精品资料七年级数学上册期中考试试卷六

合集下载

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题4分,满分40分) 1.在-12与311,-π,-4中,属于负整数的是( )A .-12 B.311 C .-π D .-42.国产C919,全称COMAC C919,是我国按照国际民航规章自行研制,具有自主知识产权的大型喷气式民用飞机,最大航程达5 555 000 m .数据5 555 000用科学记数法表示为( ) A .0.5555×107 B .5.555×106 C .55.55×105 D .5555×1033.单项式-x a +1y 3与12y b x 2是同类项,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =3C .a =2,b =2D .a =2,b =3 4.根据等式的性质,下列变形正确的是( )A .若a c =b c ,则a =bB .若x 4+x3=1,则3x +4x =1 C .若ab =bc ,则a =c D .若4x =a ,则x =4a 5.下列各式中,运算正确的是( )A .5x 3+6x 3=11x 6B .-8x -8x =0C .5x -3x =2D .2xy -2yx =06.【2024·六安金安区校级月考】已知(m +2)2+|n -2|=0,则-m n 的值是( )A .4B .-2C .2D .-47.一种商品,先提价20%,再降价10%,这时的价格是2 160元.则该商品原来的价格是( )A .2 400元B .2 200元C .2 000元D .1 800元8.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这道题目的意思是:甲、乙两人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A.⎩⎨⎧x -9=2(y +9)y +9=x -9B.⎩⎨⎧x +9=2(y -9)y +9=x -9C.⎩⎨⎧x +9=2y y +9=xD.⎩⎨⎧x -9=2y y +9=x -99.【2024·宿州桥区校级期中】图①是我国古代传说中的洛书,图②是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数之和都相等.图③是一个不完整的幻方,根据幻方的规则,由已知数求出x -y 的值应为( )A .-3B .3C .-2D .210.求1+2+22+23+…+22 024的值,可令S =1+2+22+23+…+22 024,则2S =2+22+23+24+…+22 025,因此2S -S =22 025-1.仿照以上方法,计算出1+5+52+53+…+52 024的值为( )A .52 024-1B .52 025-1 C.52 025-14 D.52 024-14二、填空题(本大题共4小题,每小题5分,满分20分) 11.把5.187 245按四舍五入的方法精确到千分位为________. 12.已知3a -2b =-4,则整式4b -6a +3=________.13.一组“数值转换机”按如图所示的程序计算,如果输入的数是30,则输出结果为56,要使输出结果为60,则输入的正整数是 ________.14.表示有理数m 与n 的点在数轴上的位置如图,有理数m 对应的点为M ,有理数n 对应的点为N ,且m =-4,n 比m 大24. (1)点M 与点N 之间的距离为________;(2)若点P 和点Q 分别从点M 和点N 同时出发,相向运动,点P 运动的速度为4个单位长度/s ,点Q 运动的速度为2个单位长度/s ,相遇前当点P 与点Q 之间的距离为18时,两点运动停止,则运动时间为________.三、(本大题共2小题,每小题8分,满分16分) 15.【2024·黄山期中】计算: (1)5.5-(-6.5)+(-7);(2)-12-(1-0.5)÷32×[4-(-2)3].16.(1)解方程:1-2x +16=2x -13;(2)解方程组:⎩⎨⎧8x =2-5y ,10-3y =4x .四、(本大题共2小题,每小题8分,满分16分) 17.【2024·蚌埠蚌山区期中】先化简,再求值:x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y ,其中⎪⎪⎪⎪⎪⎪x -32+(y +2)2=0.18.【2024·芜湖期末】已知关于x ,y 的方程组⎩⎨⎧2x +y =-2,ax +by =-4和方程组⎩⎨⎧3x -y =12,bx +ay =-8的解相同,求(5a +b )2的值.五、(本大题共2小题,每小题10分,满分20分)19.【2024·淮南期中】小蕊暑假在父母开设的小食堂帮忙,她把相同规格的碟子洗干净后整齐地摆放在桌子上,发现碟子的个数与碟子的高度的关系如下表:碟子的个数 1 2 3 4 … 碟子的高度(单位:cm)23.556.5…(1) 当桌子上放有x 个碟子时,请写出此时碟子的高度(用含x 的式子表示);(2)如图所示,某天小蕊把洗好的上述规格的碟子摆放成三摞,小蕊妈妈想把它们整齐地叠成一摞,求叠成一摞后的高度.20.【2024·蚌埠蚌山区月考】有20箱石榴,以每箱25 kg为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg)-3-2-1.501 2.5箱数142328(1)20箱石榴中,最重的一箱比最轻的一箱多多少千克?(2)与标准质量比较,20箱石榴总计超过或不足多少千克?(3)若石榴每千克售价8元,购进这批石榴一共花了3 000元,则售出这20箱石榴可赚多少元?六、(本题满分12分)21.在学习完“有理数”后,小奇对有理数运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“”,规则如下:a b =ab +2a (a ,b 不相等).(1)3(-2)=________;(2)求-5⎝⎛⎭⎪⎫-412的值; (3)试以(-4) 3和3(-4)说明,新定义的运算“”满足交换律吗?七、(本题满分12分)22.【2024·合肥瑶海区期中】为鼓励人们节约用水,合肥市居民使用自来水实行阶梯式计量水价,按如下标准缴费(水费按月缴纳):用户月用水量 单价 不超过12 m 3的部分 a 元/m 3 超过12 m3但不超过20 m 3的部分1.5a 元/m 3 超过20 m 3的部分2a 元/m 3(1)当a =2时,芳芳家5月份用水量为14 m 3,则该月需交水费________元;6月份芳芳家交了水费36元,则6月份用水量为________m 3(直接写出答案);(2)当a =2时,亮亮家一个月用了28 m 3的水,求亮亮家这个月应缴纳的水费;(3)设某用户月用水量为n m 3(n >20),该用户这个月应缴纳水费多少元?