苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 3.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,84.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.下列图案中,不是轴对称图形的是( )A .B .C .D .6.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm7.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题11.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.12.点P (﹣5,12)到原点的距离是_____.13.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 14.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.15.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.16.点(−1,3)关于x 轴对称的点的坐标为____.17.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.18.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .20.若分式2223x x -+的值为零,则x 的值等于___. 三、解答题21.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.22.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 23.(1)计算:()()021320192π-+-+- (2)解方程:2416x =24.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.25.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.四、压轴题26.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.27.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”) (2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.28.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC 2a ,试写出此时BF 的值.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P 点的位置,逐项判断即可开.【详解】3≈1.7322≈1.4145 2.2367≈2.646,所以A 项≈1.732,B 项≈2.414,C 项≈1.646,D 项≈3.236观察数轴上P 点的位置,B 项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x= ,y 是x 的函数,故正确;D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】 主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.A解析:A【解析】【分析】先判断出OA=OB ,∠OAB=∠ABO ,分两种情况判断出△AOC ≌△ABD ,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB ,∴△OAB 是等边三角形,∴OA=AB ,∠OAB=∠ABO=60°①当点C 在线段OB 上时,如图1,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△ABD ,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立; 【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1. 考点: 一次函数与一元一次不等式.15.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】解析:89【解析】 【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可. 【详解】解:如图所示,连接AN ,设NC x =,则8DNx , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DN cm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.16.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.17.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+-∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 18.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2. 故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键. 20.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题21.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.22.原式=2a a -. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a - 当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(12;(2)122,2x x ==-.【解析】 【分析】 (1)先化简绝对值、利用零指数幂法则计算、化简二次根式,最后计算加减法即可得到结果;(2)先变形为24x =,然后利用直接开平方法解方程即可.【详解】解:(1)()()021320192π-+-+- =3112-++=32+(2)2416x =∴24x =∴122,2x x ==-【点睛】此题考查了实数的运算及一元二次方程的解法,熟练掌握运算法则及一元二次方程的解法是解本题的关键.24.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.25.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.四、压轴题26.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣或2m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF=3OD=3,分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+3,2)或(2﹣3,2);∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵32a =, ∴11b b ==-=', ∴坐标为:()3,1,故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,,把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2, 当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.28.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a==,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE ,∠DCE=60°=∠ACB ,∴∠BCD=∠ACE ,且AC=BC ,CD=CE ,∴△BCD ≌△ACE (SAS )∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF , ,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥B F ,当B 、O 、F 三点共线时BF 最长;如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a , ∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a , ∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.29.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC ,∴∠FHC=∠ACE. ∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC ,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.30.