2017届高三数学(文)二轮复习(通用版)教师用书:小题练速度 “12+4”限时提速练(七) Word版含答案
专题14文言文阅读测试(测试)-2024年中考语文二轮复习讲练测(全国通用)(原卷版)
专题14 文言文阅读测试(测试)时间:90分钟满分:120分(11分)(2024·黑龙江哈尔滨·模拟预测)【最新模拟题】阅读《出师表》,回答小题。
出师表诸葛亮①臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙..,猥自枉屈,三顾.臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
②先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明,故五月渡沪,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝..,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则做之、袆、允之任也。
1.(3分)解释文中加点的词语。
(1)卑鄙:(2)顾:(3)驽钝:2.(4分)把下面两句话翻译成现代汉语。
(1)受任于败军之际,奉命于危难之间。
(2)受命以来,夙夜忧叹。
3.(4分)诸葛亮认为蜀国已经具备了出师北伐的哪两个条件?(7分)(2024·四川凉山·模拟预测)【最新模拟题】阅读下面文章,完成下面小题。
若夫..霪雨霏霏,连月不开,阴风怒号,浊浪排空,日星隐曜,山岳潜形,商旅不行,樯倾楫摧,薄暮冥冥,虎啸猿啼。
登斯楼也,则有去国怀乡,忧谗畏讥,满日萧然,感极而悲者矣。
至若春和景明..,波澜不惊,上下天光,一碧万顷,沙鸥翔巢,锦鳞游泳,岸芷汀兰,郁郁青青。
而或长烟一.空,皓月千里,浮光跃金,静影沉璧,渔歌互答,此乐何极!登斯楼也,别有心旷神怡。
宠辱偕忘,把酒临风,其喜洋洋者矣。
嗟夫!予尝求古仁人之心,或.异二者之为,何哉?不以物喜,不以己悲,居庙堂之高则忧其民。
处江湖之远则忧其君。
是进亦忧,退亦忧。
然则何时而乐耶?其必曰“先天下之忧而忧,后天下之乐而乐”乎!噫!微斯人,吾谁与归?时六年九月十五日。
4.(2分)下列句子中,加点字意义或用法理解有误的一项是()A.若夫..霪雨霏霏(用在一段话开头,以引发议论)B.至若春和景.明(日光)C.而或长烟一.空(全)D.或.异二者之为(或许,也许,表示委婉语气)5.(2分)下列说法有误的一项是()A.选文第一段用一连串的四字短句,层层渲染,写天气的恶劣,人心的酸楚,突出了一种悲凉的情景。
2017年教师资格证考试《高中数学》真题及答案
2017年教师资格证考试《数学学科知识与教学能力》(高级中学)真题及答案◇本卷共分为6大题17小题,作答时间为120分钟,总分150 分,90 分及格。
一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案字母按要求涂黑。
错选、多选或未选均无分。
A2 [单选题] 下列矩阵所对应的线性变换为旋转变换的是( )。
D3 [单选题]参考答案:C 参考解析:所求柱面的母线平行于x轴,则柱面方程中不含参数x,通过题中的方程组,消去x即可得到C选项。
考4 [单选题] 若ƒ(x)是连续函数,则下列命题不正确的是( )。
A5 [单选题]A.P(B)<P(A\B)B.P(A)≤P(A\B)C.P(B)>P(A\B)D.P(A)≥P(A\B)收藏本题参考答案:B6 [单选题]C7 [单选题] 与意大利传教士利玛窦共同翻译了《几何原本》(I-Ⅵ卷)的我国数学家是( )。
A.徐光启B.刘徽C.祖冲之D.杨辉收藏本题参考答案:A 参考解析:明朝末年,《原本》传人中国。
1606年,由我国数学家徐光启执笔,意大利传教士利玛窦口译,合作翻译了《原本》的前六卷,并于1607年在北京印刷出版。
这是我国最早的汉译本,在翻译时,徐光启在“原本”前加上了“几何”一词.“几何原本”一词由此而来。
8 [单选题] “有一个角是直角的平行四边形是矩形”,这个定义方式属于( )。
A.公理定义B.属加种差定义C.递归定义D.外延定义收藏本题参考答案:B 参考解析:A项公理定义是由数学公理而对被定义项进行定义,如概率的公理化定义;B项属加种差定义是由被定义概念的邻近的属和种差所组成的定义,即“邻近的属+种差=被定义概念”,题干中“有一个角是直角的平行四边形是矩形”,它邻近的属为平行四边形,种差为其一角为直角;C项递归定义也称归纳定义,是指用递归的方法给一个概念下定义,它由初始条件和归纳条件构成;D项外延定义是指通过揭示属概念所包括的种概念来明确该属概念之所指的定义,如有理数和无理数统称实数。
2017年全国统一高考数学试卷(文科)全国卷1(详解版)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
三年高考两年模拟(浙江版)2017届高考数学一轮复习 第二章 函数 2.6 对数与对数函数知能训练
§2.6对数与对数函数A组基础题组1.(2015嘉兴学科基础测试,5,5分)已知函数y=log a x,y=log b x,y=log c x的图象如图,则( )A.a>b>cB.c>b>aC.b>a>cD.c>a>b2.(2013陕西,3,5分)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是( )A.log a b·log c b=log c aB.log a b·log c a=log c bC.log a(bc)=log a b·log a cD.log a(b+c)=log a b+log a c3.(2015四川,4,5分)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(2013课标全国Ⅱ,8,5分)设a=log36,b=log510,c=log714,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c5.(2015金华十校高考模拟,4,5分)已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<16.(2014天津,4,5分)函数f(x)=lo(x2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)7.(2015慈溪联考,6)函数f(x)=x2lg的图象( )A.关于x轴对称B.关于原点对称C.关于直线y=x对称D.关于y轴对称8.(2015黑龙江哈尔滨师大附中第一次月考,5)函数y=lo(x≥3)的值域是( )A.(0,1]B.[-1,0)C.[-1,+∞)D.(-∞,-1]9.(2013湖南,5,5分)函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象的交点个数为( )A.3B.2C.1D.010.(2015安徽,11,5分)lg+2lg2-= .11. (2016超级中学原创预测卷二,9,6分)计算:log4= ,= .12.(2016温州高三上学期返校联考,9,6分)计算:lg0.01+log327= ;2-3,,log25三个数中最大的是.13.(2015浙江名校(镇海中学)交流卷一,12)已知函数f(x)=log2(+x)++1,则f(1)+f(-1)= ;如果f(log a5)=4(a>0,a≠1),那么f(lo5)的值是.14.(2015福建,14,4分)若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.15.已知函数f(x)=log a(ax)·log a(a2x)(x∈[2,8],a>0,且a≠1)的最大值是1,最小值是-,求a的值.B组提升题组1.(2014四川,7,5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是( )A.d=acB.a=cdC.c=adD.d=a+c2.(2014浙江,8,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.(2015浙江重点中学协作体第二次联考,2,5分)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是( )A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)4.(2015浙江测试卷,7,5分)已知函数f(x)=x+ln(+x),g(x)=则( )A.f(x)是奇函数,g(x)是奇函数B.f(x)是偶函数,g(x)是偶函数C.f(x)是奇函数,g(x)是偶函数D.f(x)是偶函数,g(x)是奇函数5.(2015湖南,5,5分)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(2015陕西,9,5分)设f(x)=lnx,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是( )A.q=r<pB.q=r>pC.p=r<qD.p=r>q7.(2015浙江名校(柯桥中学)交流卷三,4)已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m+n=( )A. B. C.2 D .8.(2016超级中学原创预测卷一,10,4分)设a=cos420°,函数f(x)=则a= ,f+f= .9.(2015温州十校联考,11)log23log34+(lg2)2+lg2lg5+lg5= .10.(2016浙江名校新高考研究联盟一联,12,6分)若2a=6,b=log23,则2a-b= ,= .11.(2016浙江余姚中学期中,12,6分)已知实数x,y,实数a>1,b>1,且a x=b y=2.(1)若ab=4,则+= ;(2)a2+b=8,则+的最大值为.12.(2015上海文,8,5分)方程log2(9x-1-5)=log2(3x-1-2)+2的解为.13.(2015浙江衢州二中期中,13,4分)若函数y=log a(x2-ax+1)有最小值,则a的取值范围是.14.(2014重庆,12,5分)函数f(x)=log2·lo(2x)的最小值为.15.(2014浙江名校(衢州二中)交流卷五,16)已知函数f(x)=|log a|1-x||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则+++= .16.已知a>0且a≠1,函数f(x)=log a(x+1),g(x)=log a,记F(x)=2f(x)+g(x).(1)求函数F(x)的定义域及其零点;(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.A组基础题组1.C 作直线y=1与各曲线相交,各交点的横坐标就依次等于相应的底数,结合图形可知:0<c<1<a<b,故选C.2.B log a b·log c a=log a b·==log c b,故选B.3.A ∵y=log2x是增函数,∴当a>b>1时,有log2a>log2b>log21=0.另一方面,当log2a>log2b>0=log21时,有a>b>1.故选A.4.D由对数运算法则得a=log36=1+log32,b=1+log52,c=1+log72,由对数函数图象得log32>log52>log72,所以a>b>c,故选D.5.A 令u=2x+b-1,此函数为增函数,由题图可知a>1.由题图知-1<f(0)<0,即-1<log a b<0⇔log a a-1<log a b<log a1.∵a>1,∴0<a-1<b<1.故选A.6.D 由x2-4>0得x<-2或x>2.又y=lou为减函数,故f(x)的单调递增区间为(-∞,-2).7.B ∵f(x)=x2lg,∴其定义域为(-∞,-2)∪(2,+∞),∵f(-x)=x2lg=-x2lg=-f(x),∴函数f(x)为奇函数,∴函数f(x)的图象关于原点对称,故选B.8.B 当x≥3时,=1+∈(1,2],则-1≤lo<0,故选B.9.B 在同一直角坐标系下画出函数f(x)=2lnx与函数g(x)=x2-4x+5=(x-2)2+1的图象,如图所示.∵f(2)=2ln2>g(2)=1,∴f(x)与g(x)的图象的交点个数为2,故选B.10.答案-1解析原式=lg+lg4-2=lg-2=lg10-2=-1.11.答案-2;5解析log4=log44-2=-2,===5.12.答案1;log 25解析lg0.01+log327=lg10-2+log333=-2+3=1.由图象可知0<2-3<1,1<<2,由对数函数的性质知log25>log24=2,∴最大的是log25.13.答案1;-3解析f(1)+f(-1)=log2(+1)+2+log2(-1)-1=1.f(x)+f(-x)=log2(+x)++1+log2(-x)++1=++2=1.∵lo5=-log a5,∴f(log a5)+f(lo5)=1,∴f(lo5)=-3.14.答案(1,2]解析当x≤2时,f(x)=-x+6,f(x)在(-∞,2]上为减函数,∴f(x)∈[4,+∞).当x>2时,若a∈(0,1),则f(x)=3+log a x在(2,+∞)上为减函数,f(x)∈(-∞,3+log a2),显然不满足题意,∴a>1,此时f(x)在(2,+∞)上为增函数,f(x)∈(3+log a2,+∞),由题意可知(3+log a2,+∞)⊆[4,+∞),则3+log a2≥4,即log a2≥1,∴1<a≤2.15.解析由题意知f(x)=(log a x+1)(log a x+2)=(lox+3log a x+2)=-.当f(x)取最小值-时,log a x=-.又∵x∈[2,8],∴a∈(0,1).∵f(x)是关于log a x的二次函数,∴函数f(x)的最大值必在x=2或x=8时取得.若-=1,则a=,此时,当f(x)取得最小值时,x=(=∉[2,8],舍去.若-=1,则a=,此时,当f(x)取得最小值时,x==2∈[2,8],符合题意,∴a=.B组提升题组1.B log5b=a,b>0,故由换底公式得=a,∴lgb=alg5.∵lgb=c,∴alg5=c,又∵5d=10,∴d=log510,即=lg5,将其代入alg5=c中得=c,即a=cd.2.D ∵a>0,且a≠1,∴f(x)=x a在(0,+∞)上单调递增,∴排除A;当0<a<1或a>1时,B、C中f(x)与g(x)的图象矛盾,故选D.3.A 由函数f(x)是奇函数,知f(-x)=-f(x),得a=-1,即f(x)=lg.又f(x)<0,所以0<<1,解得-1<x<0,故选A.4.C ∵>|x|,∴函数f(x)的定义域为R.又f(-x)=-x+ln(-x)=-x+ln=-x-ln(+x)=-f(x),故f(x)是奇函数.g(-x)====g(x),则g(x)是偶函数,故选C.5.A 解法一:函数f(x)的定义域为(-1,1),任取x∈(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),则f(x)是奇函数.当x∈(0,1)时,f(x)=ln=ln=ln.∵y=(x∈(0,1))是增函数,y=lnx也是增函数,∴f(x)在(0,1)上是增函数.综上,选A.解法二:同解法一知f(x)是奇函数.任取x1,x2∈(0,1),且x1<x2,f(x1)-f(x2)=ln(1+x1)-ln(1-x1)-ln(1+x2)+ln(1-x2)=ln=ln.∵(1-x1x2+x1-x2)-(1-x1x2+x2-x1)=2(x1-x2)<0,且(1+x1)·(1-x2)>0,(1+x2)(1-x1)>0,∴0<<1,∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)在(0,1)上是增函数.综上,选A.6.C 由题意得p=ln,q=ln,r=(lna+lnb)=ln=p,∵0<a<b,∴>,∴ln>ln,∴p=r<q.7.D ∵f(x)=|log2x|,且f(m)=f(n),∴mn=1.又0<m<n,则有0<m<1<n,从而有0<m2<m<1<n,则|log2m2|=2|log2m|=2|log2n|>|log2n|.∵f(x)=|log2x|在区间[m2,n]上的最大值为2,∴|log2m2|=2,即|log2m|=1,∴m=(m=2舍去),∴n=2.