 为m ⨯n 矩阵,则:①、m 与方程的个数相同,即方程组Ax =b 有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax =b 为n 元方程;22.线性方程组Ax =b 的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;23.由n 个未知数m 个方程的方程组构成n 元线性方程:⎧a 11x 1+a 12x 2++a 1n x n =b 1⎪a x +a x ++a x =b ⎪2n n 2①、⎨211222;⎪⎪⎩a m 1x 1+a m 2x 2++a nm x n =b n⎛a 11a 12 a a 22②、 21 ⎝a m 1am 2a 1n⎫⎛x 1⎫⎛b 1⎫⎪⎪ ⎪a 2n ⎪x 2⎪ b 2⎪=⇔Ax =b (向量方程,A 为m ⨯n 矩阵,m 个方程,n 个未知数)⎪⎪ ⎪⎪⎪ ⎪a mn ⎭⎝x m ⎭⎝b m ⎭⎛x 1⎫⎛b 1⎫ ⎪ ⎪x b 2a n ) ⎪=β(全部按列分块,其中β= 2⎪); ⎪ ⎪ ⎪ ⎪⎝x n ⎭⎝b n ⎭③、(a1a2④、a 1x 1+a 2x 2++a nx n=β(线性表出)⑤、有解的充要条件:r (A )=r (A ,β)≤n (n 为未知数的个数或维数)4、向量组的线性相关性24.m 个n 维列向量所组成的向量组A :α1,α2,,αm构成n ⨯m 矩阵A =(α1,α2,,αm);T m 个n 维行向量所组成的向量组B :β1T ,β2,⎛β1T ⎫T ⎪βT ,βm构成m ⨯n 矩阵B = 2⎪; ⎪ βT ⎪⎪⎝m ⎭含有有限个向量的有序向量组与矩阵一一对应;25.①、向量组的线性相关、无关⇔Ax =0有、无非零解;(齐次线性方程组)②、向量的线性表出(线性方程组)⇔Ax =b 是否有解;③、向量组的相互线性表示(矩阵方程)⇔AX =B 是否有解;26.矩阵A m ⨯n与B l ⨯n行向量组等价的充分必要条件是:齐次方程组Ax =0和Bx =0同解;(P101例14)27.r (A T A )=r (A );(P 101例15)28.n 维向量线性相关的几何意义:⇔α=0;①、α线性相关②、α,β线性相关⇔α,β坐标成比例或共线(平行);③、α,β,γ线性相关⇔α,β,γ共面;29.线性相关与无关的两套定理:若α1,α2,,αs 线性相关,则α1,α2,,αs,αs +1必线性相关;若α1,α2,,αs线性无关,则α1,α2,,αs -1必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n -r 个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;30.向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r ≤s (二版P 74定理7);向量组A 能由向量组B 线性表示,则r (A )≤r (B );(P 86定理3)向量组A 能由向量组B 线性表示⇔AX =B 有解;⇔r (A )=r (A ,B )(P 85定理2)向量组A 能由向量组B 等价⇔r (A )=r (B )=r (A ,B )(P 85定理2推论),P l,使A =P 1P2P l;31.