(用含a ,n 的式子表示)八、(本题满分14分)23.【2024·芜湖师大附中月考】古人曰:“读万卷书,行万里路”,经历是最好的学习,研学是最美的相遇.伴着三月的春风,哼着欢快的曲调,方树泉中学七年级同学开启了期盼已久的研学活动,师生一起去参观博物馆.下面是王老师和小真、小萱同学有关租车问题的对话.王老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小真:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到该博物馆参观,一天的租金共计5 100元.”小萱:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满”.根据以上对话,解答下列问题:(1)参加此次研学活动的七年级师生共有________人;(2)该客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车方案最省钱?参考答案一、1.D2.B3.B4.A5.D6.D7.C8.B9.A10.C 【点拨】设S=1+5+52+53+…+52 024,则5S=5+52+53+…+52 025所以5S-S=52 025-1,所以S=52 025-14.二、11.5.18712.1113.32,18或11 14.(1)24【点拨】根据题意知n-m=24.即MN=24.(2)1 【点拨】设运动时间为t s.当相遇前点P 与点Q 之间的距离为18时,4t +2t +18=24,解得t =1. 即当运动时间为1 s 时点P 和点Q 之间的距离为18. 三、15.【解】(1)原式=5.5+6.5-7=5.(2)原式=-1-12×23×[4-(-8)] =-1-12×23×12=-1-4=-5.16.【解】(1)去分母,得6-(2x +1)=2(2x -1) 去括号,得6-2x -1=4x -2 移项,得-4x -2x =-2+1-6 合并同类项,得-6x =-7 系数化为1,得x =76. (2)⎩⎨⎧8x =2-5y ,①10-3y =4x .②①+②×2得8x +20-6y =2-5y +8x ,解得y =18 把y =18代入①,解得x =-11 所以方程组的解为⎩⎨⎧x =-11,y =18.四、17.【解】x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y =x 2y -12xy 2+6x 2y -12xy 2-x 2y =6x 2y -xy 2因为|x -32|+(y +2)2=0,所以x =32,y =-2 所以原式=6×⎝ ⎛⎭⎪⎫322×(-2)-32×(-2)2=-27-6=-33.18.【解】解方程组⎩⎨⎧2x +y =-2,3x -y =12,得⎩⎨⎧x =2,y =-6.把⎩⎨⎧x =2,y =-6代入方程组⎩⎨⎧ax +by =-4,bx +ay =-8.得⎩⎨⎧2a -6b =-4,2b -6a =-8,解得⎩⎪⎨⎪⎧a =74,b =54,所以5a +b =5×74+54=10 所以(5a +b )2=102=100.五、19.【解】(1)依题意,得碟子个数为1时,碟子高度为2+1.5×(1-1)=2(cm); 碟子个数为2时,碟子高度为2+1.5×(2-1)=3.5(cm); 碟子个数为3时,碟子高度为2+1.5×(3-1)=5(cm); ……故碟子个数为x 时,碟子高度为2+1.5(x -1)=1.5x +0.5(cm); (2)由题图可知共有12个碟子 即x =12,将x =12代入1.5x +0.5 得1.5×12+0.5=18+0.5=18.5 故叠成一摞的高度为18.5 cm.20.【解】(1)最重的一箱比最轻的一箱多2.5-(-3)=5.5(kg) 答:20箱石榴中,最重的一箱比最轻的一箱多5.5 kg. (2)-3×1+(-2)×4+(-1.5)×2+0×3+1×2+2.5×8=8(kg) 答:20箱石榴总计超过8 kg. (3)25×20+8)×8-3 000=508×8-3 000 =1 064(元)答:售出这20箱石榴可赚1 064元. 六、21.【解】(1)0【点拨】3 (-2)=3×(-2)+2×3=-6+6=0.(2)-5⎝⎛⎭⎪⎫-412=-5⎣⎢⎡⎦⎥⎤(-4)×12+2×(-4) =-5 (-2-8) =-5(-10)=(-5)×(-10)+2×(-5)=50+(-10)=40.(3)(-4)3=-4×3+2×(-4)=-12+(-8)=-203(-4)=3×(-4)+2×3=-12+6=-6因为-20≠-6,所以(-4)3≠3(-4)所以新定义的运算“”不满足交换律.七、22.【解】(1)30;16【点拨】当a=2,芳芳家5月份用水量为14 m3时,该月需交水费为12×2+(14-12)×1.5×2=24+6=30(元);设芳芳家6月份用水量为x m3,易得12<x<20则由题意,得12×2+(x-12)×1.5×2=36解得x=16,所以芳芳家6月份用水量为16 m3.(2)12×2+(20-12)×1.5×2+(28-20)×2×2=24+24+32=80(元)答:亮亮家这个月应缴纳的水费为80元.(3)当n>20时该用户应缴纳的水费为12a+(20-12)×1.5a+(n-20)×2a=2an-16a(元)答:该用户这个月应缴纳水费(2an-16a)元.八、23.【解】(1)420【点拨】根据题意,得45a+15=60(a-2),解得a=9所以45a+15=45×9+15=420所以参加此次研学活动的七年级师生共有420人.(2)设该客运公司60座客车每辆每天的租金是x元,45座客车每辆每天的租金是y元第 11 页 共 11 页 根据题意,得⎩⎨⎧x -y =150,4x +2y =5 100,解得⎩⎨⎧x =900,y =750.答:该客运公司60座客车每辆每天的租金是900元,45座客车每辆每天的租金是750元.(3)设租用60座客车m 辆,45座客车n 辆根据题意,得60m +45n =420,所以m =7-34n .又因为m ,n 均为自然数所以⎩⎨⎧m =7,n =0或⎩⎨⎧m =4,n =4或⎩⎨⎧m =1,n =8,所以共有3种租车方案第1种:租用60座客车7辆,所需租车费用为900×7=6 300(元);第2种:租用60座客车4辆,45座客车4辆,所需租车费用为900×4+750×4=6 600(元); 第3种:租用60座客车1辆,45座客车8辆,所需租车费用为900×1+750×8=6 900(元). 因为6 300<6 600<6 900所以第1种租车方案最省钱.。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。

