实验五、常用金属材料组织观察及分析
金相组织观察实验报告
竭诚为您提供优质文档/双击可除金相组织观察实验报告篇一:金相试样制备试验报告金相试样的制备一、实验目的(1)了解金相显微试样制备原理,熟悉金相显微试样的制备过程。
(2)初步掌握金相显微试样的制备方法。
二、实验原理金相试样制备金相试样制备过程一般包括:取样、粗磨、细磨、抛光和浸蚀五个步骤。
1.取样从需要检测的金属材料和零件上截取试样称为"取样"。
取样的部位和磨面的选择必须根据分析要求而定。
截取方法有多种,对于软材料可以用锯、车、刨等方法;对于硬材料可以用砂轮切片机或线切割机等切割的方法,对于硬而脆的材料可以用锤击的方法。
无论用哪种方法都应注意,尽量避免和减轻因塑性变形或受热引起的组织失真现象。
试样的尺寸并无统一规定,从便于握持和磨制角度考虑,一般直径或边长为15~20mm,高为12~18mm比较适宜。
对那些尺寸过小、形状不规则和需要保护边缘的试样,可以采取镶嵌或机械夹持的办法。
金相试样的镶嵌,是利用热塑性塑料(如聚氯乙烯),热凝性塑料(如胶木粉)以及冷凝性塑料(如环氧树脂+固化剂)作为填料进行的。
前两种属于热镶填料,热镶必须在专用设备一镶嵌机上进行。
第三种属于冷镶填料,冷镶方法不需要专用设备,只将适宜尺寸(约φl5~20mm)的钢管、塑料管或纸壳管放在平滑的塑料(或玻璃)板上,试样置于管内待磨面朝下倒入填料,放置一段时间凝固硬化即可。
2.粗磨粗磨的目的主要有以下三点:1)修整有些试样,例如用锤击法敲下来的试样,形状很不规则,必须经过粗磨,修整为规则形状的试样;2)磨平无论用什么方法取样,切口往往不十分平滑,为了将观察面磨平,同时去掉切割时产生的变形层,必须进行粗磨;3)倒角在不影响观察目的的前提下,需将试样上的棱角磨掉,以免划破砂纸和抛光织物。
黑色金属材料的粗磨在砂轮机上进行,具体操作方法是将试样牢牢地捏住,用砂轮的侧面磨制。
在试样与砂轮接触的一瞬间,尽量使磨面与砂轮面平行,用力不可过大。
铁碳合金平衡组织观察实验
铁碳合金平衡组织观察实验铁碳合金是一种重要的金属材料,广泛应用于工业生产中。
其性能与组织密切相关,而组织的形成与平衡相变过程密切相关。
为了深入了解铁碳合金的平衡组织形成机制,科学家们进行了一系列的实验观察。
实验一:样品准备科学家们准备了一系列不同成分的铁碳合金样品,按照质量百分比控制了碳含量在0.02%到6.7%之间。
样品制备过程中需注意保持样品的纯净度,避免其他杂质的影响。
实验二:样品加热处理将样品置于高温炉中,进行加热处理。
加热过程中需控制加热速率,以免样品出现不均匀加热的情况。
通过控制加热温度和时间,科学家们可以模拟不同条件下的热处理过程。
实验三:金相显微镜观察经过加热处理后的样品,科学家们使用金相显微镜进行观察。
金相显微镜是一种特殊的显微镜,可以通过对样品进行酸蚀或电解抛光等处理,使得样品表面显露出不同的组织结构。
通过观察样品的显微组织,可以了解铁碳合金的相变规律和组织形成机制。
实验四:相图分析除了金相显微镜观察外,科学家们还进行了相图分析。
相图是描述材料相变行为的图表,可以直观地显示出不同组分和温度条件下的相变情况。
通过对铁碳合金的相图分析,可以确定相变温度和组织形成的规律。
实验五:数据分析与总结科学家们将实验得到的数据进行分析,并进行总结。
他们对不同成分和温度条件下的铁碳合金组织进行了详细的观察和比较,找出了组织形成的规律。
同时,他们也根据实验结果进行了理论分析和模拟计算,验证了实验观察的准确性。
通过以上一系列的实验观察,科学家们对铁碳合金的平衡组织形成机制有了更深入的了解。
他们发现,铁碳合金的组织形成与碳含量、温度和冷却速率等因素密切相关。
在不同条件下,铁碳合金可以形成不同的组织结构,如珠光体、渗碳体、马氏体等。
这些组织结构的形成直接影响着铁碳合金的性能。
铁碳合金平衡组织观察实验的结果对工业生产具有重要意义。
根据实验结果,可以确定合适的热处理工艺,以获得所需的组织结构和性能。
同时,也为铁碳合金的合金设计和优化提供了理论依据。
(完整)合金钢、铸铁、有色金属的显微组织观察与分析
合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织.(2)分析这些金属材料的组织和性能的关系及应用。
二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。
即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。
热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。
例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体.高速钢是一种常用的高合金工具钢.如W18Cr4V高速钢,因为含有大量合金元素,使Fe-Fe3C相图中点E 大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。
在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。
这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎.锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。
大颗粒碳化物是打碎了的共晶碳化物。
高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。
碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。
为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。
图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁.白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式(Fe3C)存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在。
金相实验报告(成分组织观察分析)
金相综合实验报告实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程班级: 材料11(1)指导老师:席生岐高圆小组组长: 仇程希小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐二〇一四年四月三日一、实验目的1.了解碳钢热处理工艺操作;2.学会使用洛氏硬度计测量材料的硬度性能值;3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法;4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响;5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。
二、实验内容1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料;2.用洛氏硬度计测定试样热处理试样前后的硬度;3.制备所给表中样品的金相试样,观察并获取其显微组织图像;4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。
三、实验原理热处理是一种很重要的金属加工工艺方法。
热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。
研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。
热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。
采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。
钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。
(一)碳钢热处理工艺1.加热温度亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。
淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、高温回火(500-650℃)。
金相组织观察实验报告
一、实验目的1. 了解金相显微镜的基本原理和构造;2. 掌握金相试样的制备方法;3. 认识并分析金属材料的金相组织;4. 建立金相组织与材料性能之间的关系。
二、实验原理金相组织是指金属材料在显微镜下观察到的组织结构。
金相显微镜是一种利用光学原理对金属材料进行观察和分析的仪器。
通过观察金相组织,可以了解材料的微观结构,从而推断出材料的性能和加工工艺。
三、实验仪器与材料1. 仪器:金相显微镜、抛光机、砂轮机、金相试样制备设备(如砂纸、抛光布、脱脂棉、3~5硝酸酒精溶液等);2. 材料:金属材料试样(如钢铁、铝合金、铜合金等)。
四、实验步骤1. 试样制备(1)将金属材料试样切割成合适的尺寸,并进行打磨处理,去除表面的氧化层和杂质;(2)用不同型号的砂纸对试样进行粗磨、细磨和精磨,直至表面光滑;(3)将磨好的试样放入抛光机中进行抛光处理,直至表面呈现镜面效果;(4)将抛光后的试样进行腐蚀处理,以显示金相组织。
2. 金相显微镜观察(1)打开金相显微镜,调整光源和物镜,使视野明亮;(2)将腐蚀后的试样放置在显微镜载物台上,调整焦距,使金相组织清晰可见;(3)观察并记录金相组织的形态、分布和大小;(4)根据观察结果,分析金相组织与材料性能之间的关系。
五、实验结果与分析1. 实验结果通过金相显微镜观察,发现金属材料的金相组织主要包括晶粒、析出相、相变组织等。
2. 结果分析(1)晶粒:晶粒是金属材料的基本结构单元,其大小和形态对材料的性能有重要影响。
一般来说,晶粒越小,材料的强度、硬度、韧性等性能越好;(2)析出相:析出相是指在金属材料中形成的第二相,如碳化物、氮化物等。
析出相的形态、大小和分布对材料的性能有显著影响;(3)相变组织:相变组织是指在金属材料中发生的相变过程形成的组织,如珠光体、贝氏体等。
相变组织的形态和分布对材料的性能有重要影响。
六、实验总结本次实验通过金相显微镜观察金属材料的金相组织,了解了金相显微镜的基本原理和构造,掌握了金相试样的制备方法,认识并分析了金属材料的金相组织。
金相显微镜实验报告内容
金相显微镜实验报告内容一、引言金相显微镜是一种常用的金属材料显微分析工具。
通过观察金属材料的组织结构, 可以分析其性能和质量。
本实验旨在使用金相显微镜观察不同材料的金相组织,并对观察结果进行解析和讨论。
二、实验目的1. 熟悉金相显微镜的基本原理和操作方法。
2. 观察不同材料的金相组织,了解其组织结构特点。
3. 掌握金相组织的观察和分析方法。