方阵A 可逆⇔存在有限个初等矩阵P 1,P 2,r①、矩阵行等价:A ~B ⇔PA =B (左乘,P 可逆)⇔Ax =0与Bx =0同解②、矩阵列等价:A ~B ⇔AQ =B (右乘,Q 可逆);③、矩阵等价:A ~B ⇔PAQ =B (P 、Q 可逆);对于矩阵A m ⨯n 与B l ⨯n:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则Ax =0与Bx =0同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩;若A m ⨯s B s ⨯n =C m ⨯n,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,A T 为系数矩阵;(转置)齐次方程组Bx =0的解一定是ABx =0的解,考试中可以直接作为定理使用,而无需证明;①、ABx =0只有零解⇒Bx =0只有零解;②、Bx =0有非零解⇒ABx =0一定存在非零解;设向量组B n ⨯r:b 1,b 2,,b r可由向量组A n ⨯s :a 1,a 2,,a s线性表示为:(P 110题19结论)(b 1,b 2,,b r)=(a 1,a 2,,a s)K (B =AK )c 32.33.34.35.其中K 为s ⨯r ,且A 线性无关,则B 组线性无关⇔r (K )=r ;(B 与K 的列向量组具有相同线性相关性)(必要性:r =r (B )=r (AK )≤r (K ),r (K )≤r ,∴r (K )=r ;充分性:反证法)注:当r =s 时,K 为方阵,可当作定理使用;36.①、对矩阵A m ⨯n,存在Q n ⨯m,AQ =E m⇔r (A )=m 、Q 的列向量线性无关;(P 87)②、对矩阵A m ⨯n ,存在P n ⨯m ,PA =E n⇔r (A )=n 、P 的行向量线性无关;37.α1,α2,,αs线性相关⇔存在一组不全为0的数k 1,k 2,,k s,使得k 1α1+k 2α2++k s αs=0成立;(定义)⎛x 1⎫ ⎪x ,αs ) 2⎪=0有非零解,即Ax =0有非零解; ⎪ ⎪⎝x s ⎭⇔(α1,α2,⇔r (α1,α2,,αs)<s ,系数矩阵的秩小于未知数的个数;38.设m ⨯n 的矩阵A 的秩为r ,则n 元齐次线性方程组Ax =0的解集S 的秩为:r (S )=n -r ;39.若η*为Ax =b 的一个解,ξ1,ξ2,,ξn -r为Ax =0的一个基础解系,则η*,ξ1,ξ2,,ξn -r线性无关;(P111题33结论)5、相似矩阵和二次型40.正交矩阵⇔A T A =E 或A -1=A T (定义),性质:①、A 的列向量都是单位向量,且两两正交,即a i T a j=⎨⎧1⎩0i =j i ≠j(i ,j =1,2,n );②、若A 为正交矩阵,则A -1=A T 也为正交阵,且A =±1;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;41.施密特正交化:(a 1,a 2,,a r)b 1=a 1;b 2=a 2-[b 1,a 2]b 1[b 1,b 1]b r =a r -[b 1,a r ][b ,a ]b 1-2r b 2-[b 1,b 1][b 2,b 2]-[b r -1,a r ]b r -1;[b r -1,b r -1]42.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;43.①、A 与B 等价⇔A 经过初等变换得到B ;⇔PAQ =B ,P 、Q 可逆;⇔r (A )=r (B ),A 、B 同型;②、A 与B 合同⇔C T AC =B ,其中可逆;⇔x T Ax 与x T Bx 有相同的正、负惯性指数;③、A 与B 相似⇔P -1AP =B ;44.相似一定合同、合同未必相似;若C 为正交矩阵,则C T AC =B ⇒A B ,(合同、相似的约束条件不同,相似的更严格);45.A 为对称阵,则A 为二次型矩阵;46.n 元二次型x T Ax 为正定:⇔A 的正惯性指数为n ;⇔A 与E 合同,即存在可逆矩阵C ,使C T AC =E ;⇔A 的所有特征值均为正数;⇔A 的各阶顺序主子式均大于0;⇒a ii>0,A >0;(必要条件)。

