2016届中考数学真题模拟集训:专题36+动点综合问题试题(新人教版含解析)(2年中考1年模拟)
中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题
综合题综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。
前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。
1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。
【答案】4或1192。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。
1. 已知关于x 的方程x 2-(m +2)x +(2m -1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。
【答案】解:∵此方程的一个根是1,∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。
①该直角三角形的两直角边是1、3时,该直角三角形的面积为131322⋅⋅=。
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的面积为112222⋅⋅=。
综上所述,该直角三角形的面积为32或2。
安徽省2016年中考数学三模试卷含答案解析
安徽省2016年中考数学三模试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.下列四个实数最小的是()A.﹣1 B.﹣C.0 D.12.中央电视台2016年春晚支付宝互动集五福分大奖活动赢得几亿观众的参与,最终全国约79万观众平均分了2.15亿元大奖,把数2.15亿用科学记数法表示为()A.2.15×107 B.0.125×108C.2.15×108 D.0.125×1093.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.5.下列运算正确的是()A.a•a2=a2B.a+2a=3a C.(2a)2=2a2D.(x+2)(x﹣3)=x2﹣66.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.7.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=﹣,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON的面积将会()A.逐渐增大 B.始终不变 C.逐渐减小 D.先增后减8.台湾自古就是中国的领土,2016年春季前夕台湾的地震牵动着两岸同胞的心.某社区2000居民为台湾地震灾区捐款,捐款金额分别为50元,60元,70元,80元,90元,100元,具体情况如表:则这组数据的中位数与众数分别为()A.60,60 B.70,60 C.70,80 D.60,809.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.10.如图,P为等边三角形ABC中AB边上的动点,沿A→B的方向运动,到达点B时停止,过P作PD∥BC.设AP=x,△PDC的面积为y,则y关于x的函数图象大致为()A.B.C. D.二、填空题(共4小题,每小题5分,满分20分)11.函数:自变量x的取值范围是.12.因式分解:=.13.如图,△ABC内接于⊙O,AB为O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=3,则AC=.14.如图所示,分别以Rt△ABC的直角边AC,斜边AB为边向△ABC外构造等边△ACD 和等边△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.有下列四个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④=.其中正确的结论是(填写正确结论的序号).三、解答题(共9小题,满分90分)15.计算: +|1﹣|+(﹣2016)0﹣2cos30°.16.先化简,再求值:,其中a=+1.17.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是,偶数42对应的有序实数对是;(2)第n行的最后一个数用含n的代数式表示为,并简要说明理由.18.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.19.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20.2016年中考某市理科实验操作考试备选试题为物理4题(用W1,W2,W3,W4表示),化学4题(用H1,H2,H3,H4表示),生物2题(用S1,S2表示),共10题某校为备战实验操作考试,对学生进行模拟训练,由学生在每克测试时选择一个进行实验操作,若学生测试时,第一次抽签选定物理实验题,第二次抽签选定化学实验题,第三次抽签选定生物实验题.已知李明同学抽到的物理实验题是W4.(1)请用树状图或列表法,表示李明同学此次抽签的所有可能;(2)若李明同学对比化学的H3、H4和生物的S2实验准备的较好,求他能够同时抽到化学和生物都是准备较好的实验题的概率是多少?21.双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是,点A的坐标;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.22.如图1,已知△ABC中,AB=AC,∠BAC的度数为α,点D是底边BC上一动点,将△ABD绕点A逆时针旋转α度得到△ACE,连接DE.(1)求证:△ABC∽△ADE;(2)如图2,当点D运动到BC中点时,过点E作EF∥BC交AC于点F,连接DF,判断四边形CDFE的形状,并给出证明;(3)在(2)的条件下,△ABC满足条件时,四边形CDFE为正方形.23.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图象通过(0,2)、(6,8)两点.若a<0,0<h<6.(1)试用含a的代数式表示h;(2)问是否存在满足a和h同时为整数的函数表达式,若存在请写出此关系式,若不存在请简要说明理由;(3)若二次函数y=a(x﹣h)2+k在坐标平面上的图象通过(0,m)、(6,n)两点,满足a<0,0<h<6,探究:随着m与n的大小关系的变化,指出对应的h的取值范围.2016年安徽省中考数学三模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列四个实数最小的是()A.﹣1 B.﹣C.0 D.1【分析】根据选项中的各个数据,可以比较出它们的大小,从而可以得到哪个实数最小,本题得以解决.【解答】解:∵,∴最小的数是﹣,故选B.【点评】本题考查实数大小的比较,解题的关键是明确实数在原点左侧离原点距离越大,这个数越小,在原点右侧,离原点距离越远,这个数越大.2.中央电视台2016年春晚支付宝互动集五福分大奖活动赢得几亿观众的参与,最终全国约79万观众平均分了2.15亿元大奖,把数2.15亿用科学记数法表示为()A.2.15×107 B.0.125×108C.2.15×108 D.0.125×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把数2.15亿用科学记数法表示为2.15×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.4.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析可以选出答案.【解答】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.下列运算正确的是()A.a•a2=a2B.a+2a=3a C.(2a)2=2a2D.(x+2)(x﹣3)=x2﹣6【分析】原式利用多项式乘以多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=a3,错误;B、原式=3a,正确;C、原式=4a2,错误;D、原式=x2﹣x﹣6,错误,故选B【点评】此题考查了多项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.【分析】先把m当作已知条件求出x+y的值,再根据x+y>0求出m的取值范围,并在数轴上表示出来即可.【解答】解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选B.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=﹣,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON的面积将会()A.逐渐增大 B.始终不变 C.逐渐减小 D.先增后减【分析】由双曲线y=﹣(x<0)设出点P的坐标,运用坐标表示出四边形ONPM的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,﹣),∵PN⊥y轴于点N,点M是x轴负半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形ONPM的面积=(PN+MO)NO=(﹣x+MO)﹣=,∵MO是定值,∴四边形ONPM的面积是个增函数,即点P的横坐标逐渐增大时四边形ONPM的面积逐渐增大.故选A.【点评】本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.8.台湾自古就是中国的领土,2016年春季前夕台湾的地震牵动着两岸同胞的心.某社区2000居民为台湾地震灾区捐款,捐款金额分别为50元,60元,70元,80元,90元,100元,具体情况如表:则这组数据的中位数与众数分别为()A.60,60 B.70,60 C.70,80 D.60,80【分析】根据众数、中位数的定义求解即可.【解答】解:这组数据按顺序排列所得的平均数为70元故众数为:80,故选C【点评】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.9.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BDtan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.10.如图,P为等边三角形ABC中AB边上的动点,沿A→B的方向运动,到达点B时停止,过P作PD∥BC.设AP=x,△PDC的面积为y,则y关于x的函数图象大致为()A.B.C. D.【分析】作AE⊥BC于E,交PD于F,设AB=2a,根据等边三角形的性质和三角形面积公式列出y关于x的函数关系式,得到y关于x的函数的大致图象即可.【解答】解:作AE⊥BC于E,交PD于F,设AB=2a,则AE=a,∵△ABC是等边三角形,PD∥BC,∴△APD是等边三角形,∵AP=x,∴PD=x,则AF=x,∴EF=a﹣x,∴△PDC的面积为y=×x×(a﹣x)=﹣x2+ax(0≤x≤2a),故选:A.【点评】本题考查的是动点问题的函数图象,掌握等边三角形的性质、根据题意列出二次函数解析式是解题的关键.二、填空题(共4小题,每小题5分,满分20分)11.函数:自变量x的取值范围是x≤1且x≠0.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得1﹣x≥0,且x≠0.解得x≤1且x≠0,故答案为:x≤1且x≠0.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.因式分解:=(x﹣y)2.【分析】原式提取,再利用完全平方公式分解即可.【解答】解:原式=(x2﹣2xy+y2)=(x﹣y)2,故答案为:(x﹣y)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.如图,△ABC内接于⊙O,AB为O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=3,则AC=.【分析】连接BD,由圆周角定理和已知条件可求出AB的长,进而再直角三角形ACB中可求出AC的长.【解答】解:连接BD,∵AB为圆的直径,∴∠C=∠D=90°,∵∠CAB=60°,弦AD平分∠CAB,∴∠DAB=30°,∵AD=3,∴AB==2,∴AC=AB=.故答案为:.【点评】此题考查了三角形外接圆的有关性质以及圆周角定和特殊角的锐角三角函数值.此题难度适中,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理是解题关键.14.如图所示,分别以Rt△ABC的直角边AC,斜边AB为边向△ABC外构造等边△ACD 和等边△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.有下列四个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④=.其中正确的结论是①②④(填写正确结论的序号).【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,AC=AB,∵△ACD是等边三角形,∴∠ACD=60°,∴∠ACD=∠BAC,∴CD∥AB,∵F为AB的中点,∴BF=AB,∴BF∥AB,CD=BF,∴四边形BCDF为平行四边形,②正确;∵四边形BCDF为平行四边形,∴DF∥BC,又∠ACB=90°,∴AC⊥DF,①正确;∵DA=CA,DF=BC,AB=BE,BC+AC>AB∴DA+DF>BE,③错误;设AC=x,则AB=2x,S△ACD=x2,S△ACB=x2,S△ABE=x2,==,④正确,故答案为:①②④.【点评】本题考查的是平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.三、解答题(共9小题,满分90分)15.计算: +|1﹣|+(﹣2016)0﹣2cos30°.【分析】原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+﹣1+1﹣2×=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:,其中a=+1.【分析】首先把写成,然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算.【解答】解:,=,=,=,当时,原式==.【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的通分和约分,本题难度不大.17.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是60,偶数42对应的有序实数对是(6,7);(2)第n行的最后一个数用含n的代数式表示为n(n+1),并简要说明理由.【分析】(1)由每行最后一数是该行数×(行数+1),据此可知第7行最后一数为7×8=56,向后推4个数可得(8,4)所表示的数,根据偶数42=6×7,可知对应有序实数对;(2)由(1)中规律可得.【解答】解:(1)由题意可知,∵第1行最后一个数2=1×2;第2行最后一个数6=2×3;第3行最后一个数12=3×4;第4行最后一个数20=4×5;…∴第7行最后一个数7×8=56,则第8行第4个数为56+4=60,∵偶数42=6×7,∴偶数42对应的有序实数对(6,7);(2)由(1)中规律可知,第n行的最后一个数为n(n+1);故答案为:(1)60,(6,7);(2)n(n+1).【点评】此题主要考查学生对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,找到第n排的最后的数的表达式是解决此题的关键.18.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.19.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)【分析】(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC 的值是否大于2米即可.【解答】解:(1)如图,作AD⊥BC于点D.Rt△ABD中,AD=ABsin45°=4×=2.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4≈5.6.即新传送带AC的长度约为5.6米;(2)结论:货物MNQP应挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2.在Rt△ACD中,CD=ACcos30°=2.∴CB=CD﹣BD=2﹣2=2(﹣)≈2.1.∵PC=PB﹣CB≈4﹣2.1=1.9<2,∴货物MNQP应挪走.【点评】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.20.2016年中考某市理科实验操作考试备选试题为物理4题(用W1,W2,W3,W4表示),化学4题(用H1,H2,H3,H4表示),生物2题(用S1,S2表示),共10题某校为备战实验操作考试,对学生进行模拟训练,由学生在每克测试时选择一个进行实验操作,若学生测试时,第一次抽签选定物理实验题,第二次抽签选定化学实验题,第三次抽签选定生物实验题.已知李明同学抽到的物理实验题是W4.(1)请用树状图或列表法,表示李明同学此次抽签的所有可能;(2)若李明同学对比化学的H3、H4和生物的S2实验准备的较好,求他能够同时抽到化学和生物都是准备较好的实验题的概率是多少?【分析】(1)利用树状图可展示有8种等可能的结果数;(2)找出同时抽到化学和生物都是准备较好的实验题的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有8种等可能的结果数;(2)能够同时抽到化学和生物都是准备较好的实验题的结果数为2,所以能够同时抽到化学和生物都是准备较好的实验题的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:16km/h,爸爸的速度是32km/h,点A的坐标(,16);(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.【分析】(1)根据速度=即可得到结论;(2)设从爸爸追上小明的地点到公园路程为n(km),根据已知条件列方程=,即可得到结论;(3)设直线AB的解析式为y=16x+b1,得到直线AB的解析式为y=16x﹣4,小明行走路程y(km)与行走时间x(h)的函数关系式即可得到.【解答】解:(1)小明的速度==16km/h,爸爸的速度=16×2=32km/h,32×(﹣)=8,则A(,16).故答案为:16km/h,32,(,16);(2)设从爸爸追上小明的地点到公园路程为n(km),∴=,∴n=4,∴小明家到滨湖森林湿地公园的路程=16+4=20km;(3)设直线AB的解析式为:y=16x+b1,∴8=16×+b1,∴b1=﹣4,∴直线AB的解析式为:y=16x﹣4,∴小明行走路程y(km)与行走时间x(h)的函数关系式为:y=.【点评】本题考查了一次函数的应用,解题的关键是根据实际问题并结合函数的图象得到进一步解题的有关信息,并从实际问题中整理出一次函数模型.22.如图1,已知△ABC中,AB=AC,∠BAC的度数为α,点D是底边BC上一动点,将△ABD绕点A逆时针旋转α度得到△ACE,连接DE.(1)求证:△ABC∽△ADE;(2)如图2,当点D运动到BC中点时,过点E作EF∥BC交AC于点F,连接DF,判断四边形CDFE的形状,并给出证明;(3)在(2)的条件下,△ABC满足条件∠BAC=90°时,四边形CDFE为正方形.【分析】(1)根据旋转的性质可得AB=AC,AD=AE,∠BAD=∠CAE,从而可得=,∠BAC=∠DAE,即可得到△ABC∽△ADE;(2)易证∠ACE=∠ABD=∠ACD=∠EFC,则有EF=EC,从而可得EF=EC=BD=DC,由此可证到四边形CDFE是菱形;(3)要使菱形CDFE是正方形,只需∠DCE=90°,只需∠DCF=45°,只需∠BAC=90°.【解答】解:(1)由旋转的性质可得:△ABD≌△ACE,则BD=CE,AB=AC,AD=AE,∠ABD=∠ACE,∠BAD=∠CAE,∴=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)四边形CDFE是菱形.理由:∵AB=AC,∴∠ABC=∠ACB,∴∠ACE=∠ACB.∵EF∥BC,∴∠EFC=∠ACB,∴∠EFC=∠ACE,∴EF=EC,∴EF=CE=BD.∵BD=DC,∴EF=DC.又∵EF∥DC,∴四边形DCEF是平行四边形.∵EF=EC,∴▱DCEF是菱形;(3)当∠BAC=90°时,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ACE=∠ABC=45°,∴∠DCE=90°,∴菱形DCEF是正方形,故答案为∠BAC=90°.【点评】本题主要考查了相似三角形的判定、菱形的判定、正方形的判定、旋转的性质、等腰三角形的判定与性质等知识,证到∠ACE=∠EFC进而得到EF=EC是解决第(2)小题的关键.23.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图象通过(0,2)、(6,8)两点.若a<0,0<h<6.(1)试用含a的代数式表示h;(2)问是否存在满足a和h同时为整数的函数表达式,若存在请写出此关系式,若不存在请简要说明理由;(3)若二次函数y=a(x﹣h)2+k在坐标平面上的图象通过(0,m)、(6,n)两点,满足a<0,0<h<6,探究:随着m与n的大小关系的变化,指出对应的h的取值范围.【分析】(1)列出方程组消去k即可解决问题.(2)不存在.理由是当a是整数时,h不可能是整数.(3)分三种情形讨论即可.根据抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由对称轴位置列出不等式即可解决问题.【解答】解:(1)由题意②﹣①得到,6=36a﹣12ah,∴h=3﹣,(2)不存在.理由如下:∵a,h是整数,∵h=3﹣,∴当a是整数时,h不可能是整数,∴不存在.(3)①当m=n时,h=3.②当m<n时,则点(0,m)到对称轴的距离大于点(6,n)到对称轴的距离,所以h﹣0>6﹣h,∴h>3,∴3<h<6.③当m>n时,则点(0,m)到对称轴的距离小于点(6,n)到对称轴的距离,所以h﹣0<6﹣h,∴h<3,∴0<h<3.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.。
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)
专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
新人教版2016级中考数学综合训练试题
新人教版2016级中考数学综合训练试题新人教版2016级中考数学综合训练试题(考试时间120分 试题满分150分)一、选择题(每小题4分,共48分)1.(2015湖南岳阳)实数﹣2015的绝对值是( )A . 2015B . ﹣2015C . ±2015D .120152.(2015•安徽省)移动互联已经全面进入人们的日常生活.截止2015年3月, 全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( ) A .1.62×104 B .1.62×106 C .1.62×108 D .0.162×109 3. (2015•四川泸州)如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°, 则∠D 的度数为( )A. 90°B. 100°C. 110°D. 120°4.(2015•湖南省益阳市,第2题5分)下列运算正确的是( ) A . x 2•x 3=x 6 B . (x 3)2=x 5 C . (xy 2)3=x 3y 6 D . x 6÷x 3=x 2 5.(2015•山东莱芜,第10题3分) 已知是二元一次方程组的解, 则的算术平方根为( ) A .4 B .2 C .-2 D . ±26. (2015·黑龙江绥化,第3题 分)从长度分别为1、3、5、7的四条线段中任选三条 作边 ,能构成三角形的概率为( )A . 21B . 31C . 41D .517、(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边 的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( )A. 2102-B.6C.2132-D.48.(2015•山东东营,第9题3分)如图,在△ABC 中,AB >AC ,点D 、E 分别是 边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF . 则添加下列哪一个条件后,仍无法判定△FCE 与△EDF 全等( ). A .∠A=∠DFE B .BF=CF C .DF ∥AC D .∠C=∠EDF 9.(2015山东青岛,第5题,3分)小刚参加射击比赛,成绩统计如下表 成绩(环) 6 7 8 9 10 次数 1 3 2 3 1 关于他的射击成绩,下列说法正确的是( ). A .极差是2环 B .中位数是8环 C .众数是9环 D .平均数是9环 10.(2015•山东日照 ,第11题3分)观察下列各式及其展开式: (a+b )2=a 2+2ab+b 2 (a+b )3=a3+3a 2b+3ab 2+b 3 (a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4 (a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 … 请你猜想(a+b )10的展开式第三项的系数是( ) A . 36 B . 45 C . 55 D . 66 11.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm 的正三角形纸板, B 'EB C F A 第5题图D(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.五.解答题(每小题12分,共24分)1.(2015•山东威海,第25题12分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2. (2015•四川成都,第28题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B 两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为5 4,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.备用图九年级综合训练题 2015年11月20日星期五7。