三、实验仪器和材料1. 金相显微镜2. 研磨纸和砂纸3. 金相试样(不同材质和处理状态)四、实验步骤1. 样品制备:1. 将金属试样切割成适当大小(通常为10mm * 10mm * 3mm)。
2. 用砂纸将试样的表面磨平,再用研磨纸逐渐细磨,直到试样表面平整光滑。
3. 使用切割机将试样切割成适当大小的楔形样品。
4. 对楔形样品进行粗磨和精磨,用砂纸和研磨纸逐渐细磨,直到样品表面光滑。
2. 试样腐蚀:1. 将处理后的试样放入盛有酸性腐蚀液(如Nital)的容器中。
2. 在腐蚀液中浸泡一段时间,直到试样表面出现明显的腐蚀反应。
3. 从腐蚀液中取出试样,用水清洗干净,并用纸巾轻轻抹干。
3. 金相组织观察:1. 将腐蚀后的试样放置在显微镜载物台上,并固定好。
2. 通过显微镜的目镜和物镜进行对焦调整,使试样图像清晰可见。
3. 使用不同倍数的物镜进行观察,记录观察到的金相组织特征。
五、实验结果与分析通过金相显微镜观察,我们成功得到了不同材料的金相图像并进行了分析。
以下是我们观察到的一些主要结果:1. 结晶体:在显微镜下观察,结晶体呈现出明显的晶粒形状。
不同材料的晶粒大小和形态各异,反映出其不同的冶金处理历史和组织特征。
2. 晶界:晶界是相邻晶粒之间的界面,观察到的晶界可以显示出晶粒大小和形状的变化。
晶界的特征对材料的性能和强度有重要影响。
3. 金相组织:金相组织是材料内部的组织结构,包括晶粒大小、晶粒形态、晶粒分布和相含量等。
在显微镜下观察,不同材料呈现出不同的金相组织,反映了其冶金处理和热处理工艺的影响。
【材料课件】实验五铁碳合金组织观察
实验五铁碳合金组织观察
目的
1.加深对铁碳合金相图的理解,认识铁碳合金的平衡组织;
2.分析碳对铁碳合金组织的影响,加深理解碳对铁碳合金性能的影响。
一、相图及相关的组织转变
1.铁碳合金在平衡冷却时,室温的组成相都是α+Fe3C。
2.在平衡冷却转变中,由于碳的含量不同,转变方式有较大的差异,得到的组织形貌也各不一样。
见按组织分区的铁碳合金相图,组织形貌可参考教材上的图片。
3.铁碳合金制样一般用4%的硝酸酒精进行侵蚀,α和Fe3C两相都为亮白色,仅仅它们的相界面和晶界面被侵蚀,在显微镜下呈暗色的线条。
由于放大倍数不同,看到的组织形貌如图所示。
仅在用苦味酸侵蚀时,α相依然为亮色,而Fe3C被染成黑褐色。
二、实验内容
观察几种典型铁碳合金的平衡组织形貌。
①.工业纯铁,单一的铁素体晶粒。
②.45钢(含碳量为0.45%),亮色的铁素体+暗色的珠光体。
③.T12钢(含碳量为1.2%),亮色的二次渗碳体网+可见层片的珠光体。
④.T12钢,用用苦味酸侵蚀,二次渗碳体网和珠光体中Fe3C相为暗色。
⑤.亚共晶白口铁,组织包含P+Fe3C II+Ld’。
⑥.过共晶白口铁,组织包含Fe3C I+Ld’,结合亚共晶白口铁,认识其中的Ld’。
三、实验报告要求
画出前五个组织示意图(③除外),每一个注明组织特征,简述形成组织的原因(或过程)。
金相科学创新实验报告
金相科学创新实验报告一、实验目的本实验旨在通过金相显微镜观察金属材料的组织结构及相变现象,了解金相显微镜的基本原理和操作方法,并掌握金相显微镜的使用技巧和实验数据的分析方法。
二、实验原理金相显微镜是一种研究金属材料组织结构的重要工具,通过对金属材料进行金相试样的制备,使用金相显微镜观察试样的微观形貌和晶体结构。
金相试样制备的常用方法有切割、粗磨和细磨三个步骤,最终得到的试样通常是平整的、无扭曲和无缺陷的金属表面。
金相显微镜主要包括光源系统、光学系统和机械系统三部分。
其中,光源系统提供光源,光学系统由镜头、接眼镜和物镜组成,机械系统则主要用于移动和定位试样。
三、实验步骤1. 制备金相试样:按照实验要求,使用金相试样制备设备将金属材料切割成适当大小,并进行粗磨和细磨处理,直至得到平整的试样表面。
2. 安装金相显微镜:将金相显微镜取出,调整放大倍数至适当范围,并连接电源和相机。
3. 调焦对准:使用机械系统调节物镜的位置,使试样与物镜成近似正好的焦距。
4. 观察试样:通过接眼镜观察试样的微观形貌和晶体结构,并使用相机拍摄照片。
5. 数据分析:根据观察到的试样形貌和结构,进行数据分析,包括晶粒尺寸、晶界及颗粒形状等相关参数的测定。
6. 清洗整理:实验结束后,及时清洗金相试样制备设备和金相显微镜,并进行整理和归档。
四、实验结果与讨论本实验以铝合金为研究对象,制备了金相试样,使用金相显微镜观察了铝合金的微观形貌和晶体结构。
观察结果显示,铝合金具有细小的晶粒尺寸和均匀分布的晶界,且颗粒形状较为规则。
通过对观察结果的数据分析,我们得到了铝合金的晶粒尺寸分布图和晶粒尺寸的平均值。
经统计分析,这批铝合金试样的平均晶粒尺寸为10微米,晶粒尺寸分布均匀。
通过与相关文献数据的对比,我们可以得出以下结论:本实验所制备的铝合金试样具有优良的晶体结构,晶粒尺寸符合设计要求,并且晶界清晰,没有明显的缺陷。
五、实验总结本实验通过金相显微镜的使用,观察了金属材料的微观形貌和晶体结构,并进行了数据分析。
金相分析实验报告
金相分析实验报告实验名称:金相分析实验报告一、实验目的:通过金相分析实验,了解金属相组成、组织结构和晶体尺寸,以及金属的力学性能分析方法,掌握金相分析的基本操作步骤和仪器设备的使用方法。
二、实验原理:金相分析是通过对金属样品进行切割、研磨、腐蚀、脱蜡、上色等处理,然后使用金相显微镜观察样品表面的金属组织结构和晶体尺寸。
通过观察不同金相结构的样品,可以了解材料的组分、相态、显微硬度、晶体尺寸和晶界等信息,并对金属材料的性能做出分析和评价。
三、实验步骤:1. 根据需要选择合适的样品切割方式,并进行样品切割。
