七年级数学期末考试试卷

合集下载

七年级人教版数学期末考试卷及参考答案

七年级人教版数学期末考试卷及参考答案

七年级期末考试卷班级:姓名:成绩:一、选择题(每题2分,共28分)1.如果零上5℃记作+5℃,那么零下3℃记作()A .-5℃B .-3℃C .+3℃D .+5℃2.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2-13当北京6月15日23时,悉尼、纽约的时间分别是()A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时3.人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了20000000局的训练(等同于一个人近千年的训练量).数字20000000用科学记数法表示为()A .70.210´B .7210´C .80.210´D .8210´4.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.如图,则下列判断正确()A .a+b >0B .a <-1C .a-b >0D .ab >06.设x 、y 、m 都是有理数,下列说法一定正确的是()A .若x =y ,则x +m =y -mB .若x =y ,则xm =ymC .若x =y ,则x ym m=D .若x ym m=,则x =-y 7.化简2a 2-a 2的结果是()A .2a 4B .3a 4C .a 2D .4a28.下列方程的解法中,错误的个数是()①方程211x x -=+移项,得30x =②方程2(1)3(2)5x x ---=去括号得,22635x x --+=③方程21142x x ---=去分母,得422(1)x x --=-④方程32x =-系数化为1得,32x =-A .1B .2C .3D .49.如图所示的图形经过折叠可以得到一个正方体,则与“我”字一面相对的面上的字是()A .爱B .庆C .学D .中10.如果35x =是关于x 的方程50x m -=的解,那么m 的值为()A .3B .13C .3-D .13-11.已知3,2a b c d -=+=,则()()a c b d +--的值是()A .-1B .1C .-5D .512.已知数列1b ,2b ,3b ,···满足121n n nb b b +++=,其中1n ³,若12b =且25b =,则2019b 的值为()A .2B .5C .45D .3513.对于两个不相等的有理数a b 、,我们规定Max {a b 、}表示a b 、中的较大值,如:Max {2、4}=4,按照这个规定,方程Max {x x -、}=3x +2的解为()A .1-B .12-C .-1或-12D .1或1214.如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ³,n 是整数)处,问经过这样2020次跳动后的点与O 点的距离是()A .201812B .201912C .202012D .202112二、填空题(每个小题3分,共12分,)15.甲、乙、丙三地的海拔高度分别为20,10m m -和5m -,那么最高的地方比最低的地方高__________m16.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为____.17.甲、乙两站相距480公里,一列慢车从甲站开往乙站,每小时行80公里,一列快车从乙站开往甲站,每小时行120公里.慢车从甲站开出1小时后,快车从乙站开出,那么快车开出__________小时后快车与慢车相距200公里.18.已知∠AOB =45°,∠BOC =30°,则∠AOC =.三、解答题(19-21每题6分,22-25每题8分,26题10分,满分60分)(1)()()()12838--++--+(2)()157362912æö-+´-ç÷èø(3)()322524-´--¸20.解下列方程:(1)532(5)x x +=-(2)2523136x x -+=-21.有三个有理数x ,y ,z ,若x =()211n --,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,求出x ,y ,z 这三个数.(2)根据(1)的结果计算:xy ﹣y n ﹣(y ﹣z)2019的值.22.已知如图,数轴上有A ,B ,C ,D 四个点,点A 对应的数为-1,且AB=a+b ,BC=2a-b ,BD=3a+2b(1)求点B ,C ,D 所对应的数(用含a 和b 的代数式表示);(2)若a=3,C 为AD 的中点,求b 的值,并确定点B ,C ,D 对应的数.23.对,a b 定义一种新运算T :规定2(,)2T a b ab ab a =-+,(其中,a b 均为有理数),这里等式右边是通常的四则运算.如:2(1,3)1321314T =´-´´+=;(1)求(2,3)T -的值;(2)计算1,32a T +æöç÷èø;(3)若(2,)m T x =,(,3)n T x =-(其中x 为有理数),比较m 与n 的大小.24.如图,OD 是∠AOB 的平分线,OE 是∠BOC 的平分线.(1)若∠BOC =50°,∠BOA =80°,求∠DOE 的度数;(2)若∠AOC =150°,求∠DOE 的度数;(3)你发现∠DOE 与∠AOC 有什么等量关系?给出结论并说明.25.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(20x >).(1)若该客户按方案一购买,需付款______元.(用含x 的代数式表示)若该客户按方案二购买,需付款______元.(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.26.如图,已知A 、B 、C 是数轴上三点,点C 表示的数为3,2BC =,6AB =.(1)数轴上点A 表示的数为______,点B 表示的数为______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向右匀速运动,t 何值时,P 、Q 两点到B 点的距离相等.(3)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且23CN CQ =,设运动时间为t ()0t >秒.①求数轴上M 、N 表示的数(用含t 的式子表示);②在运动过程中,点P 到点B 的距离、点Q 到点B 的距离以及点P 到点Q 的距离,是否存在两段相等,若存在,求出此时t 的值;若不存在,请说明理由.答案:一、选择题1、B 2、A 3、B 4、B 5、A 6、B 7、C 8、C 9、C 10、A 11、D 12、C 13、B 14、A 二、填空题15、3016、-517、1或318、15或75度三、解答题19、(1)1(2)8(3)8--++--1283=++--8=0(2)()157362912æö-+´-ç÷èø157(36)(36)(36)2912=´--´-+´-=-18+20-21=-19(3)2325(2)4-´--¸20(2)=---=-1820、解:(1)()5325x x +=-53102x x +=-,55=x ,1x =;(2)2523136x x -+=-()()225623x x -=-+,613x =,136x =.21、解:()1当n 为奇数时,1,1,1x y z =-==,()2当1,1,1x y z =-==时,原式–1102=--=-.22、(1)因为A 对应数-1,且AB=a+b所以点B 对应数轴上点的数值是1()1a b a b -++=+-又2,(2)3BC a b AC a b a b a =-=++-= 所以点C 对应的数值是13a -+;32,(32)43BD a b AD a b a b a b=+=+++=+ 所以点D 对应的数值是143a b -++;(2)因为点C 为AD 的中点所以AC=CD ,33a a b=+23b a =因为a=3,所以b=2所以B 对应数轴上的数值是:3+2-1=4;点C 对应数轴上的点的数值是:1338-+´=;点D 对应数轴上的数值是:1433217-+´+´=.23、(1)T(-2,3)()()2232232=-´-´-´+-181228=-+-=-;(2)2111133232222a a a a T ++++æö=´-´´+ç÷èø,9(1)3(1)1222a a a +++=-+7(1)2a +=;(3)2(2)2222m T x x x ==-´+,2242x x =-+,2(3)32()3n T x x x x=-=-×--×-,96x x x =-+-4x =-,所以2220m n x =+>﹣.所以m n >.24、(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOA ,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOC ,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC=75°;(3)∠DOE=12∠AOC ;理由是:∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOA ,∠BOE=∠COE=12∠BOC ,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC .25、(1)按方案一购买:201000200(20)20016000x x ´+´-=+,按方案二购买:(100020200)0.918018000x x ´+´=+;(2)当40x =时,方案一:200401600024000´+=(元)方案二:180401800025200´+=(元)所以,按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带.则200002002090%23600+´´=(元)26、(1) 点C 表示的数为3,2BC =,6AB =,且A ,B ,C 位置如数轴上所示,\点B 表示的数为321-=点A 表示的数为165-=-.故答案为:5-,1.(2)点P 表示的数为52t -+,点Q 表示的数为3+t ,则|521||26|PB t t =-+-=-,312QB t t =+-=+,|26|2t t \-=+,当03t ££时,622t t -=+,43t =,当3t >时,262t t -=+,8t =,综上,43t =或8.故答案为:43t =或8.(3)①Q 表示的数为3t -,M表示的数为5(52)52t t -+-+=-+,N Q 在线段CQ 上,2233CN CQ t ==,N \表示的数为233t -;故答案为:M 表示的数为5t -+,N 表示的数为233t -.②|26|PB t =-,|52(3)||38|PQ t t t =-+--=-,|31||2|QB t t =--=-;(1)若PB PQ =,则|26||38|t t -=-,2638t t -=-或26380t t -+-=,则2t =或145t =;(2)若PB QB =,则|26||2|t t -=-,262t t -=-或2620t t -+-=,则83t =或4t =;(3)若PQ QB =,则|38||2|t t -=-,382t t -=-或3820t t -+-=,52t =或3t =;综上,存在,且2t =或3或4或52或85或145.。

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。

杨浦区2023学年第一学期七年级期末考试数学试卷

杨浦区2023学年第一学期七年级期末考试数学试卷

杨浦区2023学年第一学期七年级期末考试数学试卷一、选择题(40 分)1. triangle ABC is an equilateral triangle, AB = 3cm, what is the perimeter of the triangle?A. 9cmB. 6cmC. 3cmD. Cannot be determined2. Which of the following is an irrational number?A. 10B. 2C. 3....D. 1/23. Simplify the expression: 2x - 5y + 3x + 4yA. 5x - yB. 5y - 5xC. 5x + yD. -5x + y4. Which of the following pairs of numbers are equivalent?A. 0.25, 2/3B. -1.5, -1/2C. 0.4, 0.04D. All of them5. Jack earns $20 per hour and worked 40 hours this week. What is his total pay for the week?A. $800B. $400C. $200D. $1006. The radius of a circle is tripled, what happens to the area of the circle?A. It is halvedB. It is tripledC. It is quadrupledD. It is reduced to one-third7. Evaluate the following expression if x=3 and y=4: `(x^2 +y^2)/(x + y)`A. 5B. 3C. 7D. 48. Which of the following graphs represents a linear function?A.B.C.D.9. What is the slope of the line that passes through the point (-1, 5) and (2, -1)?A. -2B. -1/3C. 2D. 310. Simplify the following expression: `3(2x + 4) - 6`A. 6xB. 6x + 18C. 6x + 12D. 6x + 6二、填空题(30 分)1. If a + b = 3 and a - b = 1, then a = ______ and b = ______.2. The circumference of a circle is 20 cm. What is the diameter of the circle?3. The length of a rectangle is twice its width. If the width is 4 cm, then the length is ______ cm.4. Simplify the fraction: 40/60.5. The area of a square is 64 cm2. What is the length of one side of the square?6. The slope of the line that passes through the points (2, 4) and (4, 8) is ______.三、解答题(30 分)1. Given the equation of a line: y = 2x - 3. What is the y-intercept of the line?2. Use the distributive property to simplify the expression: 5(2x - 3) + 4(x + 7)3. Simplify the expression: `2x^2 + 4x + 3x - 2`4. Draw a line that has a slope of -2 and passes through the point (0, 6).5. A rectangular prism has a length of 6 cm, a width of 3 cm, and a height of 4 cm. What is its volume?6. If a student scores 85, 90, 95, and 80 on four tests, what is the average score? (Round to the nearest whole number)四、应用题(40 分)1. A pizza parlor offers customers the choice of the following toppings: pepperoni, sausage, mushrooms, green peppers, onions, and extra cheese. If a customer can order 1, 2, or 3 toppings on a pizza, how many different types of pizzas could be ordered?2. A rectangular fence is to be built using 600 ft of fencing. If the enclosed area must exceed ft2, what are the possible dimensions of the fence?3. In a certain school, the ratio of the number of boys to the number of girls is 3:4. If there are 180 students in the school, how many girls are there?4. The formula for the area of a trapezoid is A = (b1 + b2)h/2, where b1 and b2 are the lengths of the parallel bases and h is the height. If a trapezoid has a height of 10 cm, a length of b1 of 6 cm, and a length of b2 of 14 cm, what is its area?5. A cake recipe calls for 6 cups of flour to make a cake that feeds 12 people. How much flour is needed to make a cake that feeds 24 people?6. A survey of a small group of people showed that 20% of the people were left-handed. If there were 100 people surveyed, how many people were left-handed?。