2016中考数学试题及答案解析
2016中考数学试题及答案解析2016年中考数学已经结束,本文将对本次考试试题出现的知识点进行解析,帮助考生对数学考点更加清晰明确。
2016年中考数学试题及答案解析一、单项选择题1.斐波那契数列(第n项满足公式 Fn=Fn-1+Fn-2)中,第25项的值为(A. 1250B. 1280C. 1290D. 1300答案:D,解析:F1=1,F2=1,F3=2,那么F25=F24+F23=750+550=1300。
2.若复数z=(6-3i)*(2+i),z的共轭复数为(A. 8-3iB. 8+3iC. 6-iD. 6+i答案: B. 8+3i,解析:z的共轭复数即为z的根号共轭复数,即(6-3i)(2+i)的根号共轭复数为(6+3i)(2-i),得到结果8+3i。
3.下列函数中的值正确的连续12点的解析式是(A. y=x^2-3x+7B. y=3x^2+2x-1C. y=(x-2)^2-5x+7D. y=x^2+7答案: C,解析:根据函数y=(x-2)^2-5x+7,它的x取值为0,1,2,3,4,5,6,7,8,9,10,11,且y均为正数,因此其值正确。
二、解答题4.一家公司把罐装蜂蜜装入木箱,每个木箱里装有六个罐装蜂蜜,每罐蜂蜜重1.5Kg,请计算出20个木箱装蜂蜜重量是多少答案:20*6*1.5kg=180kg。
解析:每个木箱里装6个罐装蜂蜜,每个蜂蜜罐重1.5Kg,20个木箱装蜂蜜重量计算为:20*6*1.5kg=180kg。
5.若△ABC的面积为40,AB=4,BC=6,则BC角度数是(答案:60°. 解析:△ABC的面积为40,AB=4,BC=6,则AB:BC=2:3,可利用海伦公式求出其BC角α,即:α=arccos(2/3)=60°。
浙江省宁波市宁海县中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市某某县中考数学模拟试卷一、选择题1.在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.32.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×1064.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)二、填空题13.6的平方根为.14.分解因式:2a2﹣2=.15.命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.三、解答题(本大题有8小题,共78分)19.计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年某某省某某市某某县中考数学模拟试卷参考答案与试题解析一、选择题(2016•象山县模拟)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.3【考点】18:有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵﹣5<﹣2<﹣1<2<3,∴在﹣5,2,﹣1,3这四个数中,比﹣2小的数是﹣5.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】4H:整式的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×106【考点】1I:科学记数法—表示较大的数.【分析】直接根据乘法分配律即可求解.【解答】×107×107=(3.8﹣3.7)×107×107=1×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.4.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209【考点】W4:中位数.【分析】根据中位数的定义进行求解即可.【解答】解:这组数据按照从小到大的顺次排列为:198,209,216,220,230,则中位数为:216;故选C.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】L4:平面镶嵌(密铺).【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.【点评】本题考查了学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】直接利用32=9,42=16得出的取值X围.【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的有理数是解题关键.7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【考点】JA:平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD ∽△BED,利用其对应边成比例可得=,然后将已知数值代入即可求出DE的长.【解答】解;∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等)∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==.故选D.【点评】此题主要考查相似三角形的判定与性质和圆周角定理等知识点的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,∴任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x 的函数解析式.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)【考点】44:整式的加减.【分析】设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【解答】解:设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选(A)【点评】本题考查整式的运算,解题的关键是设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题13.6的平方根为.【考点】21:平方根.【分析】根据平方运算,可得一个数的平方根.【解答】解:∵()2=6∴6的平方根为,故答案为:.【点评】本题考查了平方根,平方运算是求平方根的关键.14.分解因式:2a2﹣2= 2(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点评】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为a<4 .【考点】C6:解一元一次不等式;98:解二元一次方程组.【分析】先解关于关于x,y的二元一次方程组的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.【解答】解:由①﹣②×3,解得y=1﹣;由①×3﹣②,解得x=;∴由x+y<2,得1+<2,即<1,解得,a<4.解法2:由①+②得4x+4y=4+a,x+y=1+,∴由x+y<2,得1+<2,即<1,解得,a<4.故答案是:a<4.【点评】本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.【考点】KX:三角形中位线定理;KH:等腰三角形的性质;M8:点与圆的位置关系.【分析】据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.【点评】本题主要考查的是三角形中位线定理,涉及了等腰三角形的性质、勾股定理、两点之间线段最短等知识,根据题意作出辅助线,利用三角形的中位线定理求解是解决本题的关键.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;KK:等边三角形的性质.【分析】以BC为边在△ABC的下面作等边三角形BCE,连接AE,由等腰三角形和等边三角形的性质得出AE⊥BC,CE=BC=b,∠BCE=60°,由等腰三角形的性质和三角形内角和定理得出∠ACB=∠ABC=50°,∠CAE=∠BAC=50°,求出∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=∠BAC,证出△ABD∽△CAE,得出对应边成比例,即可得出答案.【解答】解:以BC为边在△ABC的下面作等边三角形BCE,连接AE,如图所示:则AE⊥BC,CE=BC=b,∠BCE=60°,∵AB=AC,∠BAC=100°,∴∠ACB=∠ABC=(180°﹣1100°)÷2=50°,∠CAE=∠BAC=50°,∵∠ABD=30°,∴∠ADB=180°﹣∠BAC﹣∠ABD=50°,∴∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=100°=∠BAC,∴△ABD∽△CAE,∴,即,解得:AD=;故答案为:.【点评】本题考查了等腰三角形的性质、等边三角形的性质、相似三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.三、解答题(本大题有8小题,共78分)19.(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.【考点】B3:解分式方程;6E:零指数幂;6F:负整数指数幂.【分析】(1)分别利用负指数幂的性质以及零指数幂的性质分别化简进而求出答案;(2)首先移项,进而去分母解方程即可,再检验得出答案.【解答】解:(1)2×(﹣3)+4×()﹣1﹣20160=﹣6+4×2﹣1=1;(2)原式可变为: =1,则x﹣1=1,解得:x=2,检验:当x=2时,x﹣1≠0,故x=2是原方程的根.【点评】此题主要考查了解分式方程以及实数运算,正确掌握分式方程的解法是解题关键.20.某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(2016•象山县模拟)如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)【考点】T8:解直角三角形的应用.【分析】设PD=x米,根据锐角三角函数的概念用x表示出AD和BD的长,根据题意列式计算即可得到答案.【解答】解:设PD=x米,∵PD⊥AB,则∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=,故AD==x,在Rt△PBD中,tan∠PBD=,则DB===x,又∵AB=60米,∴x+x=60,解得:x=30﹣30≈22.0.答:小桥PD的长度约为.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,把锐角三角函数的概念理解为公式,代入公式计算即可.22.(10分)(2013•某某)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】R8:作图﹣旋转变换;PA:轴对称﹣最短路线问题;Q4:作图﹣平移变换.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.23.(10分)(2013•某某)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;(2)设点P的坐标为(m,n),点P在反比例函数y=(x>0)的图象上,求出S△POD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC即可.【解答】解:(1)∵点B与点A关于y轴对称,A(﹣3,4),∴点B的坐标为(3,4),∵反比例函数y=(x>0)的图象经过点B.∴=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=(x>0)的图象上,∴n=,即mn=12.∴S△POD=OD•PD=mn=×12=6,∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4,∵点Q在线段AB上,∴S△QOC=OC•BC=×3×4=6.∴S△QOC=S△POD.【点评】本题考查了反比例函数综合题,涉及反比例函数k的几何意义,反比例函数图象上点的坐标特征等,综合性较强.24.(10分)(2007•某某)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)A,B两个工种的工人的月工资乘以它们的人数就是工厂每月所支付的工资为110000元,因此可列方程,进而解答;(2)在(1)的基础之上又多出了一个最值问题,需要运用函数,考虑函数和自变量的增减性,找出自变量取值X围,进行解答.【解答】解:(1)设招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得800x+1 000(120﹣x)=110 000解得x=50,则120﹣x=70即招聘A工种工人50人,招聘B工种工人70人;(2)设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=800x+1 000(120﹣x)=﹣200x+120 000,由题意得120﹣x≥2x,解得x≤40,y=﹣200x+120 000中的y随x的增大而减少,所以当x=40时,y取得最小值112000.即当招聘A工种工人40人时,可使每月所付工资最少.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要熟练掌握利用自变量的取值X围求最值的方法.注意本题的不等关系为:B工种的人数不少于A工种人数的2.25.(12分)(2016•象山县模拟)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质和“美好四边形”的定义解答;(2)根据“美好四边形”的定义作图,根据勾股定理求出对角线的长;(3)根据等边三角形的性质和“美好四边形”的定义以及三角形内角和定理、等腰三角形的性质计算即可.【解答】解:(1)∵正方形四条边相等且对角线相等,满足“美好四边形”的条件,∴正方形是“美好四边形”;(2)图1中两个四边形ABCD都是“美好四边形”,它们的对角线长都是;(3)∵△ABC是等边三角形,四边形ABCD为“美好四边形”,∴AB=AC=BC=BD,∠CBA=∠CAB=60°,∵∠BDC=α,∴∠BCD=α,∴∠DBC=180°﹣2α,∴∠ABD=60°﹣∠DBC=2α﹣120°,∵BA=BD,∴∠BAD=∠BDA==150°﹣α,∵∠DAC=β,∴150°﹣α﹣β=60°,∴α+β=90°.【点评】本题考查的是新定义、等腰三角形的性质、等边三角形的性质,正确理解“美好四边形”的定义、掌握等腰三角形的性质和等边三角形的性质是解题的关键.26.(14分)(2016•象山县模拟)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+2)(x﹣8),将点C的坐标代入可求得a的值,从而得到抛物线的解析式,然后依据抛物线的对称性得到抛物线的对称轴方程,将x=3代入可求得抛物线的顶点坐标;(2)①如图1所示:作CM⊥PE,垂足为M.先利用待定系数法求得BC的解析式,设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4),接下来依据等腰三角形的性质可得到PM=EM,从而得到关于m的方程,于是可求得点P的坐标②作PN⊥BC,垂足为N.先证明△PNE∽△COB,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△CAF,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值;(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:先依据勾股定理可求得DC的长,设Q(3,b),然后依据锐角三角函数的定义得到QG的长,从而得到AQ的长,最后再△AQP中依据勾股定理可得到关于b的方程,从而得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+2)(x﹣8).∵抛物线经过点C(0,4),∴﹣16a=4,解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣8)=x2+x+4.∵A(﹣2,0)、B(8,0),∴抛物线的对称轴为x=3.∵将x=3代入得:y=,∴抛物线的顶点坐标为(3,).(2)①如图1所示:作CM⊥PE,垂足为M.设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=4,∴直线BC的解析式为y=﹣x+4.设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4).∵PC=EC,CM⊥PE,∴PM=EM.∴﹣m2+m+4﹣4=4﹣(﹣m+4),解得:m=0(舍去),m=4.∴P(4,6).②作PN⊥BC,垂足为N.由①得:PE=﹣m2+2m.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴==.∴PN=PE=(﹣m2+2m).∵AB=10,AC=2,BC=4,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△CAF.∴==﹣m2+m.∴当m=4时,的最大值为.(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:由(1)可知:CH=3,DH=﹣4=.在△CHD中,由勾股定理可知DC==.设Q(3,b)则QD=﹣b.∵sin∠D==,在△AQP中,由勾股定理得QG=(﹣b)=b2+52.解得:b=0,b=﹣.∴点Q的坐标为(3,0)或(3,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、等腰三角形的性质、锐角三角函数的定义、勾股定理的应用,与m的函数关系式是解题的关键.。
2016年中考数学试卷分类汇编解析_动态问题
动态问题一、选择题1. (2016·)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A 开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s. 设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是( A )2.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC 相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是(C)A.6 B.2+1 C.9 D.3.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是(C)A.一直减小B.一直不变C.先减小后增大D.先增大后减小4.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是(C)A.B.C.D.解答题1.(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8). (1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.解答:(1)Θ抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8), ⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分)∴抛物线的函数表达式为83212--=x x y ……………………………(2分)Θ()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又Θ抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =.Θ点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=………………………………………………………(5分)Θ点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分) (3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.Θ点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,令y =0,得0531=-x ,解得x =15,∴点H 的坐标为(15,0)…(10分)又ΘMH//PB ,∴OH OB OM OP =,即1585=-m ,∴38-=m ……………………………(11分) ②当QP QO =时,OPQ ∆是等腰三角形.当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8), ∴5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,又因为QP QO =,∴31∠=∠, ∴32∠=∠,∴CE//PB ………………………………………………………………(12分)设直线CE 交x 轴于点N ,其函数表达式为82-=x k y ,∴4832-=-k ,解得342=k ,∴CE 的函数表达式为834-=x y ,令y =0,得0834=-x ,∴6=x ,∴点N 的坐标为(6,0)………………………………………………………………(13分) ΘCN//PB ,∴ON OB OC OP =,∴688=-m ,解得332-=m ………………(14分) 综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形.解法二:当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为 (3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况: ① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB ………………………………………(9分)又ΘHM //y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8,∴5384)8(4=-=--=--+=+=BH m m EM HE HM ,ΘHM//y 轴,∴BHM ∆∽BOP ∆,∴BO BHOP HM =……………………………………………………(10分) ∴332854-=∴=---m mm ………………………………………………………(11分) ②当OQ OP =时,OPQ ∆是等腰三角形.y EH //Θ轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ =……………(12分) m m OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,y EH //Θ轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =…………………………………………………(13分)∴38851-=∴=---m mm ………………(14分)∴当m 的值为38-或332-时,OPQ ∆是等腰三角形.2.