考研数学线代定理公式汇总

考研数学线代定理公式汇总

考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。

(2)若存在行(列)线性相关,则行列式为0。

(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。

2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。

(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。

(3)利用矩阵的逆可以求解非齐次线性方程组。

3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。

(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。

(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。

4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。

(2)向量组的秩等于向量组的极大线性无关组的向量个数。

(3) rank(A^T) = rank(A),其中A是矩阵。

(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。

5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。

(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。

(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。

以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。

当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。

如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。

线代知识点公式总结

线代知识点公式总结

线代知识点公式总结线性代数是一门研究向量空间和线性映射的数学学科。

它是数学和物理学等自然科学的重要基础学科,广泛应用于工程技术和科学研究的各个领域。

线性代数的基本概念和公式是学习和应用线性代数的重要基础,下面就线性代数知识点公式进行总结。

向量:向量是线性代数的基本概念。

向量通常用箭头表示,具有大小和方向。

在n维空间中,一个向量可以表示为一个n元有序实数集。

向量的基本运算1. 加法:向量加法的定义是将两个向量的对应分量相加若A=(a1,a2,...,an),B=(b1,b2,...,bn),则A+B=(a1+b1, a2+b2,...,an+bn)2. 数乘:向量数乘的定义是一个向量乘以一个标量若A=(a1,a2,...,an),k是一个实数,则kA=(ka1,ka2,...,kan)向量的内积和外积1. 内积:向量A=(a1,a2,...,an)和向量B=(b1,b2,...,bn)的内积定义为A·B = a1b1 + a2b2 + ... + anbn内积具有交换律和分配律A·B = B·AA·(B+C) = A·B + A·C2. 外积:向量A和向量B的外积定义为A×B = |A||B|sin(θ)n其中|A|和|B|分别表示A和B的模,θ表示A和B之间的夹角,n为垂直于A和B且满足右手定则的向量。

矩阵:矩阵是线性代数的另一个基本概念。

矩阵是一个有限的矩形数组,通常表示为大写的加粗字母。

矩阵的运算1. 矩阵加法:矩阵加法的定义是将两个矩阵对应位置的元素相加若A=(aij)和B=(bij)是两个m×n的矩阵,则它们的和C=A+B是一个m×n的矩阵,其中C的每个元素cij=aij+bij。

2. 矩阵数乘:矩阵数乘的定义是将一个矩阵的每个元素乘以一个标量若A=(aij)是一个m×n的矩阵,k是一个实数,则kA是一个m×n的矩阵,其中它的每个元素(kaij)。

2017考研数学二线代重要知识点总结

2017考研数学二线代重要知识点总结

2017考研数学二线代重要知识点总结下面是小编整理的考研数学二《线性代数》中的一些重要知识点,主要分为六个章节来介绍,希望能够为考试科目考研数学二的各位考生指点迷津。

线性代数
第一章行列式行列式的运算
计算抽象矩阵的行列式
第二章矩阵矩阵的运算
求矩阵高次幂等
矩阵的初等变换、初等矩阵
与初等变换有关的命题
第三章向量
向量组的线性相关及无关的有关性质及判别法向量组的线性相关性
线性组合与线性表示
判定向量能否由向量组线性表示
第四章线性方程组
齐次线性方程组的基础解系和通解的求法
求齐次线性方程组的基础解系、通解
第五章矩阵的特征值和特征向量
实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题
相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题
第六章二次型二次型的概念求二次型的矩阵和秩
合同变换与合同矩阵的概念判定合同矩阵
学习不是一口吃成个胖子,要的是一步一步稳扎稳打,复习数学也是个慢热的过程,同学们必须要有恒心和毅力。

切不可急躁冒进以至于适得其反。

培根说过“过于求速是做事上最大的危险之一。

”希望同学们能够根据以上题型稳扎稳打将考研数学复习好。

2017考研数学:线性代数必考公式与定理

2017考研数学:线性代数必考公式与定理

2017考研数学:线性代数必考公式与定理()12121211121,,...,2122212,,...,12 (1)..................n nnn i i i ni i ni i i i n n nna a a a a a a a a a a a τ=-∑基本性质性质一:如果一个行列式的某一行全为0,则行列式的值等于0.性质二:如果一个行列式的某两行元素对应成比例,则行列式的值等于0.性质三:将行列式的任意两行互换位置后,行列式改变符号。

性质四:将行列式的某一行乘以一个常数k 后,行列式的值变为原来的k 倍。

性质五:将行列式的一行的k 倍加到另一行上,行列式的值不变。

性质六:如果行列式某一行的所有元素都可以写成两个元素的和,则该行列式可以写成两个行列式的和,这两个行列式的这一行分别为对应两个加数,其余行与原行列式相等。

即111211112111121212222122221222112212121212..........................................................................................n n nn n n i i i i in ini i in i i n n nnn n nn a a a a a a a a a a a a a a a a a a a b a b a b a a a b b a a a a a a =++++12..................in n n nnb a a a性质七:将行列式的行和列互换后,行列式的值不变,也即111211121121222122221212..........................................n n nn n n nnnn nna a a a a a a a a a a a a a a a a a =。

