2012人教版七年级数学下册期末试题一

合集下载

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x 轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

2012人教版七年级数学下册期末测试题及答案-推荐下载

2012人教版七年级数学下册期末测试题及答案-推荐下载

-3-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

人教版数学七年级下册《期末考试试卷》附答案

人教版数学七年级下册《期末考试试卷》附答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A. B. C. D. 2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A. B. C. D.3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒4.下列说法错误..的是( )A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有05.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于( )A. 140°B. 120°C. 100°D. 807.下列命题中是真命题的是( )A. 两个锐角的和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则图中符合他要求的小区是( )A. 甲B. 乙C. 丙D. 丁10.某公园门票的收费标准如下:门票类别成人票儿童票团体票(限5张及以上)价格(元/人)100 40 60有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.12.用一组a,b的值说明命题“若a2>b2,则a>b”是错误的,这组值可以是a=____,b=____.13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为______.15.己知关于,x y的方程组4723x y mx y m+=-⎧⎨-=+⎩的解满足0x>,0y>.则m的取值范围是______.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.3-832|+()2-33. 20.解方程组35342x y x y +=-⎧⎨-=-⎩ ..21.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解.....22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABCV中,BE平分ABC∠交AC于E,CD AC⊥交AB于D,BCD A∠=∠,求BEA∠的度数.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值答案与解析一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A.B. C. D.【答案】D【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:. 故选D考点:不等式的解集2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A.B. C.D. 【答案】C【解析】【分析】根据3134<<,即可选出答案.【详解】解:∵3134<<,故选C .【点睛】本题主要考查了无理数的估算和实数在数轴上的表示,能判断无理数的估值是解答此题的关键. 3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒【答案】D【解析】【分析】先根据量角器读出∠AOB 和∠AOC 的度数,再结合选项,得出正确答案.【详解】由图可知70AOB ∠=︒,110AOC ∠=︒,故A 项错误,B 项错误;因为180AOB AOC ∠+∠=︒,所以C 项错误,D 项正确.【点睛】本题考查量角器的度数,解题的关键是会根据量角器读出度数.4.下列说法错误..的是( ) A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有0【答案】B【解析】【分析】根据平方根、算术平方根与立方根的定义和求法逐个选项进行判断,即可得解.【详解】A. 9的算术平方根是3,说法正确;B. 64的立方根是8±,说法错误,正确答案为4;C. 5-没有平方根,说法正确;D. 平方根是本身的数只有0,说法正确.故答案为:B .【点睛】本题关键是区分并掌握平方根、算术平方根及立方根的定义和求法.5.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵 【答案】A【解析】【分析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 80【答案】A【解析】【分析】先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM =40°,最后解答即可.【详解】解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故选A .【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.7.下列命题中是真命题的是( )A. 两个锐角和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)【答案】B【解析】【分析】 点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,点B 的平移规律和点A 一样,由此可知点B ′的坐标.【详解】解:因为点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,故点B (2,1)平移到点B ′横、纵坐标也都减3,所以B ′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键.9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求【详解】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区到两坐标轴的距离最短;故选C.【点睛】本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.10.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.x+元,根据题意得:设花费较少的一家花了x元,则另一家花了40x+⨯40=605x=解得:260检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】45【解析】【分析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=45°,故答案为:45.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.用一组a ,b 的值说明命题“若a 2>b 2,则a >b ”是错误的,这组值可以是a =____,b =____.【答案】 (1).3a =-, (2). 1b =-【解析】【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,∴命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.【答案】15或18【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键. 14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,AB ∥OC ,DC 与OB 交于点E ,则∠DEO 的度数为______.【答案】75°【解析】【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【详解】解:∵AB ∥OC ,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°, ∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故答案为75°.【点睛】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.15.己知关于,x y 的方程组4723x y m x y m +=-⎧⎨-=+⎩的解满足0x >,0y >.则m 的取值范围是______. 【答案】5m >【解析】【分析】用加减消元法解关于,x y 的二元一次方程组;根据0x >,0y >,解关于m 的不等式组,可得m 的解集. 【详解】4732235x y m x m x y m y m +=-=-⎧⎧⇒⎨⎨-=+=-⎩⎩∵0x >,0y >,∴232053505m m m m m ⎧->>⎧⎪⇒⇒>⎨⎨->⎩⎪>⎩ 故答案为:5m >.【点睛】本题考查解二元一次方程组和一元一次不等式组,关键是先求出含m 的x 和y ,再根据题意列不等式组求解.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.【答案】 (1). 苗苗,同位角相等,两直线平行. (2). 小华,内错角相等,两直线平行.【解析】分析】结合两人的画法和“平行线的判定”进行分析判断即可.【详解】(1)如图1,由“苗苗”的画法可知:∠2=∠1=60°,∴a ∥b (同位角相等,两直线平行);(2)如图2,由“小华”的画法可知:∠2=∠1=60°,∴a ∥b (内错角相等,两直线平行).故答案为(1)苗苗,同位角相等,两直线平行;或(2)小华,内错角相等,两直线平行.【点睛】读懂题意,熟悉“三角尺的各个角的度数和平行线的判定方法”是解答本题的关键.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.【答案】 (1). (1,-3)或(-7,-3) (2). 6【解析】【分析】(1)先由//BC OA ,确定C 点纵坐标与B 点相同,再根据BC=4OA ,确定BC 的长,然后分别求出C 点在B 点左侧和右侧的横坐标,即可得解;(2)由三角形面积公式求解即可.【详解】(1)∵//BC OA ,∴点C 纵坐标为-3,又∵BC=4OA=4∴当点C 在点B 右边,点C 横坐标为-3+4=1,故C(1,-3),当点C 在点B 左边,点C 横坐标为-3-4=-7,故C(-7,-3),故答案为:(1,-3)或(-7,-3);(2)S △ABC =12BC ×3=12×4×3=6 故答案为:6.【点睛】本题结合坐标系考查平行和三角形面积,关键是由平行确定C 点纵坐标,并对C点横坐标进行分情况讨论.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】 (1). -7 (2). 6【解析】【分析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:6.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.2|+.【解析】【分析】直接利用立方根的性质和绝对值的性质、二次根式的性质分别化简得出答案.【详解】原式=﹣2+2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 【答案】21x y =-⎧⎨=-⎩【解析】【分析】利用加减消元法将方程组中的未知数消去,可求得的值,再将值代入其中一个方程解得的值,即得原方程组的解.【详解】解:35342x y x y +=-⎧⎨-=-⎩①②①×3得: 3915x y +=-③, ③-②,得1313y =-∴ 1y =-把1y =-代入①,得x= -2∴21x y =-⎧⎨=-⎩ 是原方程组的解 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 【答案】不等式组的解集是-3<x ≤2,正整数解是1、2【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后从解集中找出所有的正整数即可.【详解】解:() 517811062x xxx⎧-<-⎪⎨--≤⎪⎩①②,解①得,x>-3,解②得,x≤2,∴原不等式组的解是-3<x≤2.∴原不等式组的正整数解有:1,2.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【解析】【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.【答案】135°【解析】【分析】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,根据三角形外角定理,分别用, x y 表示∠ADC 和∠BEC ,结合∠A 与∠ADC 互余,列方程即可求出∠BEC ,由邻补角的性质进而可求出BEA ∠的度数.【详解】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,∵CD AC ⊥∴∠A+∠ADC=∠A+(∠BCD+∠ABC)=()()22=90x x y x y ++=+︒∴45x y +=︒∴∠BEC=∠A+∠ABE=45x y +=︒∠=180°-45°=135°∴BEA∠的度数为135°.即BEA【点睛】本题主要考察三角形外角定理、互余与邻补角的性质,解题关键是用未知数表示出角的度数,进而根据它们之间的关系进行代数运算.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)购进A种树苗10棵,B种树苗7棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10.∴17﹣x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>8.5.∵购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,是x的增函数,∴费用最省需x取最小整数9,此时17﹣x=8,所需费用为20×9+1020=1200(元).答:费用最省方案:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.【答案】(1)补图见解析;(2)108°;(3)200;8.【解析】【分析】(1)用抽查总人数乘以乘坐公共交通的百分比可得其人数,再减去图中已知的不同花费时间的人数,即得4050x <…的人数,从而补全图形;(2)用360°乘以乘坐私家车所占百分比即可得解;(3)利用样本估算总体,计算求解.【详解】(1)∵选择公共交通的人数为100×50%=50(人),∴4050x <…的人数为50-(5+17+14+4+2)=8(人)故补全直方图如下:(2)“私家车方式”对应扇形的圆心角为360°×30%=108°故答案为:108°;(3)全年级乘坐公共交通上学人数为400×50%=200(人)单程不少于60分钟的有200×250=8(人) 故答案为:200;8.【点睛】本题主要考察读图与计算,解题关键是从图表中准确读取数据信息. 26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】(1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】【分析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC =+︒⎧⎨=+∠⎩∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.【答案】(1)①E ,F . ②()3,3-;(2)1k =或2k =.【解析】【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.。