2. 将切割好的样品用不同颗粒大小的砂纸进行研磨,逐渐减小颗粒大小,并按一定顺序进行粗研、精研。
3. 使用震荡器将样品蓬松脱蜡。
4. 利用金相显微镜对样品进行观察和分析,调节放大倍数和对焦距离,观察样品的显微组织结构和晶体尺寸。
5. 观察完毕后,根据观察结果进行分析和总结,得出相应结论。
四、实验注意事项:1. 操作时需戴上防护眼镜和实验手套,避免伤害。
2. 对于腐蚀试剂和显色剂的使用,需按照规定的比例和时间进行操作,避免溢出和损坏样品。
3. 在调节金相显微镜时,要小心调节焦距和放大倍数,避免对样品造成损坏。
4. 在观察和分析样品时,要按照规定的方法和过程进行操作,避免误判和错误结果。
5. 实验结束后,要清洗实验设备和工具,保持实验环境整洁。
五、实验结果与讨论:根据金相显微镜观察到的样品组织结构和晶体尺寸,结合实验操作和分析步骤,对样品进行分析和评价,并得出相应结论。
比如通过观察到的晶体尺寸和晶界分布情况,可以对材料的晶体生长机制和力学性能进行分析和评价。
六、实验总结:通过金相分析实验,了解了金属组织结构和晶体尺寸的观察方法和分析步骤,掌握了金相显微镜的使用技巧。
实验结果对于分析和评价金属材料的性能具有重要意义,可为材料加工和应用提供科学依据。
同时,实验中注意事项的遵守和仪器设备的正确操作,保证了实验的安全性和数据的准确性。
碳钢综合实验报告
碳钢综合实验报告碳钢综合实验报告引言:碳钢是一种重要的金属材料,在工业生产和日常生活中广泛应用。
为了深入了解碳钢的性质和特点,我们进行了一系列的综合实验。
本报告旨在总结实验结果,并对碳钢的性能进行分析和讨论。
实验一:碳钢的化学成分分析在这个实验中,我们采用了化学分析的方法来确定碳钢的化学成分。
首先,我们使用了光谱分析仪对样品进行了表面成分分析。
结果显示,样品中含有铁、碳、锰等元素。
接下来,我们使用了电感耦合等离子体发射光谱仪对样品进行了更加详细的分析。
通过比对标准样品的光谱图,我们确定了样品中的各种元素的含量。
实验二:碳钢的力学性能测试为了了解碳钢的力学性能,我们进行了拉伸实验和硬度测试。
在拉伸实验中,我们将碳钢样品放在拉伸机上,逐渐增加载荷并记录应力-应变曲线。
通过分析曲线的特征,我们可以得出材料的屈服强度、抗拉强度和延伸率等参数。
硬度测试则通过在样品表面施加一定的载荷,测量其表面的硬度来评估材料的硬度。
实验三:碳钢的热处理热处理是改变碳钢组织和性能的一种重要方法。
我们在实验中选择了两种常用的热处理方法:退火和淬火。
通过将样品加热至一定温度后,迅速冷却至室温,我们观察到样品的组织结构发生了明显的变化。
退火处理使得碳钢的晶粒变得细小且均匀,提高了材料的韧性;而淬火处理则使得碳钢的组织变为马氏体,提高了材料的硬度。
实验四:碳钢的耐蚀性测试碳钢的耐蚀性是其在特定环境中抵抗腐蚀的能力。
我们使用了盐雾试验来评估碳钢的耐蚀性。
将样品暴露在盐雾环境中一段时间后,我们观察到样品表面出现了腐蚀现象。
通过对腐蚀程度的评估,我们可以得出碳钢在不同环境中的耐蚀性能。
实验五:碳钢的应用实例最后,我们选取了几个具有代表性的碳钢应用实例进行了介绍。
例如,碳钢在汽车制造中的应用,可以用于制造车身和发动机零部件,具有良好的强度和韧性;碳钢在建筑领域中的应用,可以用于制造桥梁和建筑结构,具有良好的承重能力和耐久性。
结论:通过一系列的综合实验,我们对碳钢的性质和特点有了更加深入的了解。
金相分析实验报告
一、实验目的1. 了解金相显微镜的构造、原理及使用规则;2. 掌握金相显微试样制备的基本操作方法;3. 通过观察金属材料的金相组织,分析其成分与组织之间的关系;4. 培养实验操作能力和分析问题能力。
二、实验原理金相分析是利用金相显微镜对金属材料进行微观组织观察和分析的一种方法。
通过观察金属材料的金相组织,可以了解其内部结构、成分分布、相变过程等,从而为金属材料的性能评价、生产工艺改进、质量控制等提供依据。
金相显微镜主要由光源、物镜、目镜、载物台、调焦装置等组成。
实验中,通过调节物镜和目镜的放大倍数,以及调整载物台的高度,实现对金属材料的微观组织进行观察。
三、实验仪器与材料1. 仪器:金相显微镜、抛光机、砂轮机、金相试样、金相砂纸、脱脂棉、3~5硝酸酒精溶液等;2. 材料:不锈钢、碳钢、铝合金等金属材料。
四、实验步骤1. 金相试样制备(1)取样:从待分析的金属材料上截取适量的试样,确保试样表面平整、无划痕;(2)粗磨:将试样放入砂轮机中,用粗砂纸进行粗磨,直至试样表面基本平整;(3)细磨:用细砂纸对试样进行细磨,直至试样表面无明显划痕;(4)抛光:将试样放入抛光机中,用抛光布和脱脂棉进行抛光,直至试样表面光滑;(5)浸蚀:将试样放入3~5硝酸酒精溶液中,根据试样材料选择合适的浸蚀时间。
2. 金相显微镜观察(1)将制备好的试样放置在金相显微镜的载物台上;(2)调节物镜和目镜的放大倍数,找到合适的观察倍数;(3)观察试样的金相组织,记录观察结果。
五、实验结果与分析1. 不锈钢试样通过观察不锈钢试样的金相组织,可以发现其主要由铁素体和奥氏体组成。
铁素体呈针状分布,奥氏体呈块状分布。
这表明不锈钢具有良好的耐腐蚀性能。
2. 碳钢试样观察碳钢试样的金相组织,可以发现其主要由珠光体和铁素体组成。
珠光体呈层状分布,铁素体呈针状分布。
这表明碳钢具有良好的强度和硬度。
3. 铝合金试样观察铝合金试样的金相组织,可以发现其主要由α相和β相组成。
金相正火实验报告
金相正火实验报告金相正火实验报告引言:金相正火实验是一种常用的金相试验方法,通过对金属材料进行正火处理,观察和分析材料的组织结构和性能变化,以评估其适用性和质量。
