三年高考高考数学试题分项版解析专题18立体几何中三视图及其应用文1101137-含答案

合集下载

空间几何体的三视图、表面积和体积 高考数学真题与解析

空间几何体的三视图、表面积和体积  高考数学真题与解析

专题八立体几何8.1空间几何体的三视图、表面积和体积考点一空间几何体的三视图与直观图1.(2016天津文,3,5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案B由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示.该几何体的侧视图为选项B中图形.故选B.评析本题主要考查空间几何体的三视图与直观图,考查学生的空间想象能力和识图、画图能力.2.(2014课标Ⅰ,8,5分,0.795)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.3.(2014北京理,7,5分)在空间直角坐标系O-xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S 1=S 2=S 3B.S 2=S 1且S 2≠S 3C.S 3=S 1且S 3≠S 2D.S 3=S 2且S 3≠S 1答案D 三棱锥D-ABC 如图所示.S 1=S △ABC =12×2×2=2,S 2=12×2×2=2,S 3=12×2×2=2,∴S 2=S 3且S 1≠S 3,故选D.4.(2014课标Ⅰ理,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.6C.42D.4答案B 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC 为等腰直角三角形,AB=BC=4,取BC 的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD 中,BD=DC=25,BC=DM=4,所以在Rt△AMD 中,AD=B 2+D 2=42+22+42=6,又在Rt△ABC 中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.评析本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.5.(2013课标Ⅱ,理7,文9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.方法归纳由几何体直观图画三视图的要求:①注意三个视图对应的观察方向;②注意视图中虚线与实线的区别;③画出的三视图要符合“长对正,高平齐,宽相等”的基本特征.6.(2013湖南理,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-12D.2+12答案C若该正方体的放置方式如图所示,当正视的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为2,由于正视的方向不同,因此正视图的面积S∈[1,2].故选C.评析本题考查空间几何体的三视图与直观图,考查学生空间想象能力及有关知识的应用能力,解答本题应设法求出正视图的面积的取值范围,而不应该逐项计算.7.(2011课标理,6文,8,5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案D 由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面垂直于底面的三棱锥组成的组合体,故其侧视图应为D 选项.错因分析将组合体看成半圆柱和三棱锥的组合或不注意C 和D 中中线实虚的含义,易误选A 或C.评析本题主要考查空间几何体的三视图,考查学生的识图能力和空间想象能力.考点二空间几何体的表面积与体积1.(2018课标Ⅰ文,5,5分)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π答案B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=22,∴圆柱的表面积S=2πr 2+2πr·h=4π+8π=12π.故选B.解题关键正确理解圆柱的轴截面及熟记圆柱的表面积公式是解决本题的关键.2.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π答案A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=3a,即R=3,所以球的表面积S=4πR 2=12π.故选A.方法点拨对于正方体与长方体,其体对角线为其外接球的直径,即外接球的半径等于体对角线的一半.3.(2016课标Ⅲ,理10,文11,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为35的斜四棱柱.其表面积S=2×32+2×3×35+2×3×6=54+185.故选B.易错警示学生易因空间想象能力较差而误认为侧棱长为6,或漏算了两底面的面积而致错.4.(2015课标Ⅰ理,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.5.(2015北京理,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C 由三视图可得该三棱锥的直观图如图所示,其中PA=1,BC=2,取BC 的中点M,连接AM,MP,则AM=2,AM⊥BC,故AC=AB=B 2+A 2=1+4=5,由正视图和侧视图可知PA⊥平面ABC,因此可得PC=PB=B 2+A 2=1+5=6,PM=B 2+A 2=1+4=5,所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.6.(2015陕西,理5,文5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S=2×12×π×12+π×1×2+2×2=3π+4.评析本题考查三视图的概念和性质以及圆柱的表面积,考查运算及推理能力和空间想象能力.由三视图确定几何体的直观图是解题的关键.7.(2015课标Ⅱ,理9,文10,5分,0.685)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.思路分析由△OAB 的面积为定值分析出当OC⊥平面OAB 时,三棱锥O-ABC 的体积最大,从而根据已知条件列出关于R 的方程,进而求出R 值,利用球的表面积公式即可求出球O 的表面积.导师点睛点C 是动点,在三棱锥O-ABC 中,如果以面ABC 为底面,则底面面积与高都是变量,而S △OAB 为定值,因此转化成以面OAB 为底面,这样高越大,体积越大.8.(2014浙江理,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).9.(2014福建文,5,5分)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1答案A由题意得圆柱的底面半径r=1,母线l=1.∴圆柱的侧面积S=2πrl=2π.故选A.10.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C本小题考查空间几何体的三视图和直观图以及几何体的体积公式.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1cm,2cm,高为2 cm,直四棱柱的高为2cm.故直四棱柱的体积V=1+22×2×2=6cm3.思路分析(1)利用三视图可判断几何体是直四棱柱;(2)利用“长对正,高平齐,宽相等”的原则,可得直四棱柱的各条棱长.11.(2016山东理,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+C.13+答案C由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径等于正四棱锥底面正方形的对角线的长,所以球的直径2R=2,即所以半球的体积为23πR3又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+故选C.易错警示不能从俯视图中正确地得到球的半径,而错误地从正视图中得到球的半径R=12.评析本题考查了空间几何体的三视图和体积公式.正确得到几何体的直观图并准确地计算是解题关键.12.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积V=13×12×1×1×1=16.故选A.13.(2015课标Ⅰ,理6,文6,5分,0.451)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B设圆锥底面的半径为R尺,由14×2πR=8得R=16π,从而米堆的体积V=14×13πR2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62π≈22(斛).故选B.14.(2015课标Ⅱ,理6,文6,5分,0.426)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.15.(2015重庆理,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+2πB.13π6C.7π3D.5π2答案B由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为12×13×π×12×1+π×12×2=13π6,故选B.16.(2015浙江理,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.323cm3D.403cm3答案C由三视图知,该几何体是由棱长为2cm的正方体和底面边长为2cm,高为2cm的正四棱锥组合而成的几何体.所以该几何体的体积V=23+13×22×2=323cm3,故选C.17.(2015山东理,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案C如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,故所求体积V=2π-π3=5π3.