∴m+n=.8.答案;8解析因为a=cos420°=cos60°=,所以f(x)=所以f+f=lo+=log24+=2+6=8.9.答案 3解析原式=·+lg2(lg2+lg5)+lg5=2+lg2+lg5=2+1=3.10.答案2;log 312解析2a-b====2.====log312.11.答案(1)2 (2)4解析(1)由题知x=loga2,y=log b2,所以+=+===2.(2)+=+=≤==4,当且仅当a2=b时等号成立.12.答案 2解析依题意得log2(9x-1-5)=log2(4·3x-1-8),所以9x-1-5=4·3x-1-8,令3x-1=t(t>0),则t2-4t+3=0,解得t=1或t=3,当t=1时,3x-1=1,所以x=1,而91-1-5<0,所以x=1不合题意,舍去;当t=3时,3x-1=3,所以x=2,92-1-5=4>0,32-1-2=1>0,所以x=2满足条件,所以x=2是原方程的解.13.答案1<a<2解析因为函数y=x2-ax+1只能有最小值,所以要使函数y=loga(x2-ax+1)有最小值,则a>1,且>0,得1<a<2.14.答案-解析显然x>0,∴f(x)=log2·lo(2x)=log2x·log2(4x2)=log2x·(log24+2log2x)=log2x+(log2x)2=-≥-.当且仅当x=时,有f(x)min=-.15.答案 2解析易知f(x)在区间(-∞,0)上为减函数,在区间(0,1)上为增函数,在区间(1,2)上为减函数,在区间(2,+∞)上为增函数,则由已知得x1<0<x2<1<x3<2<x4.则log a(1-x1)+log a(1-x2)=0,即(1-x1)(1-x2)=1,有x1+x2=x1x2,故+=1.同理,+=1,故+++=2.16.解析(1)F(x)=2f(x)+g(x)=2log a(x+1)+log a(a>0且a≠1).由可解得-1<x<1,所以函数F(x)的定义域为(-1,1).令F(x)=0,则2log a(x+1)+log a=0.(*)方程变形为log a(x+1)2=log a(1-x),则(x+1)2=1-x,即x2+3x=0,解得x1=0,x2=-3,经检验,x=-3不符合题意,所以方程(*)的解为x=0,即函数F(x)的零点为0.(2)方程可化为m=2log a(x+1)+log a=log a=log a,即a m=1-x+-4,设1-x=t,t∈(0,1],y=t+,易知函数y=t+在区间(0,1]上是减函数,则当t=1时,y取最小值,y min=5,所以a m≥1.①若a>1,由a m≥1可解得m≥0;②若0<a<1,由a m≥1可解得m≤0.故当a>1时,实数m的取值范围为m≥0,当0<a<1时,实数m的取值范围为m≤0.。
2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)
2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
高三数学第二轮复习教案
高三数学第二轮复习教案第5讲 解析几何问题的题型与方法(二)七、强化训练1、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32 (C )31 (D )352、已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线的方程为6x +10y -59=0,∠B 的平分线所在直线的方程为:x -4y +10=0,求边BC 所在直线的方程。
3、求直线l 2:7x -y +4=0到l 1:x +y -2=0的角平分线的方程。
4、已知三种食物P 、Q 、R 的维生素含量与成本如下表所示。
现在将xk g 的食物P 和yk g 的食物Q 及zk g 的食物R 混合,制成100k g 的混合物.如果这100k g 的混合物中至少含维生素A44 000单位与维生素B48 000单位,那么x ,y ,z 为何值时,混合物的成本最小?5、某人有楼房一幢,室内面积共180 m 2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15 m 2,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?6、已知△ABC 三边所在直线方程AB :x -6=0,BC :x -2y -8=0,CA :x +2y =0,求此三角形外接圆的方程。
7、已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,求点A 的坐标。
8、已知椭圆12222=+by a x (a >b >0)上两点A 、B ,直线k x y l +=:上有两点C 、D ,且ABCD 是正方形。
高考数学(文)二轮复习 专题突破训练:(高考22题)12+4分项练2 Word版含答案
12+4分项练2 不等式1.(2017届重庆市巴蜀中学三诊)设0<a <1,b >c >0,则下列结论不正确的是() A .a b <a c B .b a >c a C .log a b <log a c D.a b >ac答案D解析 取a =12,b =4,c =2可知D 错.故选D.2.(2017·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +5≤0,x +3≥0,y ≤2,则z =x +2y 的最大值是() A .-3 B .-1 C .1 D .3 答案D解析 画出可行域(如图阴影部分所示).画直线l 0:x +2y =0,平移直线l 0到直线l 的位置,直线l 过点M .解方程组⎩⎪⎨⎪⎧x -2y +5=0,y =2得点M (-1,2),∴当x =-1,y =2时,z 取得最大值,z max =-1+2×2=3. 故选D.3.(2017·辽宁省实验中学模拟)已知实数x ,y 满足x 2-xy +y 2=1,则x +y 的最大值为() A .1 B .2 C .3 D .4 答案B解析 原式可化为:(x +y )2=1+3xy ≤1+3⎝⎛⎭⎪⎫x +y 22,解得-2≤x +y ≤2,当且仅当x =y =1时x +y 有最大值2.故选B.4.(2017届浙江省嘉兴市第一中学适应性考试)已知xy =1,且0<y <22,则x 2+4y 2x -2y 的最小值为() A .4 B.92C .22D .4 2 答案A解析 因为xy =1且0<y <22, 可知x >2,所以x -2y >0. x 2+4y 2x -2y =(x -2y )2+4xyx -2y =x -2y +4x -2y≥4,当且仅当x =3+1,y =3-12时等号成立.故选A.5.(2017届吉林省吉林大学附属中学模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +2y +1≥0,2x +y -1≤0,若直线y =k (x +1)把不等式组表示的平面区域分成上、下两部分的面积比为1∶2,则k 等于() A.14B.13 C.12D.34 答案A解析 作出不等式组对应平面区域如图(三角形ABC 及其内部),A (0,1),B (1,-1),∵直线y =k (x +1)过定点C (-1,0),∵C 点在平面区域ABC 内,∴点A 到直线y =k (x +1)的距离d 上=|k -1|1+k2,点B 到直线y =k (x +1)的距离d 下=|2k +1|1+k2,∵直线y =k (x +1)把不等式组表示的平面区域分成上、下两部分的面积比为1∶2,∴2×|k -1|1+k 2=|2k +1|1+k 2,解得k =14.故选A.6.(2017届辽宁省锦州市质量检测)设a >0,b >2,且a +b =3,则2a +1b -2的最小值是()A .6B .2 2C .42D .3+2 2 答案D解析 2a +1b -2=⎝ ⎛⎭⎪⎫2a +1b -2(a +b -2)=3+2(b -2)a +ab -2≥3+22(b -2)a ·ab -2=3+22, 当且仅当a =2(b -2)=2-2时取等号,故选D.7.(2017·河北省衡水中学二模)若实数x ,y 满足条件⎩⎪⎨⎪⎧2x -y +1≥0,2x +y -5≥0,x -2≤0,则z =4x 3x +2y的最大值为() A .1 B.6415C.1619D.12 答案A解析 根据题意画出可行域,z =4x3x +2y =43+2yx ,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F ,G 时目标函数取到最值,F (2,1),G (1,3),点F 与原点连线的斜率最小,则z 在F 点可取得最大值1.8.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -3≤0,x -y -3≤0,设x 2+y 2+4x 的最大值点为A ,则经过点A 和B (-2,-3)的直线方程为()A .3x -5y -9=0B .x +y -3=0C .x -y -3=0D .5x -3y +9=0 答案A解析 绘制不等式组表示的可行域,目标函数z =((x +2)2+y 2)2-4,结合点到点的距离公式的几何意义可得,目标函数在点A (3,0)处取得最大值,则直线过点A (3,0),B (-2,-3),据此可得直线方程为3x -5y -9=0.故选A.9.(2017·湖北省武汉市调研)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤4,x -2y ≤2,如果目标函数z =x +ay 的最大值为163,则实数a 的值为()A .3 B.143C .3或143D .3或-113答案D解析 先画出线性约束条件所表示的可行域,目标函数化为y =-1a x +1a z ,当a >0时,-1a<0,(1)当-12≤-1a <0,即a ≥2时,最优解为A ⎝⎛⎭⎫43,43, z =43+43a =163,a =3,符合题意; (2)当-1a <-12,即0<a <2时,最优解为B ⎝⎛⎭⎫3,12,z =3+12a =163,a =143,不符合,舍去; 当a <0时,-1a>0.(3)当0<-1a <12,即a <-2时,最优解为C (-2,-2),z =-2-2a =163,a =-113,符合;(4)当-1a ≥12,即-2≤a <0时,最优解为B ⎝⎛⎭⎫3,12,z =3+12a =163,a =143,不符合,舍去. 综上,实数a 的值为3或-113,故选D.10.(2017届河北省衡水中学押题卷)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为() A.a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0) C.2ab a +b ≤ab (a >0,b >0) C.a +b 2≤a 2+b 22(a >0,b >0) 答案D解析 AC =a ,BC =b ,可得圆O 的半径r =a +b2,又OC =OB -BC =a +b 2-b =a -b2,则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b22,再根据题图知FO ≤FC ,即a +b2≤a 2+b 22,当且仅当a =b 时取等号.故选D.11.(2017届安徽省安庆市第一中学三模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤1,则z =y -⎝⎛⎭⎫12x的最大值为() A .-32B .0C.12D .1 答案C解析 约束条件⎩⎨⎧x -y ≥0,x +y ≥0,x ≤1对应的可行域为△OBC 及其内部,如图所示,其中O (0,0),B (1,1),C (1,-1),由z =y -⎝⎛⎭⎫12x,得y =⎝⎛⎭⎫12x +z ,当经过点B (1,1)时,z max =1-⎝⎛⎭⎫121=12.12.(2017届天津市耀华中学二模)已知x ,y ,z 为正实数,则xy +yzx 2+y 2+z 2的最大值为()A.235B.45C.22D.23答案C解析 由题意可得x 2+12y 2≥2xy ,z 2+12y 2≥2yz ,结合不等式的性质有x 2+y 2+z 2≥2(xy +yz ),当且仅当x =z =22y 时等号成立,即xy +yz x 2+y 2+z2≤22,xy +yz x 2+y 2+z 2的最大值为22.故选C. 13.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.答案 -2解析 作出不等式对应的平面区域(阴影部分),由z =2x+y ,得y =-2x +z ,平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点A 时,直线y =-2x +z的截距最小,此时z 最小.目标函数为2x +y =-6,由⎩⎪⎨⎪⎧ y =x ,2x +y =-6解得⎩⎪⎨⎪⎧y =-2,x =-2,即A (-2,-2).又点A 也在直线y =k 上,所以k =-2.14.(2017届云南省师范大学附属中学月考)下表所示为X ,Y ,Z 三种食物的维生素含量及成本,某食品厂欲将三种食物混合,制成至少含44 000单位维生素A 及48 000单位维生素B 的混合物100千克,所用的食物X ,Y ,Z 的质量分别为x ,y ,z (千克),混合物的成本最少为________元.答案960解析 混合食物成本的多少受到维生素A ,B 的含量以及混合物总量等因素的制约,各个条件综合考虑,得⎩⎪⎨⎪⎧400x +600y +400z ≥44 000,800x +200y +400z ≥48 000,x +y +z =100,x ≥0,y ≥0,z ≥0,消去不等式中的变量z ,得⎩⎪⎨⎪⎧y ≥20,2x -y ≥40,x +y ≤100,目标函数为混合物成本函数P =12x +10y +8z =800+4x +2y .画出可行域如图所示,当直线y =-2x -400+P2过可行域内的点A (30,20)时,即x =30千克,y =20千克,z =50千克时,成本P =960元为最少.15.(2017·山东)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案8解析∵直线x a +yb =1(a >0,b >0)过点(1,2),∴1a +2b=1, ∴2a +b =(2a +b )⎝⎛⎭⎫1a +2b =4+4a b +b a ≥4+24a b ·ba=8, 当且仅当b a =4ab ,即a =2,b =4时,等号成立.故2a +b 的最小值为8.16.已知变量x ,y (x ,y ∈R )满足约束条件⎩⎪⎨⎪⎧x -y ≤0,x +y ≥5,y -3≤0,若不等式(x +y )2≥c (x 2+y 2) (c ∈R )恒成立,则实数c 的最大值为________. 答案2513解析 作出可行域如图所示,设t =y x ,由可行域易知1≤t ≤32.又由(x +y )2≥c (x 2+y 2) (c ∈R ),得 c ≤(x +y )2x 2+y 2=1+2xy x 2+y 2=1+2x y +y x,即c ≤1+2t +1t,而2≤t +1t ≤136,所以1+2t +1t 的最小值为1+2136=1+1213=2513,所以c ≤2513.。
高三文科数学第二轮复习专题导数教案
高三文科数学第二轮复习专题导数教案文科数学第二轮专题导数及其应用(一)教学目标1、知识与技能:1、利用导数求函数的单调区间、极值和最值2、解决基本的含参问题2、过程与方法:利用导数研究函数,作出图形,再通过图形反馈函数的性质,进一步体会数形结合及分类讨论的思3、情感态度与价值观:这是一堂复习课,教学难度有所增加。