线性代数全公式 线性代数公式定理总结

线性代数全公式 线性代数公式定理总结

基本运算①A + B =B +A② (A + B )+C =A +(B +C )③ c(A + B )=cA +cB (c + d A = cA +dA ④ c(dA )=(cd A⑤cA = 0二 c=0或 A=0。

(ATT=A(A±B y =A T±B T(cA T = C (A T L (AB T =B TA TT(n (n —1)"21)=C j = n (n ~1)2逆值变A 」CA =cnCt , P l + P 2, 丫=P i,Y y p 2,YA =©1,^2,^3 ), 3 阶矩阵B =(3l, 02,卩3 )A +B | H |A +|B |线性代数全公式B+ P l ®2 +P 233+P 3D = a21A21 + a22A2^^a2n A Zn转置值不变A T=AA +B =(%+ P l,% +6,03 +P 3)E(i,j(c)“1I有关乘法的基本运算C ij =a ii b ij +a i2b2j + …+a in b nj线性性质(A t + 民B=A1B +A2B ,A(Bi + B2 )= AB i + AB2 (cAB =c(AB )= A(cB )结合律(AB C = A(BC )(AB T =B T A TAB| =|A|B.k .l . k +A A =A(A k} A kl(AB (=A k B k不一定成立!A(kE )= kA , (kE A = kAAB = E u BA = E与数的乘法的不同之处(AB;= A k B k不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如2A —2A-3E =(A—3E )(A + E )无消去律(矩阵和矩阵相乘)当AB = 0时口A = 0或B=0由AH0和AB =0= B=0由AH0时AB=ACx B=C (无左消去律)特别的设A可逆,则A 有消去律。

线性代数公式总结大全

线性代数公式总结大全

线性代数公式1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵8.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;9.对于阶矩阵: 无条件恒成立;10.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;11.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组12.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;13.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;14.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;15.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;16.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;17.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:18.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、19.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不全为0;20.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;21.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;22.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性23.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;24.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)25.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)26.;(例15)27.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;28.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;29.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)30.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);31.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;32.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)33.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;34.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;35.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;36.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;37.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;38.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型39.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;40.施密特正交化:;;41.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;42.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;43.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);44.为对称阵,则为二次型矩阵;45.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