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)3.7的平方根是( ) A .±7 B .7 C .-7D .7 4.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位5.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 7.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A .B .C .D .8.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .159.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 10.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)- 二、填空题11.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.12.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.13.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.14.计算222m m m+--的结果是___________ 15.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 16.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.17.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.18.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标. 22.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,M 、N 两个村庄落在落在两条相交公路AO 、BO 内部,这两条公路的交点是O ,现在要建立一所中学C ,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).25.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.四、压轴题26.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.27.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.28.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D .【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.B解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.5.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC ,根据勾股定理可得:AC 2-CD 2=AB 2-BD 2所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC 中3==所以AD=BD=3所以三角形ABD 是帅气等腰三角形 假如从点C 或B 作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.6.A解析:A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 7.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.8.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 9.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.10.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.二、填空题11.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.12.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.13.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.14.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 15.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.16.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】由数轴可得:0<a <2,则a+=a+=a+(2﹣a )=2.故答案为2.【点睛】本题主要考查了解析:【解析】【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】由数轴可得:0<a <2,则2a 4a 4-+22a -()(2﹣a )=2. 故答案为2.【点睛】本题主要考查了二次根式的性质与化简,正确得出a 的取值范围是解题的关键. 17.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.18.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)94 ;(2)P(1.5,0) 或 (-4.5,0) 【解析】【分析】(1)分别求直线与x,y 轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 . ∴△AOB 的面积:1393224⨯⨯=. (2) ∵△ABP 的面积是92, OB =3 3922AP ∴= ∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.22.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.作图见解析.【解析】【分析】先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于C 点,则点C 即为所求. 【详解】点C 为线段MN 的垂直平分线与∠AOB 的平分线的交点,则点C 到点M 、N 的距离相等,到AO 、BO 的距离也相等,作图如下:. 【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.25.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长(2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标.【详解】解:(1) ∵A (4,0)、B (0,3).∴OA=3,OB=4, 22435AB ∴=+=(2)当点P 在y 轴上时 当AB=BP 时, 此时OP=3+5=8或OP=5-3=2,∴P 点坐标为(0,8)或(0,-2);当AB=AP 时,此时OP=BO=3,∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴2224(3)x x +=-7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭ 当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1,∴P 点坐标为(9,0)或(-1,0);当AB=BP 时,此时OP=AO=4,∴P 点坐标为(-4,0);当AP=BP 时,设P(x ,0),∴2223(4)x x +=- :78x =;∴P 点坐标为7,08⎛⎫ ⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫ ⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.四、压轴题26.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+, 即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.27.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °, ∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°,即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.28.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】 此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.30.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD , ∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,43.