培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(二)重点、难点教学重点:利用导数求多项式函数的单调性极值和最值教学难点:含参的讨论教具准备:与教材内容相关的资料教学设想:通过学习,培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(三)教学过程一、学生自学自探1、某物体的运动方程为s(t) 5t2(位移单位:m,时间单位:s)则它在t=2s时的速度是2、曲线y 4x x3在点(-1,-3)处的切线方程是3、求f(x) lnx 4x的单调增区间4、121f(x) x4 x3 x2 1的极值点是4325、函数y x4 4x 3在区间[-2,3]上的最小值为二、合作交流分小组讨论:回顾以前做过的题目思考、讨论以下问题1、利用导数求瞬时变化率常见的问题及解决方法?2、利用导数研究函数的切线方程的方法和步骤?高三文科数学第二轮复习专题导数教案3、利用导数研究函数的单调性的方法和步骤?4、利用导数研究函数极值的方法和步骤?5、利用导数研究函数的最值的方法和步骤?三、展示评价以小组为单位:展示讨论的结论,其他小组可以补充。
四、规律总结1、利用导数求瞬时速度、加速度问题:规律如下:路程对时间求导得到的是瞬时速度;瞬时速度对时间求导得到的是加速度。
s (t) v(t),v (t) a(t)步骤如下:先求导,再把对应的时刻,带进导数式子,就是所求的某时刻的瞬时速度,加速度。
2、利用导数求切线问题:步骤如下:先求导,把切点(x0,y0)的横坐标x0带入导数,得到切线的斜率k f (x0),然后用点斜式y y0 k(x x0)得出切线方程3、利用导数求函数的单调区间的方法和步骤:(1) 确定函数的定义域(2) 求函数的导数f (x)(3) ①若求单调区间(或证明单调性)只需要在函数f(x)的定义域内解(或证明)不等式f (x) 0(或f (x) 0)②若已知f(x)的单调性,则转化成不等式f (x) 0或f (x) 0在单调区间上恒成立问题求解4、利用导数求函数的极值的步骤(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)检验f (x)在方程f (x)=0的根x0的左右的符号,高三文科数学第二轮复习专题导数教案若当x x0,若当x x0,f (x) 0,当x x0,f (x) 0,则x0是极小值点,f(x0)是函数的极小值 f (x) 0,当x x0,f (x) 0,则x0是极大值点,f(x0)是函数的极大值5、利用导数研究函数的最值的方法和步骤?(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)①定义域是[a,b],若x0 [a,b],比较f(x0),f(a),f(b)之间的大小,最大的是最大值,最小的是最小值,若x0 [a,b],比较f(a),f(b)的大小,最大的是最大值,最小的是最小值。
2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
2022高考数学(文)二轮复习专题能力提升练(四) Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题力量提升练(四)(120分钟150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·淄博一模)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正(主)视图、侧(左)视图中的两条虚线相互垂直,则该几何体的体积是( )A.56B.34C.12D.16【解析】选A.由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的体积为1,四棱锥的体积为:13×1×1×12=16,故组合体的体积V=1-16=56.2.如图,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽视不计)( ) A.8+π B.8+4π C.16+π D. 16+4π【解析】选C.几何体为圆柱体和长方体的组合体,所以V=π+2×4×2=16+π.3.在正方体ABCD-A1B1C1D1中,已知M,N分别是A1B1,BB1的中点,过M,N,C1的截面截正方体所得的几何体如图所示,那么该几何体的侧视图是( )【解析】选B.依据题意得:该几何体的侧视图是点A,D,D1,A1,在平面BCC1B1上的投影,且NC1是被拦住的线段,应为虚线;所以符合条件的是B选项.4.(2021·枣庄二模)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.35πcm 3B.1063πcm 3 C.70πcm 3 D.2123πcm 3【解题提示】由已知的三视图可得:该几何体是一个圆台与半球的组合体,分别计算半球与圆台的体积,相加可得答案.【解析】选D.由已知的三视图可得:该几何体是一个圆台与半球的组合体,球的半径与圆台的下底面半径均为4cm ,故半球的体积为:12×43×π×43=1283π(cm 3),圆台的上底面半径为2cm ,高为3cm ,故圆台的体积为:13π(42+4×2+22)×3=843π(cm 3),故组合体的体积V=1283π+843π=2123π(cm 3).5.(2021·郑州一模)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.24C. 30D. 48【解析】选B.由三视图可知其直观图如图所示,其由三棱柱截去一个三棱锥所得,三棱柱的体积V=12×4×3×5=30,三棱锥的体积V 1=13×12×4×3×3=6,故该几何体的体积为24.6.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【解析】选D.由m ⊥平面α,直线l 满足l ⊥m ,且l ⊄α,所以l ∥α,又n ⊥平面β,l ⊥n ,l ⊄β,所以l ∥β.又直线m ,n 为异面直线,且m ⊥平面α,n ⊥平面β,则α与β相交.否则,若α∥β,则推出m ∥n ,与m ,n 异面冲突.故α与β相交,且交线平行于l .7.已知某几何体的三视图如图所示,则该几何体的体积为( )A.3B.103C.113D.83【解题提示】几何体是直三棱柱截去一个三棱锥,结合直观图分别求出直三棱柱的体积和截去的三棱锥的体积,相减可得几何体的体积.【解析】选B.由三视图知:几何体是直三棱柱截去一个三棱锥,如图:直三棱柱的体积为12×2×2×2=4.截去的三棱锥的体积为13×12×2×1×2=23,所以几何体的体积V=4-23=10 3.8.(2021·青岛二模)某几何体的三视图如图所示,则此几何体的表面积为( )A.1403π+4√13π B.36π+2√13πC.32π+2√13πD.44π+2√13π【解题提示】首先依据三视图把该几何体的直观图整理出来,进一步利用立体图的相关的数据求出结果. 【解析】选D.依据三视图得知:该几何体是由下面是一个半径为4的半球,上面是一个底面半径为2,高为3的圆锥构成的组合体.首先求出上面圆锥的侧面开放面的半径r=√13,圆锥的底面周长为l=4π,所以圆锥的侧面面积为:S1=12·4π·√13=2√13π,剩余的侧面面积为:S2=2π·16+16π-4π=44π,所以组合体的表面积为:S=S1+S2=44π+2√13π.9.(2021·烟台二模)某几何体在网格纸上的三视图如图所示,已知网格纸上小正方形的边长为1,则该几何体的体积为( )A.4π3B.5π3C.7π3D.8π3【解析】选A.由已知的三视图可得:该几何体是一个圆柱和四分之一球组成的组合体,圆柱底面半径和球的半径R均为1,故四分之一球的体积为:14×43πR3=13π,圆柱的高h=1,故圆柱的体积为:πR2h=π,故组合体的体积V=13π+π=4π3. 10.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2√3,点A,B,C,D在球O上,球O 与BA1的另一个交点为E,与CD1的另一个交点为F,AE⊥BA1,则球O的表面积为( )A.6πB.8πC.12πD.16π【解题提示】连结EF,DF,说明三棱柱ABE-DCF是球O的内接直三棱柱,求出球的半径,即可求解球的表面积.【解析】选B.连结EF,DF,易证得BCFE是矩形,则三棱柱ABE-DCF是球O的内接直三棱柱,由于AB=2,AA1=2√3,所以tan∠ABA1=√3,即∠ABA1=60°,又AE⊥BA1,所以AE=√3,BE=1,所以球O的半径R=12√22+12+(√3)2=√2,所以球O的表面积为:4πR2=4π(√2)2=8π.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2021·日照一模)若某几何体的三视图如图所示,则此几何体的体积是. 【解题提示】画出几何体的直观图,然后利用三视图的数据求解几何体的体积即可.【解析】由三视图知此几何体为边长为2的正方体截去一个三棱锥(如图),所以此几何体的体积为:2×2×2-13×12×1×2×2=223.答案:22312.一个几何体的三视图如图所示,则该几何体的体积是.【解析】由已知的三视图可以推断该几何体是一个底面如正视图所示的六棱柱,由俯视图可得棱柱的高h=2,由割补法,可得棱柱的底面面积S=2·3=6,故棱柱的体积V=2·6=12.答案:1213.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是.【解题提示】由三视图想象出直观图,一般需从俯视图构建直观图,先确定最大的面,再求其面积.【解析】由三视图可知,该几何体有两个面是直角三角形,如图,底面是正三角形,最大的面是VAB,其边长分别为:2,√22+22=2√2,√22+22=2√2,故其面积为:12×2×√8−1=√7.答案:√7【方法技巧】与三视图有关问题的解题技巧:(1)留意长宽高的关系:三视图中长对正,高平齐,宽相等.(2)由三视图想象出直观图,一般需从俯视图构建直观图.14.(2021·德州一模)已知一个三棱锥的三视图如图所示,其中俯视图是顶角为120°的等腰三角形,则该三棱锥的四个表面中,面积最大的值为. 【解析】如图所示:该三棱锥是P-ABC,其中PA⊥底面ABC,PA=2,其底面为顶角∠BAC=120°的等腰三角形,BC=2√3.取BC的中点D,连接AD,可得AD=1.其面积最大的表面是侧面△PBC.由于PD=√PA2+AD2=√5.所以S△PBC=12BC·PD=12×2√3×√5=√15.答案:√1515.如图,用一边长为√2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢外形保持不变,则鸡蛋最高点与蛋巢底面的距离为.【解析】由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,由于鸡蛋的体积为43π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为√1−(12)2=√32, 而垂直折起的4个小直角三角形的高为12,故鸡蛋最高点与蛋巢底面的距离为√32+1+12=√32+32.答案:3+√32三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)如图所示是某三棱柱被削去一个底面后的直观图与侧(左)视图、俯视图.已知CF=2AD ,侧(左)视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【解析】取CF 中点P ,过P 作PQ ∥CB 交BE 于Q ,连接PD ,QD ,则AD ∥CP ,且AD=CP .所以四边形ACPD 为平行四边形, 所以AC ∥PD.又BC ∥PQ ,易知平面PDQ ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB 和四棱锥D-PQEF ,所以V=V 三棱柱PDQ-CAB +V D-PQEF =12×22sin60°×2+13×(1+2)×22×√3=3√3.17.(12分)如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=√2. (1)证明:平面A 1BD ∥平面CD 1B 1. (2)求三棱柱ABD-A 1B 1D 1的体积.【解析】(1)由于四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=√2,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,所以BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1.(2)由题意可得A 1O 为三棱柱ABD-A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O=√A 1A 2−AO 2=√2−1=1,所以三棱柱ABD-A 1B 1D 1的体积V=S △ABD·A1O=AB22·A 1O=22×1=1.【误区警示】解答本题易消灭以下三种错误:一是对棱柱的性质不生疏,造成思路受阻;二是对面面平行的判定的理解不彻底,造成证明不严谨失分;三是对棱柱的体积公式记忆不准或计算错误而失分.18.(12分)(2021·日照二模)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE.(2)当EM为何值时,AM∥平面BDF?证明你的结论.【解题提示】(1)由已知,若证得AC⊥BC,则据面面垂直的性质定理即可.转化成在平面ABCD 中,能否有AC⊥BC,易证成立.(2)设AC∩BD=N,则面AMF∩平面BDF=FN,只需AM∥FN即可.而CN∶NA=1∶2.故应有EM∶FM=1∶2.【解析】(1)在梯形ABCD中,由于AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠BAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又由于平面ACFE⊥平面ABCD,交线为AC,所以BC⊥平面ACFE. (2)当EM=√33a时,AM∥平面BDF,在梯形ABCD中,设AC∩BD=N,连接FN,则CN∶NA=1∶2,由于EM=√33a,而EF=AC=√3a,所以EM∶MF=1∶2,所以MF AN,所以四边形ANFM是平行四边形,所以AM∥NF,又由于NF⊂平面BDF,AM⊄平面BDF,所以AM∥平面BDF.19.(12分)(2021·淄博二模)有一个全部棱长均为a的正四棱锥P-ABCD,还有一个全部棱长均为a的正三棱锥,将此三棱锥的一个面与正四棱锥的一个侧面完全重合在一起,得到一个如图所示的多面体.(1)证明:P,E,B,A四点共面.(2)求三棱锥A-PDE的体积.(3)在底面ABCD内找一点M,使EM⊥平面PBC,指出M的位置,并说明理由.【解题提示】(1)取PB的中点F,连接AF,EF,CF,AC,由已知得∠AFC为二面角A-PB-C的平面角,∠EFC为二面角E-PB-C的平面角,由余弦定理得cos∠AFC=-13,cos∠EFC=13,从而∠AFC+∠EFC=π,由此能证明P,E,B,A四点共面.(2)由已知得AP∥BE,BE∥平面APD,从而V A-PDE=V B-APD=V P-ABD,由此能求出三棱锥A-PDE的体积.(3)ME⊥平面PBC,交平面PBC于点H,又PB=PC=BC,则H为△PBC的重心,从而得H为△ACE的重心,从而求出M为线段AC的中点.【解析】(1)取PB的中点F,连接AF,EF,CF,AC,所以AF⊥PB,EF⊥PB,CF⊥PB,且AF=CF=√32a,所以∠AFC为二面角A-PB-C的平面角,∠EFC为二面角E-PB-C的平面角,在△AFC中,由余弦定理得:cos∠AFC=AF2+CF2−AC22AF·CF =-13,在△EFC中,由余弦定理得:cos∠EFC=EF2+CF2−EC22EF·CF =13,所以∠AFC+∠EFC=π,所以P,E,B,A四点共面.(2)由于P,E,B,A四点共面,∠PAB=60°,∠ABE=120°,所以AP∥BE,BE∥平面APD,所以V A-PDE=V B-APD=V P-ABD=13×12×a×a×√22a=√212a3.(3)连接AC,取AC的中点M,M即为所求点.由于ME⊥平面PBC,交平面PBC 于点H,易知H是△PBC的垂心,又PB=PC=BC,则H为△PBC的重心,在△ACE中,由于CHHF =21,所以点H为△ACE的重心,所以M为线段AC的中点,即M即为所求点.20.(13分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD.(2)求证:直线AC⊥平面ODE. 