初三数学第二学期期末质量抽查复习题
2022—2023年人教版九年级数学下册期末考试【及参考答案】
2022—2023年人教版九年级数学下册期末考试【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:()()201820195-252+的结果是__________.2.分解因式:3x -x=__________.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程: 22142x x x +=--2.计算:()011342604sin π-----+().3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、B6、B7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)122、x(x+1)(x-1)3、30°或150°.4、56、8﹣2π三、解答题(本大题共6小题,共72分)1、x=-32、33、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)略;(2)2ACπ=5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2023年人教版九年级数学(下册)期末质量检测题及答案
2023年人教版九年级数学(下册)期末质量检测题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-47.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________. 2.分解因式:3x 9x -=_______. 3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)4.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.5.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、B6、B7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、432、()()x x 3x 3+-3、k<6且k ≠34、(4,3)5、49136 三、解答题(本大题共6小题,共72分)1、x =52、(1)k >﹣3;(2)取k=﹣2, x 1=0,x 2=2.3、(1)略 (2)23π-4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
浙教版数学九年级下学期期末复习试卷(含解析)
九年级(下)期末数学复习试卷一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣15.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.56.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.37.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<28.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.210.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为.16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为.17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=,y=.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=时,△AOP为等腰三角形.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.2020 -2021学年浙江省嘉兴市海盐县九年级(下)期末数学复习试卷参考答案与试题解析一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°【解答】解:∵AF∥DE,∴∠ABE=∠F AB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∵BD∥CG,∴∠BCG=47°,∴从C地测B地的方位角是南偏东47°.故选:A.2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°【解答】解:由方向角的意义可知,∠AON=30°,∵∠AOB=90°,∴∠NOB=∠AOB﹣∠AON=90°﹣30°=60°,∴OB的方向角为北偏西60°,故选:B.3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方【解答】解:根据方位角的概念,射线OA表示的方向是北偏东50°方向.又∵AO=3km,∴点A在O点北偏东50°方向,距O点3km的地方,故选:D.4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣1【解答】解:∵不等式组有解,∴a>﹣1,∵0>﹣1,1>﹣1,﹣>﹣1,﹣1=﹣1,a的值不可能是﹣1.故选:D.5.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.5【解答】解:∵x+4≥2,∴x≥﹣2.∴﹣2、0、3.5是不等式的解,﹣3不是不等式的解.故选:A.6.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【解答】解:∵不等式x>2的解集是所有大于2的数,∴3是不等式的解.故选:D.7.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<2【解答】解:∵不等式组的整数解有三个,∴1≤a<2,故选:D.8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.3【解答】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.2【解答】解:∵EF垂直平分AB,∴A、B关于EF对称,设AC交EF于点D,∴当P和D重合时,BP+CP的值最小,最小值等于AC的长,∴BP+CP的最小值=6.故选:B.10.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是【解答】解:∵AB2=(2+1)2+(4+3)2=58,BC2=(﹣1+3)2+(﹣3+2)2=5,AC2=(2+3)2+(4+2)2=61,而58+5>61,∴AB2+BC2>AC2,∴△ABC的形状不是等腰三角形、也不是直角三角形.故选:D.11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.【解答】解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,方法2:由已知可得,AC==,∵AB=BC=5,∴∠C=∠A,∴cos∠ACB=cos∠A==,故选:B.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.【解答】解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、等角的补角相等,是真命题;D、垂线段最短,是真命题;故选:B.二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为(0,).【解答】解:设直线AB的解析式为y=kx+b,∵A(﹣2,0),B(0,4),∴,解得:,∴直线AB的解析式为y=2x+4,∵OD为第一象限的角平分线,∴直线OD的解析式为y=x,∵CD∥AB,C(0,﹣1),∴直线CD的解析式为y=2x﹣1,由题意,,解得:,∴D(1,1),设直线AD的解析式为y=k′x+b′,∵A(﹣2,0),D(1,1),∴,解得:,∴直线AD的解析式为y=x+,当x﹣0时,y=,∴点E的坐标为(0,),故答案为:(0,).16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为(﹣1,2).【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当A点在B点左边时,A(﹣1,2),当A点在B点右边时,A(7,2);∵点A在第二象限,∴A(﹣1,2),故答案为:(﹣1,2).17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=9或﹣1,y=﹣3.【解答】解:若AB∥x轴,则A,B的纵坐标相同,因而y=﹣3;线段AB的长为5,即|x﹣4|=5,解得x=9或﹣1.故答案填:9或﹣1,﹣3.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为(4,2).【解答】解:如图,当BC⊥AC,垂足为C时,BC的长最小,∵AC∥x轴,点A(﹣3,2),∴C点的纵坐标为2,∵BC⊥AC,即BC∥y轴,而B(4,5),∴C点的横坐标为4,∴C(4,2).