福建南平2023-2024学年七年级上学期期末考试数学试题

福建南平2023-2024学年七年级上学期期末考试数学试题

南平市2023-2024学年第一学期七年级期末质量抽测数学试题(考试时间:90分钟;满分:150分)友情提示:①本试卷仅供选用学校使用;②所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.有理数2024的相反数是A. 2024 B.2024-C.12024D.12024-2.计算32a a+的结果是A.6a2B.5C.5a D.a3.下列各式中,是一元一次方程的是A.10x-=B.x y-C.3=1x D.210x-=4.2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13 000 000人次,将数据13 000 000用科学记数法表示为A.61.310⨯B.71.310⨯C.80.1310⨯D.61310⨯5.从不同方向看某几何体得到如图所示的三个图形,那么该几何体是A.长方体B.圆锥C.正方体D.圆柱6.飞机上有一种零件的尺寸标准是2005±(单位:mm),则下列零件尺寸不合格的是A.196mm B.198mm C.204mm D.210mm7.若关于x 的一元一次方程36x m +=的解是x =2,则m 的值为A .0B .1C .2D .38.若单项式223m x y -与85n x y 是同类项,则m ,n 的值分别是A .22m n ==,B .41m n ==,C .42m n ==,D .23m n ==,9.若一个角是它的余角的5倍,则这个角的大小是A .15°B .30°C .75°D .150°10.定义一种新运算“※”的计算规则是:a ※b =a +b (其中a ,b 都是有理数).例如 3※4=3+4=7. 下列等式成立的个数是①a ※b =b ※a ②( a ※b )※c =a ※(b ※c ) ③ a ※(b+c )=a ※b +a ※cA .3B .2C .1D .0二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. 如果+20元表示增加 20元,那么-6元表示__________.12.单项式7xy 的系数是__________.13.把原来弯曲的河道改直,则河道的长度变短了,这里用到的数学知识是__________.14.若∠A =53°,则∠A 的补角的大小为_________.15.数轴上的点A 到原点的距离是4,则点A 表示的数为_________. 16.如图是用围棋棋子摆成的“T ”字图案,按这样的规律摆下去,那么摆成第n 个“T ”字图案所需棋子数为_________.(用含n 的代数式表示)三、解答题(本大题共7小题,共86分.请在答题卡的相应位置作答) 17.(本题满分12分)计算 :2312(13)-+⨯-18.(本题满分12分)先化简,再求值:2(23)(325)a b a b ++-+,其中a =1,b =2-.19.(本题满分12分) 解方程:31+2=23x x -20.(本题满分12分)已知线段AB 与点C 的位置如图所示,按下列要求画出图形.(1)画射线BC 和直线AC ;(2)画线段AB 的延长线,在AB 的延长线上截取点E ,使得AE =2AB ,若AB =3,点D 是AB 的中点,求线段DE 的长度.21.(本题满分12分)如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形.(1)若a =20,b =4,分别求S 1,S 2的面积;(2)若将图1的阴影部分沿虚线剪开,重新拼成图2的长方形,且长为30,宽为15,求S 1∶S 2的值.第20题图第21题图22.(本题满分12分)我国明代数学著作《算法统宗》中有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客空一房。

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

安徽省合肥市蜀山区2023-2024学年七年级下学期期末数学试题(无答案)

安徽省合肥市蜀山区2023-2024学年七年级下学期期末数学试题(无答案)

2023/2024学年度第二学期七年级期末质量检测数学试卷温馨提示:1.数学试卷4页,三大题,共23小题,满分100分,考试时间100分钟,请合理分配时间。

2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.3.请将答案写在答题卷上,在试卷上答题无效,考试结束只收答题卷.4.请你仔细思考,认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列实数中,是无理数的是( )A .0.1B .C .2πD2.石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.0000000335cm ,将0.0000000335这个数用科学记数法表示为( )A .B .C .D .3.下列运算中,正确的是( )A .B .C .D .4.已知a <b ,下列结论中,错误的是()A .B .a +c <b +cC .-3a >-3bD .5.如图,立定跳远是安徽省初中学生体育中考的选考项目,测量立定跳远成绩的依据是()A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .两直线相交有且只有一个交点6.将分式中的x ,y 的值都扩大为原来的3倍,则分式的值( )A .不变B .扩大为原来的6倍C .缩小为原来的D .扩大为原来的3倍7.下列图形中,由∠1=∠2,能得到的是()A .B .67-93.3510-⨯83.3510-⨯933.510-⨯70.33510-⨯111-=-0=321a a ÷=()2224ab a b -=33a b<22ac bc >2xx y-13AB CD ∥C .D .8.如图为商场某品牌椅子的侧面图,椅面DE 与地面AB 平行,椅背AF 与BD 相交于点C ,其中∠DEF =120°,∠ABD =55°,则∠ACB 的度数是()A .70°B .65°C .60°D .50°9.若关于x 的一元一次不等式组有3个整数解,则m 的取值范围是( )A .0≤m <1B .0<m <1C .-4≤m <-3D .0<m ≤110.已知实数a 、b 、c 满足c -a -b =ab ,下列结论一定正确的是( )A .若a =3,b =-1,则c =1B .若a +b =0,则c >0C .若,则D.若,则二、填空题(本大题共6小题,每小题3分,满分18分)11.若分式有意义,则x 的取值范围为______.12.因式分解:______.13.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长分别为a ,b ,c ,记,那么其面积.如果某个三角形的三边长分别为2,3,3,其面积S介于整数n 和n +1之间,那么n 的值是______.14.如图,直线AB 、CD 相交于点O ,∠AOC =25°,EO ⊥CD ,垂足为O ,OF 平分∠BOE ,则∠DOF =______°.15.凸透镜成像是自然界中的一个基本现象,其中物距记为u ,像距记为v ,透镜焦距记为f ,三者满足关系式:,若已知u 、f ,则v =_____.16.如图,,点E ,F 分别在直线AB ,CD 上,点P 在AB ,CD 之间,若,∠EPF =150°,∠PFC =120°,那么∠AEP =______°.242x m x ->⎧⎨-≤⎩221,32ab a b =+=52c =()241110,m m c m a b+=-≠=2ab m =21x -2xy x -=2a b cp ++=S =111u v f+=AB CD ∥三、解答题(本大题共7小题,满分52分)17.(6分)计算:18.(6分)解不等式:,并把它的解集在数轴上表示出来.19.(7分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点A ,B ,C 都在格点(网格线的交点)上,现将△ABC 平移,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请在图中画出平移后的△DEF ;(2)△DEF 的面积为______.20.(7分)先化简,再求值:,其中x =4.21.(8分)观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:……(1)写出符合以上规律的第5个等式:______;(2)已知n 为正整数,写出符合以上规律的第n 个等式,并说明等式成立的理由.22.(8分)如图,CE 平分∠ACD ,AE 平分∠CAB 交AD 于F ,且∠1+∠2=90°.()()()2115x x x --+-7132x x +-≤222121124x x x x x +-+⎛⎫-÷ ⎪+-⎝⎭()()()22221122122⨯+=⨯+-⨯()()()22222134134⨯+=⨯+-⨯()()()22223146146⨯+=⨯+-⨯()()()22224158158⨯+=⨯+-⨯(1)试说明:;(2)若∠3-∠4=20°,求∠AFC 的度数.23.(10分)某科技协会为迎接科技活动月,准备购进若干台A 、B 两种型号的无人机进行开幕式表演.已知每个A 型号的无人机进价比每个B 型号进价多500元,且用28000元购进A 型号无人机的数量与用24000元购进B 型号的数量相同.(1)求A 、B 型号的无人机每个进价分别是多少元?(2)若该协会购进B 型号无人机数量比A 型号的数量的2倍还少3个,且购进A 、B 两种型号无人机的总数量不超过10个,现两种无人机都要购买且预算经费是3万元,请判断预算经费是否够用?并说明理由.AB CD ∥。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.15-的倒数是( )A .﹣5B .5C .15- D .152.单项式2a 的系数是( )A .2B .2aC .1D .a 3.一元一次方程4x+1=0的解是( ) A .x 14=B .x 14=- C .x =4 D .x =﹣4 4.若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125° 5.下列图形中,是圆锥的侧面展开图的是( )A .B .C .D .6.已知关于x 的方程3x 2a 2+=的解是a 1-,则a 的值是( ) A .1 B .35 C .15D .1-7.把2.36°用度、分、秒表示,正确的是( )A .2°18′36″B .2°21′36″C .2°30′60″D .2°3′6″8.将方程3x+6=2x ﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A.10cm B.8cm C.8cm或10cm D.2cm或4cm10.代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=4的解是()A.12B.4C.-2D.0二、填空题11.计算:6﹣(3﹣5)=_____.12.一个多项式减去﹣x2+x﹣2得x2﹣1,则此多项式应为_______.13.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=_____°.14.今年妈妈26岁,儿子2岁,_______年后,妈妈的年龄是儿子年龄的5倍.15.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为____________度.16.下列四个数中:∠0;∠12020-;∠5;∠﹣1.最小的数是_______.17.若关于x,y的单项式xm﹣1y2n与单项式13x2yn+1是同类项,则这两个单项式的和为_______.18.如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒1个单位长度,B点运动速度为每秒3个单位长度,当运动_____秒时,点O恰好为线段AB中点.三、解答题19.计算:6×(﹣14)﹣(﹣14)+(﹣1)2022.20.解方程:4x﹣3(20﹣x)=6x﹣7(9﹣x).21.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.AB.再反向延长AC至点D,使得22.已知线段AB=2cm,延长AB至C,使BC=12AD=AC.(1)准确画出图形,并标出相应字母.(2)求出线段BD的长度.23.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?24.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.25.老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a,b为常数),然后让同学们给a,b 赋予不同的数值进行化简.(1)甲同学给出了a=5,b=﹣1,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,最后化简的结果为2x2﹣3x﹣1,求a,b的值.26.已知关于x的方程2(x+1)﹣m=﹣22m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.27.如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由;(3)如图∠,若将两个同样的三角板中60°锐角的顶点A叠放在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.参考答案1.A【分析】根据乘积为1的两个数互为倒数,求解即可.【详解】解:∠(15-)×(-5)=1,∠15-的倒数是-5.故选:A.【点睛】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.A【详解】试题分析:对于一个单项式而言,它的系数是指字母前面的常数,本题中2a 的系数为2.考点:单项式的系数.3.B【分析】先移项,再把系数化为1,即可求解.【详解】解:4x+1=0,移项得:41x=-,解得:14x=-.故选:B【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的基本步骤是解题的关键.4.C【分析】根据补角的性质,即可求解.【详解】解:∠一个角为45°,︒-︒=︒.∠它的补角的度数为18045135故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.5.A【分析】根据圆锥的侧面展开图的特点作答.【详解】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.观察四个选项,只有A符合;故选A.【点睛】考查了几何体的展开图,解题关键是掌握圆锥的侧面展开图是扇形.6.A【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【详解】根据题意得:3(a-1)+2a=2,解得a=1故选A.【点睛】考查了方程解的定义,已知a-1是方程的解实际就是得到了一个关于a的方程.7.B【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:B.【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制.8.B【分析】根据移项要变号,进行判断即可.【详解】∠3x+2x=6﹣8没有变号,∠(1)错误;∠3x﹣2x=﹣8+6,6没有变号,∠(2)错误;∠3x﹣2x=8﹣6;-8没有移项,却变号,∠(3)错误;∠(4)3x﹣2x=﹣6﹣8,,∠(4)正确;故选B.【点睛】本题考查了移项,注意移项必须改变符号是解题的关键.9.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∠点C是线段AB的中点,∠AC=BC=12AB=6cm当AD=23AC=4cm时,CD=AC-AD=2cm∠BD=BC+CD=6+2=8cm;当AD=13AC=2cm时,CD=AC-AD=4cm∠BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.10.C【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.【详解】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b=4-5,代入方程得:-4x-4=4,解得:x=-2,故选:C.11.8【详解】【分析】先计算括号内的,然后再利用有理数的减法法则进行计算即可得出答案.【详解】6﹣(3﹣5)=6﹣(﹣2)=8,故答案为8.12.x-3 【分析】根据被减数=差+减数列式求解.【详解】解:由题意得x2﹣1+(﹣x2+x﹣2)= x2﹣1﹣x2+x﹣2=x ﹣3,故答案为:x-3.13.91【分析】根据方位角的定义求解即可.【详解】∠OA 表示南偏东32°,OB 表示北偏东57°, ∠∠AOB =(90°﹣32°)+(90°﹣57°)=58°+33°=91°, 故答案为91.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.14.4【分析】设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意列出方程,即可求解. 【详解】解:设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意得:()2652x x +=+ ,解得:4x =答:4年后,妈妈的年龄是儿子年龄的5倍. 故答案为:415.75【分析】首先计算4∠的度数,再根据平行线的性质可得14∠=∠,进而可得答案. 【详解】解:∠260∠=︒,345∠=︒, ∠4180604575∠=︒-︒-︒=︒, ∠//a b , ∠1475∠=∠=︒, 故答案为:75.【点睛】此题主要考查了平行线的性质,掌握平行线的性质并能灵活应用是解题关键. 16.-1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:1120202020-=,11-=, ∠112020<, ∠12020->-1, ∠-1<12020-<0<5, 故答案为:-1.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键. 17.2243x y 【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)求出,m n 的值,再计算合并同类项即可得.【详解】解:由题意得:12,21m n n -==+, 解得3,1m n ==,则这两个单项式的和为2222221433x y x y x y +=, 故答案为:2243x y . 【点睛】本题考查了同类项、合并同类项、一元一次方程的应用,熟记同类项的定义是解题关键.18.1【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒,点A ,B 表示的数为﹣2﹣t ,6﹣3t ,根据题意可知﹣2﹣t <0,6﹣3t >0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点.根据题意可得:经过t 秒,点A 表示的数为﹣2﹣t ,AO 的长度为|﹣2﹣t|,点B 表示的数为6﹣3t ,BO 的长度为|6﹣3t|.因为点B 不能超过点O ,所以0<t <2,则|﹣2﹣t|=|6﹣3t|. 因为﹣2﹣t <0,6﹣3t >0, 所以﹣(﹣2﹣t )=6﹣3t , 解得:t=1. 故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.19.-69【详解】解:原式=(-14)×(6-1)+1 =-70+1 =-69.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算律改变运算的顺序.20.x=12【分析】方程去括号,移项、合并同类项,把x 系数化为1,即可求出解.【详解】解:去括号得:4x−60+3x =6x−63+7x , 移项,得4x +3x−6x−7x =60−63, 合并同类项,得:−6x =−3, 系数化为1,得x=12.【点睛】本题考查解一元一次方程.解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,注意移项要变号.21.130°.【分析】根据角平分线的定义可知,∠AOC=2∠AOD ,∠BOC=2∠BOE ,根据角的和差可知,∠AOB=∠AOC+∠BOC ,计算得出∠AOB 的度数.【详解】因为OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°, 所以∠AOC=2∠AOD=40°×2=80°,∠BOC=2∠BOE=25°×2=50°, 因为∠AOB=∠AOC+∠BOC , 所以∠AOB=80°+50°=130°.22.(1)见解析;(2)5cm 【分析】(1)根据题意,做出图形,并且标出相应字母即可; (2)先计算出BC 的长度,然后求出AD 的长度,用AD+AB 可求得BD 的长度. 【详解】解:(1)如图:;(2)∠12BC AB = ∠1BC cm =∠213AC AB BC cm =+=+=∠AD =AC∠3AD cm =∠BD AB AD =+∠()235BD cm =+=【点睛】关于线段的延长,要注意分清方向,关于线段的长度的计算,搞清楚是哪些线段的和差即可进行计算23.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是13.9秒.【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%. 答:这个小组男生百米测试的达标率是62.5%;(2) 1.20.7010.30.20.30.58-++--+++=﹣0.1(秒), 14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键. 24.(1)见解析;(2)∠BOC 和∠AOE .【分析】(1)根据题意可得∠COD =∠AOB ,根据角平分线的定义及角的和差关系可得∠POB =∠POC ,进而得出射线OP 是∠COB 的平分线;(2)根据互余的两角之和为90°求解即可.【详解】解:(1)∠∠AOC =∠BOD =90°,∠∠AOD ﹣∠AOC =∠AOD ﹣90°=∠AOD ﹣∠BOD ,∠∠COD =∠AOB ,∠射线OP 是∠AOD 的平分线;∠∠POA =∠POD ,∠∠POA ﹣∠AOB =∠POD ﹣∠COD ,∠∠POB =∠POC ,∠射线OP 是∠COB 的平分线;(2)∠∠COD =∠AOB ,∠AOC =∠BOD =90°,∠∠AOE =∠BOC ,∠∠COD+∠BOC =90°,∠图中与∠COD 互为余角的角有∠BOC 和∠AOE .【点睛】本题考查了余角和补角以及角平分线,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.25.(1)x 2-4x-1(2)6,0a b ==【分析】(1)先将原式化简,再将a =5,b =﹣1代入,即可求解;(2)先将原式化简,可得42,33a b -=-=-,即可求解.(1)解:原式=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1,当a=5,b=-1时原式=x 2-4x-1(2)根据题意得:(a-4)x 2+(b-3)x-1=2x 2-3x-1得42,33a b -=-=-,解得:6,0a b == .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.26.(1)x=3;(2)m=22.【分析】(1)按去括号、移项、合并同类项的步骤进行求解即可;(2)根据(1)中求得的x 的值,由题意可得关于x 的方程2(x+1)﹣m=﹣m 22-的解,然后代入可得关于m 的方程,通过解该方程求得m 值即可.【详解】(1)5(x ﹣1)﹣1=4(x ﹣1)+1,5x ﹣5﹣1=4x ﹣4+1,5x ﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣m22-的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣m22-,得:2×(5+1)﹣m=﹣m22-,12﹣m=﹣m22-,解得:m=22.【点睛】本题考查了一元一次方程的解、解一元一次方程.熟练掌握解解一元一次方程的一般步骤是解题的关键.27.(1)CB是∠ECD的平分线,理由见解析(2)∠ACE=∠DCB,理由见解析(3)∠DAB+∠EAC=120°,理由见解析【分析】(1)根据角平分线的定义求得∠ECB=45°,进而求得∠BCD=45°,证得∠ECB=∠DCB即可解答;(2)根据等角的余角相等解答即可;(3)根据角的运算求解即可.(1)解:CB是∠ECD的平分线.理由:∠∠ACB=90°,CE恰好是∠ACB的平分线,∠∠ECB=45°,∠∠DCE=90°,∠∠DCB=90°-45°=45°,∠∠ECB=∠DCB,∠CB是∠ECD的平分线;(2)解:∠ACE=∠DCB.理由:∠∠ACB=∠DCB=90°,∠∠ACE+∠ECB=90°,∠DCB+∠ECB=90°,∠∠ACE=∠DCB;(3)解:∠DAB+∠EAC=120°.理由:∠∠BAE=∠CAD=60°,∠∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∠∠DAE+∠EAC+∠EAC+∠CAB=120°,∠∠DAE+∠EAC+∠CAB=∠DAB,∠∠DAB+∠CAE=120°.【点睛】本题考查三角板中角的运算、等角的余角相等、角平分线的定义,熟练掌握图形中的角的运算是解答的关键.。