(完整版)精心整理线性代数公式大全,推荐文档

(完整版)精心整理线性代数公式大全,推荐文档

1.行列式共有个元素,展开后有项,可分解为行列式;n 2n !n 2n2.代数余子式的性质:①、和的大小无关;ij A ija ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;A3.代数余子式和余子式的关系:(1)(1)i ji jijijijijM A A M ++=-=-4.设行列式:n D 将上、下翻转或左右翻转,所得行列式为,则;D 1D (1)21(1)n n D D -=-将顺时针或逆时针旋转,所得行列式为,则;D 902D (1)22(1)n n DD-=-将主对角线翻转后(转置),所得行列式为,则;D 3D 3DD=将主副角线翻转后,所得行列式为,则;D 4D 4DD=5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;(1)2(1)n n -⨯ -③、上、下三角行列式():主对角元素的乘积; = ◥◣④、和:副对角元素的乘积;◤ ◢(1)2(1)n n -⨯ -⑤、拉普拉斯展开式:、A O A CA B C B O B==(1)m n C A O AA B B O B C==-:⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主n A 1(1)nnkn k kk E A S λλλ-=-=+-∑kS k 子式;7.证明的方法:0A =①、;A A =-②、反证法;③、构造齐次方程组,证明其有非零解;0Ax =④、利用秩,证明;()r A n<⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:An (是非奇异矩阵);⇔0A ≠(是满秩矩阵)⇔()r A n =的行(列)向量组线性无关;⇔A 齐次方程组有非零解;⇔0Ax =,总有唯一解;⇔n b R ∀∈Ax b =与等价;⇔A E 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A是正定矩阵;⇔T A A 的行(列)向量组是的一组基;⇔A nR 是中某两组基的过渡矩阵;⇔AnR 2.对于阶矩阵: 无条件恒成立;n A **AA A A A E ==3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:A B 若,则:12s A AA A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Ⅰ、;12sA A A A = Ⅱ、;111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭②、;(主对角分块)111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③、;(副对角分块)111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④、;(拉普拉斯)11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑤、;(拉普拉斯)11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是m n ⨯A 唯一确定的:;rm nE OF O O⨯⎛⎫= ⎪⎝⎭等价类:所有与等价的矩阵组成的一个集合,称为一个等A 价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;A B ()()r A r B A B = ⇔ :2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;(,)(,)rA E E X :A 1X A -=②、对矩阵做初等行变化,当变为时,就变成,(,)A B A E B 1A B -即:;1(,)(,)cA B E AB - ~ ③、求解线形方程组:对于个未知数个方程,如果n n Ax b =,则可逆,且;(,)(,)rA b E x :A 1x A b -=4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλAiλA乘的各列元素;iλA ③、对调两行或两列,符号,且,例如:(,)E i j 1(,)(,)E i j E i j -=;1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭④、倍乘某行或某列,符号,且,例如:(())E i k 11(())(())E i k E i k-=;1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤、倍加某行或某列,符号,且,如:(())E ij k 1(())(())E ij k E ij k -=-;11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭5.矩阵秩的基本性质:①、;0()min(,)m nr A m n ⨯≤≤②、;()()Tr A r A =③、若,则;A B :()()r A r B =④、若、可逆,则;(可逆矩阵不影响P Q ()()()()r A r PA r AQ r PAQ ===矩阵的秩)⑤、;(※)max((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※)()()()r A B r A r B +≤+⑦、;(※)()min((),())r AB r A r B ≤⑧、如果是矩阵,是矩阵,且,则:(※)A m n ⨯B n s ⨯0AB =Ⅰ、的列向量全部是齐次方程组解(转置运算后的B 0AX =结论);Ⅱ、()()r A r B n+≤⑨、若、均为阶方阵,则;A B n ()()()r AB r A r B n ≥+-6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵⨯(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭二项展开式:;1111110()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C ab Ca b C b Ca b -----=+=++++++=∑ 注:Ⅰ、展开后有项;()na b +1n +Ⅱ、0(1)(1)!1123!()!--+====- ::: :m n nn n n n n m n CC C m m n m Ⅲ、组合的性质:;11112---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩②、伴随矩阵的特征值:;*1*(,)AAAX X AA A A X X λλλ- == ⇒ =③、、*1AA A -=1*n AA-=8.关于矩阵秩的描述:A ①、,中有阶子式不为0,阶子式全部为0;(两()r A n =A n 1n +句话)②、,中有阶子式全部为0;()r A n <A n ③、,中有阶子式不为0;()r A n ≥A n 9.线性方程组:,其中为矩阵,则:Ax b =A m n ⨯①、与方程的个数相同,即方程组有个方程;m Ax b =m②、与方程组得未知数个数相同,方程组为元方程;n Ax b =n 10.