故答案为(4,2).19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=75°,120°,30°时,△AOP为等腰三角形.【解答】解:分三种情况:①OA=OP时,则∠A=∠OP A=(180°﹣∠O)=(180°﹣30°)=75°;②AO=AP时,则∠APO=∠O=30°,∴∠A=180°﹣∠O﹣∠APO=120°;③PO=P A时,则∠A=∠O=30°;综上所述,当∠A为75°或120°或30°时,△AOP为等腰三角形,故答案为:75°或120°或30°.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.【解答】解:(1)设y=kx+b(k≠0),则,解得,∴y=0.75x+3;(2)当点P在x轴上时,设点P(x,0),则△ABP的面积=×BP×OA=×|m+4|×3=12,解得m=4或﹣12;故点P的坐标为(4,0)或(﹣12,0);当点P在y轴上时,同理可得,点P的坐标为(0,9)或(0,﹣3),故点P的坐标为(4,0)或(﹣12,0)或(0,9)或(0,﹣3);(3)假设存在点C(x,±1.5)到x轴的距离为1.5,则点C(x,±1.5)满足方程y=0.75x+3,①当C(x,1.5)时,1.5=0.75x+3,解得x=﹣2,∴点C(﹣2,1.5)存在;②当C(x,﹣1.5)时,﹣1.5=0.75x+3,解得x=﹣6,所以C(﹣6,﹣1.5)存在.∴存在点C(x,±1.5)到x轴的距离为1.5,其坐标是(﹣2,1.5)或(﹣6,﹣1.5).21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动或8秒时,四边形PMNQ是正方形(直接写出结论).【解答】解:(1)由点A、B的坐标知,OA=8=BC,故点C(2,6),设直线AC的表达式为:y=kx+b,则,解得,故直线CA的表达式为:y=﹣x+8;(2)设点M(x,0),则P(x,3x),则点N(8﹣3x,0),则点Q(8﹣3x,3x),则PQ=|8﹣3x﹣x|=|8﹣4x|,而MN=|8﹣3x﹣x|=|8﹣4x|=PQ,而PQ∥MN,故四边形PMNQ为平行四边形,∵∠PMN=90°,∴四边形PMNQ是矩形.(3)四边形PMNQ是正方形,则MN=QN,即8﹣4x=|3x|,解得:x=或8,故答案为或8.22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【解答】解:(1)观察表格可知,y是x的一次函数,设y=kx+b,则有,解得,∴y=﹣x+75,当x=150时,y=0,答:y关于x的函数解析式为y=﹣x+75,当x=150时y的值为0;(2)由题意,解得,所以单层部分的长度为90cm;(3)由题意得l=x+y=x﹣x+75=x+75,因为0≤x≤150,所以75≤x+75≤150,即75≤l≤150.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.【解答】解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.【解答】解:(1)由图象可得,小王和小李两人的速度之和为:10÷(1﹣0.75)=40(千米/小时),则甲乙两地的距离为:40×1=40(千米),即甲乙两地之间的距离为40千米;(2)由题意可得,小李的速度为:(40﹣4)÷2=18(千米/小时),则小王的速度为40﹣18=22(千米/小时),则t=40÷22=,即t的值为;(3)点D的横坐标为:40÷18=,纵坐标为:40﹣22×(﹣)=,∴点D的坐标为(,),则点D坐标的实际意义是当小李行驶的时间为小时时,此时小李到达甲地,小李和小王之间的距离为千米.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发1小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?【解答】解:(1)设直线AB的函数表达式为:y=k1x+b1,将A(2,100),B(6,240)代入得解得∴线段AB所在直线的函数表达式为y=35x+30;(2)①乙车行驶的时间为240÷[(240﹣80)÷(4﹣2)]=3(小时),4﹣3=1(小时),∴乙车比甲车晚出发1小时,故答案为:1;②设直线CD的函数表达式为:y=k2x+b2,将(2,80),D(4,240)代入得解得,∴直线CD的函数表达式为y=80x﹣80;联立解得.∵(h),∴乙车出发h后追上甲车;(3)乙车追上甲车之前,35x+30﹣(80x﹣80)=10,,∴,乙车追上甲车之后,即(80x﹣80)﹣(35x+30)=10.解得.∴(h),当乙到达终点之后,即35x+30=240﹣10,解得,﹣1=(h);∴乙车出发或h或h后,甲、乙两车相距10km.27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.【解答】解:设供给站距离甲平台x米,(1)当40<x≤100时,20x+60(100﹣x)=70(x﹣40),解得x=80.答:按方案一建站,供给站应建在距离甲平台80米处;(2)设所有工人的距离之和为y米,①当供给站建在甲乙平台之间,即0≤x≤40时y=20x+70(40﹣x)+60(100﹣x)=﹣110x+8800,∴当x=40时,y取得最小值4400;②当供给站建在乙丙平台之间,即40<x≤100时y=20x+70(x﹣40)+60(100﹣x)=30x+3200,∵y随x增大而增大,并且当x=40时,y=4400,∴本阶段y的值均大于4400;答:按方案二建站,供给站应建在距离甲平台40米处;(3)供给站将离甲平台越来越远,理由如下:①当0≤x≤40时,(20+a)x+60(100﹣x)=70(40﹣x),解得:(不在三个平台之间,不合题意,舍去),②当40<x≤100时,(20+a)x+60(100﹣x)=70(x﹣40),解得,∴x随着a的增大而增大,答:随着a的增大供给站将离甲平台越来越远.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.【解答】(1)证明:当运动时间为t(s)时,∵AP=2×t=2t,CQ=2×t=2t,∴AP=CQ,又∵△ABC是等边三角形,∴AC=CB,∠CAP=∠BCQ=60°,在△ACP与△CBQ中,,∴△ACP≌△CBQ(SAS);(2)证明:∵△DCP和△ABC都是等边三角形,∴DC=CP,CA=CB,∠DCP=∠ACB,∴∠DCA=∠BCP,∴△DCA≌△PCB(SAS),∴BP=AD,∠CAD=∠CBP=60°,∵AQ=BP,∴AQ=AD,∴△ADQ是等边三角形,同理可得:△ACD≌△ABQ(SAS);(3)解:由(2)知,△ADQ是等边三角形,∴C△ADQ=3AQ=3(6﹣2t)=18﹣6t;(4)解:如图,当CP最短时,CP⊥AB,此时CP=3,AP=3,∴t=,此时△APQ是等边三角形,∴AP=PQ=AQ,∵△ADQ是等边三角形,∴C四边形ADQP=AD+DQ+PQ+P A=3×4=12,∴当CP的长最短时,t的值是,C四边形ADQP=12.。
九年级数学(下)期末测试卷含答案解析
九年级数学(下)期末测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则co sB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A.1 B.1.5 C.2 D.36.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A. x 1>x 2 B. x 1=x 2 C. x 1<x 2 D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。
A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。
A 、△ABF ∽△AEF B 、△ABF ∽△CEF C 、△CEF ∽△DAE D 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥B E ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=︒,则飞机A到控制点B的距离约为_________________。
2023年人教版九年级数学(下册)期末质量检测卷及答案
2023年人教版九年级数学(下册)期末质量检测卷及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点()2,3E ,则点F 的坐标为( )A .()1,5-B .()2,3-C .()5,1-D .()3,2-二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.分解因式:222m -=____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h ,精确到1h ),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a 的值为 ,所抽查的学生人数为 .(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m 的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、B5、B6、A7、D8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、2(1)(1)m m +-.3、23x -<≤4、5、1276、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x =2、(1)34m ≥-;(2)m 的值为3.3、(1)略;(2)略.4、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)45%,60;(2)见解析18;(3)7,7.2;(4)7806、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