七年级上册数学期中考试卷及答案【含答案】

七年级上册数学期中考试卷及答案【含答案】

七年级上册数学期中考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 任何偶数乘以偶数都是偶数。

()3. 任何奇数乘以奇数都是奇数。

()4. 1是质数。

()5. 两个质数相乘的积一定是合数。

()三、填空题(每题1分,共5分)1. 1千米=______米。

2. 1米=______分米。

3. 1分米=______厘米。

4. 1厘米=______毫米。

5. 2的3次方等于______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请简述偶数和奇数的区别。

3. 请简述分数的约分方法。

4. 请简述三角形的基本性质。

5. 请简述因数分解的方法。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

3. 2的5次方等于多少?4. 一个数既是3的倍数,又是4的倍数,这个数最小是多少?5. 一个等边三角形的边长是10厘米,求这个三角形的周长。

六、分析题(每题5分,共10分)1. 小红有15个糖果,小明有20个糖果,他们一共有多少个糖果?如果小红给小明5个糖果,他们各自有多少个糖果?2. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求这个长方体的体积。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。

七年级数学上学期期中考试卷(含答案)

七年级数学上学期期中考试卷(含答案)

七年级数学上学期期中考试卷(含答案)(考试时间: 120分钟, 本卷满分: 150分)一、选择题(每题3分, 共24分)1.中国古代数学著作《九章算术》的“方程”一章, 在世界数学史上首次正式引入负数.如果支出100元记作﹣100元, 那么+80元表示()A. 支出80元B. 收入80元C. 支出20元D. 收入20元2.在下列数1, 6.7, ﹣14, 0, ﹣/, 中, 属于整数的有()A. 2个B. 3个C. 4个D. 5个3. 下列各式的计算结果正确的是()A. B.C. D.4. 下列各对数中互为相反数的是( )A.和B.和C.和D.和5.若是方程的解, 则a的值为()A. 1B. ﹣1C. ﹣3D. 36.一个长方形的长是a+b, 宽是a, 其周长是()A. 2a+bB. 4a+bC. 4a+2bD. 2a+2b7.如图所示的程序计算, 若开始输入的值为, 则输出的结果y是()A. 25B. 30C. 45D. 408.有理数a、b、c在数轴上的位置如图所示,化简:|b-c|-|b-a|+|a+c|结果....)A. B. C. D.二、填空题(每题3分, 共30分)9.武汉火神山医院建筑面积339000000平方厘米, 拥有1000张床位, 将339000000平方厘米用科学记数法表示应为平方厘米.10. 比较大小: .11. 已知和是同类项, 则a ﹣b 的值是 . 12.若关于的方程是一元一次方程, 则__________.13. 下数轴上到-3的距离是5个单位长度的点表示的数是 . 14. 已知是关于a 、b 的五次单项式, 则 . 15. 若关于x 、y 的多项式的值与y 无关, 则____________. 16. 已知的值为10, 则代数式的值为 .17.如图, 用若干相同的小棒拼成含正五边形的图形, 拼第1个图形需要5根小棒;拼第2个图形需要9根小棒;拼第3个图形需要13根小棒……按此规律, 拼第个图形需要 根小棒.18. 已知有理数满足, , 且, 则 . 三、解答题(共96分) 19.计算:(1)20(15)(14)18-+----; (2)3428122022⨯-÷+ 20. 化简:(1)25(1)3(1)a a a ++--; (2)22(24)4(31)x xy x xy -+-- 21.解方程:(1)43(20)3x x --= (2)3157146x x ---= 22. 先化简, 再求值: , 其中.23. “⊗”表示一种新运算, 它的意义是(1)求(﹣2)⊗(﹣3); (2)已知(3⊗4)⊗=, 求值.国庆期间, 特技飞行队进行特技表演, 其中一架飞机起飞后的高度变化如右表: (1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油, 那么这架飞机在这4个动作表演过程中, 一共消耗了多少升燃油?25. 下面是小明同学解方程的过程, 请认真阅读并完成相应任务. 解方程:解: ____, 得 第一步 去括号, 得 第二步 移项, 得 第三步合并同类项, 得 第四步 方程两边同除以-1, 得 第五步 方程两边同除以-1,得13-=x 第五步 任务:①以上求解步骤中, 第一步进行的是______, 这一步的依据是__________; ②以上求解步骤中, 第________步开始出现错误, 具体的错误是_____________﹔ ③请直接写出该方程正确的解为____________________.26. 周末, 小明陪爸爸去陶瓷商城购买一些茶壶和茶杯, 甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯, 茶壶每把定价都为30元, 茶杯每只定价都为5元. 这两家商店都有优惠, 甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠. 小明爸爸需买茶壶5把, 茶杯若干只(不少于5只).(1)设购买茶杯只, 如果在甲店购买, 需付款多少元? 如果在乙店购买, 需付款多少元? (用含的代数式表示并化简).(2)当购买15只茶杯时, 应在哪家商店购买合算?为什么?27. 定义: 求若干个相同的有理数(均不等于0)的除法运算叫做除方, 如2÷2÷2等. 类比有理数的乘方, 我们把2÷2÷2记作23, 读作“2的下3次方”, 一般地, 把n个a(a≠0)相除记作an, 读作“a的下n次方”.理解:(1)直接写出计算结果: 23=.(2)关于除方, 下列说法正确的有(把正确的序号都填上);①a2=1(a≠0);②对于任何正整数n, 1n=1;③34=43;④负数的下奇数次方结果是负数, 负数的下偶数次方结果是正数.应用:(3)我们知道, 有理数的减法运算可以转化为加法运算, 除法运算可以转化为乘法运算, 有理数的除方运算如何转化为乘方运算呢?例如:/(幂的形式).试一试: 将下列除方运算直接写成幂的形式: =;=;(4)计算:28. 如图, 已知数轴上有A.B.C三点, 点O为原点, 点A.点B在原点的右侧, 点C在原点左侧, 点A 表示的数为a, 点B表示的数为b, 且a与b满足, .(1)直接写出a、b的值, a=, b=;(2)动点P从点C出发, 以每秒4个单位的速度向右运动, 同时动点Q从点B出发, 以每秒2个单位的速度向右运动, 设运动时间为秒, 请用含的式子表示点P , 点Q 以及线段PQ长度;(PQ就是点P与点Q之间的距离)(3)在(2)的条件下, 若点M在A点以每秒6个单位向左与P、Q同时运动, 当M点与P点或者Q点相遇时, 则立即改变运动方向, 以原速度向相反方向运动。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。