如图所示,梯形ABCD 中,AB ∥DC ,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB .(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值围.解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).3.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.解:(1)∵y=mx2+4mx﹣5m,∴y=m(x2+4x﹣5)=m(x+5)(x﹣1).令y=0得:m(x+5)(x﹣1)=0,∵m≠0,∴x=﹣5或x=1.∴A(﹣5,0)、B(1,0).∴抛物线的对称轴为x=﹣2.∵抛物线的顶点坐标为为6,∴﹣9m=6.∴m=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)由(1)可知:A(﹣5,0)、B(1,0).(3)如图所示:∵OP的解析式为y=x,∴∠AOP=30°.∴∠PBF=60°∵PD⊥PF,FO⊥OD,∴∠DPF=∠FOD=90°.∴∠DPF+∠FOD=180°.∴点O、D、P、F共圆.∴∠PDF=∠PBF.∴∠PDF=60°.4.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO= 5 ,PH= 5 ,由此发现,PO = PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC 相似?若存在,求出P点的坐标;若不存在,请说明理由.(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣ m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣ m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).5.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC 于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S:S△ACD=9:16?若存五边形OECQF在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO 与△CEO 中,,∴△AOP ≌△COE ,∴CE=AP=t ,∵△CEH ∽△ABC ,∴,∴EH=,∵DN==,∵QM ∥DN ,∴△CQM ∽△CDN ,∴,即,∴QM=,∴DG=﹣=,∵FQ ∥AC ,∴△DFQ ∽△DOC ,∴,∴FQ=,∴S 五边形OECQF =S △OEC +S 四边形OCQF =×5×+(+5)•=﹣t 2+t+12,∴S 与t 的函数关系式为S=﹣t 2+t+12;(3)存在,∵S △ACD =×6×8=24,∴S 五边形OECQF :S △ACD =(﹣t 2+t+12):24=9:16,解得t=,t=0,(不合题意,舍去),∴t=时,S 五边形S 五边形OECQF :S △ACD =9:16;(4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N ,∵∠POD=∠COD ,∴DM=DN=,∴ON=OM==,∵OP •DM=3PD ,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.6.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.。
中考数学复习专题讲:动点型问题(含答案)
中考数学复习专题讲座:动点型问题(建立动点问题的函数解析式(或函数图像)、动态几何型压轴题)一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.(一)应用勾股定理建立函数解析式(或函数图像)例1 (2012•嘉兴)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP 长为y,则y关于x的函数图象大致是()A.B.C.D.思路分析:根据题意设出点P运动的路程x与点P到点A的距离y的函数关系式,然后对x从0到2a+2a时分别进行分析,并写出分段函数,结合图象得出答案.解:设动点P按沿折线A→B→D→C→A的路径运动,∵正方形ABCD的边长为a,∴BD=a,则当0≤x<a时,y=x,当a≤x<(1+)a时,y=,当a(1+)≤x<a(2+)时,y=,当a(2+)≤x≤a(2+2)时,y=a(2+2)﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<(1+)a时,函数图象被P在BD中点时,分为对称的两部分,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.点评:此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.对应训练1.(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.(二)应用比例式建立函数解析式(或函数图像)例2 (2012•攀枝花)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC 运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .思路分析: 首先根据点D 的坐标求得点A 的坐标,从而求得线段OA 和线段OC 的长,然后根据运动时间即可判断三角形EOF 的面积的变化情况. 解:∵D (5,4),AD=2. ∴OC=5,CD=4 OA=5 ∴运动x 秒(x <5)时,OE=OF=x , 作EH ⊥OC 于H ,AG ⊥OC 于点G , ∴EH ∥AG ∴△EHO ∽△AGO即:∴EH=x∴S △EOF =OF •EH=×x ×x=x 2,故A 、B 选项错误;当点F 运动到点C 时,点E 运动到点A ,此时点F 停止运动,点E 在AD 上运动,△EOF 的面积不变,点在DC 上运动时,如右图, EF=11﹣x ,OC=5∴S △EOF =OC •CE=×(11﹣x )×5=﹣x+是一次函数,故C 正确,故选C .点评:本题考查了动点问题的函数图象,解题的关键是根据动点确定分段函数的图象.对应训练2.(2012•贵港)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.(三)应用求图形面积的方法建立函数关系式例3 (2012•桂林)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.思路分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.解:(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=BD=DC (2分)∵AE=CF∴△AED≌△CFD(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3)解:依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135°∴△ADF≌△BDE∴S△ADF=S△BDE∴S△EDF=S△EAF+S△ADB=∴.点评:本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.对应训练3.(2012•桂林)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点二:动态几何型压轴题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学复习专题 6动点综合问题(含中考真题解析)学生版
动点综合问题知识点对应策略动点问题中的特殊图形等腰三角形与直角三角形利用等腰三角形或直角三角形的特殊性质求解动点问题相似问题利用相似三角形的对应边成比例、对应角相等求解动点问题动点问题中的计算问题动点问题的最值与定值问题理解最值或定值问题的求法动点问题的面积问题结合面积的计算方法来解决动点问题动点问题的函数图象问题一次函数或二次函数的图象结合函数的图象解决动点问题【20XX年题组】1.(2015牡丹江)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.2.(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A 出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是()A.B.C.D.3.(2015资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.4.(2015广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A .B .C .D .5.(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD ﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A B C D6.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A B .C .D .7.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:43y kx=+与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.128.(2015乐山)如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.212D.1729.(2015庆阳)如图,定点A(﹣2,0),动点B在直线y x=上运动,当线段AB最短时,点B的坐标为.10.(2015三明)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是______ .11.(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.12.(2015咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂.其足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为51中正确的说法是.(把你认为正确的说法的序号都填上)13.(2015江西省)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.14.(2015鄂尔多斯)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.15.(2015柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?16.(2015宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若»»=AB BC,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.17.(2015攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.18.(2015桂林)如图,已知抛物线212y x bx c=-++与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.19.(2015淮安)如图,在Rt△ABC中,∠ACB=900,AC=6,BC=8.动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)当t=秒时,动点M、N相遇;(2)设△PMN的面积为S,求S与t之间的函数关系式;(3)取线段PM的中点K,连接KA、KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.【20XX年题组】1.(20XX年甘肃天水)如图,扇形OAB动点P从点A出发,沿»AB线段BO、OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是()A B C.D.2.(20XX年贵州安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.2B.1C.2D.223.(20XX年安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A B C D4.(20XX年江苏苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A 重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是.5.(20XX年四川资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__________6.(20XX年浙江嘉兴中考)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为23;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=25;⑤当点D从点A运动到点B时,线段EF扫过的面积是163.其中正确结论的序号是.7.(20XX年湖南衡阳)如图,直线AB与x轴相交于点()40A-,,与y轴相交于点()03B,,点P从点A出发,以每秒个单位长度的速度沿直线AB向点B移动.同时,将直线34y x=以每秒0.6个单位长度的速度向上平移,交OA于点C,交OB于点D,设运动时间为()05t t<<秒.⑴证明:在运动过程中,四边形ACDP总是平行四边形;⑵当t取何值时,四边形ACDP为菱形?请指出此时以点D为圆心、OD长为半径的圆与直线AB的位置关系并说明理.8.(20XX年浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造□PCOD ,在线段OP 延长线上取点E ,使PE=AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF=1,过点F 作MN ⊥PE ,截取FM=2,FN=1,且点M ,N 分别在第一、四象限,在运动过程中,设□PCOD 的面积为S .①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值;②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.基础知识归纳:等腰三角形的两腰相等,直角三角形的两直角边的平方和等于斜边的平方,平行四边形的对边平行且相等,矩形的对角线相等,菱形的对角线互相垂直基本方法归纳:动点问题常与等腰三角形、直角三角形、平行四边形、矩形、菱形等特殊图形相结合,解决此类问题要灵活运用这些图形的特殊性质注意问题归纳:注意区分等腰三角形、直角三角形、平行四边形、矩形、菱形的性质.【例1】如图,在Rt △ABC 中,∠ACB=90º,AC=3cm ,BC=4cm .动点P 从点B 出发,以每秒1cm 的速度沿射线BA 运动,求出点P 运动所有的时间t ,使得△PBC 为等腰三角形.归纳 2:动点问题中的计算问题基础知识归纳:动点问题的计算常常涉及到线段和的最小值、三角形周长的最小值、面积的最大值、线段或面积的定值等问题.基本方法归纳:线段和的最小值通常利用轴对称的性质来解答,面积采用割补法或面积公式,通常与二次函数、相似等内容.注意问题归纳:在计算动点问题的过程中,要注意与相似、锐角三角函数、对称、二次函数等内容的结合. 【例2】如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .125B .4C .245 D .5归纳 3:动点问题的图象基础知识归纳:动点问题经常与一次函数、反比例函数和二次函数的图象相结合.BAC基本方法归纳:一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数的图象是抛物线.注意问题归纳:动点函数的图象问题可以借助于相似、特殊图形的性质求出函数的图象解析式,同时也可以观察图象的变化趋势.【例3】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()模拟1.如图1,在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y与x的函数关系的图象大致如图2,则AB边上的高是()A.3 B.4 C.5 D.62.在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是()A.B.C.D.3.如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A—B—C—D—A运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()4.某景点有一座圆形的建筑,如图,小江从点A沿AO匀速直达建筑中心点O处,停留拍照后,从点O沿OB以同样的速度匀速走到点B,紧接着沿¼BCA回到点A,下面可以近似地刻画小江与中心点O的距离S随时间t变化的图象是().5.如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A B C D .【6.如图,在矩形ABCD中,AB=4cm,AD=23cm,E为CD边上的中点,点P从点A沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A B C D.7.已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=14x2上的一个动点.(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;(2)设直线PM与抛物线y=14x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.8.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.【答案】(1)t=1或3241时,△BPQ∽△BCA;(2)t=78.9.如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.(1)求点C的坐标及b的值;(2)求k的取值范围;(3)当k为取值范围内的最大整数时,过点B作BE∥x轴,交PQ于点E,若抛物线y=ax2﹣5ax(a≠0)的顶点在四边形ABED的内部,求a的取值范围.10.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若2,求点F的坐标.11.如图,在四边形ABCD中,AB⊥BC,CD⊥BC,AB=2,BC=CD=4,AC、BD交于点O,在线段BC 上,动点M以每秒1个单位长度的速度从点C出发向点B做匀速运动,同时动点N从点B出发向点C做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做BC的垂线,分别交AC、BD于点E、F,连接EF.若运动时间为x秒,在运动过程中四边形EMNF总为矩形(点M、N重合除外).(1)求点N的运动速度;(2)当x为多少时,矩形EMNF为正方形?(3)当x为多少时,矩形EMNF的面积S最大?并求出最大值.12.如图,直线y=-12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明问题.13.如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.(1)求证:PA=PE;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.14.如图,抛物线y=12x2+mx+n与直线y=-12x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA2A后停止,当点E的坐标是多少时,点M 在整个运动中用时最少?15.已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,MN OPMN OPg的值最大,并求出最大值;(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.17.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.。
人教版中考综合模拟检测《数学卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 12.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b23.已知反比例函数y=kx(k≠0)图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.1695.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣17.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B 2400元、2300元C. 2200元、2200元D. 2200元、2300元8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π9.货车行驶25 千米与小车行驶35 千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+10.如图已知点A(1,4),B(2,2)是反比例函数y=4x图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0)二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.12.因式分解:a4﹣2a3+a2=_____.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.14.四边形ABCD是某个圆内接四边形,若∠A=100°,则∠C= .15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x值是_____.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|﹣18|+(12)﹣2(2)先化简,再求值:(1111x x-+-)÷21x-,其中x=2.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.答案与解析一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 1【答案】D【解析】【分析】根据负数的偶次方是正数可以解答.【详解】(﹣1)2020=1,故选:D.【点睛】本题考查了有理数的乘方运算,知道-1的奇次方是-1,-1的偶次方是1,是常考题型.2.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b2【答案】C【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.(﹣2a2)4=16a8,故本选项不合题意;B.a3与a不是同类项,所以不能合并,故本选项不合题意;C.a5÷a2=a3,正确;D.(a+b)2=a2+2ab+b2,故本选项不合题意.故选:C.【点睛】本题考查幂运算、合并同类项以及完全平方公式,掌握相关的公式以及运算法则是解题关键.3.已知反比例函数y=kx(k≠0)的图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据反比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【详解】解:∵反比例函数kyx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点睛】本题考查反比例函数与一次函数的图象特点,根据图象象限分布判断参数正负性以及根据参数正负性判断象限分布是解题关键.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.169【答案】A 【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A.