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。

七年级数学上册期末考试试卷

七年级数学上册期末考试试卷

七年级数学上册期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 5 - 3B. 2 + 4C. 8 × 1D. 9 ÷ 33. 以下哪个图形是正方形?A. 四边形,对角线相等B. 四边形,四条边相等且四个角都是直角C. 三角形,三条边相等D. 四边形,对边平行且相等4. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 5 = 10C. 4x = 8D. 5x = 155. 以下哪个选项表示的是不等式?A. 2x + 3 = 7B. 3x - 5 > 10C. 4x = 8D. 5x = 156. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 2)(x + 2)C. x^2 - 4 = (x - 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:68. 以下哪个选项是正确的几何图形的周长计算公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 三角形的周长= 3 × 边长D. 圆的周长 = 直径× π9. 以下哪个选项是正确的几何图形的面积计算公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积= 2 × 长× 宽C. 三角形的面积= 1/2 × 底× 高D. 圆的面积 = 半径× 半径10. 以下哪个选项是正确的统计图表示方法?A. 条形图用于表示时间序列数据B. 折线图用于表示分类数据C. 饼图用于表示部分与整体的关系D. 散点图用于表示两个变量之间的相关性二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是_________。

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

泉州实验中学2022-23学年上学期期末质量检测初一年数学(满分:150分 考试时间:120分钟)一、选择题 (每题4分,共40 分)1.-3的倒数为( ) A.13B. -13C. 3D. 3−【答案】B【分析】直接利用倒数的定义:乘积是1的两数互为倒数.得出答案.【详解】解:3−的倒数为13−,故选:B .【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键. 2. 在数轴上表示数1−和 2021 的两个点之间的距离为( )个单位长度 A. 2022 B. 2021C. 2020D. 2019【答案】A【分析】直接利用数轴上两点之间的距离公式进行计算即可.【详解】解:数轴上表示数1−和 2021 的两个点之间的距离为:()20211202112022−−=+=,故选A . 【点睛】本题考查的是数轴上两点之间的距离,理解两点之间的距离的含义是解本题的关键. 3. 如果a >0,b <0,且|a |<|b |,则下列正确的是( ) A. a +b <0 B. a +b C. a +b =0D. ab =0【答案】A【分析】根据a >0,b <0,且|a |<|b |,可得a <-b ,即a +b <0. 【详解】∵a >0,b <0,且|a |<|b |, ∴a <-b ,即a +b <0.故选A .【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a <-b . 4. 下列说法中,错误的是( ) A. 数字1也是单项式B. 单项式35x y −的系数是5−C. 多项式321x x −+−的常数项是1D. 223332x y xy y −+是四次三项式【答案】C【分析】根据单项式的概念与系数的含义可判断A ,B ,根据多项式的项可判断C ,根据多项式的含义可判断D ,从而可得答案.【详解】解:A 、1是单独的一个数,也是单项式,原说法正确,故此选项不符合题意;B 、单项式35x y −的系数是5−,原说法正确,故此选项不符合题意;C 、多项式321x x −+−的常数项是1−,原说法错误,故此选项符合题意;D 、223332x y xy y −+是四次三项式,原说法正确,故此选项不符合题意.故选:C .【点睛】本题考查的是单项式的含义与系数的含义,多项式的概念与项的含义,次数的含义,熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,多项式的概念是解答此题的关键.5. 如图为一个几何体的表面展开图,则该几何体是( ) A. 三棱锥 B. 四棱锥C. 四棱柱D. 圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥. 【详解】解:由图可知,底面为四边形,侧面为三角形, ∴该几何体是四棱锥,故选:B .【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键. 6. 如图,直线a 与b 相交,12240∠+∠=°,3∠=( ) A. 40° B. 50°C. 60°D. 70°【答案】C【分析】直接根据对顶角相等以及邻补角性质解题即可. 【详解】解:12240∠+∠=° ,又1=2∠∠ ,1=2=120∴∠∠°,23180∠+∠=° ,3=18012060∴∠°−°=°,故选:C .【点睛】本题主要考查对顶角及邻补角的性质,关键是掌握对顶角相等,邻补角相加等于180°. 7. 在解方程13132x x x −++=时,方程两边乘 6,去分母后,正确的是( ) A. 2163(31)x x x −+=+ B. ()()11 3 1x x −+=+ C. )21 3 )1((3x x x +−=+ D. 2(1)63(31)x xx −+=+ 【答案】D【分析】方程两边乘6,进行化简得到结果,即可作出判断.【详解】解:方程两边乘6得:()()216331x x x −+=+,故选:D .【点睛】本题考查了一元一次方程的解,掌握解一元一次方程是关键. 8. 如图,下列说法正确的是( )A. 1∠和B ∠是同位角B. 2∠和3∠是内错角C. 3∠和4∠是对顶角D. B ∠和4∠是同旁内角【答案】B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可. 【详解】解:A .1∠和B ∠不是同位角,原说法错误,故此选项不符合题意; B .2∠和3∠是内错角,原说法正确,故此选项符合题意; C .3∠和4∠是邻补角,原说法错误,故此选项不符合题意;D .B ∠和4∠不是同旁内角,原说法错误,故此选项不符合题意; 故选:B .【点睛】本题考查同位角、内错角、同旁内角,理解同位角、内错角、同旁内角的定义是正确判断的前提. 9. 如图,阿杜同学用两块大小一样的等腰直角三角板先后在EOF ∠内部作了射线OG 和射线OH .则下列说法正确的是( ) A. 75EOF ∠=° B. 3GOH EOF ∠=∠ C. GOH ∠与EOF ∠互余 D. 射线 OH 平分GOF ∠【答案】C【分析】由45FOG HOE ∠=∠=°,证明FOH GOE ∠=∠,再逐一分析各选项即可. 【详解】解:由题意可得:45FOG HOE ∠=∠=°, ∴45FOH HOG HOG GOE ∠+∠=∠+∠=°, ∴FOH GOE ∠=∠,而HOG ∠与FOH ∠不一定相等,∴3EOF GOH ∠=∠不一定正确,故B 不符合题意;4575EOF FOH ∠=∠+°=°,不一定正确,故A 不符合题意;射线 OH 平分GOF ∠不一定正确,故D 不符合题意;∴90GOH EOF GOH FOH HOE FOG HOE ∠+∠=∠++∠=∠+∠=°, 故C 符合题意;故选C .【点睛】本题考查的是角的和差运算,角平分线的含义,理解题意,利用角的和差关系进行判断是解本题的关键.10. 将数组111,,234中的3个数分别求出各数的相反数与1和的倒数,第一次操作后得到的结果组成的数组记为{1a ,2a ,3a },第二次操作是将数组{1a ,2a ,3a }.再次重复上次操作方式得到新的数组{4a ,5a ,6a },……,如此重复操作,最后得到数组{211a ,212a ,213a }.则123456*********a a a a a a a a a ++++++++…+的值为( )A. 2−B. 9−C. -1112D. 1312− 【答案】D【分析】根据所给的操作方式,求出前面的数,再分析存在的规律,从而可求解.【详解】解:由题意得:112112a ==−+,2131213a ==−+,3141314a ==−+, 41121a ==−−+,512312a ==−−+,613413a ==−−+,711(1)12a ==−−+,811(2)13a ==−−+,911(3)14a ==−−+, …,则每3次操作,相应的数会重复出现, 12345678934111121232323412a a a a a a a a a ++++++++=++−−−+++=− , 213923......6÷= ,312345*********a a a a a a a a a ∴++++++…+++11112412234=−×−−−37131212=−=−.故选:D . 【点睛】本题主要考查数字的变化规律,解答的关键是求出前面的几个数,发现其存在的规律.二、填空题(每题4分,共24分)11. 习近平总书记提出了五年“精准扶贫”的战略构想,意味着每年要减贫约11600000人,将数据11600000用科学记数法表示为__________.【答案】1.16×107【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:11600000=1.16×107,故答案为:1.16×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 如图,经过刨平的木板上的 A ,B 两个点,可以弹出一条笔直的墨线,能解释这一实际应 用的数学知识是__.【答案】两点确定一条直线【分析】根据题意分析可得两点确定一条直线.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是“两点确定一条直线”.故答案为:两点确定一条直线.【点睛】本题考查了两点确定一条直线,掌握两点确定一条直线这个基本事实是解题的关键.13. 已知33x y −=,则代数式397x y −+的值为___________. 【答案】16【分析】观察所求代数式可知,可以将已知整体代入求代数式的值. 【详解】解:∵x −3y =3,∴3x −9y +7=3(x -3y )+7=9+7=16故答案为:16.【点睛】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.14. 若430a b −++=,则ab =____________. 【答案】12−【分析】根据绝对值的非负性,得40a −=,30b +=,由此即可求解.【详解】解:∵40a −≥,0b +,且430a b −++=, ∴40a −=,30b +=,∴4a =,3b =−,则4(3)12ab =×−=−,故答案为:12−.【点睛】本题主要考查绝对值的非负性,理解绝对值的非负性,绝对值与绝对值的和为零,则每个绝对值的值为零是解题的关键.15. 从海岛A 点观察海上两艘轮船 B 、C .轮船B 在点A 的北偏东 6025′°方向;轮船C 在点A 的南偏东1537′°方向,则BAC ∠=__________. 【答案】10358′°【分析】首先根据题意画出草图,然后由方向角的定义,确定AB 、AC 与正北方向、正南方向的夹角;然后根据角的关系计算,即可求出BAC ∠的度数. 【详解】解:如图,∵轮船B 在点A 的北偏东6025′°方向;轮船C 在点A 的南偏西1537′°方向,∴1806025153710358ABC ′′′∠=°−°−°=°.故答案为:10358′°.【点睛】本题主要考查了与方向角有关的计算,解决本题的关键是掌握方向角的定义. 16. 下列结论:①若1x =是关于x 的方程0a bx c ++=的一个解,则0a b c ++=; ②若(1)(1)a x b x −=−有唯一的解,则a b ¹;③若2b a =,则关于x 的方程0ax b +=的解为2x =−;④若1b c a +=+,且0a ≠,则=1x −一定是方程1ax b c ++=的解: 其中正确的有__________(填正确的序号) 【答案】①②③④【分析】根据一元一次方程的解的概念解答进行判断即可.【详解】解:①把1x =代入0a bx c ++=得:0a b c ++=,故结论正确;; ②若(1)(1)a x b x −=−有唯一的解是1x =时,a b ¹,故结论正确; ③若2b a =,则2b a=,方程移项,得:ax b =−,则2bx a =−=−,则结论正确; ④把=1x −代入1ax b c a b c ++=−++=,方程一定成立,则=1x −一定是方程1ax b c ++=的解,故结论正确.故答案为:①②③④.【点睛】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.三、解答题(共86分)17 计算:(1)1554()(1)( 3.2)566+−+++−. (2)4211(10.5)2(3)3−−−××−− . 【答案】(1)2 (2)16【分析】(1)利用加法的运算律进行运算较简便;(2)先算乘方,再算括号里的运算,接着算乘法,最后算加减即可.【小问1详解】 解:1554()(1)( 3.2)566+−+++−1554 3.21566=−+−11=+2=; 【小问2详解】4211(10.5)2(3)3 −−−××−− ()1121293=−−××−()111723=−−××−761=−+16= 【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握..18. 解下列方程:(1)4385−+x x ;(2)7531132y y −−=−. 【答案】(1)2x =−; (2)5y =.分析】(1)通过移项、合并同类项、系数化成1,三个步骤进行解答便可; (2)根据解一元一次方程的一般步骤进行解答便可.【小问1详解】 解:4385−+x x4835−=+x x48x −= 2x =−.小问2详解】 解:7531132y y −−=−()()2756331y y −=−−1410693y y −=−+ 1096314y y −+=+−5y −=−5y =.