评析本题主要考查几何体的体积及空间想象能力.18.(2015湖南文,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积)原工件的体积A.89πB.827πC.24(2-1)3πD.8(2-1)3π答案A由三视图可知,原工件是一个底面半径为1,母线长为3的圆锥,则圆锥的高为22,新工件是该圆锥的内接正方体,如图,此截面中的矩形为正方体的对角面,设正方体的棱长为x,则22x1=22-x22,解得x=223.所以正方体的体积V1223=16227,又圆锥的体积V2=13π×12×22=223π,所以原工件材料的利用率为12=89π,故选A.19.(2014陕西理,5,5分)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B.4πC.2πD.4π3答案D 如图为正四棱柱AC 1.根据题意得AC=2,∴对角面ACC 1A 1为正方形,∴外接球直径2R=A 1C=2,∴R=1,∴V 球=4π3,故选D.20.(2014课标Ⅱ,理6,文6,5分,0.506)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59C.1027D.13答案C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34πcm 3,圆柱体毛坯的体积为π×32×6=54πcm 3,所以切削掉部分的体积为54π-34π=20πcm 3,所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.21.(2014课标Ⅱ文,7,5分,0.495)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为()A.3B.32C.1答案C 在正三棱柱ABC-A 1B 1C 1中,∵AD⊥BC,AD⊥BB 1,BB 1∩BC=B,∴AD⊥平面B 1DC 1,∴t1D1=13△1D1·AD=13×12×2×3×3=1,故选C.22.(2013课标Ⅰ,理8,文11,5分,0.718)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π答案A由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.思路分析由三视图分析该几何体的构成,从而利用三视图中的数据计算几何体的体积.23.(2013浙江文,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3答案B由三视图可知,该几何体是一个长方体截去了一个三棱锥,结合所给数据,可得其体积为6×6×3-13×12×4×4×3=100(cm3),故选B.24.(2012大纲全国,理7,文7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18答案B由三视图可得,该几何体为如图所示的三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.25.(2011陕西文,5,5分)某几何体的三视图如图所示,则它的体积为()A.8-2π3B.8-π3C.8-2πD.2π3答案A由给出的三视图可得原几何体为正方体中挖去一圆锥,且此圆锥以正方体的上底面内切圆为底,以正方体的棱长为高.故所求几何体的体积为8-13×π×12×2=8-2π3.评析三视图是考查空间想象能力很好的一个题材,正确解答此类题目的关键是平时空间想象能力的培养,对文科学生来说,本题属中等难度题.26.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是()A.17πB.18πC.20πD.28π答案A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.27.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C由三视图可得圆锥的母线长为22+(23)2=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.思路分析先求圆锥的母线长,从而可求得圆锥的侧面积,再求圆柱的侧面积与底面积,最后求该几何体的表面积.28.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π解析本题考查长方体和球的性质,考查了球的表面积公式.由题意知长方体的体对角线为球O的直径,设球O的半径为R,则(2R)2=32+22+12=14,得R2=72,所以球O的表面积为4πR2=14π.疑难突破明确长方体的体对角线为球O的直径是求解的关键.易错警示易因用错球的表面积公式而致错.29.(2013课标Ⅱ,15,5分,0.158)已知正四棱锥O-ABCD底面边长为3,则以O为球心,OA为半径的球的表面积为.答案24π解析设底面中心为E,连接OE,AE,则|AE|=12|AC|=∵体积V=13×|AB|2∴|OA|2=|AE|2+|OE|2=6.从而以OA为半径的球的表面积S=4π·|OA|2=24π.思路分析先根据已知条件直接利用锥体的体积公式求得正四棱锥O-ABCD的高,再利用勾股定理求出|OA|,最后根据球的表面积公式计算即可.30.(2013课标Ⅰ,15,5分,0.123)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.答案9π2解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H的面积为π,得圆H的半径为1,+12=R2,得出R2=98,所以球O的表面积S=4πR2=4π·98=92π.31.(2013福建理,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为232=12π.32.(2017江苏,6,5分)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12的值是.答案32解析本题考查空间几何体的体积.设圆柱内切球的半径为R,则由题设可得圆柱O 1O 2的底面圆的半径为R,高为2R,∴12=π2·2R 43π3=32.33.(2018天津理,11,5分)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为.答案112解析本题主要考查正方体的性质和正四棱锥的体积.由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M-EFGH 的体积V=13×12×12=112.34.(2016天津理,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3m,所以四棱锥的体积V=13×2×3=2m3.易错警示该题有两点容易出错:一是锥体的体积公式中的系数13易漏写;二是底面平行四边形的面积易错误地写成3×1=3m2.评析本题考查了三视图和直观图,考查了锥体的体积.35.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案解析由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=评析正确理解正视图中的数据在直观图中表示的含义很关键.36.(2014山东理,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则12=.答案14解析如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S 2=2S1,h2=2h1,V1=1S1h1,V2=1S2h2,∴1=1ℎ1=1.评析本题考查三棱锥的体积的求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.37.(2012安徽,12,5分)某几何体的三视图如图所示,则该几何体的体积等于.答案56解析由题意知,该三视图对应的几何体如图,其体积12(2+5)×4×4=56.评析本题主要考查三视图的知识,考查学生的空间想象能力.由三视图得到直观图是解题关键.38.(2011课标理,15,5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为.答案83解析如图,连接AC,BD,交于O1,则O1为矩形ABCD所在小圆的圆心,连接OO1,则OO1⊥面ABCD,易求得O1C=23,又OC=4,∴OO1=B2-12=2,∴棱锥体积V=13×6×23×2=83.失分警示立体感不强,空间想象能力差,无法正确解出棱锥的高而得出错误结论.评析本题主要考查球中截面圆的性质及空间几何体的体积的计算,通过球这个载体考查学生的空间想象能力及推理运算能力.39.(2011课标文,16,5分)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.答案13解析如图,设球的半径为R,圆锥底面半径为r,由题意得πr2=316×4πR2.=12R.体积较小的圆锥的高AO1=R-12R=12R,体积较大的圆锥的高BO1=R+12R=32R.1故这两个圆锥中,体积较小者的高与体积较大者的高的比值为13.评析本题考查球、球内接圆锥的相关问题,考查R,r的关系,由题意得到是解答本题的关键. 40.(2020课标Ⅰ文,19,12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P 为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P-ABC的体积.解析(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.由题设可得rl=3,l2-r2=2.解得r=1,l=3.从而AB=3.由(1)可得PA2+PB2=AB2,故所以三棱锥P-ABC的体积为13×12×PA×PB×PC=13×12×第21页共21页。