【证明】(1)由于四边形ABCD是菱形,AC∩BD=O,所以点O是BD的中点,由于点G为BC的中点,所以OG∥CD,又由于OG⊄平面EFCD,CD⊂平面EFCD,所以直线OG∥平面EFCD.(2)由于BF=CF,点G为BC的中点,所以FG⊥BC,由于平面BCF⊥平面ABCD,平面BCF∩平面ABCD=BC,FG⊂平面BCF,FG⊥BC,所以FG⊥平面ABCD,由于AC⊂平面ABCD,所以FG⊥AC,由于OG∥AB,OG=12AB,EF∥AB,EF=12AB,所以OG∥EF,OG=EF,所以四边形EFGO为平行四边形,所以FG∥EO,由于FG⊥AC,FG∥EO,所以AC⊥EO,由于四边形ABCD是菱形,所以AC⊥DO,由于AC⊥EO,AC⊥DO,EO∩DO=O,EO,DO在平面ODE 内,所以AC⊥平面ODE.21.(14分)如图甲,☉O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=π3.沿直径AB折起,使两个半圆所在的平面相互垂直(如图乙),F为BC的中点,E为AO的中点.依据图乙解答下列各题:(1)求证:CB⊥DE.(2)求三棱锥C-BOD的体积.(3)在劣弧BD⏜上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.【解题提示】(1)利用等边三角形的性质可得DE⊥AO,再利用面面垂直的性质定理即可得到DE⊥平面ABC,进而得出结论.(2)由(1)知DE⊥平面ABC,利用转换底面的方法,即可求三棱锥的体积.(3)存在,G为劣弧BD⏜的中点.连接OG,OF,FG,通过证明平面OFG∥平面ACD,即可得到结论.【解析】(1)在△AOD中,由于∠OAD=π3,OA=OD,所以△AOD为正三角形,又由于E为OA的中点,所以DE⊥AO,由于两个半圆所在平面ACB与平面ADB相互垂直且其交线为AB,所以DE⊥平面ABC.又CB⊂平面ABC,所以CB⊥DE.(2)由(1)知DE⊥平面ABC,所以DE为三棱锥D-BOC的高.由于D为圆周上一点,且AB为直径,所以∠ADB=π2,在△ABD中,由AD⊥BD,∠BAD=π3,AB=2,得AD=1,DE=√32.由于S△BOC=12S△ABC=12×12×1×√3=√34,所以V C-BOD=V D-BOC=13S△BOC·DE=13×√34×√32=18.(3)存在满足题意的点G,G为劣弧BD⏜的中点.证明如下:连接OG,OF,FG,易知OG⊥BD,又AD⊥BD,所以OG∥AD,由于OG⊄平面ACD,所以OG∥平面ACD.在△ABC中,O,F分别为AB,BC的中点,所以OF∥AC,OF⊄平面ACD,所以OF∥平面ACD,由于OG∩OF=O,所以平面OFG∥平面ACD.又FG⊂平面OFG,所以FG∥平面ACD. 关闭Word文档返回原板块。
高三数学(文)一轮复习课时跟踪训练:第二章函数的概念与基本初等函数课时跟踪训练7含解析
课时跟踪训练(七)[基础巩固]一、选择题1.(2017·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |[答案] B2.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎪⎫-52等于( )A .-12B .-14 C.14D.12[解析] ∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2 =f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12 =-2×12×⎝ ⎛⎭⎪⎫1-12=-12. [答案] A3.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3[解析] 解法一:根据题意作出y =f (x )的简图,由图知,选B.解法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.[答案] B4.(2017·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 [解析] ∵f (x )是偶函数,∴f (x )=f (|x |),∴f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23,故选A.[答案] A5.(2017·陕西省高三一检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( )A .-1B .0C .1D .-2[解析] 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-f [-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,选B.[答案] B6.(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2[解析] 由题意得,当x >12时,f (x +1)=f ⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),所以当x >12时,f (x )的周期为1,所以f (6)=f (1).又f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2,故选D. [答案] D 二、填空题7.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.[解析] 依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.[答案] 128.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________.[解析] 因为f (-2)=2,所以-32a +2b +2-1=2,则32a -2b =-1,即f (2)=32a -2b +2-1=0.[答案] 09.(2017·甘肃省张掖市高三一诊)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2017)的值为________.[解析] ∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1.又f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用迭加法,得f (2017)=2018.[答案] 2018 三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.[解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[能力提升]11.(2017·广东省惠州市高三三调)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为( ) A .①③④ B .①②③ C .①②④D .②③④[解析] f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎪⎫-32+x ,又f ⎝⎛⎭⎪⎫-32+x =-f ⎝⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故真命题的序号为①②③.选B.[答案] B12.(2017·湖北省七市(州)高三联考)函数y =f (x )为R 上的偶函数,函数y =g (x )为R 上的奇函数,f (x )=g (x +2),f (0)=-4,则g (x )可以是( )A .4tan πx8 B .-4sin πx2 C .4sin πx4D .-4sin πx4[解析] ∵f (x )=g (x +2),f (0)=-4,∴g (2)=-4.而4tan 2π8=4tan π4=4,-4sin 2π2=-4sin π=0,4sin 2π4=4sin π2=4,-4sin 2π4=-4,∴y =g (x )可以是g (x )=-4sin πx4,经检验,选项D 符合题干条件.故选D.[答案] D13.(2017·江西调研)已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )的解析式为________.[解析] 设x <0,则-x >0,因为当x >0时,f (x )=x 3+x +1,所以f (-x )=-x 3-x +1.又函数f (x )是偶函数,所以f (x )=-x 3-x +1.[答案] f (x )=-x 3-x +114.(2017·云南省高三统一检测)已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln (1+x 2+x ),x ≥0,3x 2+ln (1+x 2-x ),x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.[解析] 若x >0,则-x <0,f (-x )=3(-x )2+ln(1+(-x )2+x )=3x 2+ln(1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.[答案] (-∞,-2)∪(0,+∞)15.(2018·日照检测)设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ).当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. [解] (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ),∴f (x )是偶函数. (2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 进而当x ∈[1,2]时,x -2∈[-1,0], f (x )=f (x -2)=-(x -2)=-x +2. 故所求为f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].16.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.[解](1)依题意得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,即⎩⎪⎨⎪⎧b1+02=0,a 2+b1+14=25⇒⎩⎪⎨⎪⎧a =1,b =0.∴f (x )=x 1+x 2. (2)证明:任取-1<x 1<x 2<1, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1+x 21>0,1+x 22>0.又-1<x 1x 2<1,∴1-x 1x 2>0, ∴f (x 1)-f (x 2)<0,∴f (x )在(-1,1)上是增函数. (3)f (t -1)<-f (t )=f (-t ). ∵f (x )在(-1,1)上是增函数, ∴-1<t -1<-t <1,解得0<t <12.[延伸拓展](2017·昆明市高三质检)定义“函数y =f (x )是D 上的a 级类周期函数”如下:函数y =f (x ),x ∈D ,对于给定的非零常数a ,总存在非零常数T ,使得定义域D 内的任意实数x 都有af (x )=f (x +T )恒成立,此时T 为f (x )的周期.若y =f (x )是[1,+∞)上的a 级类周期函数,且T =1,当x ∈[1,2)时,f (x )=2x +1,且y =f (x )是[1,+∞)上的单调递增函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫56,+∞ B .[2,+∞) C.⎣⎢⎡⎭⎪⎫53,+∞ D .[10,+∞)[解析] 因为x ∈[1,2)时,f (x )=2x +1,所以当x ∈[2,3)时,f (x )=af (x -1)=a (2x -1),当x ∈[n ,n +1)时,f (x )=af (x -1)=a 2f (x -2)=…=a n -1f (x -n +1)=a n -1·(2x -2n +3),即x ∈[n ,n +1)时,f (x )=a n -1·(2x -2n +3),n ∈N *,同理可得,x ∈[n -1,n )时,f (x )=a n -2(2x -2n +5),n ∈N *.因为f (x )在[1,+∞)上单调递增,所以a >0且a n -1·(2n-2n +3)≥an -2(2n -2n +5),解得a ≥53,故选C.[答案] C合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
2017年高考真题全国2卷文科数学(附答案解析)
uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.
创新设计(浙江专用)高考数学二轮复习 教师用书6 小题综合限时练(2021年整理)
创新设计(浙江专用)2017届高考数学二轮复习教师用书6 小题综合限时练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习教师用书6 小题综合限时练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习教师用书6 小题综合限时练的全部内容。
限时练(一)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B。
(2,3] C。
(-1.2) D.(-1,3]答案A2。
已知双曲线C:错误!-错误!=1(a>0,b>0)的离心率为错误!,则C的渐近线方程为( ) A.y=±错误!x B。
y=±错误!xC.y=±12x D.y=±x答案C3。
在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。
若错误!=a,错误!=b,则错误!=()A。
错误!a+错误!b B。
错误!a+错误!bC.错误!a+错误!bD.错误!a+错误!b解析∵错误!=a,错误!=b,∴错误!=错误!+错误!=错误!错误!+错误!错误!=错误!a+错误!b,因为E是OD的中点,∴错误!=错误!,∴|DF|=错误!|AB|,∴DF→=错误!错误!=错误!(错误!-错误!)=13×错误!=错误!错误!-错误!错误!=错误!a-错误!b,错误!=错误!+错误!=错误!a+错误!b+错误!a-错误!b=错误!a+错误!b.答案C4。
2017年全国卷3文科数学高考真题 试题及答案解析
an 2n
1
的前 n 项和.
18.(12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每
瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,
每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于 25,需求量为 500 瓶;
2
V r 2h
3 2
2 1
3 4
,故选
B.
10.【答案】C 【解析】由三垂线定理逆定理,平面内的一条直线垂直于平面的斜线,则这条直线也垂
直于斜线在平面内的射影。
A 项中,若 A1E DC1 ,那么 D1E DC1 ,显然不成立; B 项中,若 A1E BD 那么 BD AE 也显然不成立; C 项 中 , 若 A1E BC1 , 那 么 BC1 B1C 成 立 , 反 之 BC1 B1C 成 立 也 必 有 BC1 A1E ,故 C 项正确。 D 项中,若 A1E AC ,则 AE AC 不成立。
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:60 分.
17.(12 分)设数列an 满足 a1 3a2 (2n 1)a n 2n .
(1)求
an
的通项公式;(2)求数列
2.【答案】B
【解析】由题意: z 1 2i .本题选择 B 选项.
3.【答案】A
【解析】由折线图,7 月份后月接待游客量减少,A 错误;本题选择 A 选项.
4.【答案】A
【解析】 sin 2 2sin cos sin cos 2 1 7 .本题选择 A 选项.