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。

人教版七年级数学下册期末测试题及答案共五套完整版

人教版七年级数学下册期末测试题及答案共五套完整版

人教版七年级数学下册期末测试题及答案共五套HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】七下期期末姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 2C 1A 1ABB 1CD10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

(完整版)人教版七年级数学下册期末测试题及答案(共五套),推荐文档

(完整版)人教版七年级数学下册期末测试题及答案(共五套),推荐文档

(-4)2D C. 3 -27 =-3⎩ 七下期期末姓名: 学号班级一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分) 1.若 m >-1,则下列各式中错误的是( )A .6m >-6B .-5m <-5C .m+1>0D .1-m <2 2.下列各式中,正确的是( )A. 16 =±4B.± =4D. =-43. 已知 a >b >0,那么下列不等式组中无解的是()⎧x < aA. ⎨x > -b⎧x > -a B. ⎨x < -b⎧x > a C. ⎨x < -b⎧x > -a D. ⎨x < b⎩ ⎩ ⎩ ⎩4. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40°(C) 先右转 50°,后左转 130°(D) 先右转 50°,后左转 50°⎧x = 15. 解为⎨ y = 2 的方程组是( )⎧x - y =1 A. ⎨ ⎩3x + y = 5 ⎧x - y = -1 B. ⎨ ⎩3x + y = -5⎧x - y = 3C. ⎨⎩3x - y = 1⎧x - 2 y = -3 D. ⎨⎩3x + y = 56. 如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200AAA 1PBCB 1 C1B (1) (2) (3)7. 四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .118. 在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是2( ) A .5 B .6 C .7 D .8 9. 如图,△A 1B 1C 1 是由△ABC 沿 BC 方向平移了 BC 长度的一半得到的,若△ABC 的面积为 20 cm 2,则四边形 A 1DCC 1 的面积为( ) A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 216小刚小军 小华⎪ ⎨ 10. 课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用( 0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共 8 个小题,每小题 3 分,共 24 分,把答案直接填在答题卷的横线上.11.49 的平方根是 ,算术平方根是 ,-8 的立方根是.12.不等式 5x-9≤3(x+1)的解集是 .13. 如果点 P(a,2)在第二象限,那么点 Q(-3,a)在 . 14. 如图 3 所示,在铁路旁边有一李庄,现要建一火车站, 为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由: . 15. 从 A 沿北偏东 60°的方向行驶到 B,再从 B 沿南偏西 20°的方向行驶到 C, 则∠ABC=度.16. 如图,AD∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=.李庄火车站AD17. 给出下列正多边形:① 正三角形;② 正方形;③ 正六边形; ④ 正八边形.用上述正多边形中的一种能够辅满地面的是 .(将所有答案的序号都填上) 18.若│x 2-25│+ =0,则 x=,y=.BC三、解答题:本大题共 7 个小题,共 46 分,解答题应写出文字说明、证明过程或演算步骤.⎧x - 3(x - 2) ≥ 4, ⎪19.解不等式组: ⎨ 2x - 1 < x + 1. ,并把解集在数轴上表示出来.5 2⎧ 2 x - 3 y = 1 20.解方程组: ⎪3 42 ⎩4(x - y ) - 3(2x + y ) = 17y - 321.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。

人教版七年级下册2012年数学期末试卷及答案(新)

人教版七年级下册2012年数学期末试卷及答案(新)