人教版九年级下册数学期末测试卷(含解析)
人教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个矩形按如图1的方式分割成三个直角三角形,最小三角形的面积为S,把较大两个三角形纸片按图2方式放置,图2中的阴影部分面积为S2,1若S2=2S1,则矩形的长宽之比()A.2B.C.D.2、某物体三视图如图,则该物体形状可能是( ) .A.长方体.B.圆锥体.C.立方体.D.圆柱体.3、如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化4、同圆的内接正三角形与内接正方形的边长的比是()A. B. C. D.5、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为().A.( ,0)B.( ,)C.( ,)D. (2,2)6、在Rt△ABC中,∠C=90°,若斜边上的高为h,sinA=,则AB的长等于()A. hB. hC. hD. h7、太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B.15 C.10 D.8、如图几何体的主视图是()A. B. C. D.9、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△AEF :S△CAB=1:4;④AF2=2EF2.其中正确的结论有()A.4个B.3个C.2个D.1个10、如图,在正方形中,对角线相交于点O,点E在BC边上,且,连接AE交BD于点G,过点B作于点F,连接OF并延长,交BC于点M,过点O作交DC于占N,,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④11、函数y=- ,当x>0时的图象为()A. B. C. D.12、如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=,在第一象限内的图象经过点D,且与AB、BC 分别交于E、F两点.若四边形BEDF的面积为6,则k的值为()A.3B.4C.5D.613、如图,某一时刻,小宁站在斜坡AC上的A处,小李在大楼FD的楼顶F 处,此时小宁望小李的仰角为18.43°.5秒后,小宁沿斜坡AC前进到达C处,小李从大楼F处下楼到大楼E处,此时小李望小宁的俯角为22.6°;然后小李继续下楼,小宁沿CD前往楼底D处,已知小宁的速度为5.2米/秒,大楼FD的高度为30米,斜坡AC的坡度为1:2.4,小李、小宁都保持匀速前进,若斜坡、大楼在同一平面内,小李、小宁的身高忽略不计,则当小李达到楼底D处时,小宁距离D处的距离为()米.(已知:tan18.43°≈ ,sin18.43°≈ ,cos22.6°≈ ,tan22.6≈ )A.10B.15.6C.20.4D.2614、如图1是一个手机的支架,由底座、连杆和托架组成(连杆始终在同一平面内),垂直于底座且长度为的长度为的长度可以伸缩调整.如图2,保持不变,转动,使得,假如时为最佳视线状态,则此时的长度为(参考数据:)()A. B. C. D.15、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.二、填空题(共10题,共计30分)16、如图,在矩形OAHC中,OC=8,OA=12,B为CH中点,连接AB,动点M从点O出发沿OA边向点A运动,动点N从点A出发沿AB边向点B运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM、CN、MN,设运动时间为t (秒)(0<t<10).则________时,△CMN为直角三角形.17、若是反比例函数,则m=________ .18、如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=________.(用锐角α的三角比表示)19、等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为________.(用科学计算器计算,结果精确到0.1°)20、如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE=________21、如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?________ ________________ ________22、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是________.23、近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则眼镜度数与镜片焦距之间的函数关系式为________.24、已知y=是反比例函数,那么k的值是________ .25、如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为________.三、解答题(共5题,共计25分)26、先化简,再求代数式的值,其中x=4cos60°+3tan30°.27、如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)28、已知:y=y1+y2, y1与x成正比例,y2与x成反比例,当x=2时,y=﹣4;当x=﹣1时,y=5,求y与x的函数表达式.29、如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)30、如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为53°,求甲、乙建筑物的高度和(结果用含非特珠角的三角函数表示即可).参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、C6、C7、B8、B9、B10、D11、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
2024年人教版初中九年级数学(下册)期末试题及答案(各版本)
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)=x^24x+3,则f(1)的值为()A.0B.1C.2D.32.在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(3,-2)3.下列哪个数是素数?()A.27B.29C.35D.394.若一组数据的方差为4,则这组数据的标准差是()A.2B.4C.8D.165.在三角形ABC中,若∠A=60°,∠B=70°,则∠C的度数是()A.50°B.60°C.70°D.80°二、判断题(每题1分,共5分)6.任何两个奇数之和都是偶数。
()7.在一次函数y=kx+b中,若k>0,则函数图像是上升的。
()8.平行四边形的对边相等。
()9.圆的周长和直径成正比。
()10.若一个数的平方是负数,则这个数一定是负数。
()三、填空题(每题1分,共5分)11.若a+b=5且ab=3,则a=______,b=______。
12.函数y=2x+1的图像是一条_________。
13.若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是_________。
14.在一个比例尺为1:1000的地图上,两城市之间的距离是5厘米,实际距离是_________公里。
15.若一组数据为2,4,6,8,10,则这组数据的平均数是_________。
四、简答题(每题2分,共10分)16.简述平行线的性质。
17.什么是算术平方根?如何计算一个数的算术平方根?18.简述概率的基本公式。
19.什么是相似三角形?相似三角形有哪些性质?20.如何求解一元二次方程?五、应用题(每题2分,共10分)21.某商店进行打折促销,原价为300元的商品打8折,现价是多少?22.一个长方形的长是10厘米,宽是5厘米,求这个长方形的对角线长度。
23.若一个等差数列的首项是2,公差是3,求第10项的值。
(期末复习)华师大版九年级数学下册期末综合检测试卷(有答案)