线性方程组的求解:Ax b =①、对增广矩阵进行初等行变换(只能使用初等行变换);B ②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:n m n ①、;11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ②、(向量方程,为矩阵,个111211*********2n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A m n ⨯m 方程,个未知数)n ③、(全部按列分块,其中);()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭④、(线性表出)1122n n a x a xa x β+++= ⑤、有解的充要条件:(为未知数的个数或维数)()(,)r A r A n β=≤n 4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵mn A 12,,,mααα n m ⨯;12(,,,)mA = ααα个维行向量所组成的向量组:构成矩阵;mn B 12,,,T T T mβββ m n ⨯12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次0Ax ⇔=线性方程组)②、向量的线性表出是否有解;(线性方程组)Ax b ⇔=③、向量组的相互线性表示是否有解;(矩阵方程)AX B ⇔=3.矩阵与行向量组等价的充分必要条件是:齐次方程组m nA ⨯l nB ⨯和同解;(例14)0Ax =0Bx =101P 4.;(例15)()()Tr A A r A =101P 5.维向量线性相关的几何意义:n ①、线性相关;α⇔0α=②、线性相关坐标成比例或共线(平行);,αβ⇔,αβ③、线性相关共面;,,αβγ⇔,,αβγ6.线性相关与无关的两套定理:若线性相关,则必线性相关;12,,,sααα 121,,,,ss αααα+ 若线性无关,则必线性无关;(向量的个数加12,,,sααα 121,,,s ααα- 加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:r A n r -n B 若线性无关,则也线性无关;反之若线性相关,则也线A B B A 性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且A r B s 线性无关,则(二版定理7);A r s ≤74P 向量组能由向量组线性表示,则;(定理3)A B ()()r A r B ≤86P 向量组能由向量组线性表示A B 有解;AX B ⇔=(定理2)()(,)r A r A B ⇔=85P 向量组能由向量组等价(定理2推论)A B ()()(,)r A r B r A B ⇔ ==85P 8.方阵可逆存在有限个初等矩阵,使;A ⇔12,,,lP P P 12lA P P P = ①、矩阵行等价:(左乘,可逆)与同~rA B PA B ⇔=P 0Ax ⇔=0Bx =解②、矩阵列等价:(右乘,可逆);~cA B AQ B ⇔=Q ③、矩阵等价:(、可逆);~A B PAQ B ⇔=P Q 9.对于矩阵与:m nA ⨯l nB ⨯①、若与行等价,则与的行秩相等;A B A B ②、若与行等价,则与同解,且与的任何对应A B 0Ax =0Bx =A B 的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;A 10.若,则:m s s n m nA B C ⨯⨯⨯=①、的列向量组能由的列向量组线性表示,为系数矩阵;C A B ②、的行向量组能由的行向量组线性表示,为系数矩阵;C B TA (转置)11.齐次方程组的解一定是的解,考试中可以直接作0Bx =0ABx =为定理使用,而无需证明;①、只有零解只有零解;0ABx =0Bx ⇒ =②、有非零解一定存在非零解;0Bx =0ABx ⇒ =12.设向量组可由向量组线性表示为:12:,,,n rrB b b b ⨯ 12:,,,n ssA a a a ⨯ (题19结论)110P ()1212(,,,)(,,,)r sb b b a a a K = B AK =其中为,且线性无关,则组线性无关;(与K s r ⨯A B ()r K r ⇔=B 的列向量组具有相同线性相关性)K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= 注:当时,为方阵,可当作定理使用;r s =K 13.①、对矩阵,存在,、的列向量线性m nA ⨯n mQ ⨯mAQ E =()r A m ⇔=Q 无关;()87P ②、对矩阵,存在,、的行向量线性无关;m n A ⨯n m P ⨯nPA E =()r A n ⇔=P 14.线性相关12,,,sααα 存在一组不全为0的数,使得成立;⇔12,,,sk k k 11220ssk k k ααα+++= (定义)有非零解,即有非零解;⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭0Ax =,系数矩阵的秩小于未知数的个数;⇔12(,,,)s r sααα< 15.设的矩阵的秩为,则元齐次线性方程组的解集m n ⨯A r n 0Ax =的秩为:;S ()r S n r =-16.若为的一个解,为的一个基础解系,则*ηAx b =12,,,n rξξξ- 0Ax =线性无关;(题33结论)*12,,,,n rηξξξ- 111P 5、相似矩阵和二次型1.正交矩阵或(定义),性质:TA A E ⇔=1TA A -=①、的列向量都是单位向量,且两两正交,即A ;1(,1,2,)0T iji j a a i j n i j=⎧==⎨≠⎩②、若为正交矩阵,则也为正交阵,且;A 1TA A -=1A =±③、若、正交阵,则也是正交阵;A B AB 注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:12(,,,)ra a a ;11b a =1222111[,][,]b a b a b b b =-: ;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----: 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;A B ⇔A B ,、可逆;⇔=PAQ B P Q ,、同型;()()⇔=r A r B A B ②、与合同,其中可逆;A B ⇔=TC AC B 与有相同的正、负惯性指数;⇔Tx Ax T x Bx ③、与相似;A B 1-⇔=P AP B 5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件C TC AC B =⇒A B :不同,相似的更严格);6.为对称阵,则为二次型矩阵;A A7.元二次型为正定:n Tx Ax 的正惯性指数为;A ⇔n 与合同,即存在可逆矩阵,使;A ⇔E C TC AC E=的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;A ⇔;(必要条件)0,0iia A ⇒>>。