七年级下册数学期末试卷(时间:100分钟 满分:150分)一、 选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是 ()A 、B 、C 、D 、2、调查下面问题,应该进行抽样调查的是 ( ) A 、调查我省中小学生的视力近视情况 B 、调查某校七(2)班同学的体重情况C 、调查某校七(5)班同学期中考试数学成绩情况D 、调查某中学全体教师家庭的收入情况 3、点3(-P ,)2位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( )A 、B 、C 、D 、5、下列命题中,是假命题的是( ) A 、同旁内角互补 B 、对顶角相等 C 、直角的补角仍然是直角 D 、两点之间,线段最短6、下列各式是二元一次方程的是 ( ) A .03=+-z y x B. 03=+-x y xy C.03221=-y x D. 012=-+y x7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x ,y 的是( ).A 、⎩⎨⎧x –y = 49y =2(x +1) B 、⎩⎨⎧x +y = 49y =2(x +1) C 、⎩⎨⎧x –y = 49y =2(x –1) D 、⎩⎨⎧x +y = 49y =2(x –1)8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x.9.9 10.19.9 10.1L =10±0.1EDCBA根据题意得:( )A 、10x-5(20-x)≥120B 、10x-5(20-x)≤120C 、10x-5(20-x)> 120D 、10x-5(20-x)<120二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上.9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ . 10、⎩⎨⎧=-=+=962_________y x y ax a 时,方程组 ⎩⎨⎧-==18y x 的解为.11、如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可). 12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有 名学生“不知道”.13、甲地离学校4km ,乙地离学校1km ,记甲乙两地之间的距离为km d ,则d 的取值范围为 .三、解答题(本大题共5小题,每小题7分,共35分)14、解方程组1528y xx y =-⎧⎨+=⎩.15、解不等式1322x x -≥+,并把它的解集在数轴上表示出来.16、将一副直角三角尺如图放置,已知∠EAD =∠E =450 ,∠C =300 , AE BC ∥,求AFD ∠的度数.17、已知等腰三角形的周长是14cm .若其中一边长为4cm ,求另外两边长.21FEDCBA18、如图,已知∠B =∠C .若AD ∥BC ,则AD 平分∠EAC 吗?请说明理由.四、解答题(本大题共3小题,每小题9分,共27分)19、△ABC 在如图所示的平面直角中, 将其平移后 得△A B C ''', 若B 的对应点B '的坐标是(-2, 2). (1) 在图中画出△A B C ''';(2) 此次平移可看作将△ABC 向_____平移了____个 单位长度, 再向___平移了___个单位长度得△A B C ''';(3) △ABC 的面积为____________.(△ABC 的面积可以看作一个长方形的面积减去一些小三角形的面积)20、如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F .求证:∠1=∠2.请你完成下面证明过程.证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( ) 所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,( ) 所以 ∠1=∠DBC ,( ) 因为 BD ⊥DC ,EF ⊥DC ,( )所以 ∠BDC=90°,∠EFC=90°,( ) 所以 ∠BDC=∠EFC,所以 BD ∥ ,( ) 所以 ∠2=∠DBC ,( ) 所以 ∠1=∠2 ( ).21、某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.计划在年内拆除旧校舍与建造新校舍共5000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的70%,而拆除校舍则超过计划的20%,结果拆、建的总面积恰好为5000平方米. (1)求原计划拆、建的面积各多少平方米?图2书画 电脑35% 音乐体育图1D图24-2 图24-1 M (2)若拆除旧校舍每平米需100元,建造新校舍每平米需500元.求实际拆、建的费用共多少元?五、解答题(本大题共3小题,每小题12分,共36分)22、育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中“电脑”部分所对应的圆心角为 度;(2)样本容量为 ;(3)在图2中,将“体育”部分的图 形补充完整;(4)估计育才中学现有的学生中,约有 人 爱好“书画”.23、为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床 架10个和课桌凳10套.(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?24、操作与探究 探索:在如图24-1至图24-3中,△ABC 的面积为a . (1)如图24-1, 延长△ABC 的边BC 到点D ,使CD=BC ,连结DA . 若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图24-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使AE=CA ,连结DE .若△DEC 的面积为S 2,则S 2= (用含a (3)在图24-2的基础上延长AB 到点F ,使BF=AB ,连结FD ,FE △DEF (如图24-3).若阴影部分的面积为S 3,则S 3=__________(用含a 发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得 到△DEF (如图24-3),此时,我们称△ABC 向外扩展了一次.可以发 现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_____倍.七年级期末质量检查数学参考答案一、选择题1、C2、A3、B4、C5、A6、C7、D8、C 二、填空题9、 (8,6) 10、 1 11、13∠=∠,(或14∠=∠,或12180o ∠+∠=) 12、 30 13、3≤d ≤5三、解答题14、解:把①代入②,得 52(1)8x x +-= 2分 解得 2x = 4分 把2x =代入① , 1y =- 6分所以方程组的解为21x y =⎧⎨=-⎩7分15、解:1322x x -≥+ 164x x -≥+ 2分 55x -≥ 4分 1-≤x 5分 不等式得解集在数轴上表示如下: 7分16、解: 因为∠C =300,因为AE ∥BC ,所以∠EAC =∠C =300 , (3分) 因为∠E =450.所以∠AFD =∠E +∠EAC =450+300=750 .(6分) 所以∠AFD 为750. (7分)17、解:若4cm 长的边为底边,设腰长为xcm ,则21FEDCBAEDCBA4+2x =14,解得 x =5. (3分) 若4cm 长的边为腰,设底边为xcm ,则 2×4+x =14,解得 x =6. (6分) 所以等腰三角形另外两边长分别为5cm 、5cm 或4 cm 、6 cm. (7分) 18、解:AD 平分∠EAC ,理由如下: 1分 ∵AD ∥BC ,(已知)∴∠B =∠EAD ,(两直线平行,同位角相等) 3分 ∠C =∠DAC ,(两直线平行,内错角相等) 5分 ∵∠B =∠C , (已知)∴∠EAD =∠DAC . (等量代换) 6分 ∴AD 平分∠EAC .(角平分线定义) 7分(说明:没注明理由不扣分) 四、解答题19、解:(1)图略. 3分(2) 右 , 1 , 上 , 1 .( 或 上 , 1 , 右 , 1 . ) 7分 (3)△ABC的面积为5.5.9分20、证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( 已知 )所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,(同旁内角互补,两直线平行) 所以 ∠1=∠DBC ,(两直线平行,内错角相等) 因为 BD ⊥DC ,EF ⊥DC ,(已知)所以 ∠BDC=90°,∠EFC=90°,( 垂直定义 ) 所以 ∠BDC=∠EFC,所以 BD ∥EF ,(同位角相等,两直线平行) 所以 ∠2=∠DBC ,(两直线平行,同位角相等)所以 ∠1=∠2 (等量代换).21、解:(1)设原计划拆除旧校舍x 平方米,新建校舍y 平方米,由题意得: 1分5000(120%)70%5000x y x y +=⎧⎨++=⎩4分解得30002000x y =⎧⎨=⎩ 6分(2)实际拆除与新建校舍费用共为3000×(1+20%)×100+2000×70%×500 7分 =10600008分答:原计划拆除旧校舍3000平方米,新建校舍2000平方米,实际拆、建的费用共1060000元.9分五、解答题 22、解:(1)126; (2)80; (3)如图所示; (4)287.(每小题3分,共12分)23.解:(1)设学校租甲种货车x 辆,则租乙种货车(8-x )辆, 1分依题意,得 510(8)602010(8)100x x x x +-≥⎧⎨+-≥⎩ , 3分解不等式组,得24x ≤≤, 5分 ∵ x 为正整数,∴x的值为2,3,4. 6分∴学校安排甲、乙两种货车可一次性把这些物资运到灾区有3种方案:方案1:租甲种货车2辆,租乙种货车6辆;方案2:租甲种货车3辆,租乙种货车5辆;方案3:租甲种货车4辆,租乙种货车4辆. 9分(2)因为甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,且甲、乙两种货车共租8辆,所以租甲种货车越少,运输费越少.所以方案1:租甲种货车2辆,租乙种货车6辆运输费最少,此时运输费为1200×2+1000×6=8400(元). 12分24、解:探索:(1)S1=___a_____;(2)S2= 2a;(3)S3=___6a____.发现:扩展一次后得到的△DEF的面积是原来△ABC面积的__7___倍.应用:两次扩展的区域花卉面积共为 480 m2.(前面4空每空2分,最后1空4分,共12分)应用:2009年对中国人民来说是一个具有历史意义的年份.60年前,中华人民共和国的成立揭开了中华民族的新纪元.为庆祝国庆60周年,市园林部门决定利用时代广场原有的10m2的△ABC花卉,把△ABC花卉向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图24-4)的大型花卉.则这两次扩展的区域(即阴影部分)花卉面积共为 m2.。

2012年七年级数学下学期期末试卷及参考答案

2012年七年级数学下学期期末试卷及参考答案

2012年春学段期末学业水平调研测试七年级数学学科期末卷注意事项:1、本试卷共8页,满分120分,考试时间100分钟。

请用钢笔圆珠笔直接答在试卷上.2、答卷前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)1.若点A (x ,y )在坐标轴上,则 ( )A .x =0B .y=0C .x y=0D .x +y=02.如图,∠1=30°,∠B=60°,AB ⊥AC ,则下列说法正确的是 ( )A .AB ∥CD B .AD ∥BC C .AC ⊥CD D .∠DAB+∠D=180°(2题图)3.下列说法正确的有 ( )○1 两条直线被第三条直线所截,同位角相等 ○2 任何n 边的内角和都为)2(1800n ○3 三角形的外角大于三角形的每个内角 ○4 三角形的中线将三角形的面积平分A 1个B 2个C 3个D 4个4.不等式2(x+1)<3x 的解集在数轴上表示出来应为 ( )5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是 ( )A .2000名学生的体重是总体B .2000名学生是总体C .每个学生是个体D .150名学生是所抽取的一个样本6.如图,D 、E 为△ABC 两边AB 、AC 的两点,将△ABC 沿线段DE 折叠,使得DE ∥BC ,且点A 落在点F 处,若∠B=55°,则∠BDF 为 ( ) A .55° B .60°C .70°D .不能确定二、填空题(每小题3分,共27分)7.若x <1,则-2x +2________0(用“>”“=”或“<”号填空).8.用正三角形和正方形组合作平面镶嵌,每一个顶点周围有_______个正三角形和_______个正方形.9.如图,四边形ABCD 中,BD 为对角线,请你添加一个适当的条件__________,使得AB ∥CD 成立.10.若一个正多边的每一个外角都是040,则这个正多边形的内角和等于 度. 11.如图,a ∥b ,AB ⊥BC ,∠1=55°,则∠2的度数为 .(6题图) (9题图)12.若方程组323x y x y a -=⎧⎨+=-⎩的解是负数,则a 的取值范围是 .13.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 辆 .14.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为95%.请你估计该市7万名七年级学生中,身体素质达标的大约有_______万人.15.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的结论为 .三、解答题(本题共8个小题,第16小题8分,第17~20小题各9分,第21、22小题各10分,第23小题11分,共75分)16.已知关于x 、y 的方程组⎪⎩⎪⎨⎧-=-=-+)1()(3231a y x b yx b a 的解是⎩⎨⎧==21y x ,求a b +的值.17.解不等式组⎪⎪⎩⎪⎪⎨⎧>--≤+--.1)]3(2[21,312233x x x x x 并将解集在数轴上表示出来.18.2012年是执行法定节日的第四年,法定节日的确定为大家带来了很多便利。