期末专题复习:华师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. (1,3)B. (-1,3)C. (1,-3)D. (-1,-3)2.把二次函数y=x2−2x−1配方成顶点式为( )A. y=(x−1)2B. y=(x−1)2−2C. y=(x+1)2+1D. y=(x+1)2−23.下列说法,正确的是( )A. 半径相等的两个圆大小相等B. 长度相等的两条弧是等弧C. 直径不一定是圆中最长的弦D. 圆上两点之间的部分叫做弦4.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A. 68°B. 88°C. 90°D. 112°5.半径为5的⊙O,圆心在原点O,点P(-3,4)与⊙O的位置关系是().A. 在⊙O内B. 在⊙O上C. 在⊙O外D. 不能确定6.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A. 2~4小时B. 4~6小时C. 6~8小时D. 8~10小时7.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A. 20B. 30C. 40D. 508.如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A. 4π cmB. 3π cmC. 2π cmD. π cm9.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为( )A. 70°B. 90°C. 110°D. 120°10.如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP 交AD于点G,连接BG交EF于点H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B与GP相切;④若G为AD的中点,则DP=2CP.其中正确结论的序号是()A. ①②③④B. 只有①②③C. 只有①②④D. 只有①③④二、填空题(共10题;共30分)11.如图,点A、B把⊙O分成2:7两条弧,则∠AOB=________.12.已知函数y=(m−1)x m2+1+5x+3是关于x的二次函数,则m的值为________.13.二次函数y=x2-2x-3与x轴交点交于A、B两点,交y轴于点C,则△OAC的面积为________.14.对于二次函数y=3x2+2,下列说法:①最小值为2;②图象的顶点是(3,2);③图象与x轴没有交点;④当x<-1时,y随x的增大而增大.其中正确的是________.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是________.16.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为________只.17.某二次函数的图象的顶点坐标(4,﹣1),且它的形状、开口方向与抛物线y=﹣x2相同,则这个二次函数的解析式为________.18.如图,在圆心角为135°的扇形OAB中,半径OA=2cm,点C,D为AB̂的三等分点,连接OC,OD,AC,CD,BD,则图中阴影部分的面积为________cm2.19.如图,正六边形ABCDEF的边长为2,则对角线AF=________.20.如图,在矩形ABCD中,E是边BC上一点,连接AE,将矩形沿AE翻折,使点B落在边CD上点F处,连接AF.在AF上取点O,以点O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3√3,给出下列结论:① F是CD的中点;②⊙O的半径是2; ③ AE=92CE;④ S阴影=√32.其中正确的是________.(填序号)三、解答题(共9题;共60分)21.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.22.某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克)35 35 34 39 37(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?23.已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).(1)求该二次函数的解析式并写出其对称轴;(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M 的坐标(不写求解过程).24.如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论。
新人教版九年级数学下册期末测试卷附答案
新人教版九年级数学下册期末测试卷附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .5 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGH S S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:33a b ab -=___________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.∠=︒,28ACBABC5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、B6、A7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、ab(a+b)(a﹣b).3、24、425、1 36、24 5三、解答题(本大题共6小题,共72分)1、4x=2、1 23、(1)相切,略;(2).4、(1)略;(2)78°.5、(1)50;(2)见解析;(3)16.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
华师版初中数学九年级下册试题及答案
初中毕业班学业质量检查数 学 试 题(满分:150分;考试时间:120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上。
毕业学校____________________ 姓名______________ 考生号____________ 一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应选项涂黑。
选对的得3分,选错,不选或涂黑超过一个的一律得0分。
1、2-的3倍是( )A 、 6-B 、1C 、6D 、5- 2、下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D3=-3、下列调查方式合适的是( )A 、为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B 、为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C 、为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D 、为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式 4、下列各组线段(单位:㎝)中,成比例线段的是( ) A 、1、2、3、4 B 、1、2、2、4 C 、3、5、9、13 D 、1、2、2、3 5、下列多边形中,不能..铺满地面的是( ) A 、正三边形 B 、正四边形 C 、正五边形 D 、正六边形 6、如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( )A .60︒B .50︒C .40︒D .30︒ 7、已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作AB PE ⊥于点E ,作BC PF ⊥于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( ). 二、填空题:(本大题有10小题,每小题4分,共40分)8、计算:32a a ⋅=__________9、某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的众数..是 分. 10、分解因式:442++a a =_______________ADBCCF OC BAOxy ABC11、如图是一个立体图形的三视图,则这个立体图形的名称叫 .12、北京2008年奥运会火炬接力活动的传递总路约为137000000米,这人数据用科学记数法表示为_______米.13、已知圆锥的底面半径是3cm ,母线长为6cm ,则侧面积为________cm 2.(结果保留π)14、已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 ㎝2. 15、已知关于x 的一元二次方程的一个根是1,写出一个符合条件的方程: . 16、若整数m 满足条件2)1(+m =1+m 且m <52,则m 的值是 .17、如图,直线43y x =与双曲线ky x=(0x >)交于点A .将 直线43y x =向下平移个6单位后,与双曲线ky x=(0x >)交于点B ,与x 轴交于点C ,则C 点的坐标为___________;若2AO BC =,则k = .三、解答题(本大题有9小题,共89分) 18、(1)(5分)计算: |-2|-(2-3)0+2)21(-- ;(2)(5分)化简:a (a +2)- a 2bb ;(3)(5分)计算:)3()2)(2(x x x x -+-+.19、(8分)如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值. 20、(9分)如图,在ABC ∆中,90,C P ∠=为AB 上一点,且点P 不与点A 重合,过P 作PE AB ⊥交AC 边于点E ,点E 不与点C 重合,若10,8AB AC ==,设AP 的长为x ,四边形PECB 周长为y . (1)求证:APE ∆∽ACB ∆;(2)写出y 与x 的函数关系式,并在直角坐标系中画出图象. 21、(8分)2010年4月1日《××日报》发布了俯视图 左视 图 主视图P E C B A -3 x x --21 B . 0 A .“2009年××市国民经济和社会发展统计公报”,根据其中农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题: (1)2009年全市畜牧业的产值为 亿元; (2)补全条形统计图;(3)××作为全国重点林区之一,市政府大力发展林业产业,计划2011年林业产值达60.5亿元,求2010,2011这两年林业产值的年平均增长率. 22、(8分)有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x ,3。