线性代数必备知识点公式

线性代数必备知识点公式

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔TA A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

线性代数和概率论重要公式

线性代数和概率论重要公式

线性代数和概率论重要公式一、线性代数公式1.行列式展开式公式:对于n阶方阵A,行列式展开式公式可以表示为:det(A) = a11C11 + a12C12 + … + an1C1n其中,aij表示A矩阵第i行第j列的元素,Cij表示该元素的代数余子式。

这个公式允许我们通过行列式展开式计算任意阶的行列式。

2.特征值和特征向量公式:对于n阶方阵A,若存在一个非零向量x和一个标量λ,使得Ax=λx,则称λ为矩阵A的特征值,x称为矩阵A对应于特征值λ的特征向量。

3.正交向量组的正交分解公式:对于一个n维向量空间中的一组正交向量{v1, v2, …, vn},任意一个向量x都可以通过这组向量的线性组合表示:x = (x · v1)v1 + (x · v2)v2 + … + (x · vn)vn其中,x·v表示向量x和向量v的内积。

4.奇异值分解公式:对于任意的m×n矩阵A,存在一个m×m正交矩阵U,一个n×n正交矩阵V和一个m×n的对角矩阵Σ,使得:A=UΣV^T其中,Σ的对角线上的元素称为矩阵A的奇异值,U的列向量称为A 的左奇异向量,V的列向量称为A的右奇异向量。

二、概率论公式1.概率公式:对于一个随机试验E,设S为其样本空间,A为S的一个事件,P(A)表示事件A发生的概率,概率公式如下:(1)P(Ω)=1,其中Ω为S的全体事件(即一定会发生的事件)(2)P(∅)=0,其中∅为不可能事件(即一定不会发生的事件)(3)0≤P(A)≤1,对于任意事件A(4)对于互不相容的事件A1,A2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+…2.条件概率公式:对于两个事件A和B,其中P(B)≠0,条件概率P(A,B)表示在事件B 已经发生的条件下,事件A发生的概率,条件概率公式如下:P(A,B)=P(A∩B)/P(B)3.贝叶斯公式:贝叶斯公式是一种用于计算条件概率的公式,如下:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A)和P(B)为事件A和事件B的概率,P(B,A)为在事件A已经发生的情况下事件B发生的概率。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数公式总结