本实验旨在研究不同金属材料在正火处理后的显微组织变化及其对材料性能的影响。
一、实验目的本实验的主要目的是:1. 了解金属材料正火处理的原理和方法;2. 观察不同金属材料在正火处理后的显微组织变化;3. 分析不同显微组织对材料性能的影响。
二、实验材料和设备1. 实验材料:本实验选取了铁、铝和铜三种常见金属材料作为实验样品;2. 实验设备:金相显微镜、金相试样切割机、砂纸、砂轮机、磨光机等。
三、实验步骤1. 样品制备:首先,将铁、铝和铜材料切割成适当大小的试样。
然后,使用砂纸和砂轮机对试样进行粗磨和精磨,使其表面光洁度达到要求。
2. 正火处理:将试样置于电炉中,根据不同材料的要求,设定适当的加热温度和保温时间。
待试样完全冷却后取出。
3. 金相显微镜观察:将正火处理后的试样进行金相显微镜观察,记录显微组织的形貌和结构变化。
4. 性能测试:对正火处理后的试样进行硬度测试、拉伸测试等,以评估其力学性能的变化。
四、实验结果与分析1. 铁材料:经过正火处理后,铁材料的显微组织发生了明显的变化。
在低温下,铁材料的组织结构由珠光体转变为马氏体,硬度明显提高。
随着温度的升高,马氏体逐渐转变为奥氏体,硬度逐渐降低。
这说明铁材料的硬度和强度与其显微组织的相变有关。
2. 铝材料:正火处理对铝材料的显微组织变化影响较小。
铝材料的晶粒尺寸在正火处理后略有增加,但硬度和强度的变化不明显。
这表明铝材料的性能主要受晶粒尺寸和杂质含量的影响。
3. 铜材料:正火处理后,铜材料的显微组织经历了晶粒长大和再结晶的过程。
晶粒尺寸增大,硬度和强度降低。
这说明铜材料的力学性能与晶粒尺寸和显微组织的变化密切相关。
五、实验结论通过金相正火实验,我们得出以下结论:1. 不同金属材料在正火处理后,显微组织发生了明显的变化。
常见金属材料的组织与性能分析
常用金属材料的组织与性能分析一、实验目的:1、观察和研究各种不同类型常用金属材料的显微组织特征。
2、掌握成分、显微组织对性能的影响关系。
二、实验设备与材料:金相显微镜(MC006 4X1)视频图像处理金相显微镜(4XC-ST)计算机(成像、分析软件)常用金属材料的标准金相试样三.实验前思考问题:1、铁碳合金相图,不同碳钢的组织变化及其显微组织特征。
2、实验五钢的热处理,同一种钢材,不同的热处理下为什么性能出现较大的变化。
3、常用的金属材料有哪些。
四、实验内容:1、铁碳合金的平衡组织观察铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下(如退火)得到的组织。
可以根据Fe-Fe3C相图來分析其在平衡状态下的显微组织。
铁碳合金主要包括碳钢和白口铸铁,其室温组成相由铁素体和渗碳体这两个基本相所组成。
由于含碳量不同,铁素体和渗碳体的相对数量、析出条件及分布状况均有所不同,因而呈现不同的组织形态。
各种铁碳合金在室温下的显微组织铁碳合金在金相显微镜下具有下面四种基本组织:铁素体(F)是碳溶解于a-Fe中的间隙固溶体。
工业纯铁用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒;亚共析钢中铁素体呈白色块状分布;当含碳量接近共析成分时,铁素体则呈现断续的网状分布于珠光体周围。
渗碳体(Fe3C)是铁与碳形成的金属间化合物,其含碳量为6.69%, 质硬而脆,耐蚀性强,经4%硝酸酒精浸蚀后,渗碳体任呈亮白色,而铁素体浸蚀后呈灰白色,由此可区别铁素体和渗碳体。
渗碳体可以呈现不同的形态:一次渗碳体直接由液体中结晶出,呈粗大的片状;二次渗碳体由奥氏体中析出,常呈网状分布于奥氏体的晶面;三次渗碳体由铁素体中析出,呈不连续片状分布于铁素体晶界处,数量极微,可忽略不计。
珠光体(P)是铁素体和渗碳体呈层片状交替排列的机械混合物。
经4%硝酸酒精浸蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。
当放大借数较低时,珠光体中的渗碳体看到的只是一条黑线, 甚至珠光体片层因不能分辨而呈黑色。
金相显微镜操作规程
金相显微镜操作规程一、引言金相显微镜是金相分析中常用的一种实验仪器,用于观察金属材料的显微结构和组织。
本操作规程旨在规范金相显微镜的操作流程,确保实验结果的准确性和可靠性。
二、仪器准备1. 确保金相显微镜处于稳定的工作环境,避免强光和振动的干扰。
2. 检查显微镜的电源和电线是否正常,确保供电稳定。
3. 检查显微镜的镜头和目镜是否清洁,如有污垢应及时清除。
4. 确保金相显微镜的放大倍数和聚焦调节处于合适的状态。
三、样品制备1. 根据实验要求选择合适的金属样品,并进行必要的切割和研磨处理。
2. 使用金相显微镜专用胶水将样品固定在玻片上。
3. 进行必要的腐蚀和脱脂处理,以去除样品表面的氧化物和污垢。
4. 清洗样品,确保表面干净无尘。
四、显微镜操作1. 打开金相显微镜的电源开关,待仪器预热一段时间后开始操作。
2. 调节显微镜的放大倍数,选择适当的倍率进行观察。
3. 调节聚焦旋钮,使样品图像清晰可见。
4. 使用显微镜的移动装置,将样品移动到所需的位置进行观察。
5. 使用显微镜的目镜调节装置,使观察图像居中并调整亮度和对比度。
6. 使用显微镜的目镜刻度盘,测量样品的尺寸和结构特征。
7. 如有需要,可以使用显微镜的附件,如偏光镜、偏光片等进行进一步观察和分析。
五、数据记录与分析1. 使用相机或者手机等设备拍摄样品的显微照片,记录样品的结构特征和细节。
2. 如有需要,可以使用图像处理软件对照片进行后期处理和分析。
3. 根据实验要求,对样品的显微结构和组织进行分析和描述。
4. 将观察到的数据和分析结果整理成报告或者记录表格。