【点睛】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.19. 先化简再求值:()()222232322x x y x y x y y −−−++ ,其中12x =−,=3y −.【答案】28x y −;6;【分析】先去括号,再合并同类项,得到化简的结果,再把12x =−,=3y −代入计算即可. 【详解】解:原式()2222363222x x y x y x y y =−−−++ 2222363222x x y x y x y y =−−+−−28x y =− 当12x =−,=3y −时, 原式()21832 =−×−×−()1834=−××− 6=. 【点睛】本题考查是整式的加减运算中的化简求值,掌握“去括号,合并同类项”是解本题的关键.【【的20. 若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各式的符号:a+b 0;c ﹣b 0;c-a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a| 【答案】(1)<,<,>;(2)﹣2b .【分析】(1)数轴上的数,右边的数总比左边的数大,利用这个特点可比较三个数的大小.(2)由数轴可知:b >0,a <c <0,所以可知:a+b <0,c-b <0, c-a >0.根据负数的绝对值是它的相反数可求值.【详解】解:(1)a+b <0,c ﹣b <0,c ﹣a >0.故答案为<,<,>;(2)|a+b|﹣|c ﹣b|﹣|c ﹣a|=﹣(a+b )+(c ﹣b )﹣(c ﹣a )=﹣a ﹣b+c ﹣b ﹣c+a =﹣2b . 【点睛】此题考查绝对值,有理数大小比较,数轴,解题关键在于结合数轴判断各数的大小. 21. (1)如图,已知A 、B 、C 三点,画射线BA 、线段AC 、直线BC ;(2)己知ABC �的面积为 5,3AB =,求C 点到射线AB 的距离. 【答案】(1)见解析;(2)103【分析】(1)根据直线,射线,线段的定义画图即可; (2)根据三角形的面积和点到直线的距离直接计算即可.【详解】解:(1)如图,即为所求; (2)∵ABC �的面积为 5,3AB =, ∴C 点到射线AB 的距离为:105233×÷=.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,利用面积法求解是解题的关键. 22. 已知点B 在线段AC 上,点D 在线段AB 上.(1)如图1,若AB =6cm ,BC =4cm ,D 为线段AC 的中点,求线段DB 的长度; (2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12cm ,求线段AC 的长度.【答案】(1)1cm ;(2)18cm【分析】(1)由线段的中点,线段的和差求出线段DB 的长度为1cm ; (2)由线段的中点,线段的和差倍分求出AC 的长度为18cm . 【详解】(1)如图1所示:∵AC=AB+BC ,AB=6cm ,BC=4cm∴AC=6+4=10cm 又∵D 为线段AC 的中点 ∴DC=12AC=12×10=5cm ∴DB=DC-BC=6-5=1cm(2)如图2所示: 设BD=xcm ∵BD=14AB=13CD∴AB=4BD=4xcm ,CD=3BD=3xcm , 又∵DC=DB+BC , ∴BC=3x-x=2x , 又∵AC=AB+BC , ∴AC=4x+2x=6xcm ,∵E 为线段AB 的中点 ∴BE=12AB=12×4x=2xcm 又∵EC=BE+BC , ∴EC=2x+2x=4xcm 又∵EC=12cm ∴4x=12 解得:x=3,∴AC=6x=6×3=18cm .【点睛】本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.23. 小语家新买了一套商品房,其建筑平面图如图所示,其中b a <(单位:米). (1)这套住房的建筑总面积是 平方米;(用含a 、b 的式子表示) (2)当5a =,4b =时,求出小语家这套住房的具体面积.(3)地面装修要铺设地砖或地板,小语家对各个房间的装修都提出了具体要求,明确了选用材料的品牌以及规格、品质要求.现有两家公司按照要求拿出了装修方案,两个方案中选用的材料品牌、规格、品质完全一致,但报价不同;甲公司:客厅地面每平方米240元,书房和卧室地面每平方米220元,厨房地面每平方180元,卫生间地面每平方米150元;乙公司:全屋地面每平方米210元;请你帮助小语家测算一下选择哪家公司比较合算,请说明理由.【答案】(1)(11515)a b ++ (2)90平方米 (3)选择乙公司比较合算.理由见解答 【分析】(1)根据图形,可以用代数式表示这套住房的建筑总面积;(2)将5a =,4b =代入(1)中的代数式即可求得小语家这套住房的具体面积; (3)根据住房的面积×每平方米的单价计算出甲公司和乙公司的钱数,即可得到结论. 【小问1详解】解:由题意可得:这套住房的建筑总面积是:(245)(511)(32)(41)(11515)a b a b ++×+−+×++×−=++平方米,即这套住房的建筑总面积是(11515)a b ++平方米.故答案为:(11515)a b ++; 【小问2详解】当5a =,4b =时,11515115541555201590a b ++=×+×+=++=(平方米). 答:小语家这套住房的具体面积为90平方米; 【小问3详解】选择乙公司比较合算.理由如下:甲公司的总费用:4240(55)220218092206150a a b a ×++×+×+×+×960110011003601980900a a b a =+++++(242011002880)a b ++(元), 乙公司的总费用:(11515)210(231010503150)a b a b ++×=++(元), 242011002880(231010503150)(11050270)a b a b a b ∴++−++=+−(元),2a b >> ,50100b ∴>,110220a >, 110502700a b ∴+−>, 所以选择乙公司比较合算.【点睛】本题考查了列代数式、代数式求值,解题的关键是明确题意,列出相应的代数式,求出相应的代数式的值. 24. 【概念与发现】当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的“点值”,记作AC d n AB=. 例如,点C 是AB 的中点时,即12AC AB =,则12AC d AB = ;反之,当12AC d AB = 时,则有12AC AB =. 因此,我们可以这样理解:“AC d n AB =”与“AC nAB =”具有相同的含义. (1)【理解与应用】 如图,点C 在线段AB 上.若3AC =,4AB =,则AC d AB =________;若2AC d AB m = ,则BC AB =________.(2)【拓展与延伸】 已知线段10cm AB =,点P 以1cm/s 的速度从点A 出发,向点B 运动.同时,点Q 以3cm/s 的速度从点B 出发,先向点A 方向运动,到达点A 后立即按原速向点B 方向返回.当P ,Q 其中一点先到达终点时,两点均停止运动.设运动时间为t (单位:s ).①小王同学发现,当点Q 从点B 向点A 方向运动时,AP AQ d m d AB AB +⋅的值是个定值,求m 的值; ②t 为何值时,35AQ AP d d AB AB −= . 【答案】(1)34,2m m − (2)①13;②1或8 【分析】(1)根据“点值”的定义得出答案;(2)①设运动时间为t ,再根据AP AQ d m d AB AB +⋅的值是个定值即可求出m 的值;②分点Q 从点B 向点A 方向运动时和点Q 从点A 向点B 方向运动两种情况分析即可.【小问1详解】解:3AC = ,4AB =,34AC AB ∴=, 3()4AC d AB ∴=, 2()mAC d AB = , 2AC AB m∴=, ∴22m BC AB AC AB AB AB m m−∴=−=−=, ∴2BC m AB m −= 故答案为:34,2m m −;【小问2详解】①设运动时间为t ,则AP t =,103AQt =−, 根据“点值”的定义得:()10AP t d AB =,103()10AQ t d AB −=, AP AQ d m d AB AB +⋅的值是个定值, ()1013103101010m m t t t m +−−∴+⋅=的值是个定值, 13m =∴; ②当点Q 从点B 向点A 方向运动时,53AQ AP d d AB AB −= , ∴103101053t t −−=, 1t ∴=;当点Q 从点A 向点B 方向运动时,53AQ AP d d AB AB −=, ∴310310105t t −−=, 8t ∴=,t ∴的值为1或8.【点睛】本题考查了一元一次方程的应用,理解新定义并能运用是本题的关键.25. 已知2AOC BOC ∠=∠,(1)如图甲,已知O 为直线AB 上一点,80DOE ∠=°,且DOE ∠位于直线AB 上方①当OD 平分AOC ∠时,EOB ∠度数为 ;②点F 在射线OB 上,若射线OF 绕点O 逆时针旋转()060n n °<<,3FOA AOD ∠=∠.请判断FOE ∠和EOC ∠的数量关系并说明理由;(2)如图乙,AOB ∠是一个小于108°的钝角,12∠=∠DOE AOB ,DOE ∠从OE 边与OB 边重合开始绕点O 逆时针旋转(OD 旋转到OB 的反向延长线上时停止旋转),当32AOD EOC BOE ∠+∠=∠时,求:COD BOD ∠∠的值【答案】(1)①40°;②2EOF COE ∠=∠; (2):COD BOD ∠∠的值为:1731或1113. 【分析】(1)①先求解120AOC ∠=°,60BOC ∠=°,再求解1602DOC AOC ∠=∠=°,20COE ∠=°,再利用角的和差关系可得答案;②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,求解120COD AOD ∠=°−∠,40COE DOE COD AOD ∠=∠−∠=∠−°,结合EOF AOF AOE ∠=∠−∠ 当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.(2)由2AOC BOC ∠=∠,设()108AOB y y ∠=°<,可得23AOC y ∠=°,13BOC y ∠=°,12DOE y ∠=°,分情况讨论:当OE 在BOC ∠内部时,如图,设BOE x ∠=°,当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°,当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°,当OD ,OE 都在AOB ∠外部,如图,再分别建立方程求解x ,y 之间的关系,再求解比值即可,【小问1详解】解:①∵2AOC BOC ∠=∠,180AOC BOC ∠+∠=°, ∴18020231AOC ∠=×°=°,1180603BOC ∠=×°=°, ∵当OD 平分AOC ∠时, ∴1602DOC AOC ∠=∠=°, ∵80DOE ∠=°,∴806020COE ∠=°−°=°,602040BOE BOC COE ∠=∠−∠=°−°=°.②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,∵120AOC ∠=°,∴120COD AOD ∠=°−∠,∵80DOE ∠=°,∴8012040COE DOE COD AOD AOD ∠=∠−∠=°−°+∠=∠−°,∵3FOA AOD ∠=∠,∴EOF AOF AOE ∠=∠−∠()3AOD AOC COE ∠−∠+∠312040AOD AOD =∠−°−∠+°()240AOD =∠−°2COE =∠;当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.【小问2详解】∵2AOC BOC ∠=∠,()108AOB y y ∠=°<, ∴23AOC y ∠=°,13BOC y ∠=°, ∵12∠=∠DOE AOB , ∴12DOE y ∠=°, 当OE 在BOC ∠内部时,如图,设BOE x ∠=°, 则13COE BOC BOE y x ∠=∠−∠=°−°,111236COD DOE COE y y x y x ∠=∠−∠=°−°+°=°+°, 211362AOD AOC COD y y x y x ∠=∠−∠=°−°−°=°−°,12BOD BOE DOE y x ∠=∠+∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x y x x −+−=, 解得:215y x =, ∴1216617651633631625y x x x COD y x BOD y x y x x x ++∠+====∠+++, 当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°,211362AOD y y x y x ∠=°−°−°=°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x x y x −+−=,解得:9y x =, 此时>BOE BOC ∠∠,即1>3x y ,则3y x <,故不符合题意,舍去, 当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =,而BOE AOB ∠<∠,即y x >,故不符合题意,舍去, 当OD ,OE 都在AOB ∠外部,如图,设BOE x ∠=°, 则13COE x y ∠°−°,1136COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD x y ∠°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =, ∴13661165193613625y x x x COD y x BOD y xy x x x ++∠+====∠+++, 综上::COD BOD ∠∠的值为:1731或1113. 【点睛】本题考查的是角的和差运算,角的旋转定义的理解,角平分线的定义,一元一次方程的应用,求解代数式的值,对于七年级学生来说,本题难度大,清晰的分类讨论是解本题的关键.。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。