A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。

A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。

A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。

A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。

A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。

()2. 任何两个整数的积一定是整数。

()3. 0 是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 1 是最小的正整数。

()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。

2. 已知 |x 3| = 4,那么 x 的值是______或______。

3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。

4. 如果 a = 2,b = 3,那么 a 2b 的值是______。

5. 下列式子中,同类项是______和______。

四、简答题:每题2分,共10分1. 解释有理数的概念。

2. 举例说明同类项的概念。

3. 解释绝对值的概念。

4. 解释相反数的概念。

5. 解释整除的概念。

五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.|﹣2021|等于()A .﹣2021B .2021C .12021D .﹣120212.在(1.5)+-,4-,0,(2)--中,非负整数的个数有()A .1个B .2个C .3个D .4个3.下列各组数中,互为相反数的是()A .16-与6-B .|6|-与6C .16-与16-D .16-与16--4.数据11090000用科学记数法表示为()A .80.110910⨯B .611.0910⨯C .81.10910⨯D .71.10910⨯5.点A 在数轴上距原点4个单位长度,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是()A .3B .3±C .5±D .3或5-6.下列代数式的书写格式正确的是()A .112abB .3x ⨯C .23y D .3()a b ÷+7.下列说法中,正确的是()A .单项212xy 的系数是12xB .单项式22x -的次数为2-C .多项式219x x ++是二次多项式D .多项式227x y +-的常数项是78.下列去括号正确的是()A .2()2n m n n m n +--=+-B .2(35)610a a a a --=-+C .()n m n n m n---=+-D .222()2n n m n n m+-+=+-9.代数式2346x x -+的值为9,则2463x x -+的值为()A .7B .18C .12D .910.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =()A .3B .3-C .1D .1-二、填空题11.﹣2的倒数是___.12.比较大小:23-_________15-13.若||5a =,||3b =,且a b >,则a b +=__________.14.如果253m a b +与51n a b --是同类项,则m n -=_________.15.某微商平台有一商品,标价为a 元,按标价的8折再降价10元销售,则该商品的售价用代数式表示为____________元.16.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2021次输出的结果为________.17.多项式||21(5)63m x m x --+是关于x 的五次三项式,则m 的值为__________.18.已知,021=,122=,224=,328=,24的个位数字是6,25的个位数字是2,……,则20212的个位数字是____________.三、解答题19.计算:(1)248(2)5(6)-÷--⨯+-(2)157()(24)2612+-⨯-20.画出数轴,在数轴上表示下列各数,并按从小到大的顺序用“<”连接起来4-,112,0, 2.5-,321.化简(1)23325356a b b a --+(2)222(()4)22xy y x xy y --+-22.先化简,再求值:22223()()4431a b ab a b ab +----,其中2(2)4|3|0a b ++-=23.出租车司机小李某天上午运营是在儿童公园门口出发,沿南北走向的人民大街进行的,如果规定向北为正,向南为负,那么他这天上午所接送七位乘客的行车里程(单位:km )如下:3-,6+, 2.8-,4-,2-,9+,5-.(1)将最后一位乘客送到目的地时,小李在儿童公园的哪个方向?距离是多少?(2)若出租车消耗天然气量为0.3m 3/km ,小李接送七位乘客,出租车共消耗天然气多少立方米?24.已知m 和n 互为相反数,a 和b 互为倒数,k 是最大的负整数,求202133m n ab k +-+的值25.已知代数式2342A x x =-+(1)若221B x x =--,①求2A B -;②当2x =-时,求2A B -的值;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 项,求整式2452a a +-的值.26.观察下列等式的规律,解答下列问题:1122(212a =⨯+;2122(223a =⨯+;3122()234a =⨯+;4122(245a =⨯+;(1)第5个等式为5a =,第n 个等式为n a =(用含n 的式子表示,n 为正整数);(2)设112S a a =-,234S a a =-,356S a a =-,……,202140414042S a a =-,求12342021S S S S S +++++ 的值.参考答案1.B 【解析】【分析】根据绝对值的性质求解即可.正数和0的绝对值是它本身,负数的绝对值是它的相反数.【详解】解:|2021|2021-=,故选:B 【点睛】此题考查了绝对值的性质,掌握绝对值的性质是解题的关键.2.B 【解析】【分析】非负整数是0和正整数的统称,依据定义即可作出判断.【详解】解:+(-1.5)=1.5,-(-2)=2非负整数有:0,﹣(﹣2)共有2个.故选:B .【点睛】本题主要考查非负整数,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点和多重符号的化简是解题的关键.3.C 【解析】【分析】根据相反数的定义即可一一判定.【详解】解:A.16-与6-不是互为相反数,故该选项不符合题意;B.|6|6-=,故|6|-与6不是互为相反数,故该选项不符合题意;C.1166-=,故16-与16-是互为相反数,故该选项符合题意;D.1166--=-,故16-与16--不是互为相反数,故该选项不符合题意;故选:C .【点睛】本题考查了相反数的判别,熟练掌握和运用相反数的判别方法是解决本题的关键.4.D 【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则711090000 1.10910⨯=故选:D .【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.5.D 【解析】【分析】分两种情况,分别计算即可求得.【详解】解: 点A 在数轴上距原点4个单位长度,∴点A 表示的数为4或-4,当点A 表示的数为4时,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是:4-4+3=3,当点A 表示的数为-4时,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是:-4-4+3=-5,故选:D .【点睛】本题考查了数轴上表示的数,理解在数轴上向左移为负,向右移为正是解决本题的关键.6.C 【解析】【分析】根据代数式的书写要求判断各项即可.【详解】解:A.112bc 正确的书写格式是32bc ,故选项错误;B.3x ⨯正确的书写格式是3x ,故选项错误;C.代数式23y 书写正确;D.()3a b ÷+正确的书写格式是3a b+,故选项错误.故选:C .【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.C 【解析】【分析】利用单项式、多项式的定义即可解答.【详解】解:A 、单项212xy 的系数是12,故本选项说法错误;B 、单项式22x -的次数为2,故本选项说法错误;C 、多项式219x x ++是二次多项式,故本选项正确;D 、多项式227x y +-的常数项是-7,故本选项说法错误;故选:C .【点睛】此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.8.B 【解析】【分析】根据去括号法则依次判断即可.【详解】A.2()2n m n n m n +--=--,故A 选项错误,不符合题意;B.2(35)610a a a a --=-+,故B 选项正确,符合题意;C.()n m n n m n ---=++,故C 选项错误,不符合题意;D.222()22n n m n n m +--+=+,故D 选项错误,不符合题意.