2023年部编版九年级数学下册期末测试卷及答案
2023年部编版九年级数学下册期末测试卷及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.因式分解:(x+2)x﹣x﹣2=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、B6、A7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、(x+2)(x ﹣1)3、30°或150°.4、8.5、x=26、5三、解答题(本大题共6小题,共72分)1、1x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)45°;(3)略.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
2024年最新人教版初三数学(下册)期末考卷及答案(各版本)
2024年最新人教版初三数学(下册)期末考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是偶函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + x2. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)3. 下列等式中,正确的是()A. sin(π/2) = cos(π/2)B. sin(π/6) = cos(π/3)C. sin(π/4) = cos(π/4)D. sin(π/3) = cos(π/6)4. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A. 32cmB. 42cmC. 46cmD. 52cm5. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 任何两个平行线之间的距离都相等。
()7. 两条对角线互相垂直的四边形一定是矩形。
()8. 任何两个实数的和都是实数。
()9. 一元二次方程的解一定是实数。
()10. 相似三角形的面积比等于边长比的平方。
()三、填空题(每题1分,共5分)11. 若a:b=3:4,则5a+3b : 5b+3a = ___ : ___ 。
12. 在直角三角形中,若一个锐角的度数为30°,则其邻角的度数为___°。
13. 函数y=2x+3的图象是一条___线,且过___象限。
14. 一个等边三角形的周长为18cm,则其边长为___cm。
15. 若|x|=3,则x的值为___或___。
四、简答题(每题2分,共10分)16. 简述平行线的性质。
17. 请写出勾股定理的内容。
18. 如何判断两个三角形是否相似?19. 一元二次方程的解法有哪些?20. 简述概率的基本性质。
五、应用题(每题2分,共10分)21. 某商店举行打折活动,一件商品原价为200元,打八折后售价为多少?22. 一辆汽车以60km/h的速度行驶,行驶了3小时后,行驶的距离是多少?23. 一个长方体的长、宽、高分别为10cm、6cm、4cm,求其体积。
湘教版九年级数学下册期末综合检测试卷含答案
湘教版九年级数学下册期末综合检测试卷含答案一、单选题(共10题;共30分)1.如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A. 几何体1的上方B. 几何体2的左方C. 几何体3的上方D. 几何体4的上方2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y=﹣2(x+1)2+1B. y=﹣2(x﹣1)2+1C. y=﹣2(x﹣1)2﹣1D. y=﹣2(x+1)2﹣13.从1~9这九个自然数中任取一个,是2的倍数的概率是( )A. B. C. D.4.抛物线y=﹣x2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(x+1)2B.y=﹣(x﹣1)2C.y=﹣x2+1D.y=﹣x2﹣15.有长度分别为3cm,5cm,7cm,9cm的四条线段,从中任取三条线段能够组成三角形的概率是()A. B. C. D.6.(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A. 100°B. 110°C. 115°D. 12 0°7.下列说法中正确的是()A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “概率为0.001的事件”是不可能事件C. “任意画出一个平行四边形,它是中心对称图形”是必然事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次8.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A. 40°B. 140°C. 70°D. 8 0°9.抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A. -16B. -4C. 8D.1610.如图所示,二次函数的图象经过点和,下列结论中:①;②;③④;⑤;其中正确的结论有()个A. 2B. 3C. 4D.5二、填空题(共10题;共30分)11.在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是________.12.用12m长的木材做窗框(如图所示),要使透过窗户的光线最多,窗框的长应为________ m,宽应为________ m.13.如图,一边靠墙,其它三边用12米的篱笆围成一个矩形(ABCD)花圃,则这个花圃的面积S(平方米)与AB的长x(米)之间的函数关系式为________.14.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为________cm.15.将抛物线先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为________.16.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件 ________.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.18.如图,是二次函数y=3x2的图象,把该图象向左平移1个单位,再向下平移2个单位,所得的抛物线的函数关系式为________.19.如图,ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=110°,则∠FBE=________.20.如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为________.三、解答题(共10题;共60分)21.小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.22.已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.23.下面是由些棱长的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).24.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.25.如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.(1)求证:∠BED=∠C;(2)若OA=5,AD=8,求AC的长.26.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q 分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.27.(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.28.株洲五桥主桥主孔为拱梁钢构组合体系(如图1),小明暑假旅游时,来到五桥观光,发现拱梁的路面部分有均匀排列着9根支柱,他回家上网查到了拱梁是抛物线,其跨度为20米,拱高(中柱)10米,于是他建立如图2的坐标系,发现可以将余下的8根支柱的高度都算出来了,请你求出中柱左边第二根支柱CD的高度.29.