[vip专享]2012人教版七年级下册数学期末试卷1及答案

[vip专享]2012人教版七年级下册数学期末试卷1及答案
22、(本题 8 分)如图,AD 平分∠BAC,∠EAD=∠EDA. (1)∠EAC 与∠B 相等吗?为什么? (2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E 的度数.
图 22
3
23、(本题 10 分)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂 采购,帐篷有两种规格,可供 3 人居住的小帐篷,价格每顶 160 元;可供 10 人居住的大帐篷,价格每顶 400 元.学 校花去捐款 96000 元采购这两种帐篷,正好可供 2300 人居住. 学校准备租用甲、乙两种型号的卡车共 20 辆将 所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运 4 顶小帐篷和 11 顶大帐篷,乙型卡车每辆可同时装运 12 顶小帐篷和 7 顶大帐篷. (1)求该校采购了多少顶 3 人小帐篷,多少顶 10 人住的大帐篷; (2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?
x 3 0 2、不等式组 2x 4 0 的解集在数轴上表示为
3、已知 x=2,y=-3 是二元一次方程 5x+my+2=0 的解, 则 m 的值为
(A)4
(B)-4
8
(C)
3
8
(D)-
3
23WOR1DWO---RDWwOorRdDw1ordword
21
3 2 1 “” 23WOR1D
1 320082 1 3
2012 人教版第二学期七年级期末测试
数学试卷
一.你一定能选对!(本题共有 12 小题,每小题 3 分,共 36 分)
下列各题均附有四个备选答案,其中有且只有一个是正确的, 请将正确答案的代号填在上面答题卡中对应的题号内
1、点 A(-2,1)在 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

2011-2012年七年级下学期数学期末试卷人教版

2011-2012年七年级下学期数学期末试卷人教版

54D3E21C B A七年级数学下册期末测试题(总分120分,考试时间120分钟)同学们的姓名 班级 座号 制卷人:何老师1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( ) A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 7. 如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.48. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试题(考试时间:100分钟满分:120分)一、选择题(本题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P (-1,-4)的位置在()A .第一象限B .第二象限C .第三象限D .第四象限2.下列实数中,是无理数的是()A .0B .21C .4D .53.若⎩⎨⎧==12y x 是二元一次方程3=-y kx 的解,则k 的值为()A .2B .3C .4D .54.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2的大小是()A .20°B .50°C .70°D .110°5.不等式组1020x x +≥⎧⎨-<⎩的解集在数轴上表示为()A .B .C .D .6.如图是某班一次数学成绩统计图.下列说法错误的是()A .得分在70~80分之间的人数最多B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(≥60分)人数是267.若a <b ,则下列式子一定成立的是()A .a +3>b +3B .a −1<b −1C .22a b >D .3a >3b8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正确的个数是()A .1B .2C .3D .49.一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是()A .602503y x y x =+⎧⎨=-⎩B .602350y x x y-=⎧⎨=-⎩C .602503y x y x -=⎧⎨-=⎩D .602503y x y x =-⎧⎨=+⎩10.如果关于x 为不等式2≤3x ﹣7<b 有四个整数解,那么b 的取值范围是()A .﹣11≤b ≤﹣14B .11<b <14C .11<b ≤14D .11≤b <14二、填空题(本题共6小题,每小题4分,共24分)11.点A (2,-3)到x 轴的距离是12.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是13.如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O ,DM ∥AB ,若∠EOC =35°,则∠ODM =14.命题“如果22b a =,那么a =b ”是(填写“真命题”或“假命题”).15.如图,在ABC Rt ∆中,090=∠C ,4=AC ,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则四边形ABED 的面积等于16.如图,在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2)D (1,-2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是第13题第15题第16题三、解答题(一)(本题共3小题,每小题6分,共18分)17.计算:43-8-3-13++18.解方程组25432x y x y -=-⎧⎨+=⎩19.解不等式325153x x +-<-,并在数轴上表示解集四、解答题(二)(本题共3小题,每小题7分,共21分)20.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE21.如图,在平面直角坐标系中有三个点(32),(51),(20)A B C ---,,,,(,)P a b 是三角形AC 边上一点,三角形ABC 经平移后得到三角形C B A ''',点P 的对应点为)3,4(++'b a P .⑴画出平移后的三角形C B A ''',写出点A '、B '、C '三个点的坐标.⑵求四边形A C AC ''的面积.22.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:⑴本次调查中,一共调查了名同学;⑵条形统计图中,m =,n =;⑶扇形统计图中,艺术类读物所在扇形的圆心角是度;⑷学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?五、解答题(三)(本题共3小题,每小题9分,共27分)23.学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副一羽毛球拍共需116元,购买3副乒乓球拍和2副一羽毛球拍共需204元.⑴求购买1副乒乓球拍和1副一羽毛球各需多少元?⑵若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?24.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.⑴若∠O=40°,求∠ECF的度数;⑵求证:CG平分∠OCD;⑶当∠O为多少度时,CD平分∠OCF,并说明理由.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).⑴直接写出点E的坐标为;⑵在四边形ABCD中,点P从点B出发,沿“B→C→D”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①求点P在运动过程中的坐标(用含t的式子表示,写出过程);②当t=秒时,点P的横坐标与纵坐标互为相反数;③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)题号12345678910答案CDACBDBDAD二、填空题(本题共6小题,每小题4分,共24分)11.3;12.200;13.1250;14.假命题;15.12;16.(1,0);三、解答题(一)(本题共3小题,每小题6分,共18分)17.-2 2.......32.......4-1.......5=+=+=解:原式(分分分18.解:①×4-②,得-11y =-22,y =2,………3分将y =2代入①,得x-4=-5,x =-1,………5分∴12x y =-⎧⎨=⎩………6分19.解:去分母,得15)5253)x 3-->+x ((………2分解这个不等式,得7>x ∴不等式组的解集为7>x :………4分将不等式解集表示在数轴上(图略):………6分四、解答题(二)(本题共3小题,每小题7分,共21分)20.证明:∵∠1=∠2ECDB ||∴E ∠=∠∴4………4分∵∠3=∠E ,∴∠4=∠3………6分∴AD ∥BE .………7分21.解(1)图(略)………2分点A '、B '、C '三个点的坐标.(15),(14),(23)A B C '''-,,,………4分1111255214321432222ACC A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯()251616251411.......7=----=-=分22.解:⑴一共调查了:70÷35%=200人………2分⑵科普类人数为:n =200×30%=60人,m =200﹣70﹣30﹣60=40人………4分⑶艺术类读物所在扇形的圆心角是:×360°=72°………6分⑷由题意,得(册).答:学校购买其他类读物900册比较合理………7分五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:⑴设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意,得⎩⎨⎧=+=+2042y x 3116y x 2解得:⎩⎨⎧==6028x y 答:购买一副乒乓球拍28元,一副羽毛球拍60元.………5分⑵设可购买a 副羽毛球拍,则购买乒乓球拍(30-a )副,由题意得,60a+28(30-a )≤1480,解得:a ≤20,答:这所中学最多可购买20副羽毛球拍.…9分24.解:⑴∵DE ∥OB ,∴∠O =∠ACE ∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,∴∠ECF=70°+40°=110°;………3分⑵证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,即CG平分∠OCD.………6分⑶结论:当∠O=60°时,CD平分∠OCF.∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.………9分25.解:⑴∵点A的坐标是(1,0),∴点E的坐标是(-2,0);………2分⑵①∵点C的坐标为(-3,2).∴BC=3,CD=2,当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);………4分②∵点P的横坐标与纵坐标互为相反数;当点P在线段BC上时,-t+2=0,即t=2当点P在线段CD上时,t>3,5-t≠3,∴点P的横坐标与纵坐标不能互为相反数∴当t=2秒时,点P的横坐标与纵坐标互为相反数;………6分③能确定如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y………9分。