故选:B 【点睛】本题主要考查了去括号法则:括号前面是“+”号,去掉括号和“+”号,原括号里的各项不改变符号;括号前面是“-”号,去掉括号和“-”号,原括号里的各项要改变符号.熟练掌握去括号法则是解题的关键.9.A 【解析】【详解】解:∵3x 2-4x+6=9,两边同时除以3可得:x 2﹣43x =1,所以x 2-43x +6=7,故选:A .10.D 【解析】【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1,又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1,即a ,b ,c 中两正一负,∴abc<0,则||abcabc =−1;故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键.11.12-【解析】【分析】直接利用倒数的定义得出答案.【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以2-的倒数为()1122÷-=-.故答案为:12-.【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键12.<【解析】【分析】根据两个负数相比较,绝对值大的反而小解答.【详解】解:2211,3355-=-=,2135>,∴2135-<--.故答案为:<.【点睛】本题考查了有理数比较大小的方法:负数是小于0的数,正数大于0,两个负数比较大小绝对值大的反而小.13.8或2【解析】【分析】根据绝对值的定义,再结合a>b 求出a 、b 的值,再进行计算即可.【详解】∵||5a =,||3b =,∴a=±5,b=±3.又∵a>b ∴a=5,b=±3.①a=5,b=3时,a+b=8;②a=5,b=-3时,a+b=2.∴a+b=8或2.故答案为:8或2.【点睛】本题主要考查了绝对值的定义和绝对值的性质.注意若x a =,则x=±a ,防止漏掉一个解.掌握以上知识是解题的关键.14.3-【解析】【分析】根据同类项的定义可得到关于m 、n 的等式,求出字母的值并代入式中可得解.【详解】解:由题意可知m+2=5,n-1=5,解得m=3,n=6,则m-n=3-.故答案为:3-.【点睛】本题主要考查了同类项.关键是熟练掌握同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.15.(0.810)a-##(-10+0.8a)【解析】【分析】直接利用打折与原价的关系得出关系式即可.【详解】解:由题意可得,该商品售价为:(0.8a-10)元.故答案为:(0.8a-10).【点睛】此题主要考查了列代数式,正确掌握打折与原价的关系是解题关键.16.5【解析】【分析】根据运算程序,第一次运算结果为125,第二次运算结果为25,第三次运算结果为5,第四次运算结果为1,…发现规律从第三次开始每两次为一个循环,再根据题目所给625的2021次运算即可得出答案.【详解】解:第一次运算结果为:15×625=125;第二次运算结果为:15×125=25;第三次运算结果为:15×25=5;第四次运算结果为:15×5=1;第五次运算结果为:1+4=5;第六次运算结果为:15×5=1;…由此可得出运算结果从第三次开始为5和1循环,奇数次运算结果5,偶数次运算结果为1,因为2021为奇数,所以运算结果为5.故答案为:5.【点睛】本题主要考查了代数式的求值和有理数的计算,根据题目给出的程序运算图找出输出结果的规律是解决本题的关键.17.5-【解析】【分析】直接利用多项式的概念得出关于m 的关系式,求出常数m 的值即可.【详解】解:∵||21(5)63m x m x --+是关于x 的五次三项式,∴|m|=5,-(m-5)≠0,解得:m=-5.故答案为:-5.【点睛】此题主要考查了多项式的定义,得出关于m 的关系式是解题关键.单项式的个数就是多项式的项数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.18.2【解析】【分析】此题根据观察、验证可得2n 的个位数按2、4、8、6的周期规律出现,由2021÷4=505…1可知,22021的个位数字与21的个位数相同,结果是2.【详解】解:由题意可知2n 的个位数按2、4、8、6、2……的周期规律出现,每四个数循环出现一次,由2021÷4=505…1可知,22021的个位数字与21的个位数相同,结果是2.故结果应为:2.【点睛】此题考查了数字规律探究,关键是通过观察发现数字的周期循环规律.19.(1)2(2)-18【解析】【分析】(1)先计算乘方,去括号,再计算乘除法,最后计算加减法求解;(2)先根据乘法分配律进行变形,再计算乘除法,最后计算加减法求解.(1)解:248(2)5(6)-÷--⨯+-168256=-÷+⨯-2106=-+-810=-+2=;(2)解:157((24)2612+-⨯-1572424242612=-⨯-⨯+⨯122014=--+3214=-+18=-.【点睛】本题主要考查了有理数的混合运算,理解有理数的混合运算法则是解答关键.20.数轴见解析,14 2.50132-<-<<<【解析】【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【详解】解:在数轴上画出表示下列各数的点:用“<”号连接起来为:14 2.50132-<-<<<【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.21.(1)23118a b -(2)222y x -【解析】【分析】(1)合并同类项即可得到答案;(2)先去括号,再进行合并同类项即可得到答案.(1)解:3322325356118a a b b b a ---+=;(2)解:22222222(4)22424()22xy y x xy y x y y x y x y xy =--+--=---+.【点睛】本题主要考查了整式的加减运算,掌握整式的运算方法是解题的关键.22.215a b -+,3【解析】【分析】根据整式的混合运算法则将整式化简即可,根据“几个非负数和为0,则这几个非负数分别为0”求出a 和b 的值,最后将a 和b 的值代入化简得式子即可.【详解】由题意得:20a +=,30b +=,2a ∴=-,3b =,原式22223341631a b ab a b ab =+-+--22223433161a b a b ab ab =-+-+-215a b =-+,把2a =-,3b =代入上式得:()223153--⨯+=.【点睛】本题主要考查了整式的混合运算及非负数的性质,熟练地掌握展开括号的法则以及整式的混合运算法则是解题的关键.23.(1)小李在儿童医院的南方1.8km ;(2)9.54立方米.【解析】【分析】(1)求出这几个数的和,根据符号、绝对值判断位置;(2)求出所有数的绝对值的和,即行驶的总路程,进而求出消耗天然气;(1)解:由题意可得:36 2.84295 1.8(km)-+---+-=-答:小李在儿童医院的南方1.8km (2)解:|3||6|| 2.8||4||2||9||5|31.8(km)-+++-+-+-+++-=31.80.39.54⨯=(立方米)答:出租车共消耗天然气9.54立方米.【点睛】本题考查正负数的意义以及有理数的混合运算的实际应用,理解有理数的意义,明确符号和绝对值的意义是正确解答的关键.24.-2【解析】【分析】利用相反数、倒数的性质,以及最大负整数为-1求出各自的值,代入原式计算即可求出值.【详解】解:∵m 和n 互为相反数,a 和b 互为倒数,k 是最大的负整数,∴0m n +=,1ab =,1k =-,202133m n ab k ∴+-+,20213()m n ab k =+-+,2021301(1)=⨯-+-,1(1)=-+-,2=-【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)①24x +;②8(2)19【解析】【分析】(1)根据整式的加减运算化简求值即可;(2)根据整式的加减运算顺序即可求解;(3)根据和中不含x 2项即是此项的系数为0即可求解.(1)①222(342)2(21)A B x x x x -=-+---22342242x x x x =-+-++24x =+,②由①知224A B x -=+,当2x =-时,22(2)4448A B -=-+=+=;(2)2342A x x =-+ ,21B ax x =--22(342)(1)A B x x ax x ∴+=-++--223421x x ax x =-++--2(3)51a x x =+-+,∵A 与B 的和不含2x 项,30a ∴+=,即3a =-,224524(3)5(3)2a a ∴+-=⨯-+⨯--49152=⨯--36152=--19=.【点睛】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.26.(1)122()256⨯+,122()21n n ⨯++(2)40424043【解析】【分析】(1)根据题意,找出规律即可作答;(2)将12342021S S S S S 、、、分别表示出来即可进行计算.(1)根据题意得,5122(256a =⨯+、122(21n a n n =⨯++,故答案为:122()256⨯+,122()21n n ⨯++;(2)12342021S S S S S +++++ 1222222222222(2122334454041404240424043=+--++--+++-- 12(2)24043=⨯-114043=-40424043=.。