考点:相似三角形的性质.5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°【答案】A【解析】【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣1【答案】C【解析】【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【详解】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点睛】本题考查分式值为零的条件,掌握分式值为零的条件是分子为零,分母不为零是解题关键.7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B. 2400元、2300元C. 2200元、2200元D. 2200元、2300元【答案】A【解析】【分析】众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π【答案】C【解析】【分析】根据题意画出图形,由等边三角形的周长为6,可得BC=2,设点D为BC边与内切圆的切点,连接AD,则AD⊥BC,可得BD=DC=12BC=1,再根据勾股定理可得OB2﹣OD2=BD2=1,再根据S圆环=S外接圆﹣S内切圆即可得结论.【详解】解:如图,∵等边三角形ABC的周长为6,∴BC=2,设点D为BC边与内切圆的切点,连接AD ,则AD ⊥BC , ∴BD =DC =12BC =1, 在Rt △BOD 中,根据勾股定理,得 OB 2﹣OD 2=BD 2=1, ∴S 圆环=S 外接圆﹣S 内切圆 =OB 2π﹣OD 2π =BD 2π =π. 故选:C .【点睛】本题考查三角形的外接圆与内切圆,掌握正三角形的外接圆与内切圆半径求算是解题关键. 9.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( ) A.253520x x =- B.253520x x=-C.253520x x =+ D.253520x x=+【答案】C 【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .10.如图已知点A(1,4),B(2,2)是反比例函数y =4x的图象上的两点,动点P(x ,0)在x 轴上运动,当线段AP =BP 时,点P 的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0) 【答案】A 【解析】 【分析】根据平面直角坐标系中距离公式得到:(x﹣1)2+42=(x﹣2)2+22,求解即可.【详解】解:∵点A(1,4),B(2,2),动点P(x,0)在x轴上运动,∴2AP=(x﹣1)2+42,2BP=(x﹣2)2+22,∵AP=BP,∴(x﹣1)2+42=(x﹣2)2+22,解得x=﹣92,∴点P的坐标是(﹣92,0),故选:A.【点睛】本题考查距离公式,掌握平面直角坐标系中距离公式是解题关键.二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.【答案】6.7×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将670 000用科学记数法表示为6.7×105m.故答案为:6.7×105【点睛】本题考查科学记数法,确定,a n的值是解题关键.12.因式分解:a4﹣2a3+a2=_____.【答案】a2(a﹣1)2.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=a2(a2﹣2a+1)=a2(a﹣1)2.故答案为:a2(a﹣1)2.【点睛】本题考查因式分解,掌握提公因式法和公式法因式分解解题关键.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.【答案】24【解析】【详解】解:x2﹣14x+48=0,则有(x-6)(x-8)=0解得:x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为24.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C= .【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x的值是_____.【答案】4或﹣1.【解析】【分析】先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:∵x☆2=6,∴x2﹣3x+2=6,x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1,故答案为:4或﹣1.【点睛】本题考查定义新运算与一元二次方程,正确理解定义新运算是解题关键.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.【答案】12.【解析】【分析】用红球的个数除以球的总个数即可得.【详解】解:从袋中随机摸出一个球是红球的概率为31= 3+2+12故答案为:12.【点睛】本题考查概率求算,掌握利用概率公式求算是解题关键.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.【答案】13【解析】试题分析:过点A作AE⊥BC,然后根据∠BAD的正切值以及角度之间的关系和AD、CD的长度大小求出AC的长度.考点:三角函数的应用.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.【答案】6.【解析】【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【详解】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.【点睛】本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到”每四个数一组,个位数字循环”是解题的关键.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|(12)﹣2(2)先化简,再求值:(1111x x -+-)÷21x -,其中x .【答案】(1)5;(2)11x +,﹣1. 【解析】【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解】解:(1)(π﹣2016)0+6cos45°﹣|(12)﹣2=1+6×2﹣+4=﹣+4=5;(2)(1111x x -+-)÷21x - =1(1)(1(1)1)2x x x x x -•--+-+ =1)12(1x x x --+-- =2()21x --+ =11x +,当x 时,﹣1.【点睛】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?【答案】(1)25,90°,图详见解析;(2)200;(3)15000【解析】【分析】(1)用100%减去3天、4天、5天、7天所占百分比可得a,利用360°乘以所占百分比可得该扇形所对圆心角的度数,求出总数,再乘以所占百分比可得6天的人数,再补图即可;(2)由(1)的计算可得答案;(3)利用样本估计总体的方法计算即可.【详解】解:(1)a=100%﹣30%﹣15%﹣10%﹣20%=25%,360°×25%=90°,调查人数:20÷10%=200(人),200×25%=50(人),如图所示:故答案为:25;90°;(2)由(1)可得一共调查了200名学生;(3)20000×(30%+20%+25%)=15000(人),答:”活动时间不少于5天”的大约有15000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】详见解析【解析】分析】根据SSS可证明△ABD≌△CDB,则可得出结论.【详解】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解本题的关键.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?【答案】渔船继续向正东方向航行是安全的,理由详见解析.【解析】【分析】作CH⊥AB于H.利用解直角三角形,求出PH的值即可判定; 【详解】解:作CH⊥AB于H.∵∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=30°,∵∠BAC=∠BCA=30°,∴BA=BC=60海里,在Rt△CBH中,CH=CB•sin60°=60×33海里),∵350,∴渔船继续向正东方向航行是安全的.【点睛】本题考查的是解直角三角形的应用——方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?【答案】(1)这种产品应将售价定为54元或56元;(2)销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【解析】【分析】(1)设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【详解】解:(1)设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:这种产品应将售价定为54元或56元;(2)设每天获得利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.【答案】见解析【解析】【分析】(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论.(2)欲证明AP是⊙O切线,只需证得∠PAC=90°.【详解】证明:(1)∵PC=50,PA=30,PB=18,∴PC505PA305,PA303PB183 ====.∴PC PA PA PB=.又∵∠APC=∠BPA,∴△PAB∽△PCA.(2)∵AC是⊙O的直径,∴∠ABC=90°.∴∠ABP=90°.又∵△PAB∽△PCA,∴∠PAC=∠ABP.∴∠PAC=90°.∴PA是⊙O的切线.。
中考数学备考专题复习 动点综合问题(含解析)-人教版初中九年级全册数学试题
动点综合问题一、单选题(共12题;共24分)1、(2016•某某)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A、B、2C、D、2、(2016•某某)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC 相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A、6B、2 +1C、9D 、3、(2016•某某)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A ,B重合),作CD⊥OB 于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为()A、25B、18C、9D、9 4、(2016•某某)如图,已知在Rt△ABC 中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A、不变B、增大C、减小D、先变大再变小5、(2016•某某)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A、4.8B、56、(2016•某某)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A、1B、2C 、3D、47、(2016•某某)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A、5个B、4个C、3个D、2个8、(2016•某某)如图,正方形ABCD 的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A、B、C、D、9、(2016•某某)如图,O是边长为4cm的正方形ABCD的中心,M 是BC的中点,动点P由A开始沿折线A﹣B ﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P 点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A、B 、C、D、10、(2016•某某)如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A 、18cm2B、12cm 2C、9cm 2D、3cm211、(2016•某某)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A、B、C、D、12、(2016•某某)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB 、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB ﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A 、B 、C、D、二、填空题(共5题;共5分)13、(2016•内江)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.14、(2016•某某)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为________.15、(2016•某某)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M 是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________16、(2016•龙东)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为________.17、(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.三、综合题(共7题;共95分)18、(2016•某某)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19、(2016•某某)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN 是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC= ?请说明理由.20、(2016•某某)如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y 轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.21、(2016•某某)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形AM的面积最小?并求出最小值.22、(2016•某某)如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P 从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P 作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接BC,当t= 时,求△BCP的面积;(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值X 围.23、(2016•呼和浩特)已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.24、(2016•某某)如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B 、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E 在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值X 围.(2)当BP=2 时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE= S△ABC,求BP的长.答案解析部分一、单选题【答案】B 【考点】圆周角定理,点与圆的位置关系【解析】【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC= =5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O 交于点P ,此时PC最小,利用勾股定理求出OC即可解决问题.本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.【答案】C 【考点】切线的性质【解析】【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC 2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1= AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选C.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC 垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP 1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.【答案】C 【考点】等边三角形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5 ),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴ .设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5 ﹣5 n).∵点C、D均在反比例函数y= 图象上,∴ ,解得:.故选C.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D 、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.【答案】C 【考点】锐角三角函数的定义,锐角三角函数的增减性【解析】【解答】解:∵BE⊥AD 于E,CF⊥AD 于F,∴CF∥BE,∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.【分析】设CD=a,DB=b,∠DCF=∠DEB=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.本题考查三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,得到BE+CF=BC•cosα,记住三角函数的增减性是解题的关键,属于中考常考题型.【答案】A 【考点】三角形的面积,矩形的性质【解析】【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD= S矩形ABCD=24,∴S△AOD= S△ACD=12,∵S△AOD=S△AOP+S△DOP= OA•PE+ OD•PF= ×5×PE+×5×PF= (PE+PF)=12,解得:PE+PF=4.8.故选:A.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP= OA•PE+OD•PF求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.【答案】C 【考点】菱形的性质,轴对称-最短路线问题【解析】【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.【答案】C 【考点】等腰三角形的性质,勾股定理【解析】【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE= BC=4,∴AE= =3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD 长为正整数,∴点D的个数共有3个,故选:C.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值X围,进而可得答案.此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值X围.【答案】A 【考点】一次函数的图象,三角形的面积,与一次函数有关的动态几何问题【解析】【解答】解:当P点由A运动到B点时,即0≤x≤2时,y= ×2x=x,当P点由B运动到C点时,即2<x<4时,y= ×2×2=2,符合题意的函数关系的图象是A;故选:A.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值X围.【答案】A 【考点】函数的图象,正方形的性质【解析】【解答】解:分两种情况:①当0≤t<4时,作OM⊥AB于M,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD 的中心,∴AM=BM=OM= AB=2cm,∴S= AP•OM= ×t×2=t(cm2);②当t≥4时,作OM⊥AB于M,如图2所示:S=△OAM 的面积+梯形OMBP的面积= ×2×2+ (2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t (s)的关系的图象是过原点的线段,故选A.【分析】本题考查了动点问题的函数图象、正方形的性质;熟练掌握正方形的性质,求出S与t的函数关系式是解决问题的关键.分两种情况:①当0≤t<4时,作OM⊥AB 于M,由正方形的性质得出∠B=90°,AD=AB=BC=4cm ,AM=BM=OM= AB=2cm,由三角形的面积得出S= AP•OM=t(cm2);②当t≥4时,S=△OAM的面积+梯形OMBP的面积=t(cm2);得出面积S(cm2)与时间t(s)的关系的图象是过原点的线段,即可得出结论.【答案】C 【考点】二次函数的最值,解直角三角形【解析】【解答】解:∵tan∠C= ,AB=6cm,∴ = = ,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ 的面积为S,则S= ×BP×BQ= ×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ 的最大面积为9cm2;故选C.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ 的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值X围.【答案】A 【考点】函数的图象【解析】【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.【答案】D 【考点】分段函数,三角形的面积,矩形的性质,与一次函数有关的动态几何问题,与二次函数有关的动态几何问题【解析】【解答】解:∵AD=5,AN=3,∴DN=2,如图1,过点D作DF⊥AB,∴DF=BC=4,在RT△ADF 中,AD=5,DF=4,根据勾股定理得,AF= =3,∴BF=CD=2,当点Q到点D时用了2s,∴点P也运动2s ,∴AP=3,即QP⊥AB,∴只分三种情况:①当0<t≤2时,如图1,过Q作QG⊥AB,过点D作DF⊥AB,QG∥DF,∴ ,由题意得,NQ=t,MP=t,∵AM=1,AN=3,∴AQ=t+3,∴ ,∴QG= (t+3),∵AP=t+1,∴S=S△APQ = AP×QG= ×(t+1)× (t+3)= (t+2)2﹣,当t=2时,S=6,②当2<t≤4时,如图2,∵AP=AM+t=1+t,∴S=S△APQ= AP×BC= (1+t)×4=2(t+1)=2t+2,当t=4时,S=8,③当4<t≤5时,如图3,由题意得CQ=t﹣4,PB=t+AM﹣AB=t+1﹣5=t﹣4,∴PQ=BC﹣CQ﹣PB=4﹣(t﹣4)﹣(t﹣4)=12﹣2t,∴S=S△APQ= PQ×AB= ×(12﹣2t)×5=﹣5t+50,当t=5时,S=5,∴S与t的函数关系式分别是①S=S△APQ = (t+2)2﹣,当t=2时,S=6,②S=S△APQ=2t+2,当t=4时,S=8,③∴S=S△APQ=﹣5t+50,当t=5时,S=5,综合以上三种情况,D正确故选D.【分析】先求出DN,判断点Q到D点时,DP⊥AB,然后分三种情况分别用三角形的面积公式计算即可.此题是动点问题的函数图象,考查了三角形的面积公式,矩形的性质,解本题的关键是分段画出图象,判断出点Q在线段CD时,PQ⊥AB是易错的地方.二、填空题【答案】10 【考点】轴对称-最短路线问题【解析】【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″= =10.