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个4.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( ) A .(﹣2,﹣4) B .(1,2)C .(﹣2,4)D .(2,﹣1)5.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 6.在平面直角坐标系中,点P (﹣3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.下列四个图形中,不是轴对称图案的是( )A .B .C .D .8.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-3 9.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm 10. 4的平方根是( ) A .2B .±2C .16D .±1611.下列说法正确的是( ) A .(﹣3)2的平方根是3 B .16=±4 C .1的平方根是1 D .4的算术平方根是212.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 13.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .214.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A .32x B .23x C .33x D 3x15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.17.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.19.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.20.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________. 21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.22.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.23.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.24.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.如图,已知函数12y x =+的图像与y 轴交于点A ,一次函数2y kx b =+的图像经过点(0,4)B ,与x 轴交于点C ,与12y x =+的图像交于点D ,且点D 的坐标为2,3n ⎛⎫ ⎪⎝⎭.(1)求k 和b 的值;(2)若12y y >,则x 的取值范围是__________. (3)求四边形AOCD 的面积.27.已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠H.求证:BC=DH.28.如图1,在Rt △ABC 中,∠ACB =90°,动点M 从点A 出发沿A -C -B 向点B 匀速运动,动点N 从点B 出发沿B -C -A 向点A 运动.设MC 的长为y 1(cm),NC 的长为y 2(cm),点M 的运动时间为x (s);y 1、y 2与x 的函数图像如图2所示.(1)线段AC = cm ,点M 运动 s 后点N 开始运动; (2)求点P 的坐标,并写出它的实际意义; (3)当∠CMN =45°时,求x 的值.29.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是52a b c +-的平方根.30.如图①,在A 、B 两地之间有汽车站C ,客车由A 地驶往C 站,货车由B 地驶往A 地,两车同时出发,匀速行驶,图②是客车、货车离 C 站的路程1y 、2y (km)与行驶时间x(h)之间的函数图像.(1)客车的速度是 km/h ;(2)求货车由 B 地行驶至 A 地所用的时间; (3)求点E 的坐标,并解释点 E 的实际意义. 31.2|3|0a b -+-=, (164a b+的值; (2)设x b a ,y +b a 11x y+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先利用平移的性质得到△A 1B 1C 1,进而利用关于x 轴对称点的性质得到△A 2B 2C 2,即可得出答案. 【详解】如图所示:点A 的对应点A 2的坐标是:(2,﹣3).故选B .2.B解析:B 【解析】 【分析】根据y 轴上的点的坐标特点,横坐标为0,然后根据题意求解. 【详解】解:∵y 轴上的点的横坐标为0, 又因为点P 在y 轴负半轴上, ∴(0,-2)符合题意 故选:B 【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.3.B解析:B 【解析】 【分析】根据无理数的定义解答即可. 【详解】227,0.101001是有理数; 33. 故选B. 【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②235③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.4.A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.5.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.7.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.8.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.9.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.10.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即±.2故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.13.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.14.D解析:D 【解析】 【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可. 【详解】解:∵△ABC 为等边三角形, ∴∠ABC=∠ACB=60°,AB=BC , ∵BD 为中线,1302DBC ABC ︒∴∠=∠=∵CD=CE , ∴∠E=∠CDE , ∵∠E+∠CDE=∠ACB , ∴∠E=30°=∠DBC , ∴BD=DE ,∵BD 是AC 中线,CD=x , ∴AD=DC=x ,∵△ABC 是等边三角形, ∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D . 【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.15.D解析:D 【解析】 【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可. 【详解】解:观察图象知:当1x ≥-时,3kx b +≥, 故选:D . 【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.17.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m,y=n代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 18.10【解析】试题分析:如图,根据勾股定理的几何意义,可得A 、B 的面积和为S1,C 、D 的面积和为S2,S1+S2=S3,∵正方形A 、B 、C 、D 的面积分别为2,5,1,2,∵最大的正方形E 的面解析:10【解析】试题分析:如图,根据勾股定理的几何意义,可得A 、B 的面积和为S 1,C 、D 的面积和为S 2,S 1+S 2=S 3,∵正方形A 、B 、C 、D 的面积分别为2,5,1,2,∵最大的正方形E 的面积S 3=S 1+S 2=2+5+1+2=10.19.18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b 2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+-∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 21.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.22.12cm .【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 23.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.24.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1)k 和b 的值分别为2-和4;(2)23x >;(3)103. 