高考复习试卷习题资料之高考数学试卷文科高考模拟卷 2
高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.1【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>2【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e大于建立不等式,解之可得 m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于⇔m>1,∴双曲线的离心率大于的充分必要条件是m>1.故选:C.【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1. 【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=﹣1,故答案为:2,x=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为3.【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和Sn= 2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{an}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{an}时首项为2,公比为2的等比数列.∴数列{an}的前n项和为:Sn===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2x﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f(x)=的值域为(﹣∞,2).【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.【分析】设P的坐标为(x,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积. 【解答】解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B (0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.【分析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知an=a1qn﹣1(a1>0,q>1),由dk=ak﹣ak+1⇒dk﹣1=ak﹣1﹣ak (k≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<dn﹣1,可用反证法证明a1,a2,…,an﹣1是单调递增数列;再证明am为数列{an}中的最小项,从而可求得是ak=dk+am,问题得证.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,an﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{an}的通项为:an=a1qn﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,dk=Ak﹣Bk=ak﹣ak+1,进而当k=2,3,…n﹣1时,===q为定值.∴d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d为d1,d2,…,dn﹣1的公差,对1≤i≤n﹣2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai,又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an﹣1为递增数列.因为Ai=ai(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<an﹣1,因此an=B1.所以B1=B2=…=Bn﹣1=an.所以ai=Ai=Bi+di=an+di,因此对i=1,2,…,n﹣2都有ai+1﹣ai=di+1﹣di=d,即a1,a2,…,an﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【分析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I)f′(x)=2x+xcosx=x(2+cosx),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cosa)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:x (﹣∞,0) 0 (0,+∞)f(x)﹣ 0 +f′(x) 1所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.高考模拟复习试卷试题模拟卷【考情解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【重点知识梳理】 1.函数的概念 (1)函数的定义:一般地,设A ,B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应;那么就称f :A→B 为从集合A 到集合B 的一个函数.记作y =f(x),x ∈A.(2)函数的定义域、值域:在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x ∈A}叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.映射的概念设A ,B 是两个非空的集合,如果按照某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么称对应f :A→B 为集合A 到集合B 的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.【高频考点突破】 考点一、函数的基本概念 例1、有以下判断:(1)f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1,x≥0,-1,x<0表示同一函数;(2)函数y =f(x)的图象与直线x =1的交点最多有1个; (3)f(x)=x2-2x +1与g(t)=t2-2t +1是同一函数;(4)若f(x)=|x -1|-|x|,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0.其中正确判断的序号是________.【特别提醒】两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f(x)=2x -1,g(t)=2t -1,h(m)=2m -1均表示同一函数.【变式探究】试判断以下各组函数是否表示同一函数. (1)y =1,y =x0;(2)y =x -2·x +2,y =x2-4; (3)y =x ,y =3t3; (4)y =|x|,y =(x)2. 考点二、求函数的解析式例2、(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x2+1x2,求f(x)的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f(x)的解析式;(3)已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,求f(x). 【方法技巧】函数解析式的求法(1)配凑法:由已知条件f (g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3)); (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x)(如A 级T6).【变式探究】(1)已知f(x +1)=x +2x ,求f(x)的解析式;(2)设y =f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x +2,求f(x)的解析式. 考点三、分段函数例3、设函数f(x)=⎩⎪⎨⎪⎧2-x ,x ∈-∞,1,x2,x ∈[1,+∞,若f(x)>4,则x 的取值范围是______.【方法技巧】求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.【变式探究】已知f(x)的图象如图,则f (x)的解析式为________.考点四 函数的定义域 例4、(1)函数y =ln x +1-x2-3x +4的定义域为______________.(2)若函数y =f(x)的定义域是[0,2],则函数g(x)=f2xx -1的定义域是()A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)【拓展提高】(1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f(x)的定义域是[a ,b],求f[g(x)]的定义域,是指满足a≤g(x)≤b 的x 的取值范围,而已知f[g(x)]的定义域是[a ,b],指的是x ∈[a ,b].【变式探究】(1)若函数f(x)=x -4mx2+4mx +3的定义域为R ,则实数m 的取值范围是__________.(2)已知f(x)的定义域是[0,4],则f(x +1)+f(x -1)的定义域是__________. 【真题感悟】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+=-+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是()(A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.2.(·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x3 C .y =ln x D .y =|x|3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.4.(·山东卷)函数f(x)=1log2x -1的定义域为( ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞)5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________. 7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________.8.(·江西卷)设函数f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1).(1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13; (2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=m ax{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .1610.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( ) A .-1 B .0 C .1 D .211.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数. 13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________.14.(·重庆卷)函数y =1log2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【押题专练】1.已知f(x)=⎩⎪⎨⎪⎧log3x ,x>0,ax +b ,x≤0,且f(0)=2,f(-1)=3,则f(f(-3))=( )A .-2B .2C .3D .-32.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x≤0.若f (a)+f(1)=0,则实数a 的值为( )A .-3B .-1C .1D .33.若函数f(x)=1log 122x +1,则f(x)的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞D.()0,+∞ 4.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =xexD .y =sin xx5.已知函数f ⎝⎛⎭⎫x -1x =x2+1x2,则f(3)=( )A .8B .9C .11D .106.具有性质:f ⎝⎛⎭⎫1x =-f(x)的函数,我们称为满足“倒负”交换的函数,下列函数:①f(x)=x -1x ;②f(x)=x +1x ;③f(x)=⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①7.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )8.若函数f(x)= 2x2+2ax -a -1的定义域为R ,则a 的取值范围为________.9.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.10.(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f(x); (2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求f(x); (3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求函数f(x)的解析式.11.已知函数f(x)=2x -1,g(x)=⎩⎪⎨⎪⎧x2,x≥0,-1 x<0,求f[g(x)]和g[f(x)]的解析式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y =f(x)的函数解析式.13.(1)已知函数f(x)的定义域为(0,1),求f(x 2)的定义域; (2)已知函数f(2x +1)的定义域为(0,1),求f(x)的定义域;(3)已知函数f(x +1)的定义域为[-2,3],求f(2x2-2)的定义域.高考模拟复习试卷试题模拟卷。
高三数学二轮复习 1.6.1 直线与圆课时巩固过关练 理 新人教版-新人教版高三全册数学试题