故答案为10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.【答案】4 【考点】解直角三角形【解析】【解答】解:在Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO= = ,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°= ∴AQ= =2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A 时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4【分析】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.【答案】或【考点】三角形中位线定理【解析】【解答】解:如图作EF⊥BC 于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE= BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴ = ,∴= ,∴DO′= .当∠MON=90°时,∵△DOE∽△EFM,∴ = ,∵EM= =13,∴DO= ,故答案为或.【分析】分两种情形讨论即可①∠MN′O′=90°,根据= 计算即可②∠MON=90°,利用△DOE∽△EFM,得= 计算即可.本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.【答案】2 【考点】圆周角定理,轴对称-最短路线问题【解析】【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴ = ,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2 .故答案为:2 .【分析】过A 作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知= ,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.本题考查的是轴对称﹣最短路线问题,圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.【答案】【考点】切线的性质【解析】【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP= = .∵PQ 为⊙C的切线,∴在Rt△CQ P 中,CQ=1,∠CQP=90°,∴PQ= = .故答案为:.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.本题考查了切线的性质、点到直线的距离以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P 、Q的位置是关键.三、综合题【答案】(1)证明:连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=C F,∴四边形OACF为菱形.【考点】垂径定理,切线的性质【解析】【分析】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.(1)连接BC、OC,利用圆周角定理和切线的性质可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代换可得∠DPC=∠ACD,可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F 是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【答案】(1)证明:如图一中∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴ ,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN .理由如图二中,∵四边形ABCD 是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴ ∵AB=BC,∴AN=AM.②这样的点P 不存在.理由:假设PC= ,如图三中,以点C为圆心为半径画圆,以AB为直径画圆,CO== >1+ ,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC= 的点P不存在【考点】正方形的性质,相似三角形的判定与性质,相似三角形的应用【解析】【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出= = ,由△BAP∽△BNA,推出= ,得到= ,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC= ,推出矛盾即可.本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【答案】(1)解:解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5(2)解:解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C (0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ= •PQ•5= ×6×5=15;(3)解:①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x ﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x ﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x 2+17x+35=0,解得x 1=﹣,x2=﹣5(舍去),∴OH= ,∴AH=5﹣= ,∵HE∥OC,∴ = = ;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x 1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′= E′H′= (x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x= (x+5),解得x1=﹣5(舍去),x2= ,此时P点坐标为(,﹣7﹣6 ),综上所述,满足条件的P 点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6 )【考点】二次函数的应用,二次函数图象上点的坐标特征【解析】【分析】(1)设交点式为y=a (x+5)(x+1),然后把C点坐标代入求出a即可;(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD 为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x ﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x ﹣,则﹣x﹣x﹣=5,则解方程求出x可得到OH和AH的长,然后利用平行线分线段成比例定理计算出= ;②设P(x,﹣x2﹣6x﹣5),则E(x,﹣x ﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE 得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′= E′H′= (x+5),P′E′=x2+5x,则x2+5x= (x+5),然后分别解方程求出x 可得到对应P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和等腰三角形的判定;会运用待定系数法求函数解析式;理解坐标与图形性质,能运用相似比计算线段的长;会运用方程的思想和分类讨论的思想解决问题.【答案】(1)解:∵在Rt△ABC 中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5 .由题意知:BM=2t ,= t,∴BN=5 - t,∵BM=BN,∴2t=5 - t 解得:.(2)解:分两种情况:①当△MBN∽△ABC时,则,即,解得:t= .②当△NBM∽△ABC时,则,即,解得:t= .综上所述:当t= 或t= 时,△MBN与△ABC相似.(3)解:过M作MD⊥BC 于点D,则MD∥AC,∴△BMD∽△BAC,∴ ,即,解得:MD=t.设四边形AM 的面积为y ,∴y= = =.∴根据二次函数的性质可知,当t= 时,y的值最小.此时,.【考点】二次函数的性质,相似三角形的性质【解析】【分析】(1)由已知条件得出AB=10,BC=5 .由题意知:BM=2t ,= t,BN=5 - t,由BM=BN得出方程2t=5 - t,解方程即可;(2)分两种情况:①当△MBN∽△ABC 时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形AM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.【答案】(1)解:把A(3,0),B(0,4)代入y=﹣x2+bx+c中得:解得,∴二次函数y=﹣x 2+bx+c的表达式为:y=﹣x 2+ x+4(2)解:如图1,当t= 时,AP=2t,∵PC∥x 轴,∴ ,∴ ,∴OD= = × = ,当y= 时,=﹣x2+ x+4,3x2﹣5x﹣8=0,x 1=﹣1,x2= ,∴C(﹣1,),由得,则PD=2,∴S△BCP= ×PC×BD= ×3× =4(3)解:如图3,当点E 在AB上时,由(2)得OD=QM=ME= ,∴EQ= ,由折叠得:EQ⊥PD,则EQ∥y轴∴ ,∴ ,∴t= ,同理得:PD=3﹣,∴当0≤t≤ 时,S=S△PDQ = ×PD×MQ= ×(3﹣)× ,S=﹣t2+ t;当<t≤2.5时,如图4,P′D′=3﹣,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,),∵AB的解析式为:y=﹣x+4,D′E的解析式为:y= x+ t,则交点N (,),∴S=S △P′D′N= ×P′D′×FN= ×(3﹣)(﹣),∴S= t2﹣t+ .【考点】二次函数的应用【解析】【分析】(1)直接将A、B两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP的面积,必须求对应的底和高,即PC和BD;先求OD,再求BD,PC是利用点P 和点C的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE完全在△OAB中时,即当0≤t≤ 时,如图2所示,重合部分的面积为S就是△DPE的面积;②△DPE有一部分在△OAB中时,当<t≤2.5时,如图4所示,△PDN就是重合部分的面积S.本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,并能利用方程组求出两图象的交点,把方程和函数有机地结合在一起,使函数问题简单化;同时考查了分类讨论的思想,这一思想在二次函数中经常运用,要熟练掌握;本题还与相似结合,利用相似三角形对应边的比来表示线段的长.【答案】(1)解:∵y=ax 2﹣2ax+c 的对称轴为:x=﹣=1,∴抛物线过(1,4)和(,﹣)两点,代入解析式得:,解得:a=﹣1,c=3,∴二次函数的解析式为:y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)解:∵C、D两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知:|PC﹣PD|≤|CD|,∴P、C、D三点共线时|PC﹣PD|取得最大值,此时最大值为,|CD|= ,由于CD所在的直线解析式为y=x+3,将P(t,0)代入得t=﹣3,∴此时对应的点P为(﹣3,0)(3)解:y=a|x|2﹣2a|x|+c的解析式可化为:y=设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:线段PQ所在的直线解析式:y=﹣2x+2t,∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数y=有一个公共点,此时t= ,当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与y= 有两个公共点,所以当≤t<3时,线段PQ与y= 有一个公共点,②将y=﹣2x+2t代入y=﹣x2+2x+3(x≥0)得:﹣x2+2x+3=﹣2x+2t ,﹣x2+4x+3﹣2t=0,令△=16﹣4(﹣1)(3﹣2t)=0,t= >0,所以当t= 时,线段PQ与y= 也有一个公共点,③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ只与y=﹣x 2﹣2x+3(x<0)有一个公共点,此时t=﹣3,所以当t≤﹣3时,线段PQ与y= 也有一个公共点,综上所述,t的取值是≤t<3或t= 或t≤﹣3.【考点】与二次函数有关的动态几何问题【解析】【分析】(1)先利用对称轴公式x=﹣计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P、C、D三点共线时|PC ﹣PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;(3)先把函数中的绝对值化去,可知y= ,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C 重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2﹣2a|x|+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与当函数y=a|x|2﹣2a|x|+c(x<0)时也有一个公共点,则当t≤﹣3时,都满足条件;综合以上结论,得出t的取值.本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.【答案】(1)解:过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6× =3 ,。
深圳市2016年中考数学模拟试卷含答案解析
(解析版)2016年中考数学模拟试卷广东省深圳市一、选择题12012 ).﹣的相反数是(C2012BDA2012..﹣..﹣2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(AC BD....3 2012330“””“,深圳市民中心附近几座地标,日年.地球一小时月提高节能,倡导低碳性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了千瓦时,将)4334 10DC3310A3.3103.4 B3.410 ×.×××...42016 ?).(深圳模拟)下列运算正确的是(336222 =4a4aa=7aB 3a3aA﹣+﹣..2333232D3aaC3a4a==12a4a?÷).(.5 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)83036282550数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.中位数.众数.平均数68001200元,后来由于该商品积压,商店准备打折元,.某种商品的进价为出售时标价为5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折.折折折...28/ 17451=20°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2 )么∠的度数是(A30 B25 C20 D15 °°°°....8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4 )停止后,指针所指区域内的数字之和为的概率是(CDA B ....9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>,得﹣.由.由>>,得Cabab Daba2b2﹣,得﹣,得>﹣><.由﹣>.由2bxca0y=axb0c10②①;()的图象如图所示,有下列四个结论:+≠+.已知二次函数<24ac0abc00b ④③)>,其中正确的个数有(;﹣ +﹣><;A1 B2 C3 D4 个个个...个.11 ).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;A1 B2 C3 D4 个个..个..个12ABCDAB=BDEFABADAE=DFBF.连接.点、中,上,且分别在、.如图,在菱形DEGCGBDH .下列结论:与相交于点,连接与相交于点28/ 22 CG=BG=6GFSAEDDFBAF=2DF③②①.;;,则若△≌△BCDG四边形)其中正确的结论(D ABC ①②③②③①②①③..只有.只有.只有二、填空题:2 2a8=13..分解因式:﹣14OxAByCD为第一象、轴的正半轴于点.如图,以原点两点,交为圆心的圆交,轴于ODAB=20OCD= °°.限内⊙上的一点,若∠,则∠15m的值.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,.是16AOBCAOBC对,反比例函数.如图,在平面直角坐标系中有一正方形经过正方形ABCk 24.角线的交点,半径为(﹣)的圆内切于△,则的值为三、解答题28/ 317..计算:18.解方程:19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数,它四个类别进行了抽样调查(每位同学仅选一项)分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1 合计n=1 m=;()表中,2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校20OABOA,与大圆为圆心的两个同心圆中,,且与小圆相交于点.如图,在以经过圆心BACDCOACB ..小圆的切线,且相交于点与大圆相交于点平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.)试判断线段(、、3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.()若,21ABCDADBCB=90AB=7AD=9BC=12°,在线段∥,中,已知,∠,.如图,在梯形,BCEDEEFDEABF .,交直线⊥上任取一点,连接于点,作1FBCE 的长;(重合,求)若点与2FABAF=CECE 的长.()若点在线段上,且,求28/ 414022销售后获利情况如表一家蔬菜公司收购到某种绿色蔬菜准备加工后进行销售,吨,.所示:精加工后销售销售方式粗加工后销售20001000每吨获利(元)155受但两种加工不能同时进行.已知该公司的加工能力是:每天能精加工吨,吨或粗加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.140112吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求(天刚好加工完2)如果先进行精加工,然后进行粗加工.(Wm①之间的函数关系式;元与精加工的蔬菜吨数试求出销售利润14010②则加工这批蔬菜若要求在不超过吨蔬菜全部加工完后进行销售,天的时间内,将最多获得多少利润?此时如何分配加工时间?20C0By23y=x1bxcxA,.如图,已知知抛物线)和点轴交于点++,与,与轴交于点((3).﹣1)求抛物线的解析式;(yG G121H0,(点轴的左侧)(,﹣在).问在抛物线上是否存在点(()如图己知点),G=SS的坐标;若不存在,请说明理由;?若存在,求出点使得GHAGHC△△OC0FE32Dx2的中点,连)如图(),抛物线上点),在(轴上的正投影为点是(﹣,PEBDFBDDFPEPF=的长.∠,求线段接,为线段上的一点,若∠28/ 52016年广东省深圳市中考数学模拟试卷参考答案与试题解析一、选择题12012 )的相反数是(.﹣C2012DA2012B...﹣.﹣相反数.【考点】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答.【分析】20122012 .的相反数是【解答】解:﹣D .故选aa即可得出正确答的相反数是﹣【点评】本题考查了相反数的定义,根据相反数的定义:案,是基础题,比较简单.2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(B CDA ....简单组合体的三视图.【考点】找到从左面看所得到的图形即可.【分析】3 个正方形,第二列有一个正方形.解:从左面看可得到第一列为【解答】D .故选本题考查了三视图的知识,左视图是从物体的左面看得到的视图.【点评】28/ 63 2012330““””,深圳市民中心附近几座地标月提高节能,倡导低碳地球一小时,日年.性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了)千瓦时,将4334 10 D10C 3310A3.3103.4 B3.4×××.×...科学记数法与有效数字.【考点】n1a10nna10的,≤【分析】科学记数法的表示形式为|×为整数.确定|的形式,其中<339005n=51=4 .有值是易错点,由于﹣位,所以可以确定0 的数字起,后面所有的数字都是有效数字.有效数字的计算方法是:从左边第一个不是a10 的多少次方无关.有关,与用科学记数法表示的数的有效数字只与前面的44103.433900=3.3910.≈【解答】解:××D .故选【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4 ).下列运算正确的是(336222 4aa=7aB 3a3aA=4a﹣.+﹣.2332323 =4aC3a4aa=12a3a D?÷)..(整式的混合运算.【考点】A 、原式合并同类项得到结果,即可作出判断;【分析】B 、原式合并同类项得到结果,即可作出判断;C 、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D 、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断.3 =7aA,错误;、原式【解答】解:2 aB=,正确;、原式﹣5 C=12a,错误;、原式336 =9aD=4aa,错误,÷、原式B故选此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.【点评】/ 75 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)8 2550302836数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.平均数.众数.中位数统计量的选择.【考点】根据题意可知最畅销的应为众数,本题得以解决.【分析】解:由题意可知,【解答】最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,B .故选本题考查统计量的选择,解题的关键是明确题意,找出满足所求问题的条件.【点评】68001200元,后来由于该商品积压,出售时标价为.某种商品的进价为商店准备打折元,5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折..折折..折一元一次不等式的应用.【考点】8001200x5%≥折,根据保持利润率不低于﹣,可列出不等式:×【分析】本题可设打5%800x 的值即可得出打的折数.×,解出8008001200x5%,×≥×﹣【解答】解:设可打折,则有7x.≥解得7折.即最多打B.故选:计算折数时本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,【点评】10.注意要除以1=20745°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2)的度数是(么∠28/ 8D15 C20 25A30 B°°°°....平行线的性质.【考点】本题主要利用两直线平行,内错角相等作答.【分析】解:根据题意可知,两直线平行,内错角相等,【解答】1=3,∴∠∠32=45°,+∵∠∠2=451°∠∴∠+ 1=20°,∵∠2=25°.∴∠B.故选:直尺的对边需要注意隐含条件,本题主要考查了两直线平行,内错角相等的性质,【点评】45°的利用.平行,等腰直角三角板的锐角是8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4)的概率是(停止后,指针所指区域内的数字之和为B CDA....几何概率.