三年高考高考数学试题分项版解析专题18立体几何中三视图及其应用文1101137-含答案

三年高考高考数学试题分项版解析专题18立体几何中三视图及其应用文1101137-含答案

即可.
6.【 2015 新课标 2 文 6】 一个正方体被一个平面截去一部分后 , 剩余部分的三视图如下图 , 则截
去部分体积与剩余部分体积的比值为(

1
1
1
1
A.
B.
C.
D.
8
7
6
5
不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几
何体的底面, 因为顶点在底面的射影落在了底面的外面, 否则中间的那条线就不会是虚线 .
3. 【 2015 高考陕西,文 5】一个几何体的三视图如图所示,则该几何体的表面积为(

A. 3
B. 4
C. 2 4 D. 3 4
【答案】 D
2
【考点定位】 1. 空间几何体的三视图; 2. 空间几何体的表面积 .
【名师点睛】 1. 本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、
空间想象能力以及技术能力; 2. 先根据三视图判断几何体的结构特征,再计算出几何体各
个面的面积即可; 3. 本题属于基础题,是高考常考题型 .
( A) 60 ( C) 20
( B) 30 ( D) 10
1
【答案】 D 【解析】 试题分析:该几何体是三棱锥,如图:
图中红色线围成的几何体为所求几何体,该几何体的体积是 故选 D.
11
V
5 3 4 10 ,
32
【考点】 1. 三视图; 2. 几何体的体积 .
【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法
4. 【2016 高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的
正视图与俯视图如图所示,则该几何体的侧(左)视图为(

2021年高考数学高分套路 空间几何体三视图(解析版)

2021年高考数学高分套路  空间几何体三视图(解析版)

A. 3
【答案】B

B. 2 3
C. x1 x2
D.4
【解析】由题意可得,侧视图是个矩形,由已知,底面正三角形的边长为 2,所以其高为 3 ,即侧视图的 宽为 3 ,又三棱柱的高为 2,即侧视图的长为 2,所以三棱柱侧视图的面积为 2 3 .故选 B 2.如图,在长方体 ABCD-A1B1C1D1 中,点 P 是棱 CD 上一点,则三棱锥 P-A1B1A 的侧视图是( )
2
考向三 三视图知二选三 【例 3】 如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
【答案】 B 【解析】 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图 的直径可知其侧视图为 B,故选 B.
【套路总结】 三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表 示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结 合空间想象将三视图还原为实物图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形 状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分 三视图是否符合. 【举一反三】 1、一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )
四.空间几何体的三视图 1.三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.具体包括: (1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度; (2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度; (3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度. 2.三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等