线性代数公式总结

线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。

线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。

- 如果Ax = b有唯一解,则A的行列式不为零。

行列式表示为det(A)。

-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。

3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。

- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。

- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。

4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。

- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。

5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

考研数学线代定理公式总结

考研数学线代定理公式总结

考研数学线代定理公式总结√ 关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示、行列式的定义√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和、推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零、②若都是方阵(不必同阶),则(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积、④关于副对角线:(即:所有取自不同行不同列的个元素的乘积的代数和)⑤范德蒙德行列式:矩阵的定义由个数排成的行列的表称为矩阵、记作:或伴随矩阵,为中各个元素的代数余子式、√ 逆矩阵的求法:① :②③ √ 方阵的幂的性质:√ 设的列向量为,的列向量为,则,为的解可由线性表示、即:的列向量能由的列向量线性表示,为系数矩阵、同理:的行向量能由的行向量线性表示,为系数矩阵、即:√ 用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量、√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘、√分块矩阵的转置矩阵:分块矩阵的逆矩阵:分块对角阵相乘:,分块对角阵的伴随矩阵:√ 矩阵方程的解法():设法化成① 零向量是任何向量的线性组合,零向量与任何同维实向量正交、② 单个零向量线性相关;单个非零向量线性无关、③ 部分相关,整体必相关;整体无关,部分必无关、(向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关、(向量维数变动)⑤ 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关、⑥ 向量组中任一向量≤≤都是此向量组的线性组合、⑦ 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示、向量组线性无关向量组中每一个向量都不能由其余个向量线性表示、⑧ 维列向量组线性相关;维列向量组线性无关、⑨ 若线性无关,而线性相关,则可由线性表示,且表示法唯一、⑩ 矩阵的行向量组的秩列向量组的秩矩阵的秩、行阶梯形矩阵的秩等于它的非零行的个数、行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零、当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵⑪矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系、即:矩阵的初等变换不改变矩阵的秩、√ 矩阵的初等变换和初等矩阵的关系:对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘、矩阵的秩如果矩阵存在不为零的阶子式,且任意阶子式均为零,则称矩阵的秩为、记作向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩、记作矩阵等价经过有限次初等变换化为、记作:向量组等价和可以相互线性表示、记作:⑫矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价、矩阵与作为向量组等价矩阵与等价、⑬向量组可由向量组线性表示有解≤、⑭向量组可由向量组线性表示,且,则线性相关、向量组线性无关,且可由线性表示,则≤、⑮向量组可由向量组线性表示,且,则两向量组等价;⑯任一向量组和它的极大无关组等价、向量组的任意两个极大无关组等价、⑰向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定、⑱若两个线性无关的向量组等价,则它们包含的向量个数相等、⑲设是矩阵,若,的行向量线性无关;若,的列向量线性无关,即:线性无关、√ 矩阵的秩的性质:①≥ ≤≤ ② ③ ④ ⑤≤⑥ 即:可逆矩阵不影响矩阵的秩、⑦若;若⑧等价标准型、⑨≤ ≤≤ ⑩ :线性方程组的矩阵式向量式矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)线性方程组解的性质:√ 设为矩阵,若一定有解,当时,一定不是唯一解,则该向量组线性相关、是的上限、√ 判断是的基础解系的条件:① 线性无关;② 都是的解;③ 、√ 一个齐次线性方程组的基础解系不唯一、√ 若是的一个解,是的一个解线性无关√ 与同解(列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系、√ 两个齐次线性线性方程组与同解、√ 两个非齐次线性方程组与都有解,并且同解、√ 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵)、√ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设是(I)的基础解系, 是(II)的基础解系,则 (I)与(II)有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示、即:当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,是(II)的通解,两方程组有公共解可由线性表示、即:③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

线性代数重要公式、定理大全

线性代数重要公式、定理大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式总结大全

线性代数公式总结大全

线性代数公式 1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 与ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式与余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤与 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0就是其特征值;2、矩阵8.A 就是n 阶可逆矩阵:⇔0A ≠(就是非奇异矩阵);⇔()r A n =(就是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 就是正定矩阵;⇔A 的行(列)向量组就是n R 的一组基; ⇔A 就是n R 中某两组基的过渡矩阵;9. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 10. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===11. 矩阵就是表格,推导符号为波浪号或箭头;行列式就是数值,可求代数与; 12. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组13. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形就是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 14. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其她元素必须为0;15. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 16. 初等矩阵与对角矩阵的概念:①、初等矩阵就是行变换还就是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭O λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;17. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 就是m n ⨯矩阵,B 就是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部就是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;18. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值与相似对角化: 19. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=20. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不全为0;21. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 22. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;23. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性24. m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;25. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=就是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=就是否有解;(矩阵方程)26. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件就是:齐次方程组0Ax =与0Bx =同解;(101P 例14) 27. ()()T r A A r A =;(101P 例15) 28. n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;29. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;30. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 31. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 32.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 33.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)34.齐次方程组0Bx =的解一定就是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;35. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;36. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 37. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;38. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;39. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;(111P 题33结论)5、相似矩阵与二次型40. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都就是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也就是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化与单位化; 41. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 42. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 43. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 44. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 45. A 为对称阵,则A 为二次型矩阵; 46. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研数学之线代公式大总结
考研数学题目中,线性代数矩阵的秩部分,结论很多,证明题也很多。

很多同学们在碰到矩阵的秩的题目,会感觉很晕很混乱。

其实这一部分的结论,可以说是万变不离其宗。

核心的公式就几个,其他公式都可以由这几个核心公式推导出来。

但是在做题的时候,稍微拐一下弯,同学们就像不到了。

以下是文都考研数学老师总结的常用的所有结论,我们一起来看一下。

矩阵秩的求法
注意
性质
以上是文都考研数学老师,总结的这一部分涉及到的公式。

同学们可以当作笔记,没事就多翻一下,把每个公式熟记于心,用的时候就会很快在大脑中出现。

相关文档
最新文档