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.30.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S △PCD= S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】D10.【答案】A二、填空题11.【答案】12.【答案】3;213.【答案】S=﹣2x2+12x14.【答案】5015.【答案】16.【答案】5m+2n≠917.【答案】4﹣18.【答案】y=3(x+1)2﹣219.【答案】55°20.【答案】三、解答题21.【答案】解:这个游戏规则对双方公平.理由如下:画树状图为:共有9种等可能的结果数,其中摸出的两张卡片的正面数字之积小于10的结果数为4;摸出的两张卡片的正面数字之积超过10的结果数为4,所以小明获胜的概率= ,小亮获胜的概率= .所以这个游戏规则对双方公平22.【答案】解:(1)∵抛物线的顶点D的坐标为(1,−4),∴设抛物线的函数关系式为y=a(x−1)2−4,又∵抛物线过点C(0,3),∴3=a(0−1)2−4,解得a=1,∴抛物线的函数关系式为y=(x−1)2−4,即y=x2−2x−3;(2 )令y=0,得:x2,解得, .所以坐标为A(3,0),B(-1,0).23.【答案】解:①∵俯视图中有个正方形,∴最底层有个正方体小木块,由主视图和左视图可得第二层有个正方体小木块,第三层有个正方体小木块,∴共有个正方体小木块组成.②根据①得:③表面积为:24.【答案】解:由l1上选一个点,在l2上选两个点可以得到3×3=9个三角形,由l1上选两个点,在l2上选一个点可以得到3×3=9个三角形,即任取三个点连成一个三角形总个数为18个,(1)连成△ABE的概率为;(2)连成的三角形的两个顶点在直线l2上的概率为.25.【答案】(1)证明:∵AC是⊙O的切线,AB是⊙O直径,∴AB⊥AC.则∠1+∠2=90°,又∵OC⊥AD,∴∠1+∠C=90°,∴∠C=∠2,而∠BED=∠2,∴∠BED=∠C;(2)解:连接BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD===6,∴△OAC∽△BDA,∴OA:BD=AC:DA,即5:6=AC:8,∴AC=.26.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)27.【答案】(1)解:∵⊙O的直径为10cm,∴⊙O的半径为10÷2=5(cm),当点P在线段OA的延长线上时,PA取得最大值,当点P在线段OA上时,PA取得最小值∵OA=12cm,∴PA的最大值为12+5=17cm,PA的最小值为12﹣5=7cm;(2)证明:连接CO,如图所示,∵OA=OB,且D、E分别是半径OA和OB的中点,∴OD=OE,又∵=,∴∠COD=∠COE,在△COD和△COE中,,∴△COD≌△COE(SAS),∴CD=CE.28.【答案】解:设抛物线的解析式为:y=ax2,∵A的坐标是(-10,10),∴100a=−10 ,∴a=−0.1 ,∴抛物线的解析式为:y=−0.1x2 ,又∵x=−4 ,∴y=−0.1×16=−1.6,∴点C坐标为(-4,-1.6),又∵点D坐标为(-4,-10)∴CD=10-1.6=8.4(米),答:中柱左边第二根支柱CD的高度为8.4米.29.【答案】(1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入y2=k2x+b,得:,解得:(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值。
2022九年级数学下学期期末检测卷下册新人教版(含答案)
九年级数学下学期新人教版:期末检测卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知反比例函数y =kx的图象过点A (1,-2),则k 的值为( C ) A.1 B.2 C.-2 D.-12.已知△ABC ∽△DEF ,且相似比为1∶2,则△ABC 与△DEF 的面积比为( A ) A.1∶4 B.4∶1 C.1∶2 D.2∶13.在Rt △ABC 中,∠C =90°,sin A =35,则cos A 的值等于( B )A.35B.45C.34D.55 4.若函数y =m +2x的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( A )A.m <-2B.m <0C.m >-2D.m >05.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是( C )6.如图,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,BE 的延长线交AD 于点G ,且BG ∥DF ,则下列结论错误的是( C )A.AG AD =AE AF B.AG AD =EG DF C.AE AC =AG AD D.AD BC =DF BE7.如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( B )A.153海里B.30海里C.45海里D.303海里8.如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D ,G 分别在AB ,AC 上,则四边形DEFG 最大面积为( B )A.40 cm 2B.20 cm 2C.25 cm 2D.10 cm29.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 与反比例函数y =a -b +cx在同一坐标系中的大致图象是( C )10.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD .其中一定正确的是( D )A.①②③④B.①④C.②③④D.①②③二、填空题(每小题4分,共24分)11.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC = 5 .12.已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上,若点A与点B 关于x 轴对称,则m 的值为 1 .13.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为 12+15π .14.在平面直角坐标系中,△ABC 顶点A 的坐标为(3,2),若以原点O 为位似中心,画△ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比等于12,则点A ′的坐标为(6,4)或(-6,-4) .15.如图,双曲线y =k x(k >0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线.已知点P 坐标为(1,3),则图中阴影部分的面积为 4 .16.直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (x >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为 (8,32) .三、解答题(共66分) 17.(6分)计算:(-1)2 018-(12)-3+(cos89°)0+|33-8sin60°|. 解:原式=1-8+1+|33-8×32|=-6+ 3.18.(6分)如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .解:在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC . ∵CE ⊥AB ,∴∠ADB =∠CEB =90°. ∵∠B =∠B ,∴△ABD ∽△CBE .19.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD =2米),背水坡DE 的坡度i =1∶1(即DB :EB =1∶1),如图所示,已知AE =4米,∠EAC =130°,求水坝原来的高度BC .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)解:设BC =x 米,在Rt △ABC 中,∠CAB =180°-∠EAC =50°,AB =BCcos50°≈BC 1.2=5BC 6=56x , 在Rt △EBD 中,∵i =DB ∶EB =1∶1,∴BD =BE ,∴CD +BC =AE +AB ,即2+x =4+56x ,解得x =12,即BC =12,答:水坝原来的高度为12米.20.(8分)已知反比例函数y 1=k x的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,-2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围. 解:(1)∵A (1,4)在反比例函数图象上,∴把A (1,4)代入反比例函数y 1=k x 得:4=k1,解得k =4,∴反比例函数解析式为y 1=4x的,又B (m ,-2)在反比例函数图象上,∴把B (m ,-2)代入反比例函数解析式,解得m =-2,即B (-2,-2),把A (1,4)和B (-2,-2)代入一次函数解析式y 2=ax +b 得:⎩⎪⎨⎪⎧a +b =4,-2a +b =-2,解得:⎩⎪⎨⎪⎧a =2,b =2.