三年高考高考数学真题分项汇编专题立体几何解答题理含解析.doc

三年高考高考数学真题分项汇编专题立体几何解答题理含解析.doc

专题06立体几何(解答题)1.[2019年高考全国I卷理数】如图,直四棱柱ABCD -A点C2的底面是菱形,M=4, AB=2, ZBAD=&0° ,E, M,"分别是BG BBi, //的中点.(1)证明:必V〃平面GDE-,(2)求二面角A-MA-N的正弦值.【答案】(1)见解析;(2).【解析】(1)连结BC, ME.因为必£分别为爾,庞的中点,所以ME"B\C,且於EC又因为慨Mi加勺中点,所以ND^A.D.由题设知可得風G4J,敕MEND,因此四边形如必为平行四边形,MN//ED.又删平面切G,所以JW平面(2)由已知可得励丄必.以0为坐标原点,的方向为曲由正方向,建立如图所示的空间直角坐标系沪xyz,则D-q的厂B, //1 / /,4(2, 0, 4), , , , , , •设为平面川翎的法向量,贝y,所以可取.设为平面Mi必啲法向量,贝!I所以可取.于是,所以二面角的正弦值为.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.2.[2019年高考全国II卷理数】如图,长方体ABCD-AACM的底面/敝是正方形,点£在棱曲i上,BE 丄阳.(1)证明:滋丄平面EBvG;(2)若A^ArE,求二面角B-EC- Q的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知竺,所以,故,.以为坐标原点,的方向为剧正方向,为单位长,建立如图所示的空间直角坐标系D~ xyz,则C (0, 1, 0) , B (1, 1, 0) , (0, 1, 2) , E (1, 0, 1),,,.设平面肪曲勺法向量为沪(x, y, x),贝!]即所以可取沪.设平面的法向量为硏(x, y, z),则即所以可取硏(1, 1, 0).于是.所以,二面角的正弦值为.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.3.[2019年高考全国III卷理数】图1是由矩形ADEB, RtA^C和菱形莎GC组成的一个平面图形,其中AB=1,BBB圧2, ZFB&60。

专题18 立体几何中—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题18 立体几何中—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽 相等”的原则. (2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是 由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整 体;③综合起来,定整体. 19.【2014 高考北京文第 11 题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.
专题 18 立体几何中三视图及其应用
1.【2017 课标 II,文 6】如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的 三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. 90π B. 63π C. 42π D. 36π
2.【2017 北京,文 6】某三棱锥的三视图如图所示,则该三棱锥的体积为
2018 年暑假系统班,全国钜惠,99 元 16 课时
(A)18 36 5 (B) 54 18 5 (C)90
(D)81
15.【2015 高考湖南,文 10】某工作的三视图如图 3 所示,现将该工作通过切削,加工成一 个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材 料的利用率为(材料利用率=新工件的体积/原工件的体积)()
20.【2016 高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积.
2018 年暑假系统班,全国钜惠,99 元 16 课时
21.【2015 高考天津,文 10】一个几何体的三视图如图所示(单位:m),则该几何体的体积
为 m3 . 22【. 2014 天津文 10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 m3 .
2018 年暑假系统班,全国钜惠,99 元 16 课时

三视图高考题选答案版

三视图高考题选答案版

三视图高考题选一、知识点1、三视图的名称几何体的三视图包括:主视图、左视图、俯视图.2、三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.【题型一】空间几何体的三视图1、若某几何体的三视图如图7-1-4所示,则这个几何体的直观图可以是( )图7-1-4【解析】根据主视图与俯视图可排除A、C,根据左视图可排除D.故选B.2、(2012·陕西高考)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( )图7-1-73、[2014·福建卷]某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱[解析]A由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.4、[2014·江西卷]一几何体的直观图如图1-1所示,下列给出的四个俯视图中正确的是( )图1-1A B C D图1-2[解析]B易知该几何体的俯视图为选项B中的图形.【题型二】三视图与面积1、(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧(左)视图是一个面积为的矩形,则该正方体的正(主)视图的面积等于( )A. B.1 C. D.【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为的矩形,因此该几何体的主视图是一个长为,宽为1的矩形,其面积为.【答案】D2、[2014·安徽卷]一个多面体的三视图如图1-2所示,则该多面体的表面积为( )A.21+B.8+C.21D.18图1-2[解析]A如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S=6×4-×6+2×××=21+.3、[2014·浙江卷]几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )图1-1A.90 cm2B.129 cm2 C.132 cm2D.138 cm2[解析].D此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为2(4×3+6×3+6×4)+2××3×4+4×3+3×5-3×3=138(cm2),故选D.4、[2014·重庆卷]某几何体的三视图如图1-2所示,则该几何体的表面积为( )图1-2A.54B.60 C.66D.72[解析]B由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S=×3×4++×4+×5+3×5=60.【题型三】三视图与体积1、(2013·广东高考)某三棱锥的三视图如图7-1-8所示,则该三棱锥的体积是( )图7-1-8A. B.C. D.1【解析】如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V=××1×1×2=,故选B.【答案】B2、[2014·辽宁卷]某几何体三视图如图1-1所示,则该几何体的体积为( )A.8-2πB.8-πC.8-D.8-图1-1[解析]B根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为2×2×2-2××π×2=8-π.3、[2014·天津卷]一个儿何体的三视图如图1-3所示(单位:m),则该几何体的体积为________m3.图1-3[解析]由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V=π×12×4+π×22×2=.4、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为()A .168π+B .88π+C .1616π+D .816π+ 【答案】A 5、(2013年广东(理))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6 【答案】B 正视俯视侧视第5题。

三年高考(2016-2018)数学(理)真题分项专题21 三视图的辨别与应用(Word版)

三年高考(2016-2018)数学(理)真题分项专题21 三视图的辨别与应用(Word版)

专题21 三视图的辨别与应用考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.空间几何体的结构认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构了解2016课标全国Ⅲ,10;2015课标Ⅱ,6选择题填空题★★☆2.三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)理解2017课标全国Ⅰ,7;2017北京,7;2016课标全国Ⅰ,6;2015重庆,5;2014湖南,7;2013四川,3选择题填空题★★★等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D. 22017年高考全景展示1.【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .162.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+π B .32+π C .123+πD .323+π 3.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2 (B )3 (C )2 (D )22016年高考全景展示1.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A)18365+(B)54185+(C)90 (D)812.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π3.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图3314.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.5.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.。