2012年七年级下册数学期末试卷(附答案)

2012年七年级下册数学期末试卷(附答案)

2012年七年级下册数学期末试卷(附答案)各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2012年七年级下册数学期末试卷(附答案)注意事项:1.本试卷共6页,全卷共三大题29小题,满分130分,考试时间120分钟;2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上。

3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位置上;4.在草稿纸、试卷上答题无效;5.各题必须答在黑色答题框内,不得超出答题框.一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内.)1.下列运算中正确的是A.(-ab)2=2a2b2B.(a+1)2=a2+1C.a6÷a2=a3D.(-x2)3=-x62.某种细菌的存活时间只有0. 000 012秒,若用科学记数法表示此数据应为A.×10-4B.×10-5C.×104D.×1053.下列各式从左边到右边的变形是因式分解的是A.(a+1)(a-1)=a2-1B.a2-6a +9=(a-3)2C.x2+2x+1=x(x+2)+1D.-18x4y3=-6x2y2•3x2y4.学校为了了解300名初一学生的身高情况,从中抽取60名学生进行测量,下列说法中正确的是A.总体是300B.样本容量为60C.样本是60名学生D.个体是每位学生5.不等式组的解集在数轴上表示为6.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是A.60°B.68°C.70°D.72°7.如图,AD=AE.补充下列一个条件后,仍不能判定△ABE≌△ACD的是A.∠B=∠CB.AB=ACC.∠AEB =∠ADCD.BE=CD8.甲箱装有4个红球和1个黑球,乙箱装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球,下列说法正确的是A.从甲箱摸到黑球的可能性较大B.从乙箱摸到黑球的可能性较大C.从甲、乙两箱摸到黑球的可能性相等D.无法比较从甲、乙两箱摸到黑球的可能性9.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有A.2对B.3对C.4对D.5对10.在数学中,为了书写简便,我们记… ,… ,则化简的结果是A.3x2-15x+20B.3x2-9x+8C.3x2-6x-20D.3x2-12x-9二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填答题卷相应的横线上.)11.▲.12.如图,在正方形网格中,△DEF 是由△ABC平移得到的.则点C移动了▲格.13.若一个多边形的内角和是720°,则这个多边形的边数为▲.14.若xm=2,xn=8,则xm+n =▲.15.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是▲.16.若代数式x2-6x+m可化为(x一n)2+1,则m-n=▲.17.如图,有一个三角形纸片ABC,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=35°则∠1的度数为▲度.18.如图,等边三角形ABC的边长为a,点P在AB上,点Q在BC的延长线上,AP=CQ,连接PQ与AC相交于点D,作PELAC于E,则DE=▲.三、解答题:(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.)19.(本题满分8分)计算:(1)(2)2(a2)3-a2•a4+(2a4)2÷a2.20.(本题满分8分)把下列各式分解因式:(1)4a(x-y)-2b(y-x);(2) x2y-3y.21.(本题满分5分)解不等式组,并写出不等式组的正整数解.22.(本题满分5分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.23.(本题满分6分)“知识改变命运,科技繁荣祖国”.某市中小学每年都要举办一届科技运动会,下图为某市某中学2012年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:请根据图中提供的信息,完成下列问题:(1)请将图②补充完整;(2)图①中,“建模”部分所对应的圆心角为▲°;(3)若在所有参赛人中任选一项比赛,则选到的航模比赛是“海模”的概率是▲;(4)如果全市有1960名学生参赛,则喜欢“车模”比赛的学生约有多少人?24.(本题满分6分)如图,在梯形ABCD中,AD∥BC,AB=DC,∠ACB=40°,∠ACD=30°,(1)∠B=▲°,∠D=▲°,∠BAC=▲°;(2)若BC=5cm,连接BD,求AC、BD的长,并说明理由.25.(本题满分6分)如图,在梯形ABCD中,BC∥AD,延长CB到E,使BE=AD,连接AE、AC,已知AE=AC.(1)证明:梯形ABCD是等腰梯形;(2)若AH⊥BC,AH=2,CE=6,则梯形ABCD的面积为▲.26.(本题满分8分)如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD=▲.如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD =40°,求∠B+∠D的度数.27.(本题满分8分)阅读材料:若m2-2mn+2n2-8n +16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0 ∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-8b+25=0,求△ABC的最大边c的值;(3)已知a-b=4,ab+c2-6c+13=0,则a+b+c=▲.28.(本题满分8分)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.29.(本题满分8分)如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F.(1)求证:CE=CF;(2)若AD=AB,CF=CB,△ABC、△CEF、△ADE的面积分别为S△ABC、S△CEF、S△ADE,且S△ABC=24,则S△CEF-S△ADE=▲;(3)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示,试猜想:BE’与CF有怎样的数量关系?并证明你的结论.各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

(完整版)(人教版)初一数学下册期末测试题及答案(最新整理)

(完整版)(人教版)初一数学下册期末测试题及答案(最新整理)
人教版初一数学(下)期末测试题及答案
一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)
1.若 m>-1,则下列各式中错误的是( ) A.6m>-6 B.-5m<-5 C.m+1>0
2.下列各式中,正确的是( )
D.1-m<2
A. 16 =±4 B.± 16 =4
C. 3 27 =-3
35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
-5-
相应地(5O-x)的值为 22,21,20. 所以共有三种调运方案. 第一种调运方案:用 A 型货厢 28 节,B 型货厢 22 节; 第二种调运方案:用 A 型货厢 29 节,B 型货厢 21 节; 第三种调运方案:用 A 型货厢 30 节, 用 B 型货厢 20 节.
,并把解集在数轴上表示出来.
2 x 3 y 1 20.解方程组: 3 4 2
4(x y) 3(2x y) 17
-2-
21.如图, AD∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
E
A1
2
D
B
C
22.如图,已知 D 为△ABC 边 BC 延长线上一点,DF⊥AB 于 F 交 AC 于 E,∠A=35°,∠D=42°, 求∠ACD 的度数.
12.不等式 5x-9≤3(x+1)的解集是________.
13.如果点 P(a,2)在第二象限,那么点 Q(-3,a)在_______.
14.如图 3 所示,在铁路旁边有一李庄,现要建一火车站,为
了使李庄人乘火车最方便(即距离最近),请你在铁路旁选