课时巩固过关练十五直线与圆(30分钟55分)一、选择题(每小题5分,共20分)1.(2016·某某一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=( ) A.±2 B.± C. D.【解析】选B.抛物线的准线为y=-1,将圆化为标准方程+y2=,圆心到直线的距离为1=⇒m=±.2.(2016·某某一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )A. B.2 C.3 D.4【解析】选C.由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.l1,l2间的距离为=.原点到l2的距离为=,所以点M到原点的距离最小值为+=3.3.(2016·某某二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+ (y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-【解析】选D.由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为:y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆相切,圆心为(-3,2),所以=1.整理得12k2+25k+12=0,解得:k=-或k=-.4.(2016·某某二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b ∈R且ab≠0,则+的最小值为( )A.1B.3C.D.【解析】选A.x2+y2+2ax+a2-4=0即(x+a)2+y2=4,x2+y2-4by-1+4b2=0即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,当且仅当=,即a=±2b时取等号.二、填空题(每小题5分,共10分)5.(2016·某某高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.【解析】设C(a,0)(a>0),由题意知=,解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=96.(2016·某某二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.【解析】由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.答案:18三、解答题(7题12分,8题13分,共25分)7.(2016·某某一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程.(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.【解析】(1)由圆C:x2+y2-4x-6y+12=0,配方,得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.又斜率不存在时直线x=3也与圆相切,故所求切线方程为x=3或3x-4y+11=0.(2)直线OA的方程为y=x,即5x-3y=0,点C到直线OA的距离为d==,又|OA|==,所以S=|OA|d=.8.(2016·某某一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程.(2)求过P点的圆C的弦的中点的轨迹方程.【解析】(1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4.C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.直线l的斜率不存在时,也满足题意,此时方程为x=0.所以所求直线l的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即·=0,所以(x+2,y-6)·(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.【误区警示】在本题(1)的求解中不可忽视直线l斜率的存在性,在由距离公式求出一个k 时应考虑直线斜率不存在的情况,否则会造成漏解.【加固训练】(2016·某某二模)已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.(1)求圆O的方程.(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求·的取值X围.【解析】(1)圆M的方程可整理为(x-1)2+(y-1)2=8,故圆心M(1,1),半径R=2.圆O的圆心为O(0,0),因为|MO|=<2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以|MO|=R-r,即=2-r,解得r=.所以圆O的方程为x2+y2=2.(2)不妨设E(m,0),F(n,0),且m<n.由解得或故E(-,0),F(,0).设D(x,y),由|DE|,|DO|,|DF|成等比数列,得|DE|·|DF|=|DO|2,即·=x2+y2,整理得x2-y2=1.而=(--x,-y),=(-x,-y),所以·=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1.由于点D在圆O内,故有得y2<,所以-1≤2y2-1<0,即·∈[-1,0).(30分钟55分)一、选择题(每小题5分,共20分)1.直线l1:ax-y-3=0,l2:2x+by+c=0,则ab=-2是l1∥l2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.当ab=-2且c=3时,l1与l2重合,而l1∥l2时一定有ab-2×(-1)=0,即ab=-2,所以ab=-2是l1∥l2的必要不充分条件.【加固训练】设向量a=(a,1),b=(1,b)(ab≠0),若a⊥b,则直线b2x+y=0与直线x-a2y=0的位置关系是( )A.平行B.相交且垂直C.相交但不垂直D.重合【解析】选B.由题意知两直线都经过点(0,0),因为a⊥b,所以a·b=a+b=0,所以a=-b,由于直线b2x+y=0的斜率为-b2,直线x-a2y=0的斜率为,则(-b2)·=-1,故两直线垂直.2.已知直线l:x·cosα+y·sinα=2(α∈R),圆C:x2+y2+2cosθ·x+2sinθ·y=0(θ∈R),则直线l与圆C的位置关系是( )A.相交B.相切C.相离D.相切或相离【解析】选D.x2+y2+2cosθ·x+2sinθ·y=(x+cosθ)2+(y+sinθ)2=1,所以圆的圆心坐标为(-cosθ,-sinθ),半径为1,则直线到圆心的距离为d==|2+cos(α-θ)|∈[1,3],所以直线l与圆C的位置关系是相切或相离.3.命题p:0<r<4,命题q:圆(x-3)2+(y-5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于1,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题导引】先求出圆心到直线的距离,因为到直线4x-3y=2的距离等于1有两条,数形结合可得答案.【解析】选A.因为圆心(3,5)到直线4x-3y=2的距离等于1,所以圆(x-3)2+(y-5)2=r2上恰好有两个点到直线4x-3y=2的距离等于1时,0<r<2,所以q是p充分不必要条件.【加固训练】动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+2+1总有公共点,则圆C的面积( )A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π【解析】选D.由题意圆C的圆心在以F为焦点,以x=-1为准线的抛物线上,抛物线方程为y2=4x.因为与直线y=x+2+1总有公共点,所以圆C的面积有最小值,最小半径为抛物线上的点到直线的距离的最小值.设与直线y=x+2+1平行且与抛物线相切的直线方程为y=x+t,由得y2-4y+4t=0,由Δ=0得t=1.所以直线y=x+1与y=x+2+1间的距离=2即为最小半径.所以圆C的最小面积为4π.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O为坐标原点,且有|+|≥||,则k的取值X围是( )A.(,+∞)B.[,2)C.[,+∞)D.[,2)【解析】选B.由已知得圆心到直线的距离小于半径,即<2,由k>0得0<k<2. ①如图,又由|+|≥||得|OM|≥|BM|⇒∠MBO≥,因为|OB|=2,所以|OM|≥1,故≥1⇒k≥, ②综合①②得≤k<2.二、填空题(每小题5分,共10分)5.已知直线x+y-a=0与圆x2+y2=2交于A,B两点,O是坐标原点,向量,满足|2-3|=|2+3|,则实数a的值为________.【解析】由|2-3|=|2+3|得·=0,即OA⊥OB,则直线x+y-a=0过圆x2+y2=2与x轴、y轴正半轴或负半轴的交点,故a=±.答案:±【加固训练】已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.【解析】依题意,设所求直线l1的方程是3x+4y+b=0,则由直线l1与圆x2+(y+1)2=1相切,可得圆心(0,-1)到直线3x+4y+b=0的距离为1,即有=1,解得b=-1或b=9.因此,直线l1的方程是3x+4y-1=0或3x+4y+9=0.答案:3x+4y-1=0或3x+4y+9=06.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且=6,则圆C的方程为________.【解题导引】先求圆心坐标,再利用点到直线的距离公式求圆心到直线的距离,最后根据勾股定理求圆的半径.【解析】设所求圆的半径为r,抛物线y2=4x的焦点坐标为(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,故圆C的方程是x2+(y-1)2=10.答案:x2+(y-1)2=10【加固训练】已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,则△PAB面积的最大值是________.【解析】依题意得圆x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是-+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2×=3+.答案:3+三、解答题(7题12分,8题13分,共25分)7.已知半径为2,圆心在直线y=-x+2上的圆C.(1)当圆C经过点A(2,2),且与y轴相切时,求圆C的方程.(2)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值X 围.【解析】(1)因为圆心在直线y=-x+2上,半径为2,所以可设圆的方程为(x-a)2+[y-(-a+2)]2=4,其圆心坐标为(a,-a+2).因为圆C经过点A(2,2),且与y轴相切,所以有解得a=2,所以圆C的方程是(x-2)2+y2=4.(2)设Q(x,y),由|QF|2-|QE|2=32,得(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,解得y=3,所以点Q在直线y=3上.又因为点Q在圆C:(x-a)2+[y-(-a+2)]2=4上,所以圆C与直线y=3必须有公共点.因为圆C的圆心的纵坐标为-a+2,半径为2,所以圆C与直线y=3有公共点的充要条件是1≤-a+2≤5,即-3≤a≤1.所以圆心的横坐标a的取值X围是[-3,1].8.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为☉H.(1)若直线l过点C,且被☉H截得的弦长为2,求直线l的方程.(2)对于线段BH上的任意一点P,若在以点C为圆心的圆上都存在不同的两点M,N,使得点M 是线段PN的中点,求☉C的半径r的取值X围.【解析】(1)线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y-3=0,所以外接圆圆心为H(0,3),半径为=,☉H的方程为x2+(y-3)2=10.设圆心H到直线l的距离为d,因为直线l被☉H截得的弦长为2,所以d==3.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线l的方程为y-2=k(x-3),则=3,解得k=,直线l的方程为4x-3y-6=0.综上,直线l的方程为x=3或4x-3y-6=0.(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y),因为点M是线段PN的中点,所以M,又M,N都在半径为r的☉C上,所以即因为此关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2≤(3-6+m)2+(2-4+n)2≤(r+2r)2,又3m+n-3=0,所以r2≤10m2-12m+10≤9r2对∀m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为,故r2≤且10≤9r2.又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对∀m∈[0,1]成立,即r2<.故☉C的半径r的取值X围为.【加固训练】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值X 围;若不存在,说明理由.【解析】方法一:(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为弦AB的中点,即C1M⊥AB,所以·k AB=-1,即·=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由=得k=±,又k DE=-k DF=-=,结合上图可知当k∈∪[-,]时,直线l:y=k(x-4)与曲线C只有一个交点.方法二:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0).(2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0).又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.(3)由题意知直线l表示过定点(4,0),斜率为k的直线,把直线l的方程代入轨迹C的方程x2-3x+y2=0,其中<x≤3,化简得(k2+1)x2-(3+8k2)x+16k2=0,其中<x≤3,记f(x)=(k2+1)x2-(3+8k2)x+16k2,其中<x≤3.若直线l与曲线C只有一个交点,令f(x)=0.当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,解得x=∈,所以k=±满足条件.当Δ>0时,①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意.②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一个根,满足题意.③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-<k<.故在区间上有且仅有一个根,满足题意.综上所述,k的取值X围是-≤k≤或k=±.。
《高中数学教学与测试》(总复习)学生用书-课后练习B册Ch1-3
櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐櫐殾殾殾殾练习巩固思考运用拓展探究犅册班 级姓 名学 号2 充要条件与量词 班级: 姓名: 学号:1.命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数2.下列命题是假命题的是( )A. 狓∈犚,log2狓=0B. 狓∈犚,cos狓=1C. 狓∈犚,狓2>0D. 狓∈犚,2狓>03.(2018·上海卷)已知犪∈犚,则“犪>1”是“1犪<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(2019·全国Ⅱ卷)设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面5.(多选)下列结论正确的有( )A.若犪>犫>0,则犪犮2>犫犮2B.命题“ 狓>0,2狓≥狓2”的否定是“ 狓>0,2狓<狓2”C.“三个连续自然数的乘积是6的倍数”是存在性命题D.“狓<1”是“狓-12<12”的必要不充分条件6.(多选)使不等式1+1狓>0成立的一个充分不必要条件是( )A.狓>2B.狓≥0C.狓<-1或狓>1D.-1<狓<0[],tan狓≤犿”是真命题,则实数犿的最小值为.7.若“ 狓∈0,π48.(2018·北京卷)能说明“若犳(狓)>犳(0)对任意的狓∈(0,2]都成立,则犳(狓)在[0,4472]上是增函数”为假命题的一个函数是.9.已知集合犃={狓14<2狓≤8},犅={狓|狓2-2犿狓+犿2-1<0},犆={狓||狓-犿|<2}.(1)若犿=2,求集合犃∩犅.(2)在犅,犆两个集合中任选一个,补充在下面的问题中,并解答:条件狆:狓∈犃,条件狇:狓∈,求使狆是狇的必要非充分条件的犿的取值范围.10.设命题狆:实数狓满足狓2-4犪狓+3犪2<0,命题狇:实数狓满足|狓-3|<1.(1)若犪=1,且狆,狇同为真命题,求实数狓的取值范围;(2)若犪>0且狇是狆的充分不必要条件,求实数犪的取值范围.44811.下列命题是真命题的是( )A. 狓0∈犚,e狓0≤0B. 狓∈犚,2狓>狓2C.犪+犫=0的充要条件是犪犫=-1D.犪>1,犫>1是犪犫>1的充分条件12.(多选)下列命题正确的是( )A. 狓>0,ln狓+1ln狓≤2B.命题“ 狓∈(0,+∞),ln狓=狓-1”的否定是“ 狓∈(0,+∞),ln狓≠狓-1”C.设狓,狔∈犚,则“狓≥2且狔≥2”是“狓2+狔2≥4”的必要不充分条件D.设犪,犫∈犚,则“犪≠0”是“犪犫≠0”的必要不充分条件13.已知狆:|狓|≤犿(犿>0),狇:-1≤狓≤4,若狆是狇的充分条件,则犿的最大值为;若狆是狇的必要条件,则犿的最小值为.14.命题狆:实数犿满足不等式犿2-3犪犿+2犪2<0(犪>0);命题狇:实数犿满足方程狓2犿-1+狔2犿-5=1表示双曲线.(1)若命题狇为真命题,求实数犿的取值范围;(2)若狆是狇的充分不必要条件,求实数犪的取值范围.449 15.已知函数犳(狓)=3狓2+2狓-犪2-2犪,犵(狓)=196狓-13,若对任意狓1∈[-1,1],总存在狓2∈[0,2],使得犳(狓1)=犵(狓2)成立,求实数犪的取值范围.