高考专题全国卷真题2011至2018-立体几何以及三视图(含大小题)

高考专题全国卷真题2011至2018-立体几何以及三视图(含大小题)

(正视图) (俯视图) 3.立体几何初步【高考真题】3-1(2011全国-6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为3-2(2011全国-15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6AB =,23BC =,则棱锥O ABCD -的体积为3-3(2011全国-18)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形, ∠60DAB =︒,2AB AD =,PD ∠底面ABCD 。

(∠)证明:PA ∠BD ;(∠)若PD AD =,求二面角A PB C --的余弦值。

3-4(2012全国-7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6 D .153-5(2012全国-11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,∠ABC 是边长为1的正三角形, SC 为球O 的直径,且SC =2,则此棱锥的体积为 A .26 B .36 C .23 D .223-6(2012全国-19)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1, D 是棱AA 1的中点,DC 1∠BD 。

(1)证明:DC 1∠BC ;(2)求二面角A 1-BD -C 1的大小。

(A ) (B ) (C ) (D ) C DA BP OBDADA 11CC 1AB CC 1A 1B 13-7(2013全国∠-6)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm , 如果不计容器的厚度,则球的体积为A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 33-8(2013全国∠-8)某几何函数的三视图如图所示,则该几何的体积为A 、18+8πB 、8+8πC 、16+16πD 、8+16π3-9(2013全国∠-18)如图,三棱柱ABC -A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (∠)证明AB ⊥A 1C;(∠)若平面ABC∠平面AA 1B 1B ,AB=CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

立体几何(解答题) 专项汇编1.【2021年全国高考甲卷数学(文)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析. 【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)如图所示,连结AF ,由题意可得:22415BF BC CF =+=+=,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =,故AB ⊥平面11BCC B ,而BF ⊂平面11BCC B ,故AB BF ⊥, 从而有22453AF AB BF =+=+=, 从而229122AC AF CF =-=-=,则222,AB BC AC AB BC +=∴⊥,ABC 为等腰直角三角形,111221222BCE ABC S s ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.2.【2021年全国高考乙卷数学(文)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)23. 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥, 从而~DAB ABM ,设BM x =,2AD x =, 则BM AB AB AD =,即221x =,解得22x =,所以2AD =. 因为PD ⊥底面ABCD , 故四棱锥P ABCD -的体积为()1212133V =⨯⨯⨯=. 【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.3.【2021年全国新高考Ⅰ卷数学】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2) 36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形 因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.4.【2020年高考全国Ⅰ卷文数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P −ABC 的体积. 【解析】(1)由题设可知,PA =PB = PC . 由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=.解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.5.【2020年高考全国Ⅱ卷文数】如图,已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B −EB 1C 1F 的体积.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN 平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM 3PM =23AM 3EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B −EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B −EB 1C 1F 的体积为1243243⨯⨯=.【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.6.【2020年高考全国Ⅲ卷文数】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【解析】(1)如图,连结BD ,11B D . 因为AB BC =,所以四边形ABCD 为正方形, 故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥. 所以AC ⊥平面11BB D D .由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.7.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】(1)因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥. 又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C . 又因为AB ⊂平面1ABB , 所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 8.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,||||OC OC OC θ⋅===⋅n |n n |因此,直线DF 与平面DBC 3. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 9.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =417CH =. 从而点C 到平面1C DE 417.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.10.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.11.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4. 【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部12.【2019年高考北京卷文数】如图,在四棱锥P ABCDABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,⊥.所以BD AC所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.13.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以3DN =又DN AN ⊥,在Rt AND △中,3sin DN DAN AD ∠==所以,直线AD 与平面PAC 3【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.14.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.15.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅. 因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨-=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

立体几何三视图(高考题精选)

立体几何三视图(高考题精选)

三视图强化练习(13北京)10.某四棱锥的三视图如图所示,则该四棱锥的体积为。

(12北京)7.某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+65B. 30+65C. 56+ 125D. 60+125(11北京理)7.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.82(11北京文)5.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32 B.16+162C.48 D.16+322(13辽宁)(13)某几何体的三视图如图所示,则该几何体的体积是 .(13重庆)5、某几何体的三视图如题5图所示,则该几何体的体积为()A 、5603B 、5803C 、200D 、240(13湖北)8、一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A. 1243V V V V B. 1324V V V V C.2134V V V V D.2314V V V V(13全国新课标1)8、某几何体的三视图如图所示,则该几何体的体积为(A )8π16(B )8π8(C )π6116(D )16π8(13全国新课标2)7、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()(A) (B) (C) (D)(12天津)(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.(11东城二模)(4)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么这个几何体的体积为(A )43(B )83(C )4(D )8(11海淀)11. 一个几何体的三视图如图所示,则这个几何体的体积为____________.(12辽宁)(13)一个几何体的三视图如图所示,则该几何体的表面积为______________。

三年高考(2016-2018)数学(文)试题分项版解析——专题21 三视图的辨别与应用(原卷版)

三年高考(2016-2018)数学(文)试题分项版解析——专题21 三视图的辨别与应用(原卷版)

考纲解读明方向考点内容解读要求常考题型预测热度1.空间几何体的结构认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构了解选择题填空题★★☆2.三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)理解选择题填空题★★★分析解读 1.理解多面体、棱柱、棱锥、棱台的概念,牢记它们的几何特征.2.理解圆柱、圆锥、圆台、球等几何体的形成过程,正确把握轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解三视图的形成过程及掌握三视图及直观图的画法.4.注重空间想象能力的培养.5.高考对本节的考查以三视图的识别和应用为主,分值约为5分,属中档题.2018年高考全景展示1.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 82.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 43.【2018年全国卷Ⅲ文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D2017年高考全景展示1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)102016年高考全景展示1.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()。