江苏南京鼓楼区2024年七年级下学期期末考试数学卷+答案

江苏南京鼓楼区2024年七年级下学期期末考试数学卷+答案

七年级 (下)期末试卷数 学 注意事项:1.本试卷共6页.全卷满分100分:考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.甲骨文是我国古代的一种文字,是汉字的早期形式,下列甲骨文中,能大致用平移来分析其形成过程的是2. 2⁻¹的值是12 B. 1 C. 2 D. -2A.3.下列运算正确的是AA .aa ²⋅aa ³=aa⁶ BB .aa ³÷aa =aa ³ CC .(−aa ²)³=aa⁵ DD .(aa ²bb )³=aa⁶bb ³ 4. 不等式3x+1>0的最小整数解是 A. -1 B. 0 C. 1 D. 25. “抖空竹”是国家级非物质文化遗产,也是大家钟爱的运动之一.在公园里,小聪看到小女孩在抖空竹(图 1) , 抽象得到图 2: 在同一平面内,已知AB ∥CD, ∠A=70°, ∠ECD=110°, 则∠E 的度数为A. 20°B. 30°C. 40°D. 50°第 1 页 共 6 页6.在矩形ABCD中将边长分别为a和b的两张正方形纸片(a>b)按图1和图2两种方式放置(两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1、图2中阴影部分的面积分别为S ₁,S₂.当AADD=32AABB时, SS2−SS1AAAA的值为A. a/2 BB.bb2CC.32aa DD.32bb.......二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7. 用不等式表示“a的一半与b的和不小于0”是▲ .8. 我国某品牌手机以其创新的5 nm工艺领先世界,其中5nm=0.000000 005m. 用科学记数法表示0.000000005是▲ .9. 已知�xx=1,yy=−3是方程2mx-y=-1(m为常数) 的解, 则m的值为▲ .10. 已知实数a, b, c在数轴上的位置如图所示, 则ac ▲ bc. (填“>” “<”或“=”)11. 如图, 在同一平面内, ∠1+∠2=180°, ∠3=70°, 则∠4= ▲ °.12. 若整式4xx²+kkxx+1可以写成一个多项式的平方,则常数k的值为▲ .13.若某一多边形的所有外角都为60°,则该多边形的内角和为▲ °.14. “方程”二字最早见于我国数学经典著作《九章算术》,该书的第八章名为“方程”.如从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则将中两个方程联立成方程组可表示为▲ .15.有一个两位数,它的个位上的数为a,十位上的数为b,如果交换它个位和十位上的数,使得到的两位数比原来的两位数大18,那么a,b的数量关系为▲ .16. 如图, 点D, E, F分别在△ABC的各边上, DE∥AC, DF∥AB. 将△ABC沿DE翻折, 使得点B落在 B'处, 沿DF 翻折, 使得点C 落在C'处. 若∠B'DC'=40°, 则∠A= ▲ °.第 2 页共 6 页三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(1)(2aa ²)³−aa⁸÷aa ²; (2)(a+b-1)(a-b-1).18.(6 分) 分解因式:(1)2aa ²−8aabb +8bb ²; (2)aa ²(xx −yy )+bb ²(yy −xx ).19.(8分)解二元一次方程组:(1)�2xx +3yy =1,xx −2yy =4; (2)�xx −yy+23=1,2xx −yy =1.20. (5分)解不等式组 �4(xx −1)≤7xx +2,xx +1>5xx−13,并在数轴上表示该不等式组的解集.21.(5分)如图, 在△ABC 中, 点D, E 分别在边 AB, AC 上, ∠B=∠C, ∠A=40°.(1) 求∠B 的度数;(2) 若∠ADE=∠AED, 求证DE ∥BC.第 3 页 共 6页22.(6分) 如图, 点C在∠AOB的边OB上, 过C作DDDD‖OOAA,CF平分. ∠BBCCDD,CCCC⊥CCCC于C.(1) 若∠BCG=55°, 求∠DCF;(2)过O作OH∥CF, 交DE于点 H, 求证: OH平分∠AOB.23. (7分) 某超市准备购进A, B两种商品, 进3件A, 4件B 需要270元; 进5件A, 2件B需要310元;该超市将A种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)计划用不超过元的资金购进A,B两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,有几种进货方案?24.(7分)一个正方形边长为a+4(a为常数,a>0),记它的面积为S₁.将这个正方形的一组邻边长分别增加2 和减少2,得到一个长方形,记该长方形的面积为S₂.(1) 求S₂(用含a的代数式表示).(2)小丽说无论a为何值,S₁与S₂的差都不变,你同意她的观点吗?为什么?(3)将原正方形一组邻边分别增加4 和减少3,得到一个长方形,记该长方形的面积为( SS₃,比较S₂与S₃的大小.第 4 页共 6页25.(9分)如图1,正方形甲、乙、丙的边长分别为出新生产且(1)如图 2,将正方形甲、乙拼接在一起,沿着外边框可以画出一个大正方形,用两种不同的方法表示这个大正方形的面积为 ▲ 或 ▲ ,从而可以得到一个乘法公式为 ▲ ;(2)如图 3,将正方形甲、乙、丙拼接在一起,沿着外边框可以画出一个大正方形,类比(1)的思路进行思考,直接写出所得到的等式;(3)用正方形甲、乙、丙构造恰当的图形,说明( (pp −mm −nn )²<pp ²−mm ²−nn ².第 5 页 共 6页26.(26.(9分) 在几何软件中, 将△ABC和△DEF按图1所示的方式摆放,其中∠ACB=∠DFE=90°,∠D=45°, ∠ABC=30°, 点D, A, F, B在同一条直线上, E在B的正上方, 且EB<ED.(1)如图1,将△DEF绕点 F顺时针旋转, 当BC第一次与DE 平行时, ∠DFA= ▲ °;(2)将图1中的△DEF绕点E逆时针旋转一定角度使点D落在边 BC上, 过E 作 EG∥BC, 直线DM平分∠FDB,直线EN平分∠GED交直线DM于点 N. 在图2中按以上叙述补全图形(无需尺规作图),并直接写出∠END的度数.(3) 如图3, 将图1中的△ABC绕点B逆时针旋转.①当BC∥DE时, 连接AF, BF, 则∠DFA-∠FAB= ▲ °;②若∠E与∠ABC的角平分线所在直线相交于点Q,∠EQB=27°,直接写出∠DBA的度数..第 6 页共 6 页七年级 (下)期末数学试卷参考答案说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)题号 1 2 3 4 5 6答案 C A D B C B二、填空题(本大题共10小题,每小题2分,共20分)7.12aa+bb≥08.5×10⁻⁹ 9. -2 10. > 11. 11012. ±4 13. 720 14.�xx+2yy=22,2xx+2yy=33 15. a=b+2 16. 70三、解答题(本大题共10小题,共68分)17. (本题6分)解: (1)(2aa²)³−aa⁸÷aa²=8aa⁶−aa⁶ ··2分=7aa⁶. 3分(2)(a+b-1)(a-b-1)=[(a-1)+b][(a-1)-b]=(aa−1)²−bb²=aa²−2aa+1−bb². ………………… …………………6分注:第1小问每个运算正确得1分,结果1分;第2小问不用公式直接计算,若计算正确得满分,计算错误全扣分.18.(本题6分)解: (1)2aa²−8aabb+8bb²=2(aa²−4aabb+4bb²) ………1分=2(a-2b)². 3分(2)aa²(xx−yy)+bb²(yy−xx)=aa²(xx−yy)−bb²(xx−yy) ····4分=(xx−yy)(aa²−bb²) ····5分=(x-y)(a+b)(a-b) ……6分19.(本题8分)(1)�2xx+3yy=1①,xx−2yy=4②;②×2, 得2x-4y=8③数学试卷参考答案及评分标准第 1 页 (共4页)①-③,得7y=-7y=-1将y=-1代入③, 得2x-4×(-1)=8解此一元一次方程得,x=2故原方程组的解为�xx=2,yy=1. ………4分(2)�xx−yy+23=1①,2xx−yy=1②.①×3, 得3x-y-2=33x-y=5③③-②,得x=4将x=4代入③, 得12-y=5y=7故原方程组的解为�xx=4,yy=7. ………………………8分注:每一小问,解出第1个未知数得2分,解出第2个未知数得3分,下结论得4分.20.(本题5分)解: �4(xx−1)≤7xx+2①,xx+1>5xx−13②,解不等式①,得x≥-2… …… 1分解不等式②,得x<2…… 3分故原不等式组得解集为-2≤x<2.. 4分在数轴上表示该不等式组得解集为·5分数学试卷参考答案及评分标准第 2 页 (共4页)21. (本题5分)解: (1)在△ABC中, ∠A+∠B+∠C=180°∵∠B=∠C, ∠A=40°∴∠BB=180∘−∠AA2=70∘ ·2分(2) 在△ADE中,∠A+∠ADE+∠AED=180°∵∠ADE=∠AED, ∠A=40°∴∠AADDDD=180∘−∠AA2=70∘∵∠B=ADE∴DE∥BC……………………………………………………………………………………………5分注:第2问不利用题干所给角的度数证明,证明正确得满分.22. (本题6分)解:(1) ∵ CG⊥CF,∴∠GCF=90°.∵∠BCG=55°,∴∠BCF=90°-∠BCG=35°.……………………………………………………………………2分∵ CF平分∠BCD,∴∠DCF=∠BCF=35°.…………………………………………………………………………3分(2) ∵ OH∥CF,∴∠BCF=∠BOH.∵ CF平分∠BCD,∴∠BCD=2∠DCF.∵ DE∥OA,∴∠AOB=∠BCD.∴∠BBOOBB=12∠AAOOBB.∴ OH平分∠AOB. ………………………………………………………………6分注:借助第1问角的度数证明,扣1分.23. (本题7分)解:(1)设A种商品每件进价为x元,B种商品每件进价为y元.由题得�3xx+4yy=270,5xx+2yy=310, …2分解得x=50, y=30∴A种商品每件进价50元,B种商品每件进价30元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)设购进A种商品m件,则购进B种商品(40-m)件.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分由题得�80mm+45(40−mm)≤2400,mm≥12(40−mm),…5分数学试卷参考答案及评分标准第 3 页 (共4页)解得403≤mm≤1207. ·6分∵ m为正整数,∴ m取 14,15,16,17.∴共有四种进货方案. 