七年级上期中数学试卷含答案解析06

七年级上期中数学试卷含答案解析06

七年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.单项式的系数是()A.B.πC.2 D.3.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.84.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1 D.x2y﹣2x2y=﹣x2y5.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×1076.一个整式减去a2﹣b2等于a2+b2,则这个整式为()A.2b2B.2a2C.﹣2b2D.﹣2a27.当x=﹣1时,代数式x2+2x+1的值是()A.﹣2 B.﹣1 C.0 D.48.数x、y在数轴上对应点如图所示,则化简|x+y|﹣|y﹣x|的结果是()A.0 B.2x C.2y D.2x﹣2y9.计算(﹣3)×÷(﹣)×3的结果是()A.﹣9 B.9 C.1 D.﹣110.已知4n﹣m=4,则(m﹣4n)2﹣3(m﹣4n)﹣10的值是()A.﹣6 B.6 C.18 D.﹣38二、填空题:本大题共8小题,每小题3分,共24分.11.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.12.计算:|1﹣3|=.13.已知2x a y b与﹣7x b﹣3y4是同类项,则a b=.14.比较大小:①0﹣0.5,②﹣﹣(用“>”或“<”填写)15.﹣5x2y2+3x2y+2x﹣5是次四项式.16.4.6495精确到0.001的近似数是.17.已知:当x=1时,代数式ax3+bx+5的值为﹣9,那么当x=﹣1时,代数式ax3+bx+5的值为.18.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.三、解答题(一):本大题共5小题,共29分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.计算:(1)﹣3+5.3+7﹣5.3(2)0.35+(﹣0.6)+0.25+(﹣5.4)20.计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.化简:(1)x2y﹣3xy2+2yx2﹣y2x(2)(﹣ab+2a)﹣(3a﹣ab).22.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?23.先化简,再求值:(2x2+x)﹣[4x2﹣(3x2﹣x)],其中x=﹣.四、解答题(二):本大题共5小题,共37分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.计算:(1)(﹣+)×(﹣36)(2)﹣42﹣6×+2×(﹣1)÷(﹣)25.挑战自我!下图是由一些火柴棒搭成的图案:(1)摆第①个图案用根火柴棒,摆第②个图案用根火柴棒,摆第③个图案用根火柴棒.(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?(3)计算一下摆121根火柴棒时,是第几个图案?26.若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)的值.27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发看望B、C、D处的其它甲虫.规定:向上向右走为正,向下向左走为负,如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).其中第一数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.28.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.单项式的系数是()A.B.πC.2 D.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单项式的系数是,故选:D.3.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.8【考点】有理数的乘方.【分析】乘方就是求几个相同因数积的运算,﹣42=﹣(4×4)=﹣16.【解答】解:﹣42=﹣16故选:B4.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1 D.x2y﹣2x2y=﹣x2y【考点】合并同类项.【分析】原式各项合并同类项得到结果,即可作出判断.【解答】解:A、原式=2x2,错误;B、原式不能合并,错误;C、原式=x,错误;D、原式=﹣x2y,正确,故选D5.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149×106B.1.49×107C.1.49×108D.14.9×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将149000000用科学记数法表示为:1.49×108.故选:C.6.一个整式减去a2﹣b2等于a2+b2,则这个整式为()A.2b2B.2a2C.﹣2b2D.﹣2a2【考点】整式的加减.【分析】根据差与减数之和确定出被减数即可.【解答】解:根据题意得:a2﹣b2+a2+b2=2a2,故选B7.当x=﹣1时,代数式x2+2x+1的值是()A.﹣2 B.﹣1 C.0 D.4【考点】代数式求值.【分析】把x=﹣1直接代入计算即可.【解答】解:当x=﹣1时,代数式x2+2x+1=(﹣1)2+2×(﹣1)+1=1﹣2+1=0.故选C.8.数x、y在数轴上对应点如图所示,则化简|x+y|﹣|y﹣x|的结果是()A.0 B.2x C.2y D.2x﹣2y【考点】整式的加减;数轴;绝对值.【分析】先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.【解答】解:∵由图可知,y<0<x,x>|y|,∴原式=x+y﹣(x﹣y)=x+y﹣x+y=2y.故选C.9.计算(﹣3)×÷(﹣)×3的结果是()A.﹣9 B.9 C.1 D.﹣1【考点】有理数的除法;有理数的乘法.【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=3××3×3=9,故选B10.已知4n﹣m=4,则(m﹣4n)2﹣3(m﹣4n)﹣10的值是()A.﹣6 B.6 C.18 D.﹣38【考点】代数式求值.【分析】首先把:(m﹣4n)2﹣3(m﹣4n)﹣10变形为(4n﹣m)2+3(4n﹣m)﹣10,然后再代入4n﹣m=4即可.【解答】解:(m﹣4n)2﹣3(m﹣4n)﹣10,=(4n﹣m)2+3(4n﹣m)﹣10,=42+3×4﹣10,=16+12﹣10,=18,故选:C.二、填空题:本大题共8小题,每小题3分,共24分.11.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.【考点】数轴.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.12.计算:|1﹣3|=2.【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|1﹣3|=|﹣2|=2.故答案为:2.13.已知2x a y b与﹣7x b﹣3y4是同类项,则a b=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得a、b的值,根据乘方运算,可得答案.【解答】解:2x a y b与﹣7x b﹣3y4是同类项,a=b﹣3,b=4,a=1a b=1,故答案为:1.14.比较大小:①0>﹣0.5,②﹣>﹣(用“>”或“<”填写)【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得①0>﹣0.5.②﹣>﹣.故答案为:>、>.15.﹣5x2y2+3x2y+2x﹣5是四次四项式.【考点】多项式.【分析】根据多项式的项和次数的概念解题.此多项式共四项﹣5x2y2,3x2y,2x,﹣5.其最高次项为﹣5x2y2,进而得出答案.【解答】解:此多项式共四项﹣5x2y2,3x2y,2x,﹣5.其最高次项为﹣5x2y2,次数为2+2=4.故多项式﹣5x2y2+3x2y+2x﹣5是四次四项式,故答案为:四.16.4.6495精确到0.001的近似数是 4.650.【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:4.6495精确到0.001的近似数是4.650,故答案为4.650.17.已知:当x=1时,代数式ax3+bx+5的值为﹣9,那么当x=﹣1时,代数式ax3+bx+5的值为19.【考点】代数式求值.【分析】根据当x=1时,代数式ax3+bx+5的值为﹣9,把x=1代入代数式ax3+bx+5得到a+b=﹣14;再把x=﹣1代入代数式ax3+bx+5,得到ax3+bx+5=﹣(a+b)+5,然后把a+b=﹣14整体代入计算即可.【解答】解:∵当x=1时,代数式ax3+bx+5的值为﹣9,∴a×13+b×1+5=﹣9,即a+b=﹣14,把x=﹣1代入代数式ax3+bx+5,得ax3+bx+5=a×(﹣1)3+b×(﹣1)+5=﹣(a+b)+5=14+5=19.故答案为19.18.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【考点】单项式.【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.三、解答题(一):本大题共5小题,共29分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.计算:(1)﹣3+5.3+7﹣5.3(2)0.35+(﹣0.6)+0.25+(﹣5.4)【考点】有理数的加减混合运算.【分析】根据有理数的混合运算法则计算即可.【解答】解:(1)﹣3+5.3+7﹣5.3=﹣3+7=4;(2)0.35+(﹣0.6)+0.25+(﹣5.4)=0.35+0.25+(﹣0.6)+(﹣5.4)=0.6+(﹣6)=﹣5.4.20.计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.【考点】有理数的混合运算.【分析】(1)根据有理数的运算法则,先算乘除,然后计算加减,即可得出结果.(2)根据有理数的运算法则先算乘方,然后计算乘除,最后求和即可得出答案.【解答】解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.化简:(1)x2y﹣3xy2+2yx2﹣y2x(2)(﹣ab+2a)﹣(3a﹣ab).【考点】整式的加减.【分析】根据整式加减的运算法则即可求出答案.【解答】解:(1)原式=x2y+2x2y﹣3xy2﹣xy2=3x2y﹣4xy2(2)原式=﹣ab+2a﹣3a+ab=﹣a22.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程等于耗油量,可得答案.【解答】解:(1)(﹣1)+6+(﹣2)+2+(﹣7)+(﹣4)=﹣6,答:将最后一位乘客送到目的地时,小李在出发地的西边,距离出发地6km处;(2))(|﹣1|+6+|﹣2|+2+|﹣7|+|﹣4|)×0.2=22×0.2=4.4(升),答:这天上午小李接送乘客,出租车共耗油4.4升.23.先化简,再求值:(2x2+x)﹣[4x2﹣(3x2﹣x)],其中x=﹣.【考点】整式的加减—化简求值.【分析】原式去括号合并后,将x的值代入计算即可求出值.【解答】解:(2x2+x)﹣[4x2﹣(3x2﹣x)]=2x2+x﹣[4x2﹣3x2+x]=2x2+x﹣4x2+3x2﹣x=x2,当x=﹣时,原式=(﹣)2=.四、解答题(二):本大题共5小题,共37分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.计算:(1)(﹣+)×(﹣36)(2)﹣42﹣6×+2×(﹣1)÷(﹣)【考点】有理数的混合运算.【分析】(1)利用乘法分配律计算可得;(2)按照混合运算的顺序计算可得.【解答】解:(1)(﹣+)×(﹣36)=﹣20+27﹣2=5;(2)﹣42﹣6×+2×(﹣1)÷(﹣)=﹣16﹣8+4=32.25.挑战自我!下图是由一些火柴棒搭成的图案:(1)摆第①个图案用5根火柴棒,摆第②个图案用9根火柴棒,摆第③个图案用13根火柴棒.(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?(3)计算一下摆121根火柴棒时,是第几个图案?【考点】规律型:图形的变化类.【分析】解决此题的关键是弄清图案中的规律,根据图形中的三个图案知,每个图案都比上一个图案多一个五边形,但是只增加4根火柴,根据此规律来分析,可得答案.第①个图案所用的火柴数:1+4=1+4×1=5,第②个图案所用的火柴数:1+4+4=1+4×2=9,第③个图案所用的火柴数:1+4+4+4=1+4×3=13,…依此类推,第n个图案中,所用的火柴数为:1+4+4+…+4=1+4×n=4n+1;可根据上面得到的规律来解答此题.【解答】解:(1)由题目得,第①个图案所用的火柴数:1+4=1+4×1=5,第②个图案所用的火柴数:1+4+4=1+4×2=9,第③个图案所用的火柴数:1+4+4+4=1+4×3=13,(2)按(1)的方法,依此类推,由规律可知5=4×1+1,9=4×2+1,13=4×3+1,第n个图案中,所用的火柴数为:1+4+4+…+4=1+4×n=4n+1;故摆第n个图案用的火柴棒是4n+1;(3)根据规律可知4n+1=121得,n=30.26.若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据相反数以及倒数、绝对值、有理数的定义分别得出各代数式的值进而得出答案.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,∴a+b=0,cd=1,m=±1,n=0,∴20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)=2016+1﹣1+0=2016.27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发看望B、C、D处的其它甲虫.规定:向上向右走为正,向下向左走为负,如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).其中第一数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(+3,+4),B→D(+3,﹣2);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.【考点】正数和负数.【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)C→D 记为(1,﹣1);A→B→C→D记为(1,4),(2,0),(1,﹣1);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【解答】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+3,+4);B→D记为(+3,﹣2);故答案为:+3,+4,+3,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);故该甲虫走过的路线长为1+4+2+1+2=10.28.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【考点】绝对值;数轴.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.2017年2月4日。

北师大版七年级数学上册期中数学试题6(原卷版)

北师大版七年级数学上册期中数学试题6(原卷版)