三视图在高考数学中的应用

三视图在高考数学中的应用

三视图在高考数学中的应用高考数学中的几何分数占据了相当大的比重,而在几何分数中,三视图是一项重要的知识点。

三视图是指通过底视图、俯视图和左视图三个视图来描述一个物体的形状和结构。

在现代设计制图中,三视图已经成为一种标准的表达方式,被广泛应用于工程制图、建筑设计等领域。

在高考数学中,对三视图的掌握也显得至关重要。

一、三视图的概念和作用三视图是指通过底视图、俯视图和左视图三个视图来描述一个物体的形状和结构。

底视图、俯视图、左视图分别是从下方、从上方、从左侧看到的物体的真实图样。

三视图可以准确地表现一个物体的三个面,从而全面地反映该物体的形状和结构。

三视图在工程制图和建筑设计中应用广泛,可以帮助设计师更加直观地了解物体的结构、尺寸和位置关系,从而更好地完成设计任务。

在高考数学中,三视图的作用更多体现在几何分数的考核中,通过掌握三视图的相关知识,可以更好地完成几何分数的解答。

二、三视图的基本性质和特点1. 三视图的数量相同由于底视图、俯视图和左视图分别描述一个物体的不同部分,因此它们的数量是相同的。

在制图和解题中,必须同时绘制或使用三个视图,以确保图形的准确性和完整性。

2. 三视图互相独立在三视图中,底视图、俯视图和左视图是彼此独立的,它们所描述的面也是互不相同的。

因此,在使用三视图解题时,必须注意各个视图之间的关系,确保计算的准确性。

3. 三视图分别包含物体的不同面底视图、俯视图和左视图分别描绘物体的下侧、上侧和侧面。

底视图描绘的是物体的下半部分,俯视图描绘的是物体的上半部分,左视图描绘的是物体的左半部分。

三、三视图的相关知识点和计算方法1. 三视图的绘制方法底视图、俯视图和左视图的绘制方法类似,在绘制过程中需要注意以下几点:构图在绘制三视图时,应该首先确定物体的正面和方向,根据实际情况选择合适的画纸大小和比例,并合理使用绘图工具和比例尺,以确保图形的准确性。