7分24. (本题7 分)解: (1)SS₂=(aa+4+2)(aa+4−2)=aa²+8aa+12; ·2分(2) 同意.SS₁−SS₂=(aa+4)²−(aa²+8aa+12)=4, 3分即S₁与S₂的差与a变化无关,差值不变; ·4分(3) S₃=(a+4+4)(a+4-2)=(a+8)(a+2) =a²+9a+8; 5分SS₃−SS₂=aa−4; 6分当a>4时, SS₃>SS₂;当a=4时, SS₃=SS₂;当0<a<4时, SS₃=SS₂; 7分25. (本题9分)解:( ( (1)(mm+nn)²,mm²+nn²+2mmnn,(mm+nn)²=mm²+nn²+2mm,; ·4分(2)(mm+nn+pp)²=mm²+nn²+pp²+2mmnn+2mmpp+2nnpp 6分(3)如图,正方形A的面积为( (pp−mm−nn)²,阴影部分面积为pp²−mm²−nn²,由图形面积之间关系可说明( (pp−mm−nn)²<pp²−mm²−nn². 9分注:1. 第 (1)问前两空每空1分,第三空2分;2.(pp−mm−nn)²,pp²−mm²−nn²两个部分各1分,简单说明与判断1分.26. (本题9分)(1) 15°; ………………………………………………2分(2) 22.5°; ……………………………………4分(3)①15°或165°;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分②79.5°或100.5°或25.5°或154.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分注:第3问的第2小问仅写对15.5°给1分,仅写对60.5°给2分,两个都写对得3分,有1个错误答案,全扣.数学试卷参考答案及评分标准第 4 页 (共4页)。

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。

北京市朝阳区2023-2024学年七年级上学期期末数学试题含参考答案

北京市朝阳区2023-2024学年七年级上学期期末数学试题含参考答案

北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷(选用)(考试时间90分钟满分100分)考生须知1.本试卷共6页.在试卷和答题卡上准确填写学校名称、班级、姓名和考号.2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.3.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.2-的绝对值为()A .2-B .2--C .12-D .22.2023年我国规模以上内容创作生产营业收人累计值前三个季度分别约为6500亿元13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为()A .239510⨯B .43.9510⨯C .33.9510⨯D .50.39510⨯3.若34x y -与ax y 是同类项,则a 的值为()A .2-B .2C .3D .44.下列图形中可以作为一个正方体的展开图的是()A .B .C .D .5.如果a b =,那么下列等式一定成立的是()A .33a b +=-B .0a b +=C .44a b=D .1ab =6.已知α∠与β∠互为补角,并且α∠的2倍比β∠大30︒,则,αβ∠∠分别为()A .70︒,110︒B .40︒,50︒C .75︒,115︒D .50︒,130︒7.,a b 是有理数,它们在数轴上的对应点的位置如图所示.下列各式正确的是()A .b a a b -<-<<B .a b a b -<-<<C .b a a b <-<<-D .b b a a<-<-<8.对幻方的研究体现了中国古人的智慧.如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为()图1图2A .5B .1C .0D .1-二、填空题(共24分,每题3分)9.如果60m 表示向东走60m ,那么80m -表示______.10.请写出一个次数为3,系数是负数的单项式:______.11.计算:2(2)43-÷⨯=______.12.计算:48296021''︒+︒=______.13.北京冬季某一天的温差是10℃,若这天的最高气温是t ℃,则最低气温是______℃.(用含t 的式子表示)14.举例说明“若,a b 是有理数,则a b a +>”是错误的,请写出一个b 的值:b =______.15.如图,一艘快艇S 从灯塔O 南偏东60︒的方向上的某点出发,绕着灯塔O 逆时针方向以每个时间单位3︒的转速旋转1周,当14AOS BOS ∠=∠时,快艇S 旋转了______个时间单位.16.某社区为增强居民体质,体现以人民为中心的理念,准备到一家健身器材专卖店购置一批健身器材供居民健身使用.该专卖店推出两种优惠活动,并规定只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..400元减100元.(如:所购商品原价为400元,可减100元,需付款300元;所购商品原价为900元,可减200元,需付款700元)(1)若购买一件原价为550元的健身器材,更合算的选择方式为活动______;(2)若购买一件原价为(01200)a a <<元的健身器材,选择活动二比选择活动一更合算,则a 的取值范围是______.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17.如图,已知线段AB 和点,C D 是线段AB 的中点.(1)根据要求画图:①画直线DC ;②画射线BC ;③连接AC 并延长到点E ,使CE AC =;④连接BE .(2)(1)中线段,DC BE 之间的等量关系是______.18.计算:()()81021-+++-.19.计算:()12112236⎛⎫--⨯-⎪⎝⎭.20.当x 取何值时,式子37x +与式子322x -的值相等?21.解方程:21224x x+-=.22.先化简,再求值:()()2222545x x x x ----+,其中2x =-.23.小明家经营一家文化创意产品商店,他在课余时间关注了文化创意背包和文化创意摆件两种商品的销售情况,如下表:统计日期售出文化创意背包件数(件)售出文化创意摆件件数(件)总售价12月30日018012月31日124201月1日551700若小明家的文化创意产品商店售出文化创意背包和文化创意摆件共15件,总售价为3000元,那么售出文化创意背包和文化创意摆件各多少件?24.如图,长方形的一组邻边长分别为10,(1015)m m <<,在长方形的内部放置4个完全相同的小长方形纸片(图中阴影所示),这样得到长方形ABCD 和长方形EFGH .(1)线段,FG EF 之间的等量关系是______;(2)记长方形ABCD 的周长为1C ,长方形EFGH 的周长为2C ,对于任意的m 值,12C C +的值是否为一个确定的值?若是一个确定的值,请写出这个值,并说明理由;若不是一个确定的值,请举出反例.25.已知AOB ∠与COD ∠共顶点,,O AOB COD αβ∠=∠=.图1图2(1)如图1,点,,A O C 在一条直线上,若60,30,OM αβ=︒=︒为AOD ∠的平分线,ON 为COB ∠的平分线,求MON ∠的度数;(2)若2,,AOB COD αβ=∠∠绕点O 运动到如图2所示的位置,OE 为BOD ∠的平分线,用等式表示AOD ∠与COE ∠之间的数量关系,并说明理由.26.对于数轴上的两条线段,给出如下定义:若其中一条线段的中点恰好是另一条线段的一个三等分点,则称这两条线段互为友好线段.(1)在数轴上,点A 表示的数为-4,点B 表示的数为2,点1C 表示的数为52-,点2C 表示的数为2-,点3C 表示的数为4,在线段123,,BC BC BC 中,与线段AB 互为友好线段的是______;(2)在数轴上,点,,,A B C D 表示的数分别为39,2,,22x xx x ----,且,A B 不重合.若线段,AB CD 互为友好线段,直接写出x 的值.北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷参考答案及评分标准2024.1一、选择题(共24分,每题3分)题号12345678答案DBCBCACB二、填空题(共24分,每题3分)9.向西走80m 10.答案不唯一,如3x-11.312.10850'︒13.10t -14.答案不唯一,如1b =-15.34或5016.(1)一(2)400500a ≤<或8001000a ≤<三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17,解:(1)根据要求所画的图形如图所示:(2)12DC BE =.18.解:原式()()102811293=++-+-=-=.19.解:()121126824236⎛⎫--⨯-=-++=⎪⎝⎭.20.解:根据题意,得37322x x +=-.32327x x +=-.525x =.5x =.所以当5x =时,式子37x +与式子322x -的值相等.21.解:21224x x+=.()2218x x +-=.428x x +-=.36x =.2x =.22.解:原式2222454591x r x x x x =--+++=++.当2x =-时,原式13=-.23.解:根据题意可得每件文化创意背包单价260元,每件文化创意摆件单价80元.设小明家的文化创意产品商店售出文化创意背包x 件.根据题意,得()26080153000x x +-=.解得10x =.所以155x -=.答:小明家的文化创意产品商店售出文化创意背包10件,文化创意摆件5件.24.解:(1)2EF FC =;(2)1240C C +=.说明:设FG a =.根据题意可知2EF a =.所以()226C FG EF a =+=.因为长方形的一组邻边长分别为10,m ,所以102,2,10BC a AB m a m a =-=--=.所以()122028C AB BC m a =+=+-.所以1220286C C m a a+=+-+2022m a =+-()202m a =+-40=.25.解:(1)因为点,,A O C 在一条直线上,所以180AOC ∠=︒.因为60,30αβ=︒=︒,所以150,120AOD COB ∠=︒∠=︒.因为OM 为AOD ∠的平分线,ON 为COB ∠的平分线,所以1175,6022DOM AOD CON COB ∠=∠=︒∠=∠=︒.所以30DON CON COD ∠=∠-∠=︒.所以45MON DOM DON ∠=∠-∠=︒.(2)2AOD COE ∠=∠.说明:如图,因为OE 为BOD ∠的平分线,所以12DOE BOD ∠=∠.因为COE DOE COD ∠=∠-∠,所以12COE BOD COD ∠=∠-∠.因为2αβ=,所以1122COE BOD α∠=∠-.因为AOD DOB AOB DOB α∠=∠-∠=∠-,所以2AOD COE ∠=∠.26.解:(1)12,BC BC .(2)225,7,9,26.。