六、仪器维护1. 每次使用金相显微镜后,应及时关闭电源,并将显微镜的镜头和目镜进行清洁。
2. 定期检查显微镜的电源和电线,确保正常供电。
3. 定期校准显微镜的放大倍数和聚焦调节,保证仪器的准确性。
4. 如发现仪器故障或异常,应及时联系维修人员进行处理。
七、安全注意事项1. 在操作金相显微镜时,应佩戴适当的个人防护装备,如实验手套和眼镜。
铸铁金相组织实验报告
一、实验目的1. 了解铸铁的基本组成和分类。
2. 掌握铸铁金相组织观察的基本方法。
3. 通过金相显微镜观察,分析灰铸铁、球墨铸铁和可锻铸铁的金相组织特点。
4. 学习如何根据金相组织判断铸铁的性能。
二、实验原理铸铁是一种以铁为主要成分,含有一定量碳、硅、锰、硫、磷等元素的合金。
铸铁按石墨形态分为灰铸铁、球墨铸铁、可锻铸铁等。
铸铁的金相组织主要由石墨和金属基体组成,金属基体可以是铁素体、珠光体或奥氏体等。
三、实验仪器与材料1. 仪器:金相显微镜、显微镜载物台、金相试样台、抛光机、砂纸、腐蚀剂等。
2. 材料:灰铸铁、球墨铸铁、可锻铸铁金相试样。
四、实验步骤1. 试样制备:将铸铁试样加工成一定厚度和尺寸,然后用砂纸进行粗磨、细磨和精磨,直至表面光滑。
接着用抛光机进行抛光,使试样表面达到镜面效果。
2. 腐蚀:将抛光后的试样放入腐蚀剂中,根据铸铁种类选择合适的腐蚀时间,使石墨和金属基体在腐蚀过程中呈现不同的形态。
3. 观察:将腐蚀后的试样放入金相显微镜载物台,用显微镜观察石墨和金属基体的形态、分布、大小等特征。
4. 分析:根据金相组织的特点,判断铸铁的种类、性能和缺陷。
五、实验结果与分析1. 灰铸铁:灰铸铁的金相组织主要由石墨和金属基体组成。
石墨呈片状,分布不均匀,大小不一。
金属基体为珠光体,分布较均匀。
灰铸铁具有良好的铸造性能和一定的机械性能。
2. 球墨铸铁:球墨铸铁的金相组织主要由球状石墨和金属基体组成。
球状石墨呈球形,分布均匀,大小一致。
金属基体为珠光体,分布较均匀。
球墨铸铁具有较高的强度、塑性和韧性,广泛应用于汽车、机床、矿山等领域。
3. 可锻铸铁:可锻铸铁的金相组织主要由石墨和金属基体组成。
石墨呈团絮状,分布均匀,大小一致。
金属基体为铁素体,分布较均匀。
可锻铸铁具有较高的塑性和韧性,适用于制造要求较高塑性和韧性的零件。
六、实验总结通过本次实验,我们掌握了铸铁金相组织观察的基本方法,了解了灰铸铁、球墨铸铁和可锻铸铁的金相组织特点。
金相组织观察实验报告
金相组织观察实验报告本实验旨在通过金相组织观察,对材料的微观结构和性能进行分析,为材料的制备和应用提供参考。
实验选取了不同材料进行金相组织观察,包括钢铁、铝合金和铜等金属材料,以及陶瓷材料和塑料材料。
通过金相组织观察,我们可以清晰地观察到材料的晶粒结构、相分布和孔隙结构等微观特征,从而为材料的性能和结构特点提供直观的了解。
首先,我们选取了钢铁材料进行金相组织观察。
经过样品的制备和腐蚀处理,我们在金相显微镜下观察到了钢铁材料的晶粒结构和相分布情况。
钢铁材料的金相组织呈现出明显的铁素体和渗碳体相分布,晶粒呈现出不规则的形状,同时在晶界和晶内观察到了一定数量的夹杂物和孔隙。
这些微观特征对钢铁材料的强度、塑性和韧性等性能有着重要的影响。
其次,我们观察了铝合金材料的金相组织。
铝合金材料具有较为细小的晶粒和均匀的相分布,金相组织呈现出明显的晶粒边界和相界,晶粒内部观察到了一些位错和析出相。
这些微观特征对铝合金材料的强度、耐热性和耐蚀性等性能具有重要影响。
另外,我们还观察了铜材料的金相组织。
铜材料的金相组织呈现出较大的晶粒和清晰的晶界,晶粒内部观察到了一些孪晶和孪晶界,同时在晶界和晶内观察到了一些位错和孔隙。
这些微观特征对铜材料的导电性、热传导性和塑性等性能具有重要影响。
此外,我们还观察了陶瓷材料和塑料材料的金相组织。
陶瓷材料的金相组织呈现出致密的晶粒结构和均匀的相分布,晶粒内部观察到了一些晶界和孔隙。
而塑料材料的金相组织呈现出均匀的分散相和一些微观孔隙。
这些微观特征对陶瓷材料和塑料材料的硬度、韧性和耐磨性等性能具有重要影响。
综上所述,通过金相组织观察,我们可以清晰地了解材料的微观结构和性能特点,为材料的制备和应用提供重要参考。
在今后的研究和实践中,我们将进一步深入研究材料的金相组织特征,为材料的性能优化和应用拓展提供更为可靠的基础。
材料金相实验报告
一、实验目的1. 了解金相显微镜的构造、原理及使用规则;2. 掌握金相显微试样制备的基本操作方法;3. 通过观察金相组织,分析金属材料的内部结构,为材料性能研究提供依据。
二、实验原理金相分析是研究工程材料内部组织结构的主要方法之一。
金相显微分析法是利用金相显微镜在专门制备的试样上观察材料的组织和缺陷的方法。
通过观察金相组织,可以分析金属材料的成分、组织结构、性能等。
金相显微镜主要由光源、物镜、目镜、载物台、调焦装置等部分组成。
实验中,通过调整物镜和目镜的放大倍数,观察金属材料的金相组织,从而分析其内部结构。
三、实验材料及仪器1. 实验材料:碳钢、不锈钢、铝合金等金属材料;2. 实验仪器:金相显微镜、金相试样制备设备(切割机、抛光机、腐蚀液等)、金相试样夹具等。
四、实验步骤1. 金相试样制备(1)切割:使用切割机将金属材料切割成一定厚度的薄片,厚度一般为0.1mm左右。
(2)磨光:将切割好的试样放置在磨光机上,使用不同型号的砂纸进行磨光,直至试样表面光滑。
(3)腐蚀:将磨光好的试样放入腐蚀液中,根据材料种类和腐蚀液配方进行腐蚀,使试样表面出现金相组织。
(4)清洗:将腐蚀好的试样取出,用去离子水清洗干净。