投影在绘制三视图时,需要进行投影,即通过垂直于某个面的平面来将该面的形状投影到纸面上。

高考数学试题分类汇编-立体几何三视图和几何证明

高考数学试题分类汇编-立体几何三视图和几何证明

高考真题理科数学解析汇编:立体几何-三视图和几何证明一、选择题1 .已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为A.6B.6C.3D.22 .如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A . 6 B .9 C .12 D .183.已知某几何体的三视图如图所示,则该几何体的体积为 ()A .8π3 B .3π C .10π3D .6π 4.某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π5.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A .球B .三棱柱C .正方形D .圆柱6.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+B .30+C .56+D .60+二、填空题7.―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .8.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.侧视图 正视图 俯视图9.(2012年高考(辽宁理))一个几何体的三视图如图所示,则该几何体的表面积为______________.10.某几何体的三视图如图所示,该几何体的表面积是_____.三、解答题11.如图,在四棱锥P ABCD -中,PA 丄平面A B C D,AC 丄AD ,AB 丄BC ,0=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;12.(2012年高考(新课标理))如图,直三棱柱111ABC A B C -中,112ACBC AA ==,D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥113.如图,在四棱锥P —ABCD 中,底面是边长为的菱形,且∠BAD =120°,且PA ⊥平面ABCD ,PA=M ,N 分别为PB ,PD 的中点.(Ⅰ)证明:MN ∥平面ABCD ;14如图所示的几何体中,四边形A B C D是等腰梯形AB∥CD,60,DAB FC ∠=⊥平面,,ABCD AE BD CB CD CF ⊥==.DCBAP(Ⅰ)求证:BD ⊥平面AED ;15如图,直三棱柱///ABC A B C -,90BAC ∠=,/,AB AC AA λ==点M ,N 分别为/AB 和//B C 的中点.(Ⅰ)证明:MN ∥平面//A ACC ;16.如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),AD DE F⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .17.如图5,在四棱锥P-ABCD 中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD的中点.(Ⅰ)证明:CD⊥平面PAE;18.如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面PAC ;19.(2012年高考(大纲理))(注意:在试题卷上作答无效.........)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底ABCD,AC =2,PA E =是PC 上的一点,2PE EC =.(1)证明:PC ⊥平面BED;ABC DPE 图5D一、选择题1. 【解析】选AABC ∆的外接圆的半径3r =,点O 到面ABC 的距离3d ==SC 为球O 的直径⇒点S 到面ABC 的距离为2d =此棱锥的体积为11233ABC V S d ∆=⨯==另:123ABC V S R ∆<⨯=排除,,B C D 2. 【解析】选B 该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯= 3.考点分析:本题考察空间几何体的三视图.解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.4.解析:C.该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.5. 【答案】D【解析】分别比较ABC 的三视图不符合条件,D 符合.【考点定位】考查空间几何体的三视图与直观图,考查空间想象能力、逻辑推理能力. 6. 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,S S S S ====后右左底因此该几何体表面积30S =+,故选B. 【考点定位】本小题主要考查的是三棱锥的三视图问题,原来考查的是棱锥或棱柱的体积而今年者的是表面积,因此考查了学生的计算基本功和空间想象能力.二、填空题7. 【答案】18+9π【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m . 8. 【答案】1 【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=.9. 【答案】38 【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为2(344131)211ππ⨯+⨯+⨯+⨯⨯-=10. 【答案】92【解析】由三视图可知,原几何体是一个底面是直角梯形,高为4的直四棱柱,其底面积为(25)42282+⨯=,侧面积为(4255)464+++⨯=,故表面积为92. 三、解答题11.(1)证明,由PA ⊥平面A B C D,可得PA AD ⊥,又由,A D A C P A A C A ⊥⋂=,故AD ⊥平面PAC ,又PC ⊂平面PAC ,所以PC AD ⊥.12. 【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥13. (Ⅰ)如图连接BD .∵M ,N 分别为PB ,PD 的中点, ∴在∆PBD 中,MN ∥BD . 又MN ⊄平面ABCD , ∴MN ∥平面ABCD ;14. 解析:(Ⅰ)在等腰梯形ABCD 中,AB∥CD,∠DAB=60°,CB=CD,由余弦定理可知202223)180cos(2CD DAB CB CD CB CD BD =∠-⋅⋅-+=,即AD CD BD 33==,在ABD ∆中,∠DAB=60°,AD BD 3=,则ABD ∆为直角三角形,且DB AD ⊥.又AE⊥BD,⊂AD 平面AED,⊂AE 平面AED,且A AE AD = ,故BD⊥平面AED;15. (1) 证明:取''A B 中点P,连结MP,NP,而M,N 分别是A 'B 与'B 'C 的中点,所以,MP∥A 'A ,PN∥'A 'C ,所以,MP∥平面'A AC 'C ,PN∥平面'A AC 'C ,又MP NP p ⋂=,因此平面MPN∥平面'A AC 'C ,而MN ⊂平面MPN,所以,MN∥平面'A AC 'C ,16. 【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC .又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =,,∴AD ⊥平面11BCC B .又∵AD ⊂平面ADE ,∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥.又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥. 又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =,∴1A F ⊥平面111A B C .由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE17. 连接AC,由AB=4,3BC=,90 5.ABC AC ∠==,得5,AD =又E 是CD 的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD⊥平面PAE.18. 解析:(Ⅰ)因为PC ⊥平面BDE ,BD ⊂平面BDE ,所以PC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.而PC PA P =,PC ⊂平面PAC ,PA ⊂平面PAC ,所以BD ⊥平面PAC .19. 解:(1)CD DE ⊥,1A E DE ⊥ ∴DE ⊥平面1ACD , 又1A C ⊂平面1ACD , ∴1A C ⊥DE 又1AC CD ⊥, ∴1A C ⊥平面BCDE 20. 【解析】(I)取11,BC B C 的中点为点1,O O ,连接1111,,,AO OO AO AO则AB AC AO BC =⇒⊥,面ABC ⊥面11BB C C AO ⇒⊥面11BB C C 同理:11A O ⊥面11BB C C 得:1111//,,,AO AO A O A O ⇒共面 又11,OO BC OO AO O ⊥=⇒BC ⊥面111AOO A AA BC ⇒⊥。

《三年高考两年模拟》数学(理科)汇编专题:8.1空间几何体的结构及其三视图与直观图(含答案解析)

《三年高考两年模拟》数学(理科)汇编专题:8.1空间几何体的结构及其三视图与直观图(含答案解析)

第一节 空间几何体的结构及其三视图与直观图A 组 三年高考真题(2016~2014年)1.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5B.54+18 5C.90D.812.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1 4.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π 5.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A.大于5B.等于5C.至多等于4D.至多等于36.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403cm 3 8.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱10.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是()11.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②12.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.413.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.B组两年模拟精选(2016~2015年)1.如图,网格上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.2 2B. 6C.2 3D.32.(2016·广东广州二模)如图,圆锥的底面直径AB =2,母线V A =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 爬到点C ,则这只蚂蚁爬行的最短路程是( )A.13B.7C.433D.3323.(2016·天津新华中学月考)如图是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A.24B.12C.8D.44.(2015·福建莆田模拟)某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32C.1D. 3 5.(2015·山东莱芜模拟)如右图放置的六条棱长都相等的三棱锥,则这个几何体的侧视图是( )A.等腰三角形B.等边三角形C.直角三角形D.无两边相等的三角形6.(2016·河北唐山模拟)在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G 作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.7.(2016·云南师大附中模拟)如图是一几何体的三视图,则该几何体的体积是________.8.(2016·河南洛阳统考)如图是某几何体的三视图,则该几何体的外接球的表面积为________.答案精析A 组 三年高考真题(2016~2014年)(2016年高考题6月底更新)1.B [由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5.]2.C [由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.]3.A [由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.] 4.C [由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥, ∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C.] 5.C [当n =3时显然成立,故排除A ,B ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选C.]6.C [该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,S 表=S △BCD +S △ACD +S △ABD +S △ABC=12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.] 7.C [该几何体是棱长为2 cm 的正方体与一底面边长为2 cm 的正方形,高为2 cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323(cm 3).故选C.] 8.B [由题意知,2r·2r +12·2πr·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2.] 9.A [圆柱的正视图是矩形,则该几何体不可能是圆柱.]10.B [由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.]11.D [在空间直角坐标系O -xyz 中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D. ]12.C [如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥ABCD ,最长的棱为AD =(42)2+22=6,选C. ]13.83π [由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3.] B 组 两年模拟精选(2016~2015年)1.D [(1)几何体的直观图如图,其中平面ABD ⊥平面BCD ,△ABD 为等腰直角三角形,AB =2,BD =2,△BCD 是以BD 为底边的等腰三角形,C 到BD 的中点的距离为2,∴BC =CD =12+22=5,AC =22+(5)2=3.AD =22,显然所有棱中,AC 最长,长为3,故选D.]2.B [由题意,圆锥的从V A 到VB 的部分侧面展开图为如图所示的扇形,半径为3,圆心角为π3,连接AC,在△V AC 中,因为VC =1,∠V =π3,VA =3,所以由余弦定理得AC 2=32+12-2×3×1×12=7. ∴AC =7,即蚂蚁爬行最短路程为7,故选B.]3.B [由三视图可知,该几何体由两个相同的直三棱柱构成,三棱柱的高为4,三棱柱的底面三角形为直角三角形,两直角边分别为2,32,所以三棱柱的底面积为12×2×32=32,所以三棱柱的体积为32×4=6.即该几何体的体积为2×6=12,故选B.] 4.B [由三视图可以得到原几何体是以1为半径,母线长为2的半个圆锥,故侧视图的面积是32,故选B.] 5. A [∵六条棱长都相等的三棱锥,它的侧视图是如图所示的等腰三角形(AC =AB),故选A.]6. 8 [过点G 作EF ∥AC,分别交PA 、PC 于点E 、F ,过E 、F 分别作EN ∥PB 、FM ∥PB ,分别交AB 、BC 于点N 、M ,连接MN ,则四边形EFMN 是平行四边形(面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.] 7.9 [由三视图知该几何体是一个四棱锥,其体积V =13×12×(2+4)×3×3=9.] 8. 50 π [由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5、4、3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π.]。