北师大版七年级数学上册期中数学试题一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的1.23-的倒数是()A.23- B.32- C.23D.322.下列不是正方体表面展开图的是()A. B. C. D.3.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C. D.4.用一个平面去截一个正方体,所得截面不可能为()A. 圆B. 五边形C. 梯形D. 三角形5.如图,数轴上点A,B分别对应有理数a,b,则下列结论正确的是()A a>b B. |a|>|b| C. a+b>0 D. ﹣a>b6.下列各式计算正确的是()A. (2a﹣ab2)﹣(2a+ab2)=0B. x﹣(y﹣1)=x﹣y﹣1C.4m2n3﹣(2m2n3﹣1)=2m2n3+1D. ﹣3xy+(3x﹣2xy)=3x﹣xy 7.下列选项中的图形,绕其虚线旋转一周能得到下边的几何体的是()A. B. C. D.8.如图是由边长为1 的正方体搭成的立体图形,第(1)个图形由1个正方体搭成,第(2)个图形由4个正方体搭成,第(3)个图形由10个正方体搭成,以此类推,搭成第(6)个图形所需要的正方体个数是( )A. 84个B. 56个C. 37个D. 36个二、填空题(本题满分24分,共有8道小题,每小题3分)9.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列,行程最长,途经城市和国家最多的一趟专列全程长1300km ,将13000用科学记数法表示应为_____.10.如图是正方体的一种展开图,其中每个面上都有一个数字,在原正方体中,与数字1相对面上的数字是_____.11.代数式24-3x π的系数是______. 12.下列数:()()()231001-5-2--10--0.67⎛⎫+ ⎪⎝⎭,,,,,,其中负数有______个. 13.若2212mx y 与46-3n x y +的和是单项式,则m n -=______. 14.如果2|1|(2)0a b -++=,则2019()a b +的值是______.15.如图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是____________;16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(本题共8道小题,满分72分)17.如图是由若干块小正方体积木堆成的几何体请分别画出从正面、左面、上面所看到的几何体的形状图.18.画出数轴,在数轴上表示下列各数,并用“>”将他们连接起来251---3.50-3-2-122⎛⎫ ⎪⎝⎭,,,,,19.(1)计算:①13+(﹣22)﹣(﹣2) ②﹣435 2.61(3)53⎛⎫--+-÷- ⎪⎝⎭③(1157(48)12624⎫--⨯-⎪⎭×(﹣48) ④﹣14﹣(12﹣1)[﹣23+(﹣3)2] (2)化简:①(3mn ﹣2m 2)+(﹣4m 2﹣5mn ) ②﹣(2a ﹣3b )﹣2(﹣a+4b ﹣1)(3)先化简再求值:7x 2y ﹣2(2x 2y ﹣3xy 2)-(4x 2y ﹣xy 2),其中x =﹣2,y =1.20.已知a ,b 均为有理数,现定义一种新的运算:规定21a b a ab *=+-,例如:212112-12*=+⨯=,求:(1)()()-3-2*值;(2)()32---522⎡⎤⎛⎫**⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值.21.阅读材料:“如果代数式53m n +的值为-4,那么代数式()()242m n m n +++的值是多少?”我们可以这样来解:原式=2284106m n m n m n +++=+.把式子53-4m n +=两边同时乘以2,得1068m n +=-, 仿照上面的解题方法,完成下面的问题: (1)已知20m m +=,求2-2019m m +的值; (2)已知3a b -=-,求()26a b a b --++的值;(3)已知22224x xy xy y +=--=-,,求2225x xy y +-的值.22.将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图3中4个较小的正方中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去……(1)根据图中的规律补全下表: 图形标号1 2 3 4 5 6 n 正方形个数14710(2)求第几幅图形中有2020个正方形?23.某市出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2.4元收费. (1)若某人乘坐了x (x >3)千米,则他应支付车费 元(用含有x 的代数式表示); (2)一出租车公司坐落于东西向的大道边,驾驶员王师傅从公司出发,在此大道上连续接送了4批客人,行驶记录如下:(规定向东为正,向西为负,单位:千米). 第1批 第2批 第3批 第4批 +1.6-9+2.9-7①送完第4批客人后,王师傅在公司的 边(填“东”或“西”),距离公司 千米的位置; ②在整个过程中,王师傅共收到车费 元;③若王师傅的车平均每千米耗油0.1升,则送完第4批客人后,王师傅用了多少升油?24.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,52,-3.观察数轴,与点A的距离为3的点表示的数是____,A,B两点之间的距离为_____.(2)数轴上,点B关于点A的对称点表示的数是_____.(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是_____;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是_____,点N表示的数是_____;(4)若数轴上P,Q两点间的距离为a(P在Q左侧),表示数b的点到P,Q两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是_____,点Q表示的数是_____(用含a,b的式子表示这两个数).。

初中数学初一七年级上册期中测试卷6含答案解析

初中数学初一七年级上册期中测试卷6含答案解析

新人教版七年级数学上册期中测试卷6总分:120分 时量:120分钟一、选择题(每小题3分,共30分) 1.计算33--÷31的正确结果是( )A. -18B. -12C. -2D. -42.某地清晨时的气温为-2℃,到中午时气温上升了8℃,再到傍晚时气温又下降了5℃,则该地傍晚气温为( )A. -1℃B. 1℃C. 3℃D. 5℃ 3.下列运算正确的是( ) A .6)2(3-=- B .10)1(10-=- C .91)31(3-=- D .422-=-3.下列各对数中,互为相反数的是( )A.)3(+-与)3(-+B. )4(--与4-C. 23-与2)3(-D.32-与3)2(-5.下列计算正确的是( )A .xy y x 532=+B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 6.已知bx ax =,下列结论错误的是( )A .b a =B .c bx c ax +=+C .0)(=-x b aD .ππbxax=7.某同学在解方程=-15x □3+x 时,把□处的数字看错了,解得2-=x ,则该同学把□看成了( )A. 4B.7C. -7D. -14 8、下列解方程过程中,变形正确的是( )A.由312=-x 得132-=x B.由135542-=-xx 得12056-=-x x C.由45=-x 得45-=x D.由123=-xx 得632=-x x9.下列说法正确的是( )A .a 2是单项式 B .cb a 3232-是五次单项式 C .322+-a ab 是四次三项式 D .r π2的系数是π2,次数是1次10.下面四个整式中,不能..表示图中阴影部分面积的是( ) xx 3210题图A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+ 二、填空题(每小题3分,共30分)11.去括号并合并同类项:()352--a a =12.某年我国的粮食总产量约为8 920 000 000吨,这个数用科学记数法表示为 吨13.已知数轴上表示数b a ,的点的位置如图所示,则b a + 0 (填“>”,“<”或“=”)14.若b a ,互为相反数,n m ,互为倒数,则=⎪⎭⎫ ⎝⎛-++201320121)(mn b a15.若232+2m b a 与415.0b a n --的和是单项式,则=-n m ________ 16.若2-=x 是方程a xx -=+332的解,则a 的值是17.0|2|)3(2=+-++y x 则yx 的值是18.一个多项式与222n m -的和是13522+-n m ,则这个多项式为 19.已知mx x -=-1)1(3的是关于x 的一元一次方程,则m 应满足条件 20.已知132=-x ,则x 的值为三、计算题(每小题4分,共24分) 21. )217(75.44135.0-+++- 22. 31143⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-21123. )6(6121-⨯⎪⎭⎫ ⎝⎛-÷+- 24. )41(27)2(2-⨯----ab(第13题)25. ()()233322-⨯+-÷- 26. )23(2)3(n m n m ---四、解方程(每题5分,共10分)27. ()()14352--=+x x x 28.312121--=+x x五、先化简再求值(每小题6分,共12分) 29. )2(6)12(3422a a a a -+--,其中23-=a30. ()[]xy y x xy xy y x 23223222----,其中x =3,31-=y .六、列方程解应用题(6分)31.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,则剩余16瓶;如果每人发3瓶,则少24瓶。