∴一次函数解析式为y 2=2x +2;(2)根据图象得:-2<x <0或x >1.21.(8分)如图,某人为了测量小山顶上的塔ED 的高,他在山下的点A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进60 m 到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,求塔ED 的高度.(结果保留根号)解:由题知,∠DBC =60°,∠EBC =30°,∴∠DBE =∠DBC -∠EBC =60°-30°=30°.又∵∠BCD =90°, ∴∠BDC =90°-∠DBC =90°-60°=30°.∴∠DBE =∠BDE .∴BE =DE .设EC =x m ,则DE =BE =2EC =2x m ,DC =EC +DE =x +2x =3x m ,BC =BE 2-CE 2=(2x )2-x 2=3x ,由题知,∠DAC =45°,∠DCA =90°,AB =60,∴△ACD 为等腰直角三角形,∴AC =DC .∴3x +60=3x , 解得:x =30+103,2x =60+20 3. 答:塔高约为(60+203) m22.(10分)如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交CD 于G .(1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值. 解:(1)∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE ,∴△BCG ≌△DCE (ASA),∴BG =DE ;(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG ≌△DCE (ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH GH =21 ,∴BH =23 5,GH =13 5 ,∴HG GF =53.23.(10分))如图,点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =5,反比例函数y =kx(k >0)的图象过CD 的中点E .(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(1)∵点A ,B 分别在x ,y 轴上,DC ⊥x 轴于点C ,∴∠AOB =∠DCA =90°,∵AO =CD =2,AB =DA =5∴△AOB ≌△DCA ;(2)∵∠DCA =90°,DA =5,CD =2,∴AC =OA 2-CD 2=(5)2-22=1,∴OC =OA +AC =3,∵E 是CD 的中点,∴CE =DE =1,∴E (3,1),∵反比例函数y =k x的图象过点E ,∴k =3;(3)∵△BFG 和△DCA 关于某点成中心对称,∴BF =DC =2,FG =AC =1,∵点F 在y 轴上,∴OF =OB +BF =1+2=3,∴G (1,3),把x =1代入y =3x中得y =3,∴点G 在反比例函数图象上.24.(12分)如图,AB 是⊙O 的直径,AB =4,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC 的长度.(结果保留π)(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF≌△ACE ,∴CF =CE ;(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM ·PM =3a 2,∴BM =3a ,∴tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长=60π·23180=233π.。
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)
2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。
7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。
8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。
9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。
10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。
三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。
12. 已知函数y = 2x 3,求当x = 1时,函数的值。
13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。
四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。
五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。
数学质检试卷初中
一、选择题(每题5分,共50分)1. 下列各数中,正整数是()A. -2B. 0C. 1.5D. 32. 若a=2,b=-1,则a²+b²的值为()A. 1B. 2C. 3D. 43. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)4. 若a、b是方程x²-4x+3=0的两根,则a+b的值为()A. 1B. 2C. 3D. 45. 下列函数中,有最小值的是()A. y=x²B. y=-x²C. y=x²+1D. y=-x²+16. 若一个长方形的长和宽分别为5cm和3cm,则它的周长为()A. 8cmB. 10cmC. 12cmD. 15cm7. 下列各式中,正确的是()A. 3a=3a²B. 2a=2a²C. 3a²=3aD. 2a²=2a8. 若一个数的平方根是±2,则这个数是()A. 4B. 8C. 16D. 329. 在等腰三角形ABC中,若AB=AC,则∠B=()A. 30°B. 45°C. 60°D. 90°10. 下列各式中,正确的是()A. a²+b²=c²B. a²-b²=c²C. a²+b²=c²+2abD. a²-b²=c²-2ab二、填空题(每题5分,共50分)11. 若a=3,b=-2,则a²+b²的值为______。
12. 在直角坐标系中,点P(-1,2)关于y轴的对称点为______。
13. 若一个数的平方根是±3,则这个数是______。
14. 在等边三角形ABC中,若AB=BC=AC,则∠B=______。
2019届浙江省杭州市九年级下第二次质检数学试卷【含答案及解析】
姓名 ___________ 班级_______________ 分数 ___________
题号
-二二
三
总分
得分
、选择题
1. 下列运算正确的是(
)
A、 . =± 3
B、 =2
C、 (x+2y) 2=x2+2xy+4y2
DJ-J=J
x x-10 谡甲队毎夭修踣叫 则乙队整夭修米,由题意得
150 120 V A -10 '
故选 A・
第8题【答案】
【解析】 试题分析^本题考查了垂径定理:平分弦的直径平分这条弦'并且平分弦所对的两条弧.也考 查了勾股 走理、IS 周角走理、三角函数;由勾股定理求出半径是解決问题的突破口.根据垂径定理得到
由上可得:结论正确的是①
故选 D*
第5题【答案】
辭
树叫出
棗然 杳螫
W
刍 minn 解 辻
试 W3K
I 3& 5
]
^ -^
0±
Z - - Cy -£ - n8 _
•
戸心时,将一顆质地均匀的骰子(六个面上分另画有埠傾的点数〉抛掷即见 画
树杭图祠:
I
2
3
共有並种等可能的结果瓶其中 2 次抛掷所出现的点故之和大于尸的结果数为辽
14. 时间(小时)5678 人数 4151516td
15. 要制作一个母线长为 6cm 底面圆周长是 6 n cm 的圆锥形小漏斗,若不计损耗,则所 需纸板的面积是 _____________ .
16. 二次函数 y= (x-1 ) 2+1,当 2 < y v5 时,相应 x 的取值范围为 ___________________ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第二学期期末质量抽查复习题一、填空题 1.51-的相反数是______________ ,-2的倒数是_________2.空气的体积质量是0.001239克/厘米3,用科学记数法表示,则为_______克/厘米3。
3.若分式262+--x x x 的值为0,则x =______4.当3 x 时,x -3=_____________5.观察一列数的规律并填空:0,3,8,15,24,……则这列数的第2002个数是________ 6.若0132=--x x 的两根是21,x x ,则2111x x +=__________7.方程组⎩⎨⎧=-=+7283y x y x 的解是________8.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买________支钢笔。