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)七下期期末(共六套)姓名:学号班级一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m>-1,则下列各式中错误的是()...A.6m>-6 B.-5m<-5 C.m+1>0 D.1-m<2 2.下列各式中,正确的是( )2 A.16=±4 B.±16=4 C.3?27=-3 D.(?4)=-43.已知a>b>0,那么下列不等式组中无解的是()..A.??x?a?x?a?x??a?x??a B.? C.? D.??x??b?x??b?x??b?x?b4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为??x?1的方程组是()?y?2?x?y?1?x?y??1?x?y?3?x?2y??3A.? B.? C.? D.??3x?y?1?3x?y?5?3x?y??5?3x?y?506.如图,在△ABC中,∠ABC=50,∠ACB=80,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是()A.1000�X B.1100�X C.1150�X D.1200�XAPBCA A1小刚D B B1 C C1小华小军(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是() A.4 B.3 C.2 D.1 8.在各个内角都相等的多边形中,一个外角等于一个内角的1,则这个多边形的边数是() 2A.5 B.6 C.7 D.89.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为()A.10 cm2B.12 cm2 C.15 cm2 D.17 cm210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(?0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )- 1 -A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.李庄13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,?为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 火车站15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,?则∠ABC=_______度.16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.DA17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x2-25│+y?3=0,则x=_______,y=_______.BC三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.?x?3(x?2)?4,?19.解不等式组:?2x?1x?1,并把解集在数轴上表示出来.?.?2?531?2?x?y?20.解方程组:?3 42??4(x?y)?3(2x?y)?17- 2 -21.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。