(5)干燥:将清洗干净的试样放入干燥器中,进行干燥处理。
2. 金相组织观察(1)安装试样:将干燥后的试样放置在金相显微镜载物台上,调整夹具固定试样。
(2)调焦:调整物镜和目镜的放大倍数,使试样清晰。
(3)观察:通过显微镜观察金属材料的金相组织,记录其形态、分布、大小等信息。
五、实验结果与分析1. 碳钢金相组织观察(1)组织形态:碳钢的金相组织主要由珠光体、铁素体和渗碳体组成。
(2)分布情况:珠光体和铁素体呈层状分布,渗碳体呈针状或片状分布。
(3)分析:碳钢的金相组织与其性能密切相关,珠光体和铁素体的含量影响其强度和硬度,渗碳体的含量影响其韧性。
2. 不锈钢金相组织观察(1)组织形态:不锈钢的金相组织主要由奥氏体、铁素体和马氏体组成。
金相检验作业指导书
金相检验作业指导书一、引言金相检验是一种常用的金属材料组织分析方法,通过显微结构观察和分析,可以了解金属材料的晶粒结构、相组成、淬火组织等重要信息。
准确的金相检验结果对于材料的质量控制、工艺优化和故障分析具有重要意义。
本作业指导书旨在介绍金相检验的基本原理、实验步骤以及常见的分析方法,帮助学习者正确进行金相检验实验。
二、金相检验的基本原理金相检验主要基于光学显微镜原理进行观察和分析。
金相显微镜是一种特殊的显微镜,能够以高放大倍数(通常最高可达1000倍)观察金属材料的微观结构。
金相检验主要利用以下原理进行分析:1. 材料组织着色原理:通过使用不同的酸蚀剂和染色剂,能够使材料的不同组织区域呈现不同的颜色,便于观察和分析。
2. 组织显微特征原理:不同金属材料具有不同的晶粒结构和相组成,通过观察和分析这些显微特征,可以了解材料的性质和加工工艺。
3. 组织成分分析原理:金相显微镜通常可以配备能够进行能谱分析的能量色散X射线光谱仪(EDS),利用X射线的能量特性,可以分析材料的组成成分。
三、金相检验实验步骤金相检验的实验步骤通常包括样品制备、显微观察和分析,以下是一般的实验步骤说明:1. 样品制备:a. 切割:将金属材料切割成适当的尺寸,以便于观察和分析。
切割时需要注意样品的形状和尺寸要求。
b. 研磨和抛光:通过磨料和研磨液进行粗磨和细磨,最终得到平整的样品表面。
抛光时需要注意避免过度磨削造成畸变。
2. 显微观察:a. 装样:将制备好的样品放置在金相显微镜载玻片上,并使用透明胶固定。
b. 调焦和选择放大倍率:使用金相显微镜调节焦距和选择适当的放大倍率,以获取清晰的显微图像。
c. 观察和记录:观察样品的显微结构,注意不同区域的颜色和形态特征,并记录所观察到的现象。
3. 分析和结果说明:a. 根据观察到的结构特征,分析材料的晶粒结构、相组成和其他重要信息。
b. 结果说明:根据分析结果,对样品的性质、质量和加工工艺进行说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五、常用金属材料组织观察及分析
一、实验目的:
1、观察及研究常用的几种合金材料的显微组织的特征。
2、了解及掌握它们铸造、加工、热处理状态下组织及性能之间的关系。
二、实验说明:
这里主要介绍铸铁、合金钢、铜合金、铝合金及轴承合金,它们的应用也较广泛有必要进行深度的了解。
三、实验内容:
(一)铸铁
1、白口铸铁:
白口铸铁的碳以结合态(渗碳体的形式)存在,断口呈银白色。
其组织特征是没有石墨而有莱氏体组织。
根据含碳量可将白口铸铁分为亚共晶、共晶、过共晶白口铸铁。
(1)亚共晶白口铸铁:
含碳量大于2.06,小于4.30%的白口铸铁称为亚共晶白口铸铁,其显微组织含有由初生树枝状的奥氏体转变成的珠光体、共晶莱氏体及二次渗碳体。
再显微镜下看到的暗黑色树枝状的为珠光体,白底上分布细小暗黑色的散粒状的为莱氏体,而二次渗碳体则与莱氏体中的渗碳体相互混杂,而难于分辨。
(2)、共晶白口铸铁:
含碳量等于4.30%的白口铸铁称为共晶白口铸铁,其显微组织为100%的莱氏体,它是渗碳体与珠光体的机械混合物,其中黑色细点状或短条状是珠光体,而白色的基体为渗碳体。
(3)、过晶白口铸铁:
含碳量大于4.30%的白口铸铁称为过共晶白口铸铁,其显微组织由一次渗碳体和莱氏体组成。
其中粗大的白亮条状为一次渗碳体,白底上分布细小暗黑色的散粒状的为莱氏体。
2、灰口铸铁:
灰口铸铁中的碳以游离状态(石墨)存在,断口呈灰色。
其组织由金属基体和无方向分布的片状石墨组成。
金属基体可以是铁素体、珠光体及珠光体加铁素体的混合基体三种。
石墨在未经浸蚀的试样即可观察到,而基体则需用2—4%的硝酸酒精浸蚀才能识别。
3、麻口铸铁:铸铁在结晶过程,由于受到冷却条件的影响,使其具有灰口铸铁和白口铸铁的组织特征,其组织中具有石墨又有莱氏体。
4、球墨铸铁:
球墨铸铁中的碳同样以游离状态存在,但石墨呈球状分布,组织是由金属基体和球状石墨组成。
金属基体同样是铁素体、珠光体及铁素体加珠光体的混合基体三种。
5、可锻铸铁:
可锻铸铁也称马铁或展性铸铁,它是由白口铸铁经可锻化退火而得到,石墨呈团絮状。
金属基体同样是铁素体、珠光体及铁素体加珠光体的混合基体三种。
此外,随着工农业生产的各种不同需求,结合各地资源特点,还有各种合金铸铁。
例如:耐磨铸铁、耐热铸铁和耐腐蚀铸铁等。
铸铁中,如果含磷较高,磷常以Fe3P的形态与铁素体和渗碳体形成硬而脆的磷共晶,磷共晶熔点低,常沿晶界呈连续网状或断续网状分布。
磷共晶主要有三种类型:
a、二元磷共晶:其特征是在Fe3P的基体上分布着粒状的奥氏体产物。
b、三元磷共晶:其特征是在Fe3P的基体上分布着成规则排列的奥氏体分解产物,颗粒状、细条状的渗碳体。
C、复合磷共晶:其特征是在二元及三元磷共晶的基体上镶有条状渗碳体。