9.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是______ 10.抛物线122++-=x x y 的顶点坐标是________,开口方向是________,对称轴是___________。
11.为了了解用电量的多少,李明在六月初连续几天同一时刻观察电表显示的度数,记录如12.如图,我国国旗上的五角星图的每一个顶角都相等,其度数是______13.如图,在△ABC 和△DEF 中,已知AB=DE ,要使△ABC ≌△DEF ,根据三角形全等的判定定理,还需添加条件(填上你认为正确的一种情况)______________14.把边长为1的正方形对折n 次后,所得图形的面积是_________15.如图,在梯形ABCD 中,AB ∥CD AB=3,CD=1,则该梯形的中位线长为_____,若EF ∥AB ,且31=EADE ,则EF 的长为_________16.在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,如果AD=8,DB=6,EC=9,那么AE=__________17.某中学升国旗时,小明同学站在离旗杆底部12m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若他的双眼离地面1.3m ,则旗杆高度为_______m 。
18.如图,在⊙O 的内接四边形ABCD 中,∠BCD=130°,则∠BPD 的度数为________。
19.如图,⊙O 1的半径O 1A 是⊙O 2的直径,C 是⊙O 1上的一点,O 1C交于⊙O 2于点B ,若⊙O 1的半径等于5cm ,⋂AC 的长等于⊙O 1周长的101,则⋂AB 的长是_______cm 。
20.如图,已知扇形AOB 的半径为12,OA ⊥OB ,C 为OA 上一点,以AC 为直径的半圆O 1和以OB 为直径的半圆O 2相切,则半圆O 1的半径为_________。
二、选择题1.下列计算中,正确的是( )(A )3322532y x xy y x =+ (B )()()523x x x -=-⋅-(C )()()13223=-÷-a a (D )552332=+2.将bc ac ab a -+-2分解因式,结果是( ) (A )()()c a b a -+ (B )()()c a b a -- (C )()()c a b a ++ (D )()()c a b a +- 3.已知x 为实数,且()233322=+-+x x xx ,那么x x 32+的值为( )(A )1 (B )-3或1 (C )3 (D )-1或34.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) (A )120元 (B )125元 (C )135元 (D )140元 5.函数12--=x x y 中自变量x 的取值范围是( )(A )2≤x (B )2-≥x (C )2≤x 且1≠x (D )2-≥x 且1≠x 6.二次函数5102-+=x x y 的最小值为( )(A )-35 (B )-30 (C )-5 (D )207.无论m 为何值,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 8.函数1-=kx y 与xk y -=(0≠k )在同一坐标系中的大致图象可能是( )9.已知一组数据x 1、x 2、x 3、x 4、x 5的平均数是2,方差是31,那么另一组数据3x 1-2、3x 2-2、3x 3-2、3x 4-2、3x 5-2的平均数和方差分别是( ) (A )2,31 (2)2,1 (3)4,32 (D )4,310.在频率分布直方图中,各个小长方形的面积和等于( ) (A )频数 (B )组数 (C )1 (D )方差11.如图1l ∥2l ∥3l 已知AB=6cm ,BC=3cm ,A 1B 1=4cm ,则线段B 1C 1的长度为( )(A )6cm (B )4cm (C )3cm (D )2cm12.如果直角三角形的三条边长为2、4、a ,那么a 的取值可以有( ) (A )0个 (B )1个 (C )2个 (D )3个13.已知梯形的下底长是5cm ,它的中位线长是4cm ,则它的上底长是( ) (A )2.5cm (B )3cm (C )3.5cm (D )4.5cm 14.如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC ,垂足为E ,PF ⊥BD ,垂足为F ,则PE+PF 的值为( ) (A )512 (B )2 (C )25 (D )51315.四边形ABCD 的对角线AC 、BD 交于点O ,设有以下论断:(1)AB=BC ;(2)∠DAB=90°;(3)BO=DO ,OA=OC ;(4)矩形ABCD ;(5)菱形ABCD ;(6)正方形ABCD ,则在下列推论中不正确的是( ) (A ))6()4()1(⇒⎭⎬⎫ (B ))5()3()1(⇒⎭⎬⎫ (C ))6()2()1(⇒⎭⎬⎫ (D ))4()3()2(⇒⎭⎬⎫16.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,在AB 上取一点E ,使A 、D 、E 三点组成的三角形与△ABC 相似,则AE 的长为( ) (A )16 (B )14 (C )16或14 (D )16或917.1m 长的标杆直立在水平的地面上,它在阳光下的影长为0.8m ,此时,若某电视塔的影长为100m ,则此电视塔的高度应是( ) (A )80m (B )85m (C )120m (D )125m 18.如图,⊙O 的直径为10,弦AB 的长为8, M 是弦AB 上的动点,则OM 的长的取值范围 为( )(A )3≤OM ≤5 (B )4≤OM ≤5 (C )3 < OM < 5 (D )4 < OM < 519.在△ABC 中∠C=90°,AB=13,AC=12,以B 点为圆心,以6为半径的圆与直线AC 的位置关系是( )(A )相切 (B )相交 (C )相离 (D )不确定20.某工件形状如图所示,圆孤BC 的度数为60°,AB=6cm ,B 点到C 点的距离等于AB ,∠BAC=30°则工件的面积等于( )(A )4πcm 2 (B )6πcm 2(C )8πcm 2 (D )10πcm 2三、解答题 1.计算:()⎪⎪⎭⎫⎝⎛-+---⎪⎪⎭⎫⎝⎛+--13125222111022.解方程组⎩⎨⎧+==-+-12011622y x y y x3.解不等式组()⎪⎩⎪⎨⎧-+-≥-125335221x x x x 并写出不等式组的整数解。
4.已知:二次函数32)1(222--+--=m m x m x y ,其中m 为实数。
(1)求证不论m 取任何实数,这个二次函数的图象与x 轴必有两个交点; (2)设这个二次函数的图象与x 轴交于点A (x 1,0)、B (x 2,0),且x 1,x 2的倒数和为32,求这个二次函数的解析式。
5.A 工人的5次操作技能测试成绩(单位:分)是:7、6、8、6、8;B 工人这5次操作技能测试成绩的平均分7=BX,方差22=SB(1)求A 工人操作技能测试成绩的平均分AX和方差S A 2;(2)提出一个有关“比较A 、B 两工人的操作技能测试成绩”的问题,再作出解答。
6.已知:如图,在梯形ABCD中,AB∥CD,E、F为AB上两点,且AE=BF,DE=CF,EF≠CD,求证:AD=BC7.如图,天空有一气球O,某人在A处测得球心仰角∠OAB=30°,气球对A的视角∠CAD=2º,已知气球半径为1m,求球心O到地面的距离OB(精确到0.1m)8.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x。
(1)当日产量为多少时,每日获得的利润为1750元(2)当日产量为多少时,可获得最大利润?最大利润是多少?9.如图1,圆内接三角形ABC中,AB=AC,经过A点的弦与BC及⋂BC分别相交于点D和E,则结论AB2=AE·AD是成立的。
(1)如果E点在△ABC的外接圆上移动,如移动到⋂AC(不与A、C重合)这时AE的延长线交BC的延长线于点D,请问:AB2=AE·AD仍然成立吗?如果你认为成立,请给出证明过程。
(2)在图2中,连结CE、BE若∠BAC=60º,求证:BE=AE+CE10.已知:如图,在直角坐标系中,以y轴上的点C为圆心,1为半径的圆与x轴相切于原点O,点P在x 轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D。
(1)求证:PC⊥OA(2)若点P的坐标为(-2,0),求直线AB的解析式。
(3)若点P在x轴的负半轴上运动:原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式;(4)在(3)的情况下,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,直接写出点P的坐标(不写过程);若不存在,简要说明理由。
11.如图,已知:△ABC 中,AB=5,BC=3,AC=4,P Q ∥AB ,P 点在AC 上(与点A 、C 不重合)。
Q 点在BC 上。
(1)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长; (2)试问:在AB 上是否存在点M ,使得△PQM 为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ 的长。