人教版七年级下册数学期末考试试题带答案

人教版七年级下册数学期末考试试题带答案

人教版七年级下册数学期末考试试卷一、选择题(每题3分)1.(3分)如图,∠1与∠2互为邻补角的是()A. B.C.D.2.(3分)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个3.(3分)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况4.(3分)点M(2016,2016+a2)在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.(3分)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.46.(3分)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>7.(3分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.8.(3分)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图9.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等10.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分)11.(3分)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是.12.(3分)﹣2的相反数是,绝对值是.13.(3分)已知实数a、b满足+|b﹣2|=0,则ab=.14.(3分)不等式组无解,则a的取值范围是.15.(3分)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=.16.(3分)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、解答题17.(4分)计算:+﹣.18.(4分)计算:5(﹣)×﹣|2﹣|19.(4分)解方程组.20.(4分)解不等式组.21.(8分)已知方程组的解为非负数,求整数a的值.22.(8分)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB CD,EM、FN分别平分和,则(2)试判断这个命题的真假,并说明理由.23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.24.(10分)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A 90~100 19 0.38B 75~89 m xC 60~74 n yD 60以下 3 0.06合计50 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,C等级所对应的圆心角是度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?25.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?26.(12分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(4)选择以上一种结论加以证明.参考答案与试题解析一、选择题(每题3分)1.(3分)(2016春•孝南区期末)如图,∠1与∠2互为邻补角的是()A. B.C.D.【分析】根据邻补角定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角可直接得到答案.【解答】解:根据邻补角定义可得D是邻补角,故选:D.【点评】此题主要考查了邻补角,关键是掌握邻补角定义.2.(3分)(2016春•孝南区期末)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个【分析】无理数的三种常见类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:﹣5是有理数;2是有数;=3是有理数,﹣是无理数,是一个分数,是有理数,3.14159是有限小数,是有理数.故选:A.【点评】本题主要考查的是无理数的认识,掌握无理数的定义以及常见类型是解题的关键.3.(3分)(2016春•孝南区期末)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中学生的上网时间,人数较多,应采用抽样调查,故此选项错误;B、检测一批灯管的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、了解神舟飞船的设备零件的质量状况,意义特别重大,应采用普查,故此选项正确;D、了解某品牌食品的色素添加情况,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)(2016春•孝南区期末)点M(2016,2016+a2)在()A.第一象限 B.第二象限C.第三象限 D.第四象限【分析】根据非负数的性质判断出点M的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴2016+a2≥2016,∴点M(2016,2016+a2)在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)(2016春•孝南区期末)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.4【分析】根据是二元一次方程3x﹣ay=24的一组解,可以求求得a的值,本题得以解决.【解答】解;∵是二元一次方程3x﹣ay=24的一组解,∴3×3﹣a×(﹣5)=24,解得,a=3,故选C.【点评】本题考查二元一次方程的解,解题的关键是明确题意,求出所求问题的解.6.(3分)(2016春•孝南区期末)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>【分析】依据不等式的性质求解即可.【解答】解:A、已知a>b,由不等式的性质1可知A正确,与要求不符;B、由a>b,可知﹣a<﹣b,则5﹣a<5﹣b,故B错误,与要求相符;C、已知a>b,由不等式的性质2可知C正确,与要求不符;D、已知a>b,由不等式的性质2可知C正确,与要求不符.故选:B.【点评】本题主要考查的是不等式的性质,熟练掌握不等式的性质是解题的关键.7.(3分)(2012•长沙)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(3分)(2016春•孝南区期末)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.故选D.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.(3分)(2013•荆州区校级模拟)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.10.(3分)(2008•荆州)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.二、填空题(每题3分)11.(3分)(2016春•孝南区期末)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是(﹣11,9).【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【解答】解:由题意可得,平移后点的横坐标为﹣6﹣5=﹣11;纵坐标为7+2=9,所以所得点P′的坐标是(﹣11,9).故答案为(﹣11,9).【点评】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(3分)(2016春•孝南区期末)﹣2的相反数是2﹣,绝对值是2﹣.【分析】根据“互为相反数的两个数的和为0,负数的绝对值是其相反数”即可得出答案.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.【点评】此题考查了相反数、绝对值的性质,要求掌握相反数、绝对值的性质及其定义,并能熟练运用到实际当中.13.(3分)(2016春•孝南区期末)已知实数a、b满足+|b﹣2|=0,则ab=8.【分析】根据非负数的性质列出方程,求出a、b的值,计算即可.【解答】解:由题意得,a﹣2b=0,b﹣2=0,解得,a=4,b=2,则ab=8,故答案为:8.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.14.(3分)(2016春•孝南区期末)不等式组无解,则a的取值范围是a≤2.【分析】根据不等式组无解,可得出a≤2,即可得出答案.【解答】解:∵不等式组无解,∴a的取值范围是a≤2;故答案为a≤2.【点评】本题考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)(2016春•孝南区期末)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3= 30°.【分析】根据两直线平行,内错角相等求出∠GFE=80°,再根据两直线平行,同旁内角互补,求出∠DFE=50°,再根据∠3=∠GFE﹣∠DFE,即可得出答案.【解答】解:∵AB∥EF,∴∠1=∠GFE,∵∠1=80°,∴∠GFE=80°,∵CD∥EF,∴∠2+∠DFE=180°,∵∠2=130°,∴∠DFE=50°,∵∠3=∠GFE﹣∠DFE=80°﹣50°=30°;故答案为:30°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.16.(3分)(2009•延庆县一模)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).【分析】由题目中所给的质点运动的特点找出规律,即可解答.【解答】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【点评】解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.三、解答题17.(4分)(2016春•孝南区期末)计算:+﹣.【分析】原式利用算术平方根,立方根定义计算即可得到结果.【解答】解:原式=8﹣4﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(4分)(2016春•孝南区期末)计算:5(﹣)×﹣|2﹣|【分析】先化简二次根式,然后关键乘法的分配律和绝对值的性质得出12﹣4+2﹣,最后合并同类二次根式即可.【解答】解:原式=5(3﹣)×+2﹣=12﹣4+2﹣=14﹣5.【点评】本题考查了二次根式的混合运算,掌握好运算顺序及各运算律是解题的关键.19.(4分)(2016春•孝南区期末)解方程组.【分析】利用加减消元法,即可解答.【解答】解:①×2+②得:5x=30,解得:x=6,把x=6代入①得:12+y=13,解得:y=1,∴方程组的解为.【点评】本题考查了二元一次方程组的解,解决本题的关键是利用加减消元法进行解答.20.(4分)(2016春•孝南区期末)解不等式组.【分析】首先解每个不等式,然后把每个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x≥﹣3.则不等式组的解集是﹣3≤x<.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)(2016春•孝南区期末)已知方程组的解为非负数,求整数a的值.【分析】用加减消元法解方程组,求出x和y(x和y均为含有a的代数式),再根据x、y 的取值即可列出关于a的不等式组,即可求出a的取值范围,进一步即可求解.【解答】解:,①×3+②得:5x=6a+5﹣a,即x=a+1≥0,解得a≥﹣1;②﹣①×2得:5y=5﹣a﹣4a,即y=1﹣a≥0,解得a≤1;则﹣1≤a≤1,即a的整数值为:﹣1,0,1.【点评】考查了解一元一次不等式组,二元一次方程组的解,解决本题的关键是正确解方程组,把求解未知数范围的问题转化为不等式组的问题.22.(8分)(2016春•孝南区期末)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD(2)试判断这个命题的真假,并说明理由.【分析】(1)根据题意写出已知,求证即可;(2)此命题为真命题,根据平行线的性质得到∠GEB=∠EFD,由角平分线的定义得到∠GEM=∠GEB,∠EFN=∠EFD,等量代换得到∠GEM=∠EFN,于是得到结论.【解答】解:(1)已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD;故答案为:∥,∠GEB,∠EFD,EM∥FD;(2)此命题为真命题,证明:∵AB∥CD,∴∠GEB=∠EFD,∵EM、FN分别平分∠GEB和∠EFD,∴∠GEM=∠GEB,∠EFN=∠EFD,∴∠GEM=∠EFN,∴EM∥FD.【点评】此题考查了平行线的判定,解题的关键是:熟记同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行.23.(8分)(2016春•孝南区期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.【分析】(1)直接利用A,C点坐标得出原点位置进而作出平面直角坐标系;(2)直接利用关于y轴对称点的性质得出各点位置进而得出答案.【解答】解:(1)如图所示:;(2)如图所示:A1(4,5),B1(2,1),C1(1,3).【点评】此题主要考查了轴对称变换以及坐标与图形的性质,正确得出对应点位置是解题关键.24.(10分)(2016春•孝南区期末)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A 90~100 19 0.38B 75~89 m xC 60~74 n yD 60以下 3 0.06合计50 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=20,n=8,x=0.4,y=0.16;(2)在扇形图中,C等级所对应的圆心角是57.6度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?【分析】(1)根据扇形统计图中良好的人数占40%求出m的值,进而可得出x的值;由频率的和为1求出y的值,进而可得出n的值;(2)根据y的值可得出C等级所对应的圆心角的度数;(3)求出成绩达到优秀和良好的频率的和与总人数的积即可得出结论.【解答】解:(1)∵良好的人数占40%,∴m=50×40%=20,∴x==0.4;∴y=1﹣0.38﹣0.4﹣0.06=0.16,n=50×0.16=8;故答案分别为:20,8,0.4,0.16;(2)∵y=0.16,∴C等级所对应的圆心角=360×0.16=57.6°.故答案为:57.6;(3)∵该校九年级共有500名男生,成绩等级达到优秀和良好频率和=0.38+0.4=0.78,∴成绩等级达到优秀和良好的人数=500×0.78=390(人).答:成绩等级达到优秀和良好的共有390人.【点评】本题考查的是扇形统计图,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.25.(10分)(2016春•孝南区期末)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中求得的方案,可以求出获得的利润,从而可以解答本题.【解答】解:(1)设生产A种产品x件,则B种产品(50﹣x)件,则,解得,30≤x≤32,∴生产A种、B种的方案有三种,分别是:方案一:生产A种产品30件,B种产品20件;方案二:生产A种产品31件,B种产品19件;方案三:生产A种产品32件,B种产品18件;(2)方案一获利:30×80+120×20=4800元,方案二获利:31×80+120×19=4760元,方案三获利:32×80+120×18=4720元,即:生产A种产品30件,B种产品20件,获得的利润最大,最大利润为4800元.【点评】本题考查一元一次不等式组的应用,解题的关键是明确题意,找出所求问题需要的条件,列出相应的不等式组.26.(12分)(2016春•孝南区期末)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠APB+∠PBD=360°(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠PBD=∠APB(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC=∠APB+∠PBD(4)选择以上一种结论加以证明.【分析】(1)过点P作PE∥AC,根据平行线的性质即可得出结论;(2)过点P作PE∥AC,根据AC∥PE可得出∠APE=∠CAP,再由PE∥BD可得出∠EPB=∠PBD,故可得出结论;(3)延长BA,由三角形外角的性质可得出∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,再由平行线的性质得出∠ABD=∠CAF,进而可得出结论;(4)证明(1)即可.【解答】解:(1)如图(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.故答案为:∠PAC+∠APB+∠PBD=360°;(2)如图(2),过点P作PE∥AC,则∠APE=∠CAP,∵AC∥BD,PE∥AC,∴PE∥BD,∴∠EPB=∠PBD,∴∠PAC+∠PBD=∠APB.故答案为:∠PAC+∠PBD=∠APB;(3)如图(3),延长BA,则∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,∵AB∥CD,∴∠ABD=∠CAF,∴∠PAC﹣∠PBD=∠PAF﹣∠PBA,而∠PBA+∠APB=∠PAF,∴∠APB=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD.故答案为:∠PAC=∠APB+∠PBD;(4)例如(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线,利用平行线的性质求解是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版新课标七年级数学下册期末测试题一、选择题(每题3分,共30分)1,以下调查:①了解夏季冷饮市场上冰淇淋的质量情况;②了解全班同学期末考试的数学成绩;③了解中学生吸烟状况;④了解一片森林里有多少只野鸡;⑤检测某城市的空气质量.适合作抽样调查的有( )A.1个B.2个C.3个D.4个2,已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1cm 、2cm 、3cm B.4cm 、5cm 、10cm C.2cm 、5cm 、8cm D.3cm 、4cm 、5cm 3,下列说法中正确的是( ) A.有且只有一条直线垂直于已知直线B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.互相垂直的两条直线一定相交D.直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段的长是3cm ,则点A 到直线c 的距离是3cm4,一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,那么另一个为( )A.正三角形B.正四边形C.正五边形D.正六边形5,为了了解七年级的学生的体能情况,抽取了某校该年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画成统计图(如图),从左到右前三个小组所占的百分比分别为10%,30%,40%,第一小组若有5人,则第四小组的人数是( )A.8B.9C.10D.116,如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x 、y ,那么下列可以求出这两个角的度数的方程组是 ( )A.18010x y x y +=⎧⎨=-⎩,B.180310x y x y +=⎧⎨=-⎩,C.180310x y x y +=⎧⎨=+⎩,D.3180310y x y =⎧⎨=-⎩,7,如图,在△ABC 中,点D 在BC 上,且AD =BD =CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( )A.25°B.30°C.45°D.60°8,如图,已知AB =AC =BD ,那么∠1和∠2之间的关系是( ) A.∠1=2∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180°OBA1 20人数跳绳次数126-150101-12576-10050-75 A C21D C B A E9,探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯的灯碗,从侧面看上去,从位于点的灯泡发出的两束光线O B ,O C 经灯碗反射以后平行射出.如果图中∠A B O =α,∠D C O =β,则∠B O C 的度数为( ) 行射出.如果图中∠ABO =α,∠DCO =β,则∠BOC 的度数为( )A.180°-α-βB.α+βC.(α+β)D.90°+(β-α)10,在钝角三角形中,一个锐角是另一个锐角的2倍,设较小锐角为x 依题意列出的不等式为( )A.x +2x <90B.2x <90C.x +2x >90D.x +2x <180 二、填空题(每题3分,共24分)11,一个直角三角形的两个锐角的角的角平分线所夹的钝角为 度.12,不等式组2030x x -<⎧⎨-⎩≥的正整数解的个数是 .13,镇化水平提高最快的时期是14,方程组323x y x y a -=⎧⎨+=-⎩,的解为负数,则a 的取值范围为 .15,写出一个无解..的一元一次不等式组为 . 16,在括号内填写一个二元一次方程,使所成方程组521x y -=⎧⎨⎩,____的解是12.x y =⎧⎨=⎩, 17,一个多边形的内角和是它的外角和的4倍,则这个多边形的边数 . 18,2008年奥运火炬将在我省传递(传递路线为:昆明-丽江-香格里拉),某校学生小明在我省地图上设定的临沧市位置点的坐标为(-1,0),火炬传递起点昆明市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为______.A D三、解答题(共66分)19,“若点P 、Q 的坐标是(x 1,y 1)、(x 2,y 2),则线段PQ 中点的坐标为(122x x +,122y y +).” 已知点A 、B 、C 的坐标分别为(-5,0)、(3,0)、(1,4),利用上述结论求线段AC 、BC的中点D 、E 的坐标,并判断DE 与AB 的位置关系.20,阅读下面解不等式的过程:解不等式:2.03.01.0-x -5.04.0+x ≤-1. 解:23-x -5410+x ≤-10,…①5x -15-20x +8≤-100,…② -15x ≤-93,…③x ≤531.…④(1)上述解答过程错误之处有哪几步? (2)请你写出正确的解答过程.21,光明中学要为同学们订制校服,为此小军调查了他们班50名同学的身高,结果(单 位:cm)如下:141 165 144 171 145 145 158 150 157 150 154 168 168 155 155 169 157 157 157 158 149 150 150 160 152 152 159 152 159 144 154 155 157 145 160 160 160 155 158 162 162 163 155 163 148 163 168 155 145 172(2)请将上述整理的数理情况制成条形统计图(在图中做出). 22,如图是按一定规律排列的方程组集合和它们解的集合的对应关系图,若方程组集合中的方程组自上而下依次记作方程组1,方程组2,方程组3,…,方程组n .(1)将方程组1的解填入图中.(2)请依据图中反映的方程组和它的解的变化规律,将方程组n 和它的解直接填入集合图中.(3)若方程组2,100x y a x by +=⎧⎨-=⎩的解是10,9.x y =⎧⎨=-⎩求a ,b 的值;并判断该方程组是否符合(2)中的规律?23,七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?24,如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连结P A 、PB ,构成∠P AC 、∠APB 、∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)(1)当动点P 落在第①部分时,试说明∠APB =∠P AC +∠PBD 成立的理由;(2)当动点P 落在第②部分时,∠APB =∠P AC +∠PBD 是否成立(直接回答成立或不成立)?(3)当动点P 在第③部分时,全面探究∠P AC 、∠APB 、∠PBD 之间的关系,并写出动点P 的具体位置和相应的结论.选择其中一种结论加以说明.25,(2008年扬州市)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