【考点】2即可求出针头扎在阴影区域分别求出两圆中【分析】根据几何概率的定义,所占的面积,内的概率.1222,【解答】解:指针指向()中的概率是,指针指向()中的概率是28/ 9=4 .指针所指区域内的数字之和为的概率是×B .故选【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的= 第一步事件的概率与第二步事件的概率的积.事件的概率9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>>,得.由.由>,得﹣Cabab Daba2b2 ﹣>,得,得﹣>.由>﹣<﹣.由不等式的性质.【考点】根据不等式的基本性质分别进行判定即可得出答案.【分析】Aabacbcc0A 选项错误;.由,当>解:,不等号的方向改变.故,得<>【解答】Bab2a2bB选项正,得﹣,不等式两边乘以同一个负数,不等号的方向改变,故.由<﹣>确;CababC,不等式两边乘(或除以)同一个负数,不等号的方向改变;故,得﹣.由>﹣>选项错误;Daba2b2D选项,得﹣﹣,不等式两边同时减去一个数,不等号方向不改变,故<.由>错误.B .故选0”“是很特殊的一个数,因此,解答不等式的此题主要考查了不等式的基本性质.【点评】00 ””““的陷阱.不等式的基本性质:存在与否,以防掉进问题时,应密切关注1 )不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2 )不等式两边乘(或除以)同一个正数,不等号的方向不变.(3 )不等式两边乘(或除以)同一个负数,不等号的方向改变.(2bxca0b10y=ax0c②①;.已知二次函数<++)的图象如图所示,有下列四个结论:(≠24ac0abcb00 ④③)>;﹣>;﹣+<,其中正确的个数有(28/ 1043 DBA1 2 C个.个个...个二次函数图象与系数的关系.【考点】0ba0y ①正确;,而对称轴在<轴左侧,即【分析】由抛物线开口向下知道,因此判断<0yc②正确;>轴的交点在正半轴得到,因此可以判断由抛物线与2 04acxb③正确;>由图象与﹣轴有两个交点得到以,因此可以判断cb0x=1y=a④错.﹣,所以判断时,对应的函数值由图象可知当>﹣+0bba0ya①,<同号,即,而对称轴在轴左侧,∴<【解答】解:、∵抛物线开口向下,∴正确;0cy②,正确;>∵抛物线与轴的交点在正半轴,∴2 b04acx③,正确;>轴有两个交点,∴﹣∵图象与0bcx=1y=a④,错误.+∵由图象可知当﹣﹣时,对应的函数值>C.故选本题考查二次函数的字母系数与图象位置之间的关系.【点评】11).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;4 C3D BA1 2个.个个.个..命题与定理.【考点】等腰梯形的性质及平行线的性质分别判断后利用平行四边形的判定、菱形的判定、【分析】即可确定正确的选项.①对角线互相平分的四边形是平行四边形,正确,是真命题;【解答】解:28/ 11②等腰梯形的对角线相等,正确,是真命题;③对角线互相垂直的平行四边形是菱形,错误,为假命题;④两直线平行,内错角相等故错误,是假命题.2 个,其中假命题有B .故选【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、菱形的判定、等腰梯形的性质及平行线的性质,难度不大.12ABCDAB=BDEFABADAE=DFBF.连接.点、、上,且.如图,在菱形分别在中,DEGCGBDH .下列结论:相交于点与与,连接相交于点2AF=2DFBG=6GF=CGAEDDFBS ③②①.;;,则若△≌△BCDG四边形)其中正确的结论(A B C D ①②③②③①③①②..只有.只有.只有【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.ABDSASAEDDFB ”①“;【分析】易证△证明△为等边三角形,根据≌△CDGBGE=60=BCDBBGC=DGC=60°②°.因此∠∠∠、、,四点共圆,从而得点证明∠过、CNGDNCCMGBMCBMCDNS=S,,⊥于证明△.点,作≌△⊥于所以CMGNBCDG四边形四边形易求后者的面积.FFPAEP ③点.∥作过点于FPAE=DFDA=13FPBE=16=FGBGBG=6GF .::根据题意有:,即:::,则ABCDAB=AD ①.∵解:为菱形,∴【解答】AB=BDABD 为等边三角形.∵,∴△A=BDF=60 °.∠∴∠AE=DFAD=BD ,又∵,28/ 12AEDDFB ;∴△≌△BGE=BDGDBF=BDGGDF=60=BCD °②,+∠∠∵∠∠∠∠+BGDBCD=180 °,+即∠∠BCDG 四点共圆,∴点、、、BGC=BDC=60DGC=DBC=60 °°.∠,∠∠∴∠BGC=DGC=60 °.∴∠∠CCMGBMCNGDN .过点,作于⊥⊥于CM=CN ,∴,∵CBMCDNHL )≌△∴△,(S=S .∴CMGNBCDG四边形四边形S=2S ,CMG△CMGN四边形CGM=60 °,∵∠CM=CGGM=CG ,,∴2CG S=2S=2CG=CG×.×∴×CMG△CMGN四边形FFPAEP ③点.∥于过点作AF=2FD ,∵FPAE=DFDA=13 ,∴:::AE=DFAB=AD ,,∵BE=2AE ,∴FPBE=16=FGBG ,∴:::BG=6GF .即D .故选28/ 13不规则图形的面平行线分线段成比例、【点评】此题综合考查了全等三角形的判定和性质、积计算方法等知识点,综合性较强,难度较大.二、填空题:2 a2132a2a28=.﹣.分解因式:(﹣+))(提公因式法与公式法的综合运用.【考点】2,再对余下的多项式利用平方差公式继续分解.【分析】先提取公因式28 2a﹣【解答】解:2 =2a4),(﹣2a2a=2).+(﹣)(22a2a).)(+故答案为:﹣(一个多项式有公因式首先提取公【点评】本题考查了用提公因式法和公式法进行因式分解,因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.DCBxAy14O为第一象轴于轴的正半轴于点为圆心的圆交、两点,交.如图,以原点,65DAB=20OCD=O°°.限内⊙,则∠上的一点,若∠圆周角定理;坐标与图形性质.【考点】OCD=DOBDAB=20°∠【分析】根据∠的度数,再利用等腰三角形的性质得出∠,得出∠CDO,进而求出答案.DAB=20DO°,【解答】,∵∠解:连接28/ 14DOB=40°,∴∠40=50COD=90°°°,﹣∴∠CO=DO,∵OCD=CDO,∠∴∠2=65180OCD=50°°°.﹣)÷∴∠(65.故答案为:CDOOCD=是解决∠【点评】此题主要考查了圆周角定理以及等腰三角形的性质,得出∠问题的关键.158 15m.的值是.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,规律型:数字的变化类.【考点】nabcd,根、【分析】设第、个正方形中的四个数(从左上角开始按逆时针排列)为、nnnn22n2cc=4n ”“,依此规律即可解决问题.的变化规律++据给定的数据找出nn nabcd,【解答】解:设第、个正方形中的四个数(从左上角开始按逆时针排列)为、、nnnn 观察,发现规律:a=0a=2a=4 …,,∵,,312a=2n1 );﹣∴(n b=2b=4b=6 …,∵,,,321b=2n ;∴n d=4d=6d=8 …,,∵,,312d=2n1 );∴(+n c=8240=bdac=22=462=bdcc=44=684=bda …???,﹣﹣,,×﹣×∵﹣═×﹣﹣,32321132312122n2=4n=bcda ?.﹣+∴+nnnn a=2n1=10n=6 .令(﹣),解得:n28/ 152 2=15826c=46.+×+×∴6 158.故答案为:解题的关键是求出正方形中右下角数的变化本题考查了规律型中的数字的变化类,【点评】22c=4n2n”“.本题属于中档题,难度不大,解题的关键是根据给定的数据,找出的规律++n变化规律是关键.AOBC16AOBC对.如图,在平面直角坐标系中有一正方形,反比例函数经过正方形42ABC4k .﹣,则的值为角线的交点,半径为()的圆内切于△三角形的内切圆与内心;待定系数法求反比例函数解析式;正方形的性质.【考点】AD=BD=DO=CDNO=DNHQ=QEHC=CE,进而根据【分析】根据正方形的性质得出,,,42ABCCDDO的长,再利用勾股定﹣,得出)的圆内切于△的长,从而得出半径为(DNk 的值.的长进而得出理得出DDDMAOMDNBON ;作⊥⊥,过点,于点解:设正方形对角线交点为【解答】于点QHEQHQE .设圆心为,连接,切点为、、AOBCAOBC 对角线的交点,∵在正方形中,反比例函数经过正方形AD=BD=DO=CDNO=DNHQ=QEHC=CE ,∴,,,QHACQEBCACB=90 °,⊥,,∠⊥HQEC 是正方形,∴四边形42ABC ,﹣∵半径为()的圆内切于△DO=CD,∴222 HC=QCHQ,∵+222 2=QC2HQ=24,)×(∴﹣22 44=32QC=48,﹣∴(﹣)QC=44,∴﹣28/ 16=22CD=444 ,+(﹣)﹣∴DO=2,∴2222=8NO=DN =DO2,(+∵)2 =82NO,∴2 NO=4,∴NO=4DN,∴×xy=k=4.即:4.故答案为:【点评】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函CDDNNO=4 是解决问题的关键.的长度,进而得出×数解析式,根据已知求出三、解答题17..计算:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【考点】本题需先根据实数运算的步骤和法则分别进行计算,再把所得结果合并即可.【分析】= ,【解答】解:原式=.在解题时要注意运算顺序和公式的综合应用以及结果本题主要考查了实数的运算,【点评】的符号是本题的关键.18.解方程:解分式方程.【考点】28/ 172xx2),两边同时乘最简公分母可把分式+﹣)(【分析】观察方程可得最简公分母是:(方程化为整式方程来解答.2x2x),)(【解答】解:方程两边同乘以(+﹣2 4=x2xx22),()(﹣﹣)+得(+ x=3.解得x=3是原方程的解.经检验:1”“,把分式方程转化为整式方程求解.【点评】()解分式方程的基本思想是转化思想2)解分式方程一定注意要验根.(19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数(每位同学仅选一项),它四个类别进行了抽样调查分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1合计841n=0.33 m=;)表中,(2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校频数(率)分布表;用样本估计总体.【考点】1 )首先求出总人数,利用艺术类的频数与频率进而求出答案;【分析】(21 )中所求,即可得出答案;()利用(310.33 即可得出答案.()中所求,利用总数乘以)利用(1220.11=200 ,)由题意可得:÷【解答】解:(m=2000.42=84 ,×则n==0.33 ,840.33 ;故答案为:,28/ 182 )由题意可得:最喜爱阅读艺术类读物的学生最少;(3120012000.33=396 (人).)(×名学生中最喜爱阅读科普读物的学生有:mn 的值是解题关键.,【点评】此题主要考查了频数与频率,正确得出20OABOA,与大圆.如图,在以经过圆心为圆心的两个同心圆中,,且与小圆相交于点BACDCOACB .,且相交于点与大圆相交于点.小圆的切线平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.、(、)试判断线段3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.)若,(直线与圆的位置关系;扇形面积的计算.【考点】1OEBCBC是小圆的切线,即与小圆的关系是相切.垂直【分析】()只要证明即可得出2RtOADRtOEBEB=AD,从而得到三者△△≌()利用全等三角形的判定得出,从而得出的关系是前两者的和等于第三者.3 )根据大圆的面积减去小圆的面积即可得到圆环的面积.(1BC 所在直线与小圆相切.【解答】解:()理由如下:OOEBCE ;过圆心⊥作,垂足为ACABO ,∵经过圆心是小圆的切线,OAAC ;∴⊥COACBOEBC ,又∵平分∠⊥,OE=OA ,∴BC 所在直线是小圆的切线.∴28/ 192ACAD=BC .)(+理由如下:OD .连接ACOABCOE ,于点切小圆,于点∵切小圆CE=CA ;∴RtOADRtOEB 中,△∵在△与,RtOADRtOEBHL ),≌(△∴△EB=AD ;∴BC=CEEB ,+∵BC=ACAD .∴+3BAC=90AB=8cmBC=10cm °,,(,)∵∠AC=6cm ;∴BC=ACAD ,∵+AD=BCAC=4cm ,∴﹣2222 ODS=ODOAOA=πππ),﹣﹣∵圆环的面积为:(())(222 =ADODOA,﹣又∵22=16S=4cmππ).∴(①本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,【点评】②所证切线与圆的已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.21ABCDADBCB=90AB=7AD=9BC=12°,在线段.如图,在梯形中,已知,∥,∠,,BCEDEEFDEABF .上任取一点,连接,作⊥,交直线于点28/ 201FBCE 的长;与(重合,求)若点2FABAF=CECE 的长.(上,且)若点,求在线段相似三角形的判定与性质;矩形的判定与性质;梯形.【考点】1ABECBECE ;(【分析】求出)根据题意画出图形,得出矩形,即可求出2DDMBCMABMDAD=BM=9AB=DM=7,⊥是矩形,推出于(,)过,得出四边形作CM=129=3AF=CE=aBF=7aEM=a3BE=12aBFE=DEM,∠﹣,,设,则,求出∠﹣﹣,∠﹣=a B=DMEFBEEMD即可.∠,得出比例式,证△,求出∽△B1F重合时,)当解:(和【解答】EFDE,⊥∵DEBC,∵⊥B=90°,∵∠BCAB,⊥∴DEAB,∥∴ADBC,∵∥ABED是平行四边形,∴四边形AD=EF=9,∴9=3CE=BCEF=12;﹣∴﹣MDMBC2D,⊥(作)过于B=90°,∵∠BCAB,⊥∴DMAB,∥∴ADBC,∵∥ABMD 是矩形,∴四边形9=3CM=12AD=BM=9AB=DM=7,,﹣∴,BE=123EM=aaBF=7AF=CE=aa,﹣﹣﹣设,则,,28/ 21FEC=B=DMB=90 °,∠∵∠∠FEBDEM=90BFEFEB=90 °°,∴∠++∠,∠∠BFE=DEM ,∴∠∠B=DME ,∵∠∠FBEEMD ,∴△∽△= ,∴=,∴a=5a=17 ,,FABAB=7 ,∵点上,在线段AF=CE=17 (舍去),∴CE=5 .即【点评】本题考查了直角梯形性质,矩形的性质和判定,相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.22140吨,准备加工后进行销售,.一家蔬菜公司收购到某种绿色蔬菜销售后获利情况如表所示:精加工后销售粗加工后销售销售方式20001000每吨获利(元)515吨,但两种加工不能同时进行.吨或粗加工受已知该公司的加工能力是:每天能精加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.112140 吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求天刚好加工完(2 )如果先进行精加工,然后进行粗加工.(28/ 22Wm ①之间的函数关系式;试求出销售利润元与精加工的蔬菜吨数10140②吨蔬菜全部加工完后进行销售,则加工这批蔬菜天的时间内,将若要求在不超过最多获得多少利润?此时如何分配加工时间?一次函数的应用.【考点】1=12=140,粗加工吨数精加工吨数粗加工天数本题等量关系为:精加工天数++【分析】(,)列出方程组求解即可.2m①来表示粗加工吨数,)(根据精加工吨数和粗加工吨数的等量关系,用精加工吨数Wm 之间的关系,与在列出mWW ②最大值.根据题意要求先确定并求出的取值范围,然后表示1xy 天进行粗加工,)设应安排解:(天进行精加工,【解答】,根据题意得,解得48 天进行粗加工.答:应安排天进行精加工,2m140m ①)吨,根据题意得:(吨,则粗加工()﹣精加工W=2000m1000140m )(+﹣=1000m140000 ;+10 ②天的时间内将所有蔬菜加工完,∵要求在不超过10 ,+∴≤5 m≤解得:50m,≤∴≤k=10000W=1000m140000,又∵在一次函数中,+>mW 的增大而增大,随∴m=5W=10005140000=145000.时,∴当+×最大55=1,∴精加工天数为÷514015=9.﹣)÷粗加工天数为(14500091元.天进行粗加工,可以获得最多利润为∴安排天进行精加工,28/ 23【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用和一次函数的应用,解题关键在于看清题意,找到正确的等量关系,列出方程式,最后解出答案.2bxcxA1y=x230ByC0,.如图,已知知抛物线,+轴交于点+)和点与(轴交于点,与(3 ).﹣1 )求抛物线的解析式;(21H01G Gy轴的左侧),).),己知点问在抛物线上是否存在点(在,﹣(点()如图(S=SG 的坐标;若不存在,请说明理由;使得?若存在,求出点GHAGHC△△32DxE20FOC 的中点,连),抛物线上点,在是轴上的正投影为点),((﹣)如图(DFPBDEPF=BDFPE 的长.,∠接为线段,求线段上的一点,若∠二次函数综合题.【考点】2bxcxA10ByC01y=x,++)和点与轴交于点轴交于点,与(【分析】()由抛物线,(3 ),利用待定系数法即可求得二次函数的解析式;﹣2GHACGHACGH的解析式,根据交(与)分别从与∥不平行去分析,注意先求得直线点问题即可求得答案,小心不要漏解;3DFPBEFDP,由相似三角形的对)利用待定系数法求得直线∽△的解析式,即可证得△(应边成比例,即可求得答案.1,【解答】解:()由题意得:,解得:22x3 y=x;+﹣∴抛物线的解析式为:2 )解法一:(28/ 24GGmnn=3HGC 不存在.(﹣,设,时,△假设在抛物线上存在点),显然,当n3 ①时,当>﹣S=m S=,﹣+﹣可得+,GHCGHA△△S=S ,∵GHAGHC△△mn1=0 ,+∴+,由,解得:或Gy 轴的左侧,在∵点G);∴(﹣,4n3 ②时,当﹣<﹣≤S=S=m ,﹣﹣﹣可得,GHCGHA△△S=S ,∵GHAGHC△△3mn1=0 ,﹣﹣∴,由,解得:或Gy 轴的左侧,∵点在G14 ).∴,﹣(﹣G14G ).,﹣∴存在点(﹣)或(﹣,解法二:AGHACCGH①①的距离相等,∥时,点如图,当到,点S=S,∴GHAGHC△△AC3y=3x,﹣可得的解析式为ACGHGHy=3x1,∵∥,得的解析式为﹣1G4);∴(﹣,﹣28/ 25GHAC ②②不平行时,,当与如图ACGH 的距离相等,,到直线∵点GHACM).过线段(∴直线的中点,﹣GHy=x1 ,∴直线﹣的解析式为﹣G),(﹣∴,GG14 ).∴存在点)或(﹣,,﹣(﹣3)解法一:(0E2③),(﹣如图,,∵D2,∴的横坐标为﹣D在抛物线上,∵点D23),∴,﹣(﹣OCF中点,∵是0F),(∴,﹣y=xDF,的解析式为:﹣∴直线xQ20),(则它与,轴交于点PDFDFPEPFQBD=QB=QDQDBBPEFPD=FPD=180°,∠,∠++∠+∠∠∠+则,得∠∠PDFEPF=,∠∵∠BPE=DFP,∴∠∠PBEFDP,∽△∴△,∴DP=PB ?,得:DP=BD= PB,+∵PB=,∴PBD 的中点,即是DE ,连接28/ 26BD=PE=RtDBE .∴在△中,解法二:ABDCBDP ′,为等腰梯形,取可知四边形的中点= F=OBPCD′,()+PFCDAB ′,∥∥EF=DF= EF,连接,可知EF=FP=FD ′,即FEPFPD ′′,即△相似△EPF=FPD=FDP ′′′,∠∠即∠EPFEPF ′重合,和∠即∠PP ′重合,即和PBC 中点,为BD=BDE PE=为直角三角形).(△28/ 27直线与二次函数的交点问题以及三角此题考查了待定系数法求二次函数的解析式,【点评】形面积问题的求解等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想、分类讨论思想与方程思想的应用28/ 28。
2016年中考数学真题及答案解析
2016年中考数学真题及答案解析一. 选择题1. 如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13-D. 132. 下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a b C. 2ab D. 3ab3. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男 生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =, 那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 6. 如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外, 那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r <<二. 填空题7. 计算:3a a ÷= 8. 函数32y x =-的定义域是9. 2=的解是10. 如果12a =,3b =-,那么代数式2a b +的值为 11. 不等式组2510x x <⎧⎨-<⎩的解集是12. 如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是13. 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值 随着x 的值增大而减小,那么k 的取值范围是14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷 一次骰子,向上的一面出现的点数是3的倍数的概率是15. 在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是17. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为 60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为米(精确到1 1.73≈)18. 如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. 计算:12211|4()3---;20. 解方程:214124x x -=--;21. 如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =, DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值;22. 某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续 搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如 图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表 示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解 答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时, 那么B 种机器人比A 种机器人多搬运了多少千克?23. 已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =;(1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形;24. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B , 与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ; (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;25. 如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =, 点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函 数解析式,并写出x 的取值范围;参考答案一. 选择题1. D2. A3. C4. C5. A6. B二. 填空题7. 2a 8. 2x ≠ 9. 5x = 10. 2- 11. 1x < 12.94 13. 0k > 14. 13 15. 1416. 600017. 208 18. 12三. 解答题19. 解:原式1296=--= 20. 解:去分母,得2244x x +-=-; 移项、整理得220x x --=;经检验:12x =是增根,舍去;21x =-是原方程的根; 所以,原方程的根是1x =-;21. 