(1)已知实数集犃={狓|犪1狓=犫1,犪1犫1≠0},犅={狓|犪2狓=犫2,犪2犫2≠0},证明:犃=犅的充要条件是犪1犪2=犫1犫2;(2)已知实数集犃={狓|犪1狓2+犫1狓+犮1=0,犪1犫1犮1≠0},犅={狓|犪2狓2+犫2狓+犮2=0,犪2犫2犮2≠0},问犪1犪2=犫1犫2=犮1犮2是犃=犅的什么条件?请给出说明过程.450 4 基本不等式 班级: 姓名: 学号:1.函数犳(狓)=狓2+4|狓|的最小值为( )A.3B.4C.6D.82.若狓>0,狔>0,则狓+2狔=22狓槡狔的一个充分不必要条件是( )A.狓=狔B.狓=2狔C.狓=2且狔=1D.狓=狔或狔=13.若正数犿,狀满足2犿+狀=1,则1犿+1狀的最小值为( )A.3+2槡2B.3+槡2C.2+2槡2D.34.已知正数狓,狔满足3狓狔+狔2-4=0,则3狓+5狔的最小值为( )A.1B.4C.8D.165.(多选)下列函数的最大值是12的是( )A.狔=狓2+116狓2B.狔=狓1-狓槡2,狓∈[0,1]C.狔=狓2狓4+1D.狔=狓+4狓+2,狓>-26.(多选)设正实数狓,狔满足狓+2狔=3,则下列说法正确的是( )A.狔狓+3狔的最小值为4B.狓狔的最大值为98C.槡狓+2槡狔的最小值为槡6D.狓2+4狔2的最小值为927.已知正实数狓,狔满足狓+狔=1,则狔狓+2狓狔的最小值为.8.(2019·天津卷)设狓>0,狔>0,狓+2狔=5,则(狓+1)(2狔+1)狓槡狔的最小值为.451 9.已知狓>3,求狔=狓+4狓-3的最小值,并说明狓为何值时狔取得最小值.下面是某位同学的解答过程:解:因为狓>3,所以4狓-3>0,根据均值不等式有狔=狓+4狓-3≥2狓·4狓-3槡,其中等号成立当且仅当狓=4狓-3,即狓(狓-3)=4,解得狓=4或狓=-1(舍),所以狔=狓+4狓-3的最小值为24×44-3槡=8.因此,当狓=4时,狔=狓+4狓-3取得最小值8. 该同学的解答过程是否有错误?如果有,请指出错误的原因,并给出正确的解答过程.10.若犪>0,犫>0,且1犪+1犫=槡犪犫.(1)求犪3+犫3的最小值;(2)是否存在犪,犫,使得2犪+3犫=6?请说明理由.11.在△犃犅犆中,犃=π6,△犃犅犆的面积为2,则2sin犆sin犆+2sin犅+sin犅sin犆的最小值为( )A.槡32B.槡334C.32D.5345212.(多选)设狓,狔∈(0,+∞),犛=狓+狔,犘=狓狔,以下四个命题正确的是( )A.若犘=1,则犛有最小值2B.若犛=2犘,则犛有最小值4C.若犛2=犘+1犘,则犛2有最小值2D.若犛+犘=3,则犘有最大值113.若实数狓,狔满足狓>狔>0,且log2狓+log2狔=1,则2狓+1狔的最小值是,狓-狔狓2+狔2的最大值为.14.已知实数狓>0,狔>0,且2狓狔=狓+狔+犪(狓2+狔2)(犪∈犚).(1)当犪=0时,求狓+4狔的最小值,并指出取最小值时狓,狔的值;(2)当犪=12时,求狓+狔的最小值,并指出取最小值时狓,狔的值.第15题图15.某校学生处为了更好地开展高一社团活动,现要设计如图所示的一张矩形宣传海报.该海报含有大小相等的三个矩形栏目,这三栏的面积之和为60000cm2,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm.(1)怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,并求最小值;(2)如果要求矩形栏目的宽度不小于高度的2倍,那么怎样确定海报矩形栏目高与宽的尺寸,能使整个矩形海报面积最小?并求最小值.453在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即犱=犿犽,其中犱是弹簧拉伸的距离(单位:cm),犿是物体的质量(单位:g),犽是弹簧弹性系数(单位:g/cm).弹簧弹性系数分别为犽1,犽2的两个弹簧串联时,得到的弹簧系数犽满足1犽=1犽1+1犽2,并联时得到的弹簧系数犽满足犽=犽1+犽2.已知物体质量为20g,当两个弹簧串联时拉伸距离为1cm,则并联时弹簧拉伸的最大距离为( )A.14cm B.12cmC.1cmD.2cm454 6 函数的概念及表示 班级: 姓名: 学号:1.若一系列函数的解析式相同、值域相同,但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为狔=2狓2+1、值域为{5,19}的“孪生函数”共有( )A.1个B.5个C.9个D.12个2.(2018·全国Ⅰ卷)设函数犳(狓)=2-狓,狓≤0,1,狓>0,烅烄烆则满足犳(狓+1)<犳(2狓)的狓的取值范围是( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)3.若函数狔=犳(狓)的定义域是(0,1),则狔=犳(狓2)的定义域是( )A.(-1,0)B.(-1,0)∪(0,1)C.(0,1)D.[0,1]4.设犳(狓)=槡狓,0<狓<1,2(狓-1),狓≥1,烅烄烆若犳(犪)=犳(犪+1),则犳(1犪)=( )A.2B.4C.6D.85.(多选)下面各组函数是同一函数的是( )A.狔=-2狓槡3与狔=-2槡狓B.狔=狓槡2与狔=|狓|C.狔=狓槡+1·狓槡-1与狔=(狓+1)(狓-1槡)D.犳(狓)=狓2-2狓-1与犵(狋)=狋2-2狋-16.(多选)若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“孪生函数”.例如,函数狔=狓2,狓∈[1,2]与函数狔=狓2,狓∈[-2,-1]即为“孪生函数”.给出下面四个函数,其中能够被用来构造“孪生函数”的是( )A.狔=[狓]([狓]表示不超过狓的最大整数,如[0.1]=0)B.狔=狓+狓槡+1C.狔=1狓-log3狓D.狔=狓+1狓+14557.(2018·江苏卷)函数犳(狓)=log2狓槡-1的定义域为.8.已知函数犳(狓)=2-狓,狓≤-1,狓+1,狓>-1,烅烄烆则犳[犳(-2)]=,不等式犳(狓)≥2的解集为.9.已知函数犳(狓)=log0.5(狓2-2犪狓+3)的定义域为(-∞,1)∪(3,+∞).(1)求实数犪的值;(2)求函数犳(狓)在[5,+∞)上的值域.10.已知函数犳(狓)=狆狓2+1狓的图象经过点(2,52).(1)求函数犳(狓)的解析式;(2)写出函数犳(狓)的定义域;(3)当狋>12时,试直接写出函数犳(狓)在区间12,狋[]上的最小值犵(狋).11.已知函数犳(狓)=1+狓1-狓的定义域为犃,函数狔=犳[犳(狓)]的定义域为犅,则( )A.犃∪犅=犅B.犃 犅C.犃=犅D.犃∩犅=犅12.(多选)已知犳(狓)是一次函数,若犳[犳(狓)]=6狓+3+犳(狓),则犳(狓)的解析式可以是( )A.犳(狓)=-3狓+1B.犳(狓)=3狓+1C.犳(狓)=2狓-32D.犳(狓)=-2狓-32456 13.已知函数犳(狓)=4|狓|+2-1的定义域是[犪,犫](犪,犫为整数),值域是[0,1],则满足条件的一个整数对(犪,犫)为,这样的整数对一共有个.14.已知命题狆:函数狔=lg(犪狓2+2狓+犪)的定义域为犚,命题狇:函数犳(狓)=2狓2-犪狓在(-∞,1)上单调递减.(1)若“狆∧(瓙狇)”为真命题,求实数犪的取值范围;(2)设关于狓的不等式(狓-犿)(狓-犿+2)<0的解集为犃,当命题狆为真命题时,犪的取值集合为犅,若犃∩犅=犃,求实数犿的取值范围.15.(1)已知犳(狓+1狓)=狓2+1狓2,求犳(狓)的解析式;(2)已知犳(狓)是二次函数,且犳(0)=0,犳(狓+1)=犳(狓)+狓+1,求犳(狓)的解析式;(3)已知函数犳(狓)满足犳(-狓)+2犳(狓)=2狓,求犳(狓)的解析式.457对定义域分别是犇犳,犇犵的函数狔=犳(狓),狔=犵(狓).规定:函数犺(狓)=犳(狓)犵(狓),狓∈犇犳,狓∈犇犵,犳(狓),狓∈犇犳,狓 犇犵,犵(狓),狓 犇犳,狓∈犇犵.烅烄烆(1)若函数犳(狓)=1狓-1,犵(狓)=狓2,写出函数犺(狓)的解析式;(2)求问题(1)中的函数犺(狓)的值域;(3)若犵(狓)=犳(狓+α),其中α是常数,且α∈[0,π],请设计一个定义域为犚的函数狔=犳(狓)及一个α的值,使得犺(狓)=cos4狓,并予以证明.4588 函数的奇偶性、对称性与周期性 班级: 姓名: 学号:1.已知函数犳(狓)=狓2-犪狓,狓≤0,犪狓2+狓,狓>0烅烄烆为奇函数,则犪=( )A.-1B.1C.0D.±12.设函数犳(狓)=1e狓-1+犪,若犳(狓)为奇函数,则不等式犳(狓)>1的解集为( )A.(0,1)B.(-∞,ln3)C.(0,ln3)D.(0,2)3.已知犳(狓)为定义在犚上的奇函数,且满足犳(狓+4)=犳(狓),当狓∈(0,2)时,犳(狓)=2狓2,则犳(3)=( )A.-18B.18C.-2D.94.函数犳(狓)满足3犳(狓)犳(狔)=犳(狓+狔)+犳(狓-狔)(狓,狔∈犚),且犳(1)=13,则犳(2020)=( )A.23B.-23C.-13D.135.(多选)若定义在犚上的增函数狔=犳(狓-1)的图象关于点(1,0)对称,且犳(2)=2,令犵(狓)=犳(狓)-1,则下列结论一定成立的是( )A.犵(1)=0B.犵(0)=-1C.犵(-1)+犵(1)<0D.犵(-1)+犵(2)>-26.(多选)已知犳(狓)是定义在犚上的奇函数,犳(狓+1)是偶函数,且当狓∈(0,1]时,犳(狓)=-狓(狓-2),则( )A.犳(狓)是周期为2的函数B.犳(2019)+犳(2020)=-1C.犳(狓)的值域为[-1,1]D.犳(狓)的图象与曲线狔=cos狓在(0,2π)上有4个交点7.(2019·全国Ⅱ卷)已知犳(狓)是奇函数,且当狓<0时,犳(狓)=-e犪狓.若犳(ln2)=8,则犪=.8.已知犳(狓)是犚上最小正周期为2的周期函数,且当0≤狓<2时,犳(狓)=狓3-狓,则459函数狔=犳(狓)的图象在区间[0,4]上与狓轴的交点的个数为.9.设犳(狓)是定义域为犚的周期函数,最小正周期为2,且犳(1+狓)=犳(1-狓),当-1≤狓≤0时,犳(狓)=-狓.(1)判断犳(狓)的奇偶性;(2)试求出函数犳(狓)在区间[-1,2]上的表达式.10.函数犳(狓)的定义域为犇={狓|狓≠0},且满足对于任意狓1,狓2∈犇,有犳(狓1狓2)=犳(狓1)+犳(狓2). (1)求犳(1)的值;(2)判断犳(狓)的奇偶性并证明你的结论;(3)如果犳(4)=1,犳(狓-1)<2,且犳(狓)在(0,+∞)上是增函数,求狓的取值范围.46011.已知犳(狓)是定义在犚上的函数,且满足犳(狓+2)犳(狓)=-1,当2≤狓≤3时,犳(狓)=狓,则犳(-112)=( )A.52B.-52C.32D.-3212.(多选)已知偶函数犳(狓)满足犳(狓)+犳(2-狓)=0,下列说法正确的是( )A.函数犳(狓)是以2为周期的周期函数B.函数犳(狓)是以4为周期的周期函数C.函数犳(狓+2)为偶函数D.函数犳(狓-3)为偶函数13.(2019·北京卷)设函数犳(狓)=e狓+犪e-狓(犪为常数),若犳(狓)为奇函数,则犪=;若犳(狓)是犚上的增函数,则犪的取值范围是.14.设函数犳(狓)是定义在犚上的奇函数,对任意实数狓,有犳(32+狓)=-犳(32-狓)成立. (1)求证:狔=犳(狓)是周期函数,并指出其周期;(2)若犳(1)=2,求犳(2)+犳(3)的值;(3)若犵(狓)=狓2+犪狓+3,且狔=|犳(狓)|犵(狓)是偶函数,求实数犪的值.461 15.已知函数犳(狓)在犚上满足犳(4-狓)=犳(狓),犳(14-狓)=犳(狓),且在闭区间[0,7]上,只有犳(1)=犳(3)=0.(1)求证:犳(狓)既不是奇函数,也不是偶函数;(2)试求函数犳(狓)在区间[-100,100]上的零点个数.设犳(狓)是定义在犚上的周期为3的函数,当狓∈[-2,1)时,犳(狓)=|犿狓+1|,-2≤狓<0,ln(狓+狀),0≤狓<1,烅烄烆其中犿,狀∈犚.若犳(-6)=0,且函数犳(狓)的值域为[0,2],求犿与狀的值.46210 指数与对数 班级: 姓名: 学号:1.已知犿10=2,则犿=( )A.10槡2B.-10槡2C.2槡10D.±10槡22.已知犪犿=4,犪狀=3,则犪犿-2槡狀的值为( )A.23B.6C.32D.23.若log犪3=犿,log犪5=狀,则犪2犿+狀的值是( )A.15B.75C.45D.2254.下列等式正确的是( )A.log犪(狓·狔)=log犪狓·log犪狔B.log犪(狓+狔)=log犪狓+log犪狔C.log犪(狓÷狔)=log犪狓÷log犪狔D.log犪狓-log犪狔=log犪(狓狔-1)5.(多选)在下列各式中,一定成立的有( )A.(狀犿)7=狀7犿17B.12(-3)槡4=3槡3C.4狓3+狔槡4=(狓+狔)34D.3槡槡9=3槡36.(多选)在下列命题中,真命题是( )A.若log189=犪,log1854=犫,则182犪-犫=32B.若log狓27=3(log318-log32),则狓=±槡3C.若log6[log3(log2狓)]=0,则狓-12=槡24D.若狓2+狔2-4狓-2狔+5=0,则log狓(狔狓)=07.2723+16-12-(12)-2-(827)-23=.8.如果狓,狔∈犚,且2狓=18狔=6狓狔,那么狓+狔的值为.463 9.已知犪12+犪-12=4,求下列各式的值:(1)犪+犪-1;(2)犪2+犪-2.10.(1)已知log狓8=6,求狓的值;(2)已知log3(狓2-10)=1+log3狓,求狓的值.11.历史上,许多伟大的数学家都热衷于寻找质数的“分布规律”,法国数学家马林·梅森就是研究质数的数学家中成就很高的一位.正因为他的卓越贡献,现在人们将形如“2狆-1(狆是质数)”的质数称为梅森数.迄今为止共发现了51个梅森数,前4个梅森数分别是22-1=3,23-1=7,25-1=31,27-1=127,3,7是1位数,31是2位数,127是3位数.已知第10个梅森数为289-1,则第10个梅森数的位数为(参考数据:lg2≈0.301)( )A.25B.29C.27 D.2812.(多选)已知正数狓,狔,狕满足3狓=2狔=12狕,下列结论正确的有( )A.6狕>2狔>3狓B.1狓+2狔=1狕C.狓+狔>(槡3+22)狕 D.狓狔>8狕2464 13.已知犿=(12)23狀=4狓,则log4犿=;满足log狀犿>1的实数狓的取值范围是.14.某药厂生产一种口服液,按药品标准要求,其杂质含量不能超过0.01%.若初始时该药品含杂质0.2%,每次过滤可使杂质含量减少13,问至少应过滤几次才能使得这种液体达到要求?(已知lg2≈0.3010,lg3≈0.4771)15.尽管目前人类无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震时释放出的能量犈(单位:焦耳)与地震里氏震级犕之间的关系为lg犈=4.8+1.5犕.2011年3月11日,日本东北部海域发生里氏9.0级地震,它所释放出来的能量是2008年5月12日我国汶川发生的里氏8.0级地震的多少倍?(精确到1,参考数据:槡10≈3.16)465(多选)拉普拉斯称赞对数是一项使天文学家寿命倍增的发明,对数可以将大数之间的乘、除运算简化为加、减运算.2017年5月23日至27日,围棋世界冠军柯洁与DeepMind公司开发的程序“AlphaGo”进行三局人机对弈,以复杂的围棋来测试人工智能围棋复杂度的上限约为犕=3361.而根据有关资料,可观测宇宙中普通物质的原子总数约为犖=1080.若两数常用对数之差的绝对值不超过1,则称两数“可相互替代”.下列数值与犕犖的值“可相互替代”的有(参考数据:lg2≈0.301,lg3≈0.477)( )A.1091 B.1092C.1093D.1094466 12 对数函数 班级: 姓名: 学号:1.已知函数犳(狓)=log犪(狓+2),若图象过点(6,3),则犳(2)的值为( )A.-2B.2C.12D.-122.已知函数犳(狓)=2log12狓的值域为[-1,1],则函数犳(狓)的定义域是( )A.槡22,槡2熿燀燄燅B.[-1,1]C.12,2[]D.(-∞,槡22燄燅∪[槡2,+∞)3.已知犪,犫>0,且犪≠1,犫≠1.若log犪犫>1,则( )A.(犪-1)(犫-1)<0B.(犪-1)(犪-犫)>0C.(犫-1)(犫-犪)<0D.(犫-1)(犫-犪)>04.已知函数狔=log2(狓2-2犽狓+犽)的值域为犚,则犽的取值范围是( )A.(0,1)B.[0,1)C.(-∞,0]∪[1,+∞)D.{0}∪[1,+∞)5.(多选)已知函数犳(狓)=log5(狓2-2狓-3),则下列结论正确的是( )A.函数犳(狓)的单调递增区间是[1,+∞)B.函数犳(狓)的值域是犚C.函数犳(狓)的图象关于狓=1对称D.不等式犳(狓)<1的解集是(-2,-1)∪(3,4)6.(多选)设函数犳(狓)=log12狓,下列四个命题正确的是( )A.函数犳(|狓|)为偶函数B.若犳(犪)=|犳(犫)|,其中犪>0,犫>0,犪≠犫,则犪犫=1C.函数犳(-狓2+2狓)在(1,2)上为单调递增函数D.