学校花去捐款96000元,正好可供2300人临时居住。

(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。

如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?参考答案:一、1,D ;2,D ;3,D ;4,B ;5,C ;6,B ;7,B ;8,D ;9,B ;10,A .二、11,135;12,3个;13,1990-年-2002年;14,a <-3;15,答案不唯一,如⎩⎨⎧<-≤+2531x x 等等;16,答案不唯一.如,x +y =3等;17,10;18,(,4). 三、19,由“中点公式”得D (-2,2),E (2,2),DE ∥AB .20,(1)错误之处在①②④步.(2)过程略.x ≥-1513. 21,略.22,(1)2,-1.(2)222124.x y n x n y n +=+⎧⎨-=⎩,2(21).x n y n =⎧⎨=--⎩,(3)依题意,得20(9)109100.ab +-=⎧⎨+=⎩, 解得1110.a b =⎧⎨=⎩,所以方程组为21110100.x y x y +=⎧⎨-=⎩,它符合(2)中的规律.A B ① ② ③ ④ P C D A B ① ② ③ ④ C D A B ①② ③ ④ C D23,设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意,得3m +5n=35,其中m 、n 均为自然数.于是有n =3535m -=7-35m ,此时有,375m m ⎧⎪⎨-⎪⎩>0>0.所以0<m <353.由于n =7-35m 为正整数,则35m 为正整数,可知m 为5的倍数,所以当m =5时,n =4,当m =10时,n =1,所以有2种购买方案.即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.24,(1)解法一:如图1,延长BP 交直线AC 于点E.因为AC ∥BD ,所以∠PEA =∠PBD .又因为∠APB =∠P AE +∠PEA ,所以∠APB =∠P AC+∠PBD .解法二:如图2,过点P 作FP ∥AC ,所以∠P AC =∠APF .因为AC ∥BD ,所以FP ∥BD .所以∠FPB =∠PBD .所以∠APB =∠APF +∠FPB =∠P AC +∠PBD .解法三:如图3,.因为AC ∥BD ,所以∠CAB +∠ABD =180°,即∠P AC +∠P AB +∠PBA +∠PBD =180°.又∠APB +∠PBA +∠P AB =180°,所以∠APB =∠P AC+∠PBD .(2)不成立. (3)(a )当动点P 在射线BA 的右侧时,结论是∠PBD=∠P AC+∠APB.(b )当动点P 在射线BA 上,结论是∠PBD =∠P AC +∠APB.或∠P AC =∠PBD +∠APB 或∠APB =0°,∠P AC =∠PBD (任写一个即可).(c )当动点P 在射线BA 的左侧时,结论是∠P AC =∠APB +∠PBD .选择(a ).证明:如图4,连接P A ,连接PB 交AC 于M ,因为AC ∥BD ,所以∠PMC =∠PBD .又因为∠PMC =∠P AM +∠APM ,所以∠PBD =∠P AC +∠APB .选择(b ).证明:如图5,因为点P 在射线BA 上,所以∠APB =0°.因为AC ∥BD ,所以∠PBD =∠P AC .所以∠PBD =∠P AC +∠APB ,或∠P AC =∠PBD +∠APB ,或∠APB =0°,∠P AC =∠PBD .选择(c ).证明:如图6,连接P A ,连接PB 交AC 于F ,因为AC ∥BD ,所以∠PF A =∠PBD.因为∠P AC =∠APF +∠PF A ,所以∠P AC =∠APB +∠PBD .25,解:(1)设该校采购了x 顶小帐篷,y 顶大帐篷 根据题意,得:⎩⎨⎧=+=+960004001602300103y x y x解这个方程组,得⎩⎨⎧==200100y x .(2)设甲型卡车安排了a 辆,则乙型卡车安排了(20-a) 辆. 根据题意,得⎩⎨⎧≥-+≥-+200)20(711100)20(124a a a a ,图1图2 图5 图6 图4 图3解这个不等式组,得:15≤a≤17.5∵车辆数a为正整数,∴a=15或16或17. ∴20-a=5或4或3.答:(1)该校采购了100顶小帐篷,200大帐篷.(2)安排方案有:①甲型卡车15辆,乙型卡车5辆;②甲型卡车16辆,乙型卡车4辆;③甲型卡车17辆,乙型卡车3辆.。

相关文档
最新文档