铸铁的金相评级标准可参考部标。
通常石墨按形状、大小、分布进行评级,放大倍数为100倍;金属基体评级,放大400—500倍;磷共晶评级,放大100或500倍。
(二)、合金钢
高速钢
1、铸造组织:
高速钢为莱氏体钢,亦是自行淬火钢,加热后空冷即可得到马氏体。
在铸造状态下的组织为鱼骨状的莱氏体、中心黑色为δ共析体及白亮的马氏体及残余奥氏体。
2、退火之后的组织:
高速钢要通过锻造打碎粗大的碳化物,为改善碳化物的不均匀性,锻造比要很大,锻造比越大碳化物分布越均匀。
锻造之后要进行锻后退火,退火温度为860—880℃保温之后以15—20/h冷至500—550℃出炉,为了缩短退火时间可采用等温退火工艺。
后的组织为退火退火索氏体及碳化物。
高速钢铸态高速钢锻后退火淬火组织;
W18Cr4V钢淬火温度为1260—1280℃,淬火前必须先经过800—860℃一次预热或600—660℃预热后再经800—860℃预热后的二次预热。
淬火加热时间按有效厚度8—12秒/mm 计算(盐炉),预热时间按加热时间的二倍计算。
高速钢的冷却可以采用预冷后直接淬火(油冷),或采用580—620℃分级淬火,对型状复杂及细长易变形的工件可采用240—280℃等温淬火。
直接淬火和分级淬火组织:马氏体+残余奥氏体(20—25%)+碳化物。
等温淬火组织;贝氏体+马氏体+残余奥氏体+碳化物。
3、回火组织:
为了消除淬火应力,稳定组织,减少残余奥氏体含量增加硬度达到所须性能,高速钢一般进行560℃保温1小时的三次回火处理。
回火组织:回火马氏体+碳化物+少量残余奥氏体。
高速钢1280℃淬火未回火高速钢1280℃淬火560℃三次回火特殊性能钢
按钢的性能分为;不锈耐酸钢、耐热钢、硅钢及磁钢,耐磨钢。
(这里介绍不锈耐酸钢)
(1)奥氏体不锈钢是目前工业应用最广泛的不锈耐酸钢、它以铬镍为主要元素,铬在钢中主要产生钝化作用,提高材料的电极电位使钢的抗蚀性加强,镍的加入用于扩大γ相区及降低Ms点,以保证室温下得到单一的奥氏体组织。
典型钢号1Cr18Ni9和1Cr18Ni9Ti。
热处理工艺:1Cr18Ni9钢采用固溶处理、即加热到1050—1100℃、使Cr23C6完全溶入奥氏体、然后水冷,防止Cr23C6在晶界析出。
1Cr18Ni9Ti采用850—870℃保温6小时的稳定化处理。
金相组织:1Cr18Ni9固溶处理组织为单相奥氏体,1Cr18Ni9Ti稳定化处理组织为奥氏体+
碳化物。
1Cr18Ni9Ti固溶处理
(三)、有色合金
1、铝合金介绍:
铝合金分为铸造铝合金及变形铝合金两大类,而铝合金又可分为可热处理强化的铝合金和不能热处理强化的铝合金。
(1)、铸造铝合金有Ai—Si、Ai—Cu、Ai—Mg、Ai—Zn、Ai—Re等,铸造铝合金主要以铝硅合金为主。
最常用的是铝—硅系合金(含10—13%Si)常称“硅铝明”由Ai—Si合金相图可知该合金成分在共晶点附近,所以组织由共晶体(α+Si针状)及少量的呈多面体的初生硅晶体所组成。
共晶中粗大的针状使合金的塑性下降,通常采用“变质处理”来改善合金的性能。
经变质处理后的合金,不仅组织细化,还可以得到树枝状的α固溶体和细密共晶体组成的亚共晶组织。
这样的组织提高了合金的强度和塑性。
未经变质处理:Si粗+(α+Si针状)共晶经变质处理:α+(α+Si点状)共晶
2、铜合金:
铜合金简介;
最常用的铜合金有黄铜及青铜(锡青铜、铍青铜、铝青铜等)
黄铜(Cu—Zn合金):
由相图可知Zn<39%的黄铜组织为单相的α固溶体,称为单相黄铜或α黄铜,单相黄铜H70经变形退火后,其α晶粒呈多边形的块状组织,并存在大量的退火孪晶。
单相黄铜具有良好的塑性,可进行各种冷变形。
含量在39—45%的Zn的黄铜,具有α+β′两相组织,被称为双相黄铜。
从图(5—2)可知双相黄铜H62的显微组织中α呈白亮色,βˊ为黑色。
βˊ相是以CuZn电子化合物为基础的有序固溶体。
再较低温度下较硬较脆,但在高温下有较好的塑性,所以双相黄铜只能进行热加工。
H70经变形退火后的组织:单相αH60铸态组织:α+β
H60变形退火后的组织:α+β锡基轴承合金:α+β+Cu3Sn及Cu6Sn5
3、轴承合金:
轴承合金简介;
锡基巴氏合金和铅基巴氏合金是最早使用的轴承合金,现在仍广泛使用。
从组织上看它们都有一个共同的特点,再软基体上分布着硬质点。
硬质点主要支撑负荷,软基体主要保证镶藏性和顺应性的要求。
锡基巴氏合金是轴承合金中应用最多的一种巴氏合金。
它含锡83%,含锑11%,含铜6%。
按照Sn—Sb相图(5—4)合金组织中主要有以Sb溶于Sn中的α固溶体为软基体和以Sn—Sb 为基的有系固溶体β′相为硬质点。
为了消除由于β′相比重小易上浮所造成的比重偏析,再合金中加入6%的Cu形成Cu3Sn或Cu6Sn5的化合物,这些化合物再合金冷却时最先结晶成
树枝状晶体,能阻止βˊ的上浮而获得较均匀的组织。
例如ZChSnSb11—6合金的显微组织,暗黑色基体为软的α相,白色方块为硬的βˊ相,而白色枝状及点状则为Cu3Sn及Cu6Sn5,它们其到硬质点的作用。
这种软基体硬质点的混合组织能保证轴承合金具有必要的强度、塑性、韧性、镶藏性和顺应性,以及良好的抗震性及减磨性等。
锡基轴承合金:α+β+Cu3Sn及Cu6Sn5
四、实验报告要求:
1、仔细观察全套金相显微试样的组织。
2、绘出各类铸铁(灰口铸铁、球墨铸铁、可锻铸铁)的组织图。
3、绘出高速钢1280℃淬火、560℃三次回火,的显微组织,
4、绘出ZChSnSb11—6轴承合金的显微组织
在图中用箭头标出各组织,并在图的下方注明:材料、状态、组织、放大倍数、浸蚀剂等条件。