解(1)∵2AD CD =,3AC = ∴2AD = 在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,∴45A ∠=︒,AB =;∵DE AB ⊥ ∴90AED ∠=︒,45ADE A ∠=∠=︒,∴cos 45AE AD =⋅︒=∴BE AB AE =-=BE 的长是 (2)过点E 作EH BC ⊥,垂足为点H ; 在Rt BEH ∆中,90EHB ∠=︒,45B ∠=︒,∴cos452EH BH EB ==⋅︒=,又3BC =, ∴1CH =; 在Rt ECH ∆中,1cot 2CH ECB EH ∠==,即ECB ∠的余切值是12; 22. 解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤); (2)设A y 关于x 的函数解析式为2A y k x =(20k ≠), 由题意,得21803k =,即260k = ∴60A y x =; 当5x =时,560300A y =⨯=(千克), 当6x =时,90690450B y =⨯-=(千克), 450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克23. 证明:(1)在⊙O 中,∵AB AC = ∴AB AC = ∴B ACB ∠=∠; ∵AE ∥BC ∴EAC ACB ∠=∠ ∴B EAC ∠=∠; 又∵BD AE = ∴ABD ∆≌CAE ∆ ∴AD CE =; (2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径 ∴AH BC ⊥ ∴BH CH =;∵AD AG = ∴DH HG = ∴BH DH CH GH -=-,即BD CG =; ∵BD AE = ∴CG AE =;又∵CG ∥AE ∴四边形AGCE 是平行四边形;24. 解:(1)∵抛物线25y ax bx =+-与y 轴交于点C ∴(0,5)C - ∴5OC =; ∵5OC OB = ∴1OB =;又点B 在x 轴的负半轴上 ∴(1,0)B -; ∵抛物线经过点(4,5)A -和点(1,0)B -, ∴1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩;∴这条抛物线的表达式为245y x x =--;(2)由245y x x =--,得顶点D 的坐标是(2,9)-; 联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=; ∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H ;∵1102ABC S AB CH ∆=⨯⨯=,AB = ∴CH =;在Rt BCH ∆中,90BHC ∠=︒,BC =BH ==∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BOBEO EO∠=; ∵BEO ABC ∠=∠ ∴23BO EO =,得32EO = ∴点E 的坐标为3(0,)2;25. 解:(1)过点D 作DH AB ⊥,垂足为点H ;在Rt DAH ∆中,90AHD ∠=︒,15AD =,12DH =;∴9AH ==;又∵16AB = ∴7CD BH AB AH ==-=;(2)∵AEG DEA ∠=∠,又AGE DAE ∠=∠ ∴AEG ∆∽DEA ∆; 由AEG ∆是以EG 为腰的等腰三角形,可得DEA ∆是以AE 为腰的等腰三角形; ① 若AE AD =,∵15AD = ∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ∴11522AQ AD == 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠== ∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,DE ==∵AEG ∆∽DEA ∆ ∴AE EGDE AE =∴2EG =∴2DG =∵DF ∥AE ∴DF DG AE EG =,222212(9)y x x xx +--=; ∴22518x y x -=,x 的取值范围为2592x <<;。
2016中考数学模拟试题(有答案)
2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。
A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016届中考数学真题模拟集训:专题36+动点综合问题试题(新人教版含解析)(2年中考1年模拟)
专题36 动点综合问题知识点名师点晴动点问题中的特殊图形等腰三角形与直角三角形利用等腰三角形或直角三角形的特殊性质求解动点问题相似问题利用相似三角形的对应边成比例、对应角相等求解动点问题动点问题中的计算问题动点问题的最值与定值问题理解最值或定值问题的求法动点问题的面积问题结合面积的计算方法来解决动点问题动点问题的函数图象问题一次函数或二次函数的图象结合函数的图象解决动点问题☞2年中考【2015年题组】1.(2015牡丹江)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A.考点:动点问题的函数图象.2.(2015盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B.【解析】试题分析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选B.考点:1.动点问题的函数图象;2.分段函数;3.分类讨论;4.压轴题.3.(2015资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.【答案】B.考点:1.动点问题的函数图象;2.分段函数.4.(2015广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【答案】D.【解析】考点:1.动点问题的函数图象;2.压轴题;3.动点型;4.分段函数.5.(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A .B .C .D .【答案】C.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:1.动点问题的函数图象;2.分段函数.6.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B 点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A.B.C.D.【答案】B.考点:1.动点问题的函数图象;2.数形结合.7.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:3y kx=+与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.12【答案】A.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.8.(2015乐山)如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.212D.172【答案】C.【解析】试题分析:∵直线334y x =-与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴点C (0,1)到直线34120x y --=的距离是223041234⨯-⨯-+=165,∴圆C 上点到直线334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525⨯⨯=212,故选C .考点:1.圆的综合题;2.最值问题;3.动点型.9.(2015庆阳)如图,定点A (﹣2,0),动点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为 .【答案】(﹣1,﹣1).考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.动点型;4.最值问题;5.综合题. 10.(2015三明)如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则B′A 长度的最小值是______ .【答案】1.考点:1.翻折变换(折叠问题);2.动点型;3.最值问题;4.综合题..11.(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).【解析】试题分析:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(13),∴点C的坐标为(33,∴可得直线OC的解析式为:3y x=,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:(13)1y x=+-,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组33(13)1y xy x⎧=⎪⎨⎪=+-⎩的解,解方程组得:23323xy⎧=-⎪⎨=-⎪⎩,所以点P的坐标为(233-,23-),故答案为:(233-,23-).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(2015咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为51-.其中正确的说法是.(把你认为正确的说法的序号都填上)【答案】②④.由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC=22OB BC+=14+=5,CG的最小值为OC﹣OG=51-,故④正确;综上所述,正确的结论有②④.故答案为:②④.考点:1.四边形综合题;2.综合题;3.动点型;4.压轴题.13.(2015江西省)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.【答案】23或27或2.图(3)中,∠APB=90°,∵AO=BO,∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°,∴△APO是等边三角形,∴AP=2;23或27或2.故答案为:考点:1.勾股定理;2.含30度角的直角三角形;3.直角三角形斜边上的中线;4.分类讨论;5.动点型;6.综合题;7.压轴题。
新人教版2016级中考数学综合训练试题
新人教版2016级中考数学综合训练试题(考试时间120分 试题满分150分)一、选择题(每小题4分,共48分)1.(2015湖南岳阳)实数﹣2015的绝对值是( )A .2015 B . ﹣2015 C . ±2015 D .12015 2.(2015•安徽省)移动互联已经全面进入人们的日常生活.截止2015年3月, 全国4G 用户总数达到 1.62亿,其中1.62亿用科学记数法表示为( ) A .1.62×104 B .1.62×106 C .1.62×108 D .0.162×1093. (2015•四川泸州)如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°, 则∠D 的度数为( ) A. 90° B. 100° C. 110° D. 120°4.(2015•湖南省益阳市,第2题5分)下列运算正确的是( ) A . x 2•x 3=x 6 B . (x 3)2=x 5 C . (xy 2)3=x 3y 6 D .x 6÷x 3=x 2 5.(2015•山东莱芜,第10题3分) 已知是二元一次方程组的解,则的算术平方根为( )A .4B .2C .-2D . ±26. (2015·黑龙江绥化,第3题 分)从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( )A . 21B . 31C . 41D .517、(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( ) A. 2102- B.6 C.2132- D.48.(2015•山东东营,第9题3分)如图,在△ABC 中,AB >AC ,点D 、E 分别是 边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△FCE 与△EDF 全等( ). A .∠A=∠DFE B .BF=CF C .DF ∥AC D .∠C=∠EDF山东青岛,第题分小刚参加射击比赛,成绩统计如下表成绩(环) 67 8 9 10 次数1 323 1 A .极差是2环 B .中位数是8环 C .众数是9环 D .平均数是9环 10.(2015•山东日照 ,第11题3分)观察下列各式及其展开式: (a+b )2=a 2+2ab+b 2(a+b )3=a3+3a 2b+3ab 2+b 3(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4 (a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 … 请你猜想(a+b )10的展开式第三项的系数是( ) A . 36 B . 45 C . 55 D . 66 11.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm 的正三角形纸板, 在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成 一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2 B 'E B CF A 第5题图D12.(2015•安徽省,第10题,4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )二、填空题(每小题4分,共24分)1. (2015•浙江杭州,第11题4分) 数据1,2,3,5,5的众数是___________, 平均数是______________2. (2015•四川省内江市,第15题,5分)已知关于x 的方程x 2﹣6x+k=0的两根分别 是x 1,x 2,且满足+=3,则k 的值是 .3. (2015•四川乐山,第12题3分)函数的自变量x 的取值范围是 .4. (2015•四川省宜宾市,第15题,3分)如图, 一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32), 则该一次幽数的解析式为 .5.(2015•淄博第15题,4分)如图,经过点B (﹣2,0) 的直线y=kx+b 与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b <0的解集为 .6. (2015•四川泸州,第16题3分)如图,在矩形ABCD 中,2BC AB =,∠ADC 的 平分线交边BC 于点E ,AH ⊥DE 于点H , 连接CH 并延长交边AB 于点F , 连接AE 交CF 于点O ,给出下列命题:①∠AEB=∠AEH ②DH=22EH③12HO AE = ④2BC BF EH -= 其中正确命题的序号是 (填上所有正确命题的序号).三.解答题(每小题7分,共14分) 1.先化简,再求值:(1﹣)÷+,其中x 是方程x 2﹣x ﹣2=0.2. (2015•四川眉山,第22题8分)如图,在一笔直的海岸线l 上有A 、B 两个码头,A 在B 的正东方向,一艘小船从A 码头沿它的北偏西60°的方向行驶了20海里 到达点P 处,此时从B 码头测得小船在它的北偏东45°的方向.求此时小船到 B 码头的距离(即BP 的长)和A 、B 两个码头间的距离(结果都保留根号).PQOOO OO yyyyyxxxxxA .B .C .D .第12题图第16题图O C D H Fy x C BAO四.解答题(每小题10分,共40分)1. (2015•四川眉山,第23题9分)某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A、B、C、D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A、B两班的概率.2. (2015•浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究AMFS∆,BENS∆和MNHGS四边形的数量关系,并说明理由九年级综合训练题2015年11月20日星期五 33.(2015•江苏南昌,第24题12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE 是△ABC 的中线, AF ⊥BE , 垂足为P.像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC b =,AB c =. 特例探索(1)如图1,当∠ABE =45°,c =22时,a = ,b = ; 如图2,当∠ABE =30°,c =4时, a = ,b = ;45°30°图3图2图1EFBEFAPEF BPAB PA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来, 并利用图3证明你发现的关系式; 拓展应用(3)如图4,在□ABCD 中,点E,F,G 分别是AD,BC,CD 的中点,BE ⊥EG , AD= 25,AB=3.求AF 的长.BEGCD A4. (2015•四川广安,第26题10分)如图,边长为1的正方形ABCD 一边AD 在x 负半轴上,直线l :y=x+2经过点B (x ,1)与x 轴,y 轴分别交于点H ,F , 抛物线y=﹣x 2+bx+c 顶点E 在直线l 上.(1)求A ,D 两点的坐标及抛物线经过A ,D 两点时的解析式;(2)当抛物线的顶点E (m ,n )在直线l 上运动时,连接EA ,ED ,试求△EAD 的面积S 与m 之间的函数解析式,并写出m 的取值范围; (3)设抛物线与y 轴交于G 点,当抛物线顶点E 在直线l 上运动时,以A ,C , E ,G 为顶点的四边形能否成为平行四边形?若能,求出E 点坐标; 若不能,请说明理由.五.解答题(每小题12分,共24分)1.(2015•山东威海,第25题12分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2. (2015•四川成都,第28题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为54,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.xyOA BDlC备用图xyOA BDlCE九年级综合训练题2015年11月20日星期五 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题36 动点综合问题图象☞2年中考【2015年题组】 1.(2015牡丹江)在平面直角坐标系中,点P (x ,0)是x 轴上一动点,它与坐标原点O 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .【答案】A .考点:动点问题的函数图象. 2.(2015盐城)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A.B.C.D.【答案】B.【解析】试题分析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选B.考点:1.动点问题的函数图象;2.分段函数;3.分类讨论;4.压轴题.3.(2015资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.【答案】B.考点:1.动点问题的函数图象;2.分段函数.4.(2015广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【答案】D.【解析】考点:1.动点问题的函数图象;2.压轴题;3.动点型;4.分段函数.5.(2015荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D .【答案】C.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:1.动点问题的函数图象;2.分段函数.6.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B 点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A .B .C .D .【答案】B .考点:1.动点问题的函数图象;2.数形结合. 7.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A.6 B.8 C.10 D.12【答案】A.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.8.(2015乐山)如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.212D.172【答案】C.【解析】试题分析:∵直线334y x =-与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴点C (0,1)到直线34120x y --==165,∴圆C 上点到直线334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525⨯⨯=212,故选C .考点:1.圆的综合题;2.最值问题;3.动点型. 9.(2015庆阳)如图,定点A (﹣2,0),动点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为 .【答案】(﹣1,﹣1).考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.动点型;4.最值问题;5.综合题. 10.(2015三明)如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则B′A 长度的最小值是______ .【答案】1.考点:1.翻折变换(折叠问题);2.动点型;3.最值问题;4.综合题..11.(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(3,2).【解析】试题分析:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,∴点C的坐标为(3,∴可得直线OC的解析式为:y x=,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:(11y x=+-,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组(11y x y x ⎧=⎪⎨⎪=-⎩的解,解方程组得:32x y ⎧=⎪⎨=-⎪⎩,所以点P的坐标为(3,2,故答案为:(3,2).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题. 12.(2015咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE=BF ;③点G 运动的路径长为π;④CG1.其中正确的说法是 .(把你认为正确的说法的序号都填上)【答案】②④.由于OC 和OG 的长度是一定的,因此当O 、G 、C 在同一条直线上时,CG 取最小值,CG 的最小值为OC ﹣1,故④正确;综上所述,正确的结论有②④.故答案为:②④.考点:1.四边形综合题;2.综合题;3.动点型;4.压轴题. 13.(2015江西省)如图,在△ABC 中,AB=BC=4,AO=BO ,P 是射线CO 上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.【答案】2.图(3)中,∠APB=90°,∵AO=BO,∠APB=90°,∴PO=AO=BO=2,又∠AOC=60°,∴△APO是等边三角形,∴AP=2;故答案为:2.考点:1.勾股定理;2.含30度角的直角三角形;3.直角三角形斜边上的中线;4.分类讨论;5.动点型;6.综合题;7.压轴题。