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(选择、填空题)(解析版)

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(选择、填空题)(解析版)
可. 【详解】
如图,连接 BC1, PC1, PB ,因为 AD1∥ BC1,
所以 ÐPBC1或其补角为直线 PB 与 AD1所成的角,
因为 BB1 ^ 平面 A1B1C1D1,所以 BB1 ^ PC1,又 PC1 ^ B1D1, BB1 Ç B1D1 = B1,
所以 PC1 ^ 平面 PBB1,所以 PC1 ^ PB,
!
A.
B.Leabharlann C.D.【答案】BC 【分析】
下底面面积 S1 = 16 ,上底面面积 S2 = 4,
( ) ( ) 1
1
28
所以该棱台的体积 V
=h 3
S1 + S2 +
S1S2
=´ 3
2 ´ 16 + 4 +
64 = 3
2.
故选:D.
6.【2021 年全国新高考 II 卷数学】如图,在正方体中,O 为底面的中心,P 为所在棱的中
点,M,N 为正方体的顶点.则满足 MN ^ OP的是( )
B1C1 //BC , B1C1 // 平面 A1BC,则有 P到平面 A1BC的距离为定值,所以其体积为定值,
故 B 正确.
对于
C,当
l
=
1 2
时,
!!!" BP
=
1 2
!!!" BC
+
µ
!!!" BB1 ,取
BC ,
B1C1中点分别为
Q,
H
,则
!!!" BP
=
!!!" BQ
+
!!!" µQH
,所以
æ ççè
-
3 1ö 2 , y0, 2 ÷÷ø,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2

【考点定位】 1. 空间几何体的三视图; 2. 空间几何体的表面积 .
【名师点睛】 1. 本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、
空间想象能力以及技术能力; 2. 先根据三视图判断几何体的结构特征,再计算出几何体各
个面的面积即可; 3. 本题属于基础题,是高考常考题型 .
4. 【2016 高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的
正视图与俯视图如图所示,则该几何体的侧(左)视图为(

【答案】 B
考点:三视图 【名师点睛】 1. 解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直 观图.
2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关
即可.
6.【 2015 新课标 2 文 6】 一个正方体被一个平面截去一部分后 , 剩余部分的三视图如下图 , 则截
去部分体积与剩余部分体积的比值为(

1
1
1
1
A.
B.
C.
D.
8
7
6
5
【答案】 D 【解析】
4
数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.
5. 【 2015 北京文 7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(

A.
B
.2
C
.3
D

3
【答案】 C
【考点定位】三视图 .
【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则
很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长
专题 18 立体几何中三视图及其应用
1. 【 2017 课标 II ,文 6】如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三 视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. 90π B. 63π C. 42π D. 36π
【答案】 B
【考点】三视图 【名师点睛】 1. 解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直 观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关 数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 2. 【 2017 北京,文 6】某三棱锥的三视图如图所示,则该三棱锥的体积为
:
如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几
何体的底面, 因为顶点在底面的射影落在了底面的外面, 否则中间的那条线就不会是虚线 .
3. 【 2015 高考陕西,文 5】一个几何体的三视图如图所示,则该几何体的表面积为(

A. 3
B. 4
C. 2 4 D. 3 4
【答案】 D
( A) 60 ( C) 20
( B) 30 ( D) 10
1
【答案】 D 【解析】 试题分析:该几何体是三棱锥,如图:
图中红色线围成的几何体为所求几何体,该几何体的体积是 故选 D.
11
V
5 3 4 10 ,
32
【考点】 1. 三视图; 2. 几何体的体积 .
【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法
相关文档
最新文档