广东深圳福田区2024年七年级下学期期末考试数学试卷参考答案

广东深圳福田区2024年七年级下学期期末考试数学试卷参考答案

2023—2024学年第二学期期末学业质量调研测试七年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BADCBADCBD二、填空题(本题共5小题,每小题3分,共15分)11. 222x x −; 12.31; 13. 74; 14. 16; 15. 12. 三、解答题(本题共7小题,其中16题8分,17题6分,18题8分,19题8分,20题7分,21题9分,22题9分,共55分)16. (8分)计算:(1)(4分)232024312)()()(π+−+−− 解:原式=﹣8+9﹣1 ……………………………………………………………………1+1+1分, 累计3分= 0 ………………………………………………………………1分,累计4分(2)(4分) 计算:22345(3)(2)(6)x y xy x y ⋅−÷−解:原式=9x 4y 2•(﹣2xy 3)÷(﹣6x 4y 5)…………………………………………………2分 =﹣18x 5y 5÷(﹣6x 4y 5)…………………………………………………………………1分, 累计3分 =3x …………………………………………………………………1分, 累计4分17.(6分)先化简,再求值:2(2)(2)(2)(2)x y x y x y y −−+−÷− ,其中12x =−,2y =. 解:原式=[4x 2﹣4xy +y 2﹣(4x 2﹣y 2)]÷(﹣2y )…………………………………………2分 =(﹣4xy +2y 2)÷(﹣2y )…………………………………………………1分, 累计3分 =2x ﹣y …………………………………………………1分, 累计4分 将x =﹣21,y =2代入得,原式=2212−−×)(=3−.…………………………………………………2分, 累计6分18.(8分) 解:∵∠A =∠CFD (已知),∴ AB ∥ DE (同位角相等,两直线平行) ∴∠B =∠CDE (两直线平行,同位角相等), 在△ABC 和△CDE 中,,=∠=∠=DE BC CDE B CD AB ∴△ABC ≌△CDE ( SAS ).∴ AC =CE (全等三角形对应边相等). ∵CE =8(已知), ∴AC = 8 ∵CF =3(已知), ∴AF =AC −CF =8−3=5.(说明:每空1分)………… ………………………………………………………累计8分19. (8分)解:(1)从袋中随机摸出一个球是黄球是随机事件;…………………………………………2分(2)袋中有 24 个红球;…………………………………………2分, 累计4分 根据题意得:40×53=24(个),答:袋中红球的个数有24个. (3)设黄球有x 个,则白球有(2x +1)个,根据题意得x +2x +1=40﹣24…………………… …………………………………1分, 累计5分 解得x =5.…………………… …………………………………1分, 累计6分 从袋中任摸一个球共有40种等可能得结果,其中摸出黄球有5种, ∴P (摸出黄球)=81405= FED CBA答:摸出一个球是黄球的概率是81…………………… ………………………2分, 累计8分 【说明:用“P (摸出黄球)”才能得2分,缺失(),只写P 只能得1分】20. (7分) 解:(1)如图所示:直线DE 即为所求(直线MN 即为所求);(说明:作图要有痕迹且正确得2分,书写结论1分)………………2+1分, 累计3分(2)∵AB =AC ,∠A =42°,∴∠ACB =∠B =12×(180°﹣42°)=69°,………………………………………1分, 累计4分 ∵DE 垂直平分AC ,∴AD =DC ,………………………………………………1分, 累计5分∴∠ACD =∠A =42°,………………………………………………1分, 累计6分∴∠BCD =∠ACB ﹣∠ACD =69°﹣42°=27°.…………………………………1分, 累计7分21. (9分) 解:任务一:某用户选择中国移动B 套餐,若该月拨打国内电话时长为200分钟,则该用户的月缴费为 88 元; 若该月拨打国内电话时长为380分钟,则该用户的月缴费为 93.7 元.……………………………………………………………………………………………1+1分, 累计2分任务二:若选择A 套餐计费方法,设某用户一个月的拨打国内电话时长为x 分钟(x >150), 该月话费为1y 元,则1y 与x 的关系式是yy 1=58+0.19(xx −150)或yy 1=0.19xx +29.5;若选择B 套餐计费方法,设某用户一个月的拨打国内电话时长为x 分钟(x >350),该月话费为2y 元,则2y 与x 的关系式是yy 2=88+0.19(xx −350)或yy 2=0.19xx +21.5.……………………………………………………………………………………………2+2分,累计6分D EN MCBA任务三:∵150<250<350∴当x=250时,yy1=0.19×250+29.5=77…………………………………………………1分,累计7分yy2=88……………………………………………………………1分,累计8分∵yy1<yy2∴选择A套餐比较划算.……………………………………………………………1分,累计9分22.(9分) 解:(1)【观察发现】①线段AD,BE的数量关系为AD=BE(或相等),∠ABE=90°;…………………1+1分,累计2分【类比探究】②AC∥BE,………………………………………………1分,累计3分理由如下:∵∠ACB=∠DCE=60°∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE ………………………………………………1分,累计4分∵CA=CB∴∠A=∠CBA=12×(180°−60°)=60°………………………………………………1分,累计5分在△ACD和△BCE中,EA图1AC BC ACD BCE CD CE == =,∠∠,, ∴△ACD ≌△BCE (SAS) ………………………………………………1分,累计6分 ∴∠A=∠CBE=60° ∴∠ACB=∠CBE∴AC ∥BE ………………………………………………1分,累计7分 【拓展延伸】(2)32 ………………………………………………2分,累计9分 如图2,过A 作AG ⊥AC 交CB 延长线于G ,∵∠ABC +∠ACB +∠BAC =180°,∠ACD +∠CDA +∠CAD =180° ∴∠ABC +∠BCD +∠CDA +∠DAB =360° ∵∠BAD =∠BCD =90° ∴∠ABC +∠ADC =180° 又∵∠ABC +∠ABG =180° ∴∠ADC =∠ABG ∵∠DAB =∠CAG =90°∴∠DAB -∠BAC =∠CAG -∠BAC 即∠DAC =∠BAG 在△ACD 和△AGB 中,DAC BAG AD AB ADC ABG ===∠∠,,∠∠, ∴△ACD ≌△AGB (ASA) ∴S △ACD=S △AGB ,AG=AC∴S △ACD +S △ABC =S △AGB +S △ABC∴S 四边形ABCD =S △ACG =2113222ACAG AC ××==. 图2G。

江西省宜春市高安市2022-2023学年七年级上学期期末考试数学试卷(含答案)

江西省宜春市高安市2022-2023学年七年级上学期期末考试数学试卷(含答案)