七年级上学期期中数学试卷第6套真题

七年级上学期期中数学试卷第6套真题

七年级上学期期中数学试卷一、选择题1. ﹣3的相反数是()A . 3B . ﹣3C .D . ﹣2. 在﹣1,0,﹣2,这四个数中,最小的数是()A . ﹣1B . 0C . ﹣2D .3. 有理数a,b在数轴上的位置如图所示,下列关系正确的是()A . b>0>a>﹣2B . a>b>0>﹣1C . a>﹣2>b>0D . b>0>a>﹣14. 有理数中绝对值最小的数是()A . ﹣1B . 0C . 1D . 不存在5. 下列比较大小的式子中,正确的是()A . 2<﹣(+5)B . ﹣1>﹣0.01C . |﹣3|<|+3|D . ﹣(﹣5)>+(﹣7)6. 数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A . ﹣2B . 2C . ﹣10D . 107. (﹣2)4表示()A . (﹣2)×4B . (﹣2)×(﹣2)×(﹣2)×(﹣2)C . ﹣4×4D . (﹣2)+(﹣2)+(﹣2)+(﹣2)8. 数据6500 000用科学记数法表示为()A . 65×105B . 6.5×105C . 6.5×106D . 6.5×1079. 把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A . ﹣2+10﹣6﹣5B . ﹣2﹣10﹣6+5C . ﹣2+10﹣6+5D . 2+10﹣6﹣510. 计算(﹣1)2012+(﹣1)2013等于()A . 2B . 0C . ﹣1D . ﹣211. 用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A . a2+b2﹣2abB . (a+b)2﹣2abC . a2b2﹣2abD . 2(a2+b2﹣ab)12. 一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A . x(30﹣2x)平方厘米B . x(30﹣x)平方厘米C . x(15﹣x)平方厘米D . x (15+x)平方厘米13. 当x=﹣1时,代数式x2﹣2x+1的值是()A . 0B . ﹣2C . ﹣1D . 414. 某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A . 24.70kgB . 24.80kgC . 25.30kgD . 25.51kg二、填空题15. 若|a|=6,则a=________.16. (________)×(- )=1.17. 按四舍五入法则取近似值:2.096≈________(精确到百分位).﹣0.03445≈________(精确到0.001).18. 用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要________根火柴棒(用含n的代数式表示).三、解答题19. 如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,- ,0,5.9,﹣3.14,﹣92.20. 直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷(- )=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=21. 计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).22. 当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2 .23. 某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?24. 小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册期中数学试卷
(考试时间为100分钟,试卷满分为120分)
班级 学号_________ 姓名 分数__________
一、选择题(每小题所给4个选项中只有一个符合要求,每题3分,共30分) 1.甲乙丙三地海拔高度分别为20米,-l5米,-10米,那么最高的地方比最低的地方高( ) A .10米
B .25米
C .35米
D .5米
2.在国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460000000帕的钢材,将460000000用科学记数法表示为( )
A .4.6×108
B . 4.6×109
C .0.46×109
D .46×107
3.下列说法正确的是 ( )
①0是绝对值最小的有理数②相反数大于本身的数是负数
③一个有理数不是正数就是负数④两个数比较,绝对值大的反而小 A.①② B.①③C.①②③D.①②③④
4. 若03)2(2=++-b a ,则(a+b)2014的值是()
A .0
B .1
C .-1
D .2014
5.已知622x y 和-31
3
m n x y 是同类项,则29517m mn --的值是 ( )
A.-1
B.-2
C.-3
D.-4 6. 关于x 的方程2x-kx+1=5x-2的解是-1,则k 的值为( )
A . -4
B .-6
C .-8
D .10 7.下列等式变形正确的是() A.如果s=12
ab ,那么b=
2s
a
B.如果12x=6,那么x=3
C.如果x-3=y-3,那么x-y=0
D.如果mx=my ,那么x=y
8. 某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )
A.240元
B.250元
C.280元
D.300元
9. a ,b 在数轴上的位置如图,化简a b b a a -++-=( ).
A .2b-a
B .-a
C .2b-3a
D .-3a 10.已知

则的值为( ). A .0
B .-13
C .-82
D .80
二、填空题(每题2分,共16分)
11.3
2
1-的倒数是 ;
12.比较大小:-[+(-0.75)] _______4
3-
-; 13.用四舍五入法,对1.549取近似数(精确到十分位)是;
14.单项式-652y
x 的系数是;
15. 多项式2-
1
5
2xy -4y x 3是次三项式; 16.已知a =3,b =2,且ab <0,则a -b =;
17.定义新运算“※”:对于任意有理数a 、b ,都有a ※b=2a 2+b. 例如3※4=2×32+4=22,那么当m 为有理数时,m ※(m ※2)=;
18. 一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”. 游戏规则是: 同学1心里先想好一个数, 将这个数乘以2
再加1后传给同学2,同学2把同学1告诉他的数除以2再减2
1
后传给同学3,
同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他
的数除以2再减2
1
后传给同学5,同学5把同学4传给他的数乘以2再加1后传
给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.
(1)若只有同学1,同学2,同学3做“传数”游戏.
这三个同学的“传数”之和为17,则同学1心里 先想好的数是.
(2)若有n 个同学(n 为大于1的偶数)做“传数”游戏,这n 个同学的“传
数”之和为 20n ,则同学1心里先想好的数是.
同学
2
同学1
三、计算(每题4分,共16分) 19.)1(210)8(-+++- 20. )4
3(5.1-154125-÷⨯-
21. ⎪⎭

⎝⎛-÷⎪⎭⎫ ⎝⎛-+-
181213112122.])3(2[)311()5.01(124--⨯-⨯---
四、解方程(每题4分,共8分)
23.x x x -=+-+2)15(3)4(2 24. 3
2
221+-=--x x x
五、化简(每题4分,共8分)
25. 222244234b a ab b a --++ 26. )5(3)3(52222b a ab ab b a +--
六、先化简再求值(每题5分,共10分)
27. 求22221
3
1
343223
a b a b abc a c a c abc ⎡⎤
⎛⎫
------ ⎪⎢⎥⎝



的值,其中a=-1,b=-3,c=1.
28.已知a-b=5,ab=-1,求 -(a+4b+ab)+(2a+3b-2ab)-(-2a+2b+3ab)的值.
七、列方程解应用题(每题6分,共12分)
29. 北京某旅行社APEC期间组织甲、乙两个旅游团分别到西安、苏州旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?
30.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于06年4月1日开始全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制.下面是该县医疗机构住院病人累计分段报销表:
-7…………
(例:某住院病人花去医疗费900元,报销金额为500×20%+400×30%=220元) (1)农民刘老汉在4月份因脑中风住院花去医疗费2200元,他可以报销多少元? (2)刘老汉在6月份脑中风复发再次住院,这次报销医疗费4880.25元,刘老汉这次住院花去医疗费多少元?
八、附加题(每题4分,共20分,计入总分)
31. 如下图所示,在1000个“〇”中依次填入一列数字1231000,,, a a a a ,使得其中任意四个相邻“〇”中所填数字之和都等于-10,已知99925=2,=1--a x a x ,可得x 的值为;501=a .
32. 设999727525323124932⨯++⨯+⨯+⨯= S ,99272523148
2++++= T ,则T S -=( ).
A .99249
B .992149-
C .
199249- D .199249
+ 33.方程+122--x x =1的解为.
34.解关于x 的方程:2(2)44-=-+a x b x ab b .
35. 一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了20分钟,货车追上了客车. 问小轿车追上客车,需要多长时间?
参考答案:(初一数学)
一、选择题
1.C
2. A
3.A
4.B
5.A
6.B
7.C
8.A
9.A 10. D
二、填空题
11. 12. > 13. 1.5 14. 15.四 16. 17.
18.(1)3 (2) 13
三、计算
19. 3 20. 21. 4.5 22.
四、解方程
23. x= 24. x=1
五、化简
25. 26.
六、化简求值
27. , 9 28. 3(a-b)-6ab, 21
七、应用题
29.甲旅行团35人,乙旅行团20人30.(1)620元 (2)12845元
八、附加题
31. 2;1 32. B 33.x=或x=4
34.当时,;当a=2且b=0时,任意解;当a=2且b0时,无解
35. 小时。

相关文档
最新文档