14.(2015鄂尔多斯)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.【答案】AB.③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AD边相遇;…因为2015=350344⨯,所以它们第2015次相遇在边AB上.故答案为:AB.考点:1.一元一次方程的应用;2.动点型.15.(2015柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?【答案】(1)4;(2)t=6或110 13.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8,FC=BC﹣AD=18﹣12=6,,①当PQ⊥BC,△PQC是直角三角形.则:12﹣2t+t=6,∴t=6,此时P运动到了D处;②当QP⊥PC,如图1,∴PC=12+10-2t=22-2t,CQ=t,∵cosC=PC FCQC DC=,∴222610tt-=,解得:t=11013,∴当t=6或11013时,△PQC是直角三角形.考点:1.平行四边形的判定与性质;2.勾股定理的逆定理;3.直角梯形;4.动点型;5.分类讨论;6.综合题.16.(2015宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=AB BC ,AD 是⊙O 的直径,求证:AD•AC=2BD•BC ;(3)如图3,若AC ⊥BD ,点O 到AD 的距离为2,求BC 的长.【答案】(1)证明见试题解析;(2)证明见试题解析;(3)4.试题解析:(1)∵∠EAD=∠EBC ,∠BCE=∠ADE ,∴△AED ∽△BEC ,∴AE DE BE CE =,∴EA•EC=EB•ED ;(2)如图2,连接CD ,OB 交AC 于点F ,∵B 是弧AC 的中点,∴∠BAC=∠ADB=∠ACB ,且AF=CF=0.5AC .又∵AD 为⊙O 直径,∴∠ABC=90°,又∠CFB=90°,∴△CBF ∽△ABD .∴CF BC BD AD =,故CF•AD=BD•BC ,∴AC•AD=2BD•BC ;(3)如图3,连接AO 并延长交⊙O 于F ,连接DF ,∴AF 为⊙O 的直径,∴∠ADF=90°,过O 作OH ⊥AD 于H ,∴AH=DH ,OH ∥DF ,∵AO=OF ,∴DF=2OH=4,∵AC ⊥BD ,∴∠AEB=∠ADF=90°,∵∠ABD=∠F ,∴△ABE ∽△ADF ,∴∠1=∠2,∴BC DF =,∴BC=DF=4.考点:1.圆的综合题;2.动点型;3.相似三角形的判定与性质;4.和差倍分;5.综合题;6.压轴题.17.(2015攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD 相似时,求出相应的t值.【答案】(1)D(﹣4,3),P(﹣12,8);(2)424 (06)318 (614)t tSt t-+≤≤⎧=⎨-<≤⎩;(3)6.(2)当点P在边AB上时,BP=6﹣t,由三角形的面积公式得出S=12BP•AD;②当点P在边BC上时,BP=t﹣6,同理得出S=12BP•AB;即可得出结果;(3)设点D(45t-,35t);分两种情况:①当点P在边AB上时,P(485t--,85t),由PE CDOE CB=和PE CBOE CD=时;分别求出t的值;②当点P在边BC上时,P(1145t-+,365t+);由PE CDOE CB=和PE CBOE CD=时,分别求出t的值即可.试题解析:(1)延长CD交x轴于M,延长BA交x轴于N,如图1所示:则CM⊥x轴,BN⊥x轴,AD∥x轴,BN∥DM,∵四边形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴,当t=5时,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴23AB AD BDBN NO BO===,即6823B N N O==,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);②当点P在边BC上时,P(1145t-+,365t+),若PE CDOE CB=时,366518145tt+=-,解得:t=6;若PE CBOE CD=时,368516145tt+=-,解得:19013t=(不合题意,舍去);综上所述:当t=6时,△PEO与△BCD相似.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2015桂林)如图,已知抛物线212y x bx c=-++与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O 时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.【答案】(1)21382y x x=-++;(2)2152S t t=-+,当t=5时,S最大=252;(3)存在,P(343,2009-)或P(8,0)或P(43,1009).利用三角形的面积公式即可求△CED 的面积S 与D 点运动时间t 的函数解析式为:2152S t t =-+,然后转化为顶点式即可求出最值为:S 最大=252;(3)由(2)知:当t=5时,S 最大=252,进而可知:当t=5时,OC=5,OD=3,进而可得C ,D 的坐标,即可求出直线CD 的解析式,然后过E 点作EF ∥CD ,交抛物线与点P ,然后求出直线EF 的解析式,与抛物线联立方程组解得即可得到其中的一个点P 的坐标,然后利用面积法求出点E 到CD 的距离,过点D 作DN ⊥CD ,垂足为N ,且使DN 等于点E 到CD 的距离,然后求出N 的坐标,再过点N 作NH ∥CD ,与抛物线交与点P ,然后求出直线NH 的解析式,与抛物线联立方程组求解即可得到其中的另两个点P 的坐标.(2)∵点A (0,8)、B (8,0),∴OA=8,OB=8,令y=0,得:213802x x -++=,解得:18x =,22x =-,∵点E 在x 轴的负半轴上,∴点E (﹣2,0),∴OE=2,根据题意得:当D 点运动t 秒时,BD=t ,OC=t ,∴OD=8﹣t ,∴DE=OE+OD=10﹣t ,∴S=12•DE•OC=12•(10﹣t )•t=2152t t -+,即2152S t t =-+=2125(5)22t --+,∴当t=5时,S 最大=252;(3)由(2)知:当t=5时,S 最大=252,∴当t=5时,OC=5,OD=3,∴C (0,5),D (3,0),由勾股定理得:CD 的解析式为:y kx b =+,将C (0,5),D (3,0),代入上式得:k=53-,b=5,∴直线CD 的解析式为:553y x =-+,过E 点作EF ∥CD ,交抛物线与点P,如图1,过点E作EG⊥CD,垂足为G,∵当t=5时,S△ECD=12CD•EG=252,∴EG=,过点D作DN⊥CD,垂足为N,且使DN=,过点N作NM⊥x轴,垂足为M,如图2,综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(343,2009)或P(8,0)或P(43,1009).考点:1.二次函数综合题;2.二次函数的最值;3.动点型;4.存在型;5.最值问题;6.分类讨论;7.压轴题.19.(2015淮安)如图,在Rt△ABC中,∠ACB=900,AC=6,BC=8.动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)当t = 秒时,动点M 、N 相遇;(2)设△PMN 的面积为S ,求S 与t 之间的函数关系式;(3)取线段PM 的中点K ,连接KA 、KC ,在整个运动过程中,△KAC 的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.【答案】(1)2.5;(2)S=22275156 (0 1.4)4860100 (1.4 2.5)386010010 (2.533t t t t t t t t t ⎧--≤≤⎪⎪-+⎪<≤⎨⎪⎪-+-<≤⎪⎩;(3)在整个运动过程中,△KAC 的面积会发生变化,最小值为1.68,最大值为4.(3)分两种情况讨论,①当P 在BC 上运动时,如图4,当P 与C 重合时,ΔKAC S 最小,当t=0是,M 与A 重合,N 与B 重合,如图5,此时三角形ΔKAC S 最大;②当P 在CA 上运动时,如图6,过K 作KE ⊥AC 于E ,过M 作MF ⊥AC 于F ,可以得到ΔKAC S =65t ,而101.43t ≤≤,故当 1.4t =时,ΔKAC S 的最小值=6 1.4 1.685⨯=,当103t =时,ΔKAC S 的最大值=610453⨯=.综合①②可得到结论.试题解析:(1)∵∠ACB =900,AC=6,BC=8,∴AB=10,当M 、N 相遇时,有310t t +=,∴ 2.5t =;①当0 1.4t ≤≤时,M 在N 的左边,P 先在BC 上向C 靠近,如图1,∵AM=t ,BN=3t ,∴MN=10-4t ,MG=GN=12MN=1(104)2t -=52t -,∴GB=GN+NB=523t t -+=5t +,∵tanB=PG ACGB BC =,∴658PG t =+,∴PG=3(5)4t +,∴S=ΔPMN S =12MN•PG= GN•PG=3(52)(5)4t t -⨯+=2751564t t --;②当1.4 2.5t <≤时,M 在N 的左边,在AC 上逐渐远离C ,如图2,MN=NB+AM -AB=310t t +-=410t -,GN=MG=25t -,AM=t ,∴AG= AM -MG=(25)t t --=5t -,tanA=PG BCAG AC =,∴856PG t =-,∴PG=4(5)3t -,∴S=ΔPMN S =12MN•PG= GN•PG=4(25)(5)3t t -⨯-=28601003t t -+-;∴S=22275156 (0 1.4)4860100(1.4 2.5)386010010(2.533t t t t t t t t t ⎧--≤≤⎪⎪-+⎪<≤⎨⎪⎪-+-<≤⎪⎩;(3)①当P 在BC 上运动时,如图4,当P 与C 重合时,ΔKAC S 最小,过M 作MF ⊥AC 于F ,则MF ∥BC ,∴MF AMBC AB =,,∴1.4810MF =,∴MF=1.12,∴ΔKAC S =12ΔMAC S =12•12AC•MF=16 1.124⨯⨯=1.68,当t=0是,M 与A 重合,N 与B 重合,此时三角形ΔKAC S 最大,如图5,此时BG=AG=5,cosB=BG BC PBAB =,∴5810PB =,∴PB=254,∴PC=BC -PB=8-254=74,∴ΔPAC S =12AC•PC=17624⨯⨯=214,∵K 是AP 的中点,∴ΔKAC S =12ΔPAC S =218,∴当P 在BC 上运动时,△KAC 面积的最小值为1.68,最大值为218;综合①②可得:在整个运动过程中,△KAC 的面积会发生变化,最小值为1.68,最大值为4.考点:1.三角形综合题;2.动点型;3.分类讨论;4.最值问题;5.分段函数;6.压轴题.【2014年题组】1.(2014年甘肃天水)如图,扇形OAB动点P从点A出发,沿 AB线段BO、OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是()A.B.C.D.【答案】D.考点:1.动点问题的函数图象;2.分类思想的应用.2.(2014年贵州安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A B.1C.2D.【答案】A.【解析】试题分析:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′考点:1.轴对称的应用(最短路线问题);2.圆周角定理;3.等腰直角三角形的判定和性质.3.(2014年安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C 的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B.【解析】考点:1.单动点问题函数图象的分析;2.由实际问题列函数关系式;3.矩形的性质;4.相似三角形的判定和性质;. 4.(2014年江苏苏州)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA =x ,PB =y ,则(x -y )的最大值是 .【答案】1. 【解析】试题分析:如答图,过点A 作⊙O 的直径AC ,连接PC,由已知和圆周角定理易得△ABP 和△CPA 的两对应角相等,∴△ABP ∽△CPA , ∴BP AP PA CA =,即4y x x =.∴21y x 4=.∴2211x y x x (x 2)144-=-=--+.∴当x=2时,x y -的最大值是1.考点:1.圆周角定理;2.相似三角形的判定和性质;3.由实际问题列函数关系式;3.二次函数的最值.5.(2014年四川资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__________【答案】6.考点:1.单动点问题;2.轴对称的应用(最短路线问题);3.正方形的性质;4.勾股定理.6.(2014年浙江嘉兴中考)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.【答案】①③⑤.【解析】试题分析:①如答图1,连接CD,∵根据轴对称的性质,CE=CD,∴∠DCE=∠ECD.又∠=︒-∠=︒-∠=∠.∴CD=CF.∴CE=CF.结论①正∵DF⊥DE,∴CDF90CDE90E F确.④若点F恰好落在BC上,则点D,F重合于点B,AD=AB=8.结论④错误.⑤当点D从点A运动到点B时,线段EF扫过的面积是△ABC面积的2倍,为论⑤正确.综上所述,结论正确的是①③⑤.考点:1.轴对称的性质;2.垂直线段的性质;3.圆周角定理;4.含30度角直角三角形的性质;5.等边三角形的性质;6.切线的判定.7.(2014年湖南衡阳)如图,直线AB 与x 轴相交于点()40A -,,与y 轴相交于点()03B ,,点P 从点A 出发,以每秒个单位长度的速度沿直线AB 向点B 移动.同时,将直线34y x =以每秒0.6个单位长度的速度向上平移,交OA 于点C ,交OB 于点D ,设运动时间为()05t t <<秒.⑴证明:在运动过程中,四边形ACDP 总是平行四边形;⑵当t 取何值时,四边形ACDP 为菱形?请指出此时以点D 为圆心、OD 长为半径的圆与直线AB 的位置关系并说明理.【答案】(1)证明见解析;(2)当209t =时,四边形ACDP 为菱形;以点D 为圆心、OD长为半径的圆与直线AB 相切.试卷解析:(1)∵直线AB 与x 轴相交于点A (-4,0),与y 轴相交于点B (0,3),易求直线AB 的解析式为:yAB=43x+3.∵将直线y=43x 以每秒0.6个单位长度的速度向上平移t (0<t <5)秒得到直线CD ,∴OD=0.6t , ∴D (0,0.6t ) ,∴直线CD 的解析式为yCD=43x+0.6t ,∵在直线CD 中,点C 在x 轴上,∴令y=0,则x=-0.8t ,∴C (-0.8t ,0),OC=0.8t ,∴在Rt △OCD 中,t==,∵点P 从点A出发,以每秒1个单位长度的速度沿直线AB 向点B 移动t (0<t <5)秒,∴AP=t ,∴AP=CD=t ,又∵kAP=kAB=kCD=34,∴AP∥CD,∵AP∥CD,AP=CD=t,∴在运动过程中,四边形ACDP总是平行四边形.(2)欲使四边形ACDP为菱形,只需在平行四边形ACDP中满足条件AC=CD,即4-0.8t=t,解得209t=,∴当209t=时,四边形ACDP为菱形;过点D作DE⊥AB于点E,连结AD,∵AD是菱形ACDP的对角线,∴AD平分∠OAB,又∵DO⊥AO,DE⊥AB,∴DE=DO=R,∴点D到直线AB的距离=点D到直线AO的距离,∴以点D为圆心、OD长为半径的圆与直线AB相切.考点:1.平行四边形的判定;2.菱形的判定;3.直线与圆的位置关系.8.(2014年浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在第一、四象限,在运动过程中,设□PCOD的面积为S.①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.【答案】(1)32,(92,0);(2)证明见解析;(3)①1,94,92,5;②278<S≤92或272<S≤20.第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<94时和当92<t≤5时,分别求出S的取值范围,当1≤t<94时,S=t(6﹣2t)=﹣2(t﹣32)2+92,∵t=32在1≤t<94范围内,∴278<S≤92.当92<t≤5时,S=t(2t﹣6)=2(t﹣32)2﹣92,∴272<S≤20.试题解析:(1)∵OB=6,C是OB的中点,∴BC=12OB=3.∴2t=3,即t=32.∴OE=39322+=,E(92,0).(2)如图1,连接CD交OP于点G,在平行四边形PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG .∴四边形ADEC是平行四边形.(Ⅱ)当点C在BO的延长线上时,第一种情况:如答图4,当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP.∴ME EFDP EP=即2262t3=-,解得t=92.第二种情况:如答图5,当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC.∴FN EF OC EO =即1262t 3t =-+,解得t=5.综上所述,所有满足条件的t 的值为1,94,92,5.考点:1.平行四边形的判定;2.相似三角形的判定和性质;3.二次函数的性质;4.分类思想的应用.☞考点归纳归纳 1:动点中的特殊图形基础知识归纳:等腰三角形的两腰相等,直角三角形的两直角边的平方和等于斜边的平方,平行四边形的对边平行且相等,矩形的对角线相等,菱形的对角线互相垂直基本方法归纳:动点问题常与等腰三角形、直角三角形、平行四边形、矩形、菱形等特殊图形相结合,解决此类问题要灵活运用这些图形的特殊性质注意问题归纳:注意区分等腰三角形、直角三角形、平行四边形、矩形、菱形的性质.【例1】如图,在Rt △ABC 中,∠ACB=90º,AC=3cm ,BC=4cm .动点P 从点B 出发,以每秒1cm 的速度沿射线BA 运动,求出点P 运动所有的时间t ,使得△PBC 为等腰三角形.【答案】符合要求的t 的值有3个,分别是 52,4,325(秒). 【解析】试题分析:根据等腰三角形的性质,此题要分类讨论三边中腰的情况,所以应有3种可能,然后利用两腰相等即可得出答案.试题解析:在Rt △ABC 中,∠ACB=90º,AC=3cm ,BC=4cm .∴AB=5 cm . B AC考点:等腰三角形的性质与判定.归纳2:动点问题中的计算问题基础知识归纳:动点问题的计算常常涉及到线段和的最小值、三角形周长的最小值、面积的最大值、线段或面积的定值等问题.基本方法归纳:线段和的最小值通常利用轴对称的性质来解答,面积采用割补法或面积公式,通常与二次函数、相似等内容.注意问题归纳:在计算动点问题的过程中,要注意与相似、锐角三角函数、对称、二次函数等内容的结合.【例2】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.125B.4C.245D.5【答案】C.【解析】试题分析:如图,过点C作CH⊥AB交AB于点H,交AD于点P,过点P作PQ⊥AC于点考点:1.轴对称的应用(最短路线问题);2.角平分线的性质;3.勾股定理;4.直角三角形的面积.归纳3:动点问题的图象基础知识归纳:动点问题经常与一次函数、反比例函数和二次函数的图象相结合.基本方法归纳:一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数的图象是抛物线.注意问题归纳:动点函数的图象问题可以借助于相似、特殊图形的性质求出函数的图象解析式,同时也可以观察图象的变化趋势.【例3】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()【答案】C.【解析】试题分析:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=DE,PD=x,∴PE=DE﹣x,∵PQ∥BD,BE=DE,∴x,又∵△ABE是等腰直角三角形(已证),∴点Q到AD的距离=(﹣x)=2﹣x,∴△PQD的面积y=x(2﹣x)=﹣(x2﹣)=﹣(x2+,即y=﹣(x2+,纵观各选项,只有C选项符合.考点:动点问题的函数图象.☞1年模拟1.(2015届北京市平谷区中考二模)如图1,在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y与x的函数关系的图象大致如图2,则AB 边上的高是()A.3 B.4 C.5 D.6【答案】B.考点:1.动点问题的函数图像;2.动点型.2.(2015届北京市门头沟区中考二模)在平面直角坐标系中,四边形OABC是矩形,点B 的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是()A .B .C .D .【答案】C.考点:1.动点问题的函数图像;2.动点型.3.(2015届山东省日照市中考模拟)如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P沿A—B—C—D—A运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()【答案】D.【解析】试题分析:由于点P是在正方形的边上移动,所以P点的纵坐标y与点P走过的路程s之间的图象表示为D.故选D.考点:1.动点问题的函数图象;2.动点型.4.(2015届浙江省宁波市江东区4月中考模拟)某景点有一座圆形的建筑,如图,小江从点A沿AO匀速直达建筑中心点O处,停留拍照后,从点O沿OB以同样的速度匀速走到点B,紧接着沿 BCA回到点A,下面可以近似地刻画小江与中心点O的距离S随时间t变化的图象是().【答案】C.考点:1.动点问题的函数图象;2.动点型.5.(2015届湖北省黄石市6月中考模拟)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A.B.C.D.【答案】B.考点:1.动点问题的函数图象;2.动点型.6.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)如图,在矩形ABCD中,AB=4cm,,E为CD边上的中点,点P从点A沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A.B.C.D.【答案】B.考点:1.动点问题的函数图象;2.动点型;3.分段函数;4.分类讨论.7.(2015届四川省成都市外国语学校中考直升模拟)已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=14x2上的一个动点.(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;(2)设直线PM与抛物线y=14x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.【答案】(1)证明见解析.(2)证明见解析.【解析】试题分析:(1)可先根据抛物线的解析式设出P点的坐标,那么可得出PM的长的表达式,P点到y=-1的长就是P点的纵坐标与-1的差的绝对值,那么可判断得出的表示PM和P到y=-1的距离的两个式子是否相等,如果相等,则y=-1是圆P的切线.(2)可通过构建相似三角形来求解,过Q,P作QR⊥直线y=-1,PH⊥直线y=-1,垂足为R,H,那么QR∥MN∥PH,根据平行线分线段成比例定理可得出QM:MP=RN:NH.(1)中已得出了PM=PH,那么同理可得出QM=QR,那么比例关系式可写成QR:PH=RN:NH,而这两组对应成比例的线段的夹角又都是直角,因此可求出∠QNR=∠PNH,根据等角的余角相等,可得出∠QNM=∠PNM .试题解析:(1)设点P 的坐标为(x0,14x20),则14=x20+1; 又因为点P 到直线y=-1的距离为,14x20-(-1)=14x20+1,所以,以点P 为圆心,PM 为半径的圆与直线y=-1相切;考点:1.二次函数综合题;2.动点型.8.(2015届山东省潍坊市昌乐县中考一模)如图,Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm ,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)若△BPQ 与△ABC 相似,求t 的值;(2)连接AQ 、CP ,若AQ ⊥CP ,求t 的值.【答案】(1)t=1或3241时,△BPQ ∽△BCA ;(2)t=78.试题解析:根据勾股定理得:10;(1)分两种情况讨论:①当△BPQ∽△BAC时,BP BQBA BC=,∵BP=5t,QC=4t,AB=10,BC=8,∴581048t t=-,解得,t=1,②当△BPQ∽△BCA时,BP BQBC BA=,∴148058t t-=,解得,t=3241;∴t=1或3241时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8-4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴A C C QC M M P=,∴36844ttt=-,解得t=78.考点:1.相似三角形的判定与性质;2.动点型;3.分类讨论.9.(2015届北京市平谷区中考二模)如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.。