江西省宜春市高安市2022-2023学年七年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2023-的相反数是( )A .2023B .2023-C .12023D .12023- 【答案】A【分析】根据相反数定义:只有符号不同的两个数叫做互为相反数,直接得出答案.【详解】根据相反数定义,2023-的相反数是2023,故选:A .【点睛】本题考查相反数定义,熟记符号不同的两个数互为相反数是解决问题的关键. 2.下列各数中,比2-小的数是( )A .0B .2023(1)-C .π-D .2- 【答案】C【分析】分别比较即可.【详解】A .02>-,不合题意;B .202312(1)=-->- ,不合题意;C . 3.142π-≈-<-,符合题意;D .22-=-,不合题意;故选C .【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.3.可以用“两点之间,线段最短”来解释的现象是( )A .两钉子固定木条B .木板上弹墨线C .测量跳远成绩D .弯曲河道改直 【答案】D【分析】用两根钉子就可以把一根木条固定在墙上是两点确定一条直线;木板上弹墨线,能弹出一条笔直的墨线,而且只能弹出一条墨线,可用两点确定一条直线来解释的现象;测量跳远成绩是垂线段最短求脚后跟到起跳线的距离;把弯曲的公路改直,就能够缩短路程是两点之间,线段最短;据此分别判断即可.【详解】AB 的数学常识均为两点确定一条直线,C 的数学常识为垂线段最短,D 的数学常识为两点之间,线段最短,故选D .【点睛】本题考查了数学常识在生活中的应用,熟练掌握数学常识是解题的关键.4.下列去括号错误的是( )A .222(3)23a a b c a a b c --+=-+-B .22(32)32x x y x x y +-+=-+C .22222()22x y x y --+=-D .223(1)31m m m m --=-- 【答案】D【分析】分别去括号判断即可.【详解】A .222(3)23a a b c a a b c --+=-+-,故原选项正确;B .22(32)32x x y x x y +-+=-+,故原选项正确;C .22222()22x y x y --+=-,故原选项正确;D .223(1)33m m m m --=-+,故原选项错误;故选D .【点睛】本题考查了去括号,熟练掌握去括号法则是关键.当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.5.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( ) A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 【答案】C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.6.当前,新冠奥密克戎病毒传染性越来越强,每个人要当好自己健康的第一责任人,戴口罩,勤洗手.下列正方体的展开图中,每个面上都有一个汉字,则“口”的对面是“手”的展开图是( ) A . B . C .D . 【答案】D 【分析】分别判断四个选项中“口”的对面的字即可.【详解】A .“口”的对面的字是“勤”,故不合题意;B .“口”的对面的字是“洗”,故不合题意;C .“口”的对面的字是“洗”,故不合题意;D .“口”的对面的字是“手”,故符合题意;故选D .【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若气温上升2℃记作2+℃,则下降5℃记作_____℃.【答案】5-【分析】根据“正”和“负”所表示的意义解答.【详解】℃气温上升2℃记作2+℃,℃下降5℃记作5-℃,故答案为5-.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.8.2022年6月5日,神舟十四号载人飞船在酒泉卫星发射中心发射成功,飞船入轨后将按照预定程序与离地面约400000米的天宫空间站进行对接.请将400000米用科学记数法表示为_________米. 【答案】4×105【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:400000=4×105,故答案为:4×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.小明在解关于x 的一元一次方程29a x +=时,由于粗心,错把x +看成了x -,结果解得3x =-,则a 的值为_____. 【答案】3【分析】根据题意可知,3x =-是方程29a x -=解,代入即可求出未知数的值.【详解】根据题意可知,3x =-是方程29a x -=解,即有:()239a --=,解得:3a =,故答案为:3.【点睛】本题考查了一元一次方程的解得知识,得出3x =-是方程29a x -=解,是解答本题的关键.10.如图,136AOB ∠=︒,射线OD 是AOB ∠补角的平分线,则AOD ∠=_____.【答案】158︒##158度11.“格子乘法”是15世纪意大利数学家使用的一种计算方法,后传入我国,明朝数学⨯,将乘数357和46家程大位在《算法统宗》里称之为“铺地锦”.如图1,计算35746分别写在格子上方和右边,然后以乘数357的每位数字乘以乘数46的每位数字,将结++=,相加满十向前进1,则果计入相应的格子中,最后按斜行加起来(其中84012⨯,203813+++=,再加进的1得14,相加满十再向前进1),得16422.如图2,计算4751得2397.如图3,用“格子乘法”表示两个两位数相乘,则x的值为_____.【答案】3【分析】先根据“格子乘法”求出已知的条件,然后分情况列方程计算即可.【详解】由“格子乘法”的定义可知,若0219x <+≤,则0421x x ++=+,解得3x =;若102120x ≤+<,则042110x x ++=+-,解得13x =(不合题意,删去);故答案为3.【点睛】本题考查了一元一次方程的应用,“铺地锦”格子的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.如图,射线OC 在AOB ∠的内部,图中共有3个角:AOB ∠,AOC ∠和BOC ∠,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB ∠的“平衡线”.若72AOB ∠=︒,且射线OC 是AOB ∠的“平衡线”,则AOC ∠的度数为_____.AOB ∠=AOC ∠∴℃当AOB ∠AOB ∠=BOC ∴∠=36AOC AOB BOC ;AOB ∠=AOC ∴∠+解得AOC ∠℃当BOC ∠AOB ∠=AOC ∴∠+解得AOC ∠综上,∠故答案为:【点睛】本题考查了角的和差,正确分情况讨论是解题关键.三、解答题13.(1)计算:()2023118232-+-÷⨯--; (2)一个角的补角比它的余角的2倍大30︒,求这个角的度数.14.解方程:(1)()()23131x x --=-(2)11123x x -+-= 【答案】(1)4x =-(2)11x =【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【详解】(1)去括号,得:26133x x --=-移项,得:23361x x -=-++合并同类项,得:4x -=系数化为1,得:4x =-;(2)去分母,得:()()31621x x --=+去括号,得:33622x x --=+移项,得:32236x x -=++合并同类项,得:11x =.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.15.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即437+=.(1)则用含x 的式子表示m = ;(2)当7y =-时,求n 的值.【答案】(1)3x(2)1n =-【分析】(1)根据整式的加法求解即可;(2)由题意得23,23,3x x x x n x n y +=+=+=,据此解答.【详解】(1)用含x 的式子表示23m x x x =+=,故答案为3x ;(2)由题意可知23,23,3x x x x n x n y +=+=+=,℃223y m n x x x =+=+++.当7y =-时,537x +=-.解得2x =-.℃23431n x =+=-+=-.【点睛】此题主要考查了整式的运算,解答本题的关键是明确题目约定的规则,然后再进一步解答.16.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图,填空:(1)画射线AB ;(2)连接BC ,延长CB 交直线l 于点D ;(3)在直线l 上确定点E ,使得AE CE +最小,请写出你作图的理由为______.【答案】(1)见解析(2)见解析(3)两点之间线段最短【分析】(1)画射线AB 即可;(2)连接BC ,延长CB 交直线l 于点D 即可;(3)根据两点之间线段最短即可在直线l 上确定点E ,使得AE +CE 最小.【详解】(1)解:如图:射线AB 即为所求;(2)解:连接BC ,延长CB 交直线l 于点D 如图所示;(3)解:如图:点E 即为所求.在直线l 上确定点E ,使得AE +CE 最小,理由为:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图、直线、射线、线段、线段的性质,解决本题的关键是掌握线段的性质:两点之间线段最短.17.阅读材料,解决问题:我们学习了乘方的定义和意义,根据乘方和乘法两种运算之间的转化了解到:32222=⨯⨯;422222=⨯⨯⨯;观察上述算式,3472222222222⨯=⨯⨯⨯⨯⨯⨯=;可以得到:347222⨯=;类比上述式子,你能够得到: (1)251010⨯= ,35a a ⨯= ;(2)利用由特殊到一般的思想,可以得到:m n a a ⨯= (m 、n 都是正整数);我们把类似于am 和an 这样的式子叫同底数幂;因此可以得到“同底数幂的乘法”法则:“同底数幂相乘,底数不变,指数相加”;(3)知识运用:22020x x x ⋅⋅= ,21n n y y +⋅= ;(4)已知3,6a b x x ==,则a b x +的值是 . 【答案】(1)710,8a(2)m n a +(3)2023x ,31n y +(4)18【分析】(1)根据题目中给出的信息进行运算即可;(2)总结题目信息得出同底数幂的运算法则;(3)根据同底数幂的运算法则进行运算即可;(4)逆用同底数的乘法公式进行运算即可.【详解】(1)257101010⨯=,358a a a ⨯=,故答案为710,8a ;(2)m n mn a a a ⨯=(m 、n 都是正整数),故答案为m n a +;(3)220201*********x x x x x ++=⋅=⋅,212131n n n n n y y y y ++++⋅==,故答案为2023x ,31n y +;(4)℃3,6a b x x ==,℃3618a b a b x x x +=⋅=⨯=,故答案为18.【点睛】本题主要考查了乘方的定义和意义,得到同底数幂的运算法则:同底数幂相乘,底数不变,指数相加,是解题的关键.18.已知一道整式化简题:■2222234525323x y xy xy x y xy xy ⎡⎤⎛⎫---+-+ ⎪⎢⎥⎝⎭⎣⎦,其中“■”处的系数被墨水污染了.请根据如图所示的对话解答下列问题.(1)请你根据冰墩墩猜的数字化简该式;(2)请你根据雪容融的对话,求出■所表示的数字是多少?19.已知代数式:222(233)22(3)4(36)x y x xy x y x xy ⎡⎤+---+-+--⎣⎦.(1)化简这个代数式;(2)小明同学取x ,y 互为倒数的一对数值代入化简式中,计算得代数式的值为11,那么小明同学所取的字母x 和y 的值分别是多少?(3)聪明的小智同学从化简的结果中发现,只要字母x 取一个固定的数,无论y 取何数,代数式的值恒为一个不变的数,请你通过计算求出小智所取的字母x 的值是多少?20.小明在解方程11311362x x x -+--=-时的步骤如下: 解:()()2113316x x x --+=--……第℃步;221936x x x --+=--……第℃步; 293621x x x --=--+-……第℃步;88x -=-……第℃步; 1x =……第℃步.(1)以上解方程的过程中,第℃步是进行______________,变形的依据是______________; (2)以上步骤从第_____步(填序号)开始出错,错误的原因是____________; (3)请你根据平时的学习经验,就解一元一次方程需要注意的事项给其他同学提出一条建议;(4)请聪明的你写出这题正确的解答过程.21.数轴是非常重要的“数形结合”的工具之一,它揭示了数与点之间的内在联系,同时我们发现数轴上两点间的距离也与这两点所表示的数有关系.借助数轴完成下列任务: (1)如图,A ,B ,C 是数轴上依次排列的三个点,已知8,2AB BC ==.℃若点B 表示的数为2,则在数轴上点A 表示是数为 ,点C 表示是数为 . ℃若点B 表示的数为n ,则在数轴上点A 表示是数为 ,点C 表示是数为 . (2)从(1)的问题中发现:若点A 、B 在数轴上表示的数分别为a ,b (且点A 在点B 的左侧),那么AB = .(3)在数轴上,若点E 、F 表示的数分别为32,22m m ---,那么EF = . (4)若数轴上5MN =,点M 表示的数是2-,求点N 和线段MN 的中点P 所表示的数分别是多少?5922.为了有效阻击“新冠肺炎”病毒传播,某小区响应政府号召实施封闭管理.在封闭管理期间,为了保障人们生活需要,该社区组织了20辆汽车运送食品、药品和生活日用品三种应急物资到一些居民小区.按计划每辆汽车只能装运一种应急物资,并且20辆汽车都必须装运、装满设运送食品的汽车x辆,运送药品的汽车数是运送食品的汽车数的1还少1辆.根据表中提供的信息解答下列问题:(1)20辆汽车一共运送了多少吨应急物资?(用含x的代数式表示)(2)如果运送的药品总量与生活用品总量之比5:6,则有多少辆汽车运送食品?(3)在(2)的条件下,若运送这批应急物资所需要的总运费是13600元,则运送1吨生活用品的运费a是多少元?23.【阅读理解】在学习《角的比较与运算》内容时,教材设置这样的一个探究:借助三角尺拼出15°,75°的角,即通过一副三角尺可以拼出一些特殊度数的角.(1)【实践】在度数分别为℃135°,℃120°,℃105°,℃25°的角中,小明同学利用一副三角尺拼不出来的是__________.(填序号)(2)【操作】七(1)班数学学习小组用一副三角尺进行拼角.如图1,巧巧把30°和90°的角拼在一起,如图2,嘉琪把60°和90°的角拼在一起,他们两人各自所拼的两个角均在公共边OC 的异侧,并在各自所拼的图形中分别作出AOB ∠的平分线OE 和COD ∠的平分线OF .【探究】通过上述操作,巧巧计算出图1中的60EOF ∠=︒,请你直接写出图2中的EOF ∠=__________°.(3)【发现】当有公共顶点的两个角α和β有一条边重合,且这两个角在公共边的异侧时,这两个角的平分线的夹角的度数是__________(用含α,β的代数式表示). (4)【拓展】巧巧把图1中的三角尺AOB 绕点O 顺时针旋转90°到图3的位置,使O ,D ,B 三点在同一条直线上,并求出了EOF ∠的度数为1145153022EOF DOF BOE COD AOB ∠=∠-∠=∠-∠=︒-︒=︒.嘉琪把图2中的三角尺AOB 绕点O 顺时针旋转90°到图4的位置,使O ,D ,B 三点在同一条直线上.请你仿照巧巧的做法,求出图4中EOF ∠的度数.(5)【归纳】根据上述探究,可以归纳出:当有公共顶点的两个角α和β有(其中a β>)有一条边重合,且这两个角在公共边的同侧时,这两个角的平分线的夹角的度数是__________(用含α,β的代数式表示).【点睛】此题主要考查了与角平分线有关的角的计算,关键是注意此题分两种情况.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学期末考试试卷2017七年级数学期末考试试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3B.﹣3C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣cB.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个B.2个C.3个D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1B.x+1=xC.x﹣1+1=xD.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x 人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a 的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+=180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D 为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON 时,∠BOC=.(n是正整数)(用含α和β的代数式表示).一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3B.﹣3C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣cB.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个B.2个C.3个D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1B.x+1=xC.x﹣1+1=xD.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11万=110000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的`文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD 的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH故答案为:OA,线段CP,PH25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON 时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。

相关文档
最新文档