若0<犪<1,则|犳(1+犪)|>|犳(1-犪)|7.16世纪末至17世纪初,在自然科学(特别是天文学)领域经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数.由课本知识可知,对数函数狔=log犪狓(犪>0且犪≠1)与指数函数狔=犪狓(犪>0且犪≠1)互为反函数.若函数狔=467犳(狓)是函数狔=犪狓(犪>0且犪≠1)的反函数,且函数狔=犳(狓)的图象经过点(犪,2犪),则犪=. 第8题图8.如图,已知犃,犅是函数犳(狓)=log2(16狓)图象上的两点,犆是函数犵(狓)=log2狓图象上的一点,且直线犅犆垂直于狓轴.若△犃犅犆是等腰直角三角形(其中犃为直角顶点),则点犃的横坐标为.9.已知函数犳(狓)=log12(狓+2)-log12(2-狓).(1)判断犳(狓)的奇偶性;(2)解关于狓的不等式犳(狓)≥log12(3狓).10.设犇是函数狔=犳(狓)定义域内的一个子集,若存在狓0∈犇,使得犳(狓0)=-狓0成立,则称狓0是犳(狓)的一个“准不动点”,也称犳(狓)在区间犇上存在准不动点.已知犳(狓)=log12(4狓+犪·2狓-1),狓∈[0,1].(1)若犪=1,求函数犳(狓)的准不动点;(2)若函数犳(狓)在区间[0,1]上不存在准不动点,求实数犪的取值范围.46811.已知函数犳(狓)=ln1+狓1-狓+狓+1,且犳(犪)+犳(犪+1)>2,则犪的取值范围是( )A.(-12,+∞)B.(-1,-12)C.(-12,0)D.(-12,1)12.(多选)关于函数犳(狓)=|ln|2-狓||,下列描述正确的有( )A.函数犳(狓)在区间(1,2)上单调递增B.函数狔=犳(狓)的图象关于直线狓=2对称C.若狓1≠狓2,但犳(狓1)=犳(狓2),则狓1+狓2=4D.方程犳(狓)=0有且仅有两个解13.已知函数犳(狓)=log2(狓2+槡犪-狓)是犚上的奇函数,则实数犪的值为;已知函数犵(狓)=犿-|2狓-犪|,若犳(狓)≤犵(狓)对狓∈-34,2[]恒成立,则犿的取值范围为.14.已知函数犳(狓)=log4(4狓+1)+犽狓(犽∈犚)为偶函数.(1)求犽的值;(2)若方程犳(狓)=log4(犿2狓-1)有解,求实数犿的取值范围.469 15.设函数犳(狓)的定义域为犇,若存在狓0∈犇,使得犳(狓0+1)=犳(狓0)+犳(1),则称狓0为函数犳(狓)的“旺点”.(1)求函数犳(狓)=2狓+3狓在犚上的“旺点”;(2)若函数犵(狓)=log2犪1+狓2在(0,+∞)上存在“旺点”,求正实数犪的取值范围.对于函数犳1(狓),犳2(狓),犺(狓),如果存在实数犪,犫使得犺(狓)=犪犳1(狓)+犫犳2(狓),那么称犺(狓)为犳1(狓),犳2(狓)的生成函数.(1)设犳1(狓)=log4狓,犳2(狓)=log14狓,犪=2,犫=1,生成函数犺(狓).若不等式2犺2(狓)+3犺(狓)+狋<0在狓∈[4,16]上有解,求实数狋的取值范围.(2)函数犵1(狓)=log3(9狓-1+1),犵2(狓)=狓-1是否能生成一个函数犺(狓),同时满足:①犺(狓+1)是偶函数;②犺(狓)在区间[2,+∞)上的最小值为2log310-2?若能,求函数犺(狓)的解析式;若不能,请说明理由.470 14 函数与方程 班级: 姓名: 学号:1.函数犳(狓)=|狓-2|-ln狓在定义域内的零点的个数为( )A.0B.1C.2D.32.已知函数犳(狓)=2狓,狓≥2,(狓-1)3,狓<2,烅烄烆若关于狓的方程犳(狓)+犽=0有两个不同的实根,则实数犽的取值范围是( )A.(0,1)B.[0,1]C.(-1,0)D.[-1,0]3.偶函数犳(狓)满足犳(狓-1)=犳(狓+1),且在狓∈[0,1]时,犳(狓)=2狓,则关于狓的方程犳(狓)=(12)狓在狓∈[0,4]上解的个数是( )A.2B.3C.4D.54.已知函数犳(狓)=3|狓-1|,狓>0,-狓2-2狓+1,狓≤0,烅烄烆若关于狓的方程[犳(狓)]2+(犪-1)犳(狓)-犪=0有7个不等的实根,则实数犪的取值范围是( )A.(-2,1)B.[2,4]C.(-2,-1)D.(-∞,4]5.(多选)已知函数犳(狓)=-狓2-3狓,狓<0,犳(狓-3),狓≥0,烅烄烆以下结论正确的是( )A.犳(狓)在区间[4,6]上是增函数B.犳(-2)+犳(2020)=4C.若函数狔=犳(狓)-犫在(-∞,6)上有6个零点狓犻(犻=1,2,3,4,5,6),则∑6犻=1狓犻=9D.若方程犳(狓)=犽恰有1个实根,则犽<0第6题图6.(多选)定义域和值域均为[-犪,犪](常数犪>0)的函数狔=犳(狓)和狔=犵(狓)的图象如图所示,给出下列四个命题,其中正确的是( )A.方程犳[犵(狓)]=0有且仅有三个解B.方程犵[犳(狓)]=0有且仅有三个解471C.方程犳[犳(狓)]=0有且仅有九个解D.方程犵[犵(狓)]=0有且仅有一个解7.设函数狔=狓3与狔=(12)狓-2的图象的交点为(狓0,狔0),若狓0∈(狀,狀+1),狀∈犖,则狀=.8.已知函数犳(狓)=2狓,狓≤0,|log2狓|,狓>0,烅烄烆则方程犳[犳(狓)]=2的根的个数是.9.已知函数犳(狓)=犪狓2+犫狓+犮(犪≠0),满足犳(0)=2,犳(狓+1)-犳(狓)=2狓-1.(1)求函数犳(狓)的解析式;(2)若函数犵(狓)=犳(狓)-犿狓的两个零点分别在区间(-1,2)和(2,4)内,求犿的取值范围.10.已知函数犳(狓)=1狓+1-3,狓∈(-1,0],狓,狓∈(0,1],烅烄烆且犵(狓)=犳(狓)-犿狓-犿在(-1,1]内有且仅有两个不同的零点,求实数犿的取值范围.47211.定义在犚上的函数犳(狓)=lg|狓-2|,狓≠2,1,狓=2,烅烄烆若关于狓的方程犳2(狓)+犫犳(狓)+犮=0恰好有5个不同的实数解狓1,狓2,狓3,狓4,狓5,则犳(狓1+狓2+狓3+狓4+狓5)等于( )A.lg2B.lg4C.lg8D.112.(多选)设函数犳(狓)=|狓|狓+犫狓+犮,则下列结论正确的是( )A.当犫>0时,函数犳(狓)在犚上有最小值B.当犫<0时,函数犳(狓)在犚上有最小值C.对任意的实数犫,函数犳(狓)的图象关于点(0,犮)对称D.方程犳(狓)=0可能有三个实数根13.设函数犳(狓)=2狓-犪,狓<1,4(狓-犪)(狓-2犪),狓≥1.烅烄烆若犪=1,则犳(狓)的最小值为;若犳(狓)恰有2个零点,则实数犪的取值范围是.14.已知函数犳(狓)=|log2狓|,狓>0,狓2+2狓+2,狓≤0,烅烄烆方程犳(狓)-犪=0有四个不同的实根并分别记为狓1<狓2<狓3<狓4.(1)若将狓4的所有取值记为集合犇,求犇;(2)设犵(狓)=犳(狓)-犽狓(狓∈犇)有两个零点,求实数犽的取值范围.473 15.已知函数犳(狓)=log2(2狓+1)+犪狓,狓∈犚.(1)若犳(狓)是偶函数,求实数犪的值;(2)当犪>0时,关于狓的方程犳[犳(狓)-犪(1+狓)-log4(2狓-1)]=1在区间[1,2]上恰有两个不同的实数解,求实数犪的取值范围.已知狓∈犚,符号[狓]表示不超过狓的最大整数,若函数犳(狓)=[狓]狓-犪(狓≠0)有且仅有3个零点,则实数犪的取值范围是.474。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“12+4”限时提速练(七)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,集合A ={x |x 2-2x ≥0},B ={x |y =log 2(x 2-1)},则(∁U A )∩B =( ) A .[1,2) B .(1,2)C .(1,2]D .(-∞,-1)∪[0,2]解析:选B 由已知得A =(-∞,0]∪[2,+∞),∴∁U A =(0,2),又B =(-∞,-1)∪(1,+∞),∴(∁U A )∩B =(1,2),故选B.2.已知i 为虚数单位,若复数z =1-a i1+i 的虚部为-3,则|z |=( )A.10 B .2 2 C.13 D .5 解析:选C ∵z =1-a i 1+i=(1-a i )(1-i )2=1-a -(a +1)i 2=1-a 2-a +12i ,∴-1+a2=-3,∴a =5,∴z =-2-3i ,∴|z |=(-2)2+(-3)2=13,故选C. 3.若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )=-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)=-f (x 0)解析:选C 定义域为R 的偶函数的定义:∀x ∈R ,f (-x )=f (x ),这是一个全称命题,所以它的否定为特称命题:∃x 0∈R ,f (-x 0)≠f (x 0),故选C.4.已知sin ⎝⎛⎭⎫π2+θ=-12,则2sin 2θ2-1=( ) A.12 B .-12 C.32 D .±32解析:选A 法一:∵sin ⎝⎛⎭⎫π2+θ=-12,∴cos θ=-12,∴2sin 2θ2-1=-cos θ=12,故选A.法二:特殊值法,取π2+θ=7π6,∴θ=2π3,2sin 2π3-1=2×⎝⎛⎭⎫322-1=12,故选A. 5.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.6解析:选D 每一个数据都加上60时,平均数也加上60,而方差不变.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与直线3x -4y -5=0垂直,则双曲线的离心率为( )A.53或54B.43C.53D.54解析:选C 直线3x -4y -5=0的斜率为34,∴双曲线的一条渐近线的斜率为-43,即-b a =-43,∴b =43a ,∴c =a 2+b 2=53a ,∴e =c a =53,故选C. 7.等比数列{a n }的前n 项和为S n .已知S 3 = a 2 +10a 1 ,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-19解析:选C 由题知q ≠1,则S 3=a 1(1-q 3)1-q =a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C.8.阅读程序框图,若输出的结果中有且只有三个自然数,则输入的自然数n 0的所有可能取值所组成的集合为( )A .{1,2,3}B .{2,3,4}C .{2,3}D .{1,2}解析:选C 法一:要使输出的结果中有且只有三个自然数,只能是5,4,2,所以应使5≤20n 0+1<10,解得1<n 0≤3,即n 0=2,3,所以输入的自然数n 0的所有可能值为2,3,故选C.法二:代入验证法,当n 0=1时,输出的结果是10,5,4,2,排除选项A ,D ,当n 0=4时,输出的结果是4,2,排除选项B ,故选C.9.已知函数f (x )=a sin x -b cos x (a ,b 为常数,a ≠0,x ∈R )在x =π4处取得最小值,则函数y =⎪⎪⎪⎪f ⎝⎛⎭⎫3π4-x 的( ) A .最大值为2a ,且它的图象关于点(π,0)对称 B .最大值为2a ,且它的图象关于点⎝⎛⎭⎫3π4,0对称 C .最大值为2b ,且它的图象关于直线x =π对称 D .最大值为2b ,且它的图象关于直线x =3π4对称解析:选C 由条件得f ⎝⎛⎭⎫π2=f (0),∴a =-b ,∴f (x )=a sin x +a cos x =2a sin ⎝⎛⎭⎫x +π4.又f (x )在x =π4处取得最小值,∴a <0,b >0,∴y =⎪⎪⎪⎪f ⎝⎛⎭⎫3π4-x =⎪⎪⎪⎪2a sin ⎝⎛⎭⎫3π4-x +π4=|2a sin x |=2b |sin x |,故选C.10.如图为某几何体的三视图,则该几何体的体积为( )A.2π3+4 B .2π+43 C.π3+4 D .π+43解析:选D 由三视图可知,该几何体是一个半圆柱与一个四棱锥的组合体,如图所示,其中四棱锥的底面ABCD 为圆柱的轴截面,顶点P 在半圆柱所在圆柱OO 1的底面圆上,且点P 在AB 上的射影为底面圆的圆心O .由三视图中的数据可得,半圆柱所在圆柱的底面半径r =1,母线长l =2, 故半圆柱的体积V 1=12πr 2l =12π×12×2=π;四棱锥的底面ABCD 是边长为2的正方形,PO ⊥底面ABCD ,且PO =r =1, 故其体积V 2=13S 正方形ABCD ×PO =13×22×1=43.故该几何体的体积V =V 1+V 2=π+43.11.设等比数列{a n }的前n 项和为S n ,M =S 2n +S 22n ,N =S n (S 2n +S 3n ),则M 与N 的大小关系是( )A .M ≥NB .N ≥MC .M =ND .不确定解析:选C 对于等比数列1,-1,1,-1,1,-1,…,S 2k =0,S 4k -S 2k =0,S 8k -S 4k =0,令n =2k ,此时有M =N =0;对于S n ,S 2n -S n ,S 3n -S 2n ,…,各项均不为零时,∵等比数列{a n }的前n 项和为S n ,设{a n }的公比为q ,∴S n ,S 2n -S n ,S 3n -S 2n 是一个公比为q n的等比数列,∴S 2n -S n =S n ×q n ,S 3n -S 2n =S n ×q 2n ,∴M =S 2n +S 22n =S 2n ×[1+(1+q n )2]=S 2n ×(2+2q n +q 2n )=S n ×(S 2n +S 3n )=N ,由上可知,M =N ,选C.12.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞,e) C.⎝⎛⎭⎫0,1e D.⎝⎛⎭⎫-e ,1e 解析:选B 法一:由题意可得,存在x <0,使得x 2+e x -12=(-x )2+ln(-x +a )成立,即e x -12=ln(-x +a ),e x -12-ln(-x +a )=0,令h (x )=e x -12-ln(-x +a ),若a >0,则问题等价于h (x )=e x -12-ln(-x +a )在(-∞,0)上存在零点,易证h (x )在(-∞,0)上单调递增,当x 趋近于-∞时,e x 趋近于0,ln(-x +a )趋近于+∞,∴h (x )趋近于-∞,∴只需h (0)>0,即1-12-ln a >0⇒0<a < e.若a ≤0,则问题等价于h (x )=e x -12-ln(-x +a )在(-∞,a )上存在零点,易证h (x )在(-∞,a )上单调递增,当x 趋近于-∞时,e x 趋近于0,ln(-x +a )趋近于+∞,∴h (x )趋近于-∞,∴只需当x 趋近于a 时,h (x )>0,易得当x 趋近于a 时,h (x )趋近于+∞,∴a ≤0符合题意.综上所述,实数a 的取值范围是(-∞,e),故选B.法二:特殊值法和排除法,由题意可得,存在x <0,使得x 2+e x -12=(-x )2+ln(-x +a )成立,即e x -12=ln(-x +a ),e x -12-ln(-x +a )=0,令h (x )=e x -12-ln(-x +a ),取a =1,h (0)=12>0,h (-1)=1e -12-ln 2<0,∴由零点存在性定理可得a =1满足题意,排除选项A 、C 、D ,故选B.二、填空题(本大题共4小题,每小题5分) 13.已知向量与的夹角为120°,且=2,=3,若,且,则实数λ的值为________.答案:12714.在区间⎣⎡⎦⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是________. 解析:由sin x +cos x = 2 sin ⎝⎛⎭⎫x +π4∈[1, 2 ],得22≤sin ⎝⎛⎭⎫x +π4≤1,所以x ∈⎣⎡⎦⎤0,π2,故要求的概率为π2-0π2-⎝⎛⎭⎫-π6=34.答案:3415.已知点P 是抛物线C 1:y 2=4x 上的动点,过点P 作圆C 2:(x -3)2+y 2=2的两条切线,则两切线夹角的最大值为________.解析:由已知得,圆心C 2(3,0),半径为 2.设点P ⎝⎛⎭⎫y 204,y 0,两切点分别为A ,B ,要使两切线的夹角最大,只需|PC 2|最小,|PC 2|=⎝⎛⎭⎫y 204-32+(y 0-0)2=116(y 20-4)2+8,当y 20=4时,|PC 2|min =22,∴∠APC 2=∠BPC 2=π6,∴∠APB =π3. 答案:π316.在△ABC 中,A2是2B 与2C 的等差中项,AB =2,角B 的平分线BD =3,则BC=________.解析:在△ABC 中,∵A2是2B 与2C 的等差中项,∴A =2(B +C ),而A +B +C =180°,∴A=120°.在△ABD中,由正弦定理得ABsin∠ADB=BDsin A,∴sin∠ADB=AB·sin ABD=22,∴∠ADB=45°,∴∠ABD=15°,∴∠ABC=30°,∴∠ACB=30°,∴AC=AB=2,∴在△ABC 中,由余弦定理得BC=AB2+AC2-2AB·AC·cos A= 6.答案: 6。