【解析】【分析】(1)根据点D 在函数y =x +2的图象上,即可求出n 的值;再利用待定系数法求出k ,b 的值;(2)根据图象,直接判断即可;(3)用三角形OBC 的面积减去三角形ABD 的面积即可.【详解】(1)函数12y x =+的图像过点D ,且点D 的坐标为2(,)3n ,则有28233n =+=. 所以点D 的坐标为28(,)33. 所以有4,28.33b k b =⎧⎪⎨+=⎪⎩ 解得2,4.k b =-⎧⎨=⎩所以k 和b 的值分别为2-和4. (2)由图象可知,函数y =kx +b 大于函数y =x +2时,图象在直线x =23的左侧, ∴x <23, 故答案为:x <23. (3)已知函数12y x =+的图像与y 轴交于点A ,则点A 坐标为(0,2).所以422AB OB OA =-=-=.函数2y kx b =+的图像与x 轴交于点C ,令20y =,则240x -+=.2x =.所以点C 坐标为(2,0).∴2OC =.则四边形AOCD 的面积等于112104222233BOC BAD S S ∆∆-=⨯⨯-=⨯⨯. 【点睛】本题主要考查一次函数的交点,解决此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(3)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.27.证明见解析.【解析】【分析】利用AAS 证明△ABC ≌△EDH ,再根据全等三角形的性质即可得.【详解】∵AD=BE ,∴AD-BD=BE-BD ,即AB=DE.∵AC ∥EH ,∴∠A=∠E ,在△ABC 和△EDH 中C H A E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDH(AAS),∴BC=DH.【点睛】本题考查了全等三角形的送定与性质,熟练掌握全等三角形的判定方法是解题的关键.28.(1)10,1;(2)P 为(103,0);点P 的实际意义为:点M 运动到点C ,MC=0;(3)当∠CMN=45°时,x 的值为2或4.【解析】【分析】 (1)由函数图像可知,AC=10,点M 运动1秒后,点N 开始运动;(2)由点M 为匀速运动,则先计算点M 的速度,然后求出点M 运动到点C 时的时间,即求出点P 的坐标;(3)先求出点N 在BC 上的运动速度和在AC 上的运动速度,结合∠CMN=45°,则CM=CN ,可分为两种情况进行分析:①点M 在AC 上,点N 在BC 上;②点M 在BC 上,点N 在AC 上;分别列式求解即可.【详解】解:(1)根据函数的图像可知,当点M 与点A 重合时,AC=MC=10cm ,当点N 与点B 重合时,BC=NC=8cm ,由图可知,点M 运动1秒后,点N 开始运动,故答案为:10,1;(2)由题意,点M 为匀速运动,则点M 的速度为:1083/6cm s +=, ∴当点M 运动到点C 时,MC=0,则点P 的横坐标为:103,∴点P 的坐标为:(103,0); 点P 的实际意义为:点M 运动到点C ,MC=0;(3)由图可知,点N 在BC 上运动的速度为:84/31cm s =-, 点N 在AC 上运动的速度为:102/83cm s =-; ∵∠CMN=45°,∴△CMN 是等腰直角三角形,即MC=NC ,①如图,当点M 在AC 上,点N 在BC 上时,有设x 秒后,∠CMN=45°,∴103MC x =-,84(1)NC x =--,∴10384(1)x x -=--,解得:2x =;②如图,当点M 在BC 上,点N 在AC 上时,有点N 到达点C 所用的时间为3x =,设x 秒后,∠CMN=45°,∴310MC x =-,2(3)NC x =-,∴3102(3)x x -=-,解得:4x =;综合上述,当∠CMN=45°时,x 的值为2或4.【点睛】本题考查了等腰直角三角形的判定和性质,从函数图像获取信息,解一元一次方程,线段动点问题,解题的关键是弄清函数图像,根据函数图像找到关键点,从而进行计算,注意运用分类讨论的思想进行解题.29.5【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.30.(1)60;(2)14h ;(3)点E 代表的实际意义是在行驶143h 时,客车和货车相遇,相遇时两车离C 站的距离为80km .【解析】【分析】(1)由图象可知客车6小时行驶的路程是360km ,从而可以求得客车的速度;(2)由图象可以得到货车行驶的总的路程,前2h 行驶的路程是60km ,从而可以起求得货车由B 地行驶至A 地所用的时间;(3)根据图象利用待定系数法分别求得EF 和DP 所在直线的解析式,然后联立方程组即可求得点E 的坐标,根据题意可以得到点E 代表的实际意义.【详解】解:(1)由图象可得,客车的速度是:360÷6=60(km/h ),故答案为:60;(2)由图象可得,货车由B 地到A 地的所用的时间是:(60+360)÷(60÷2)=14(h ),即货车由B 地到A 地的所用的时间是14h ;(3)设客车由A 到C 对应的函数解析式为y=kx+b , 则36060b k b =⎧⎨+=⎩,得60360k b =-⎧⎨=⎩,即客车由A到C对应的函数解析式为y=-60x+360;根据(2)知点P的坐标为(14,360),设货车由C到A对应的函数解析式为y=mx+n,则2014360m nm n+=⎧⎨+=⎩,得3060mn=⎧⎨=-⎩,即货车由C到A对应的函数解析式为y=30x-60;∴603603060y xy x=-+⎧⎨=-⎩,得14380xy⎧=⎪⎨⎪=⎩,∴点E的坐标为(143,80),故点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,利用待定系数法求出一次函数解析式,然后利用一次函数的性质和数形结合的思想解答.31.(1)4;(2)【解析】【分析】(1)由算术平方根及绝对值的非负性可得a,b的值,将a,b+利用二次根式的除法法则计算即可;(2)将a,b的值代入x,yx,y的值,再将x,y的值代入11x y+,利用平方差公式使分母有理化,最后合并即可.【详解】解:(1|3|0 b-=,∴a﹣2=0,b﹣3=0,∴a=2,b=3,4===(2)∵xy∴11x y+==【点睛】本题考查了二次根式的化简,熟练的掌握二次根式分母有理化的方法是化简的关键.。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+2.下列四组线段a ,b ,c ,能组成直角三角形的是( )A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c = 3.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 4.下列各数中,是无理数的是( )A .38B .39C .4-D .2275.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .106.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 7.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个8.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .9.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等10.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( ) A .(﹣3,﹣2) B .(﹣2,﹣3) C .(3,2) D .(3,﹣2) 二、填空题11.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.12.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;13.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.14.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y15.23(3)2716-=_____. 16.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)17.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 2.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( ) A . B . C . D .3.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°4.下列实数中,无理数是( )A .0B .﹣4C .5D .175.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位6.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组7.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处8.下列式子中,属于最简二次根式的是( )A .12B .0.5C .52D .129.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )A .1个B .2个C .3个D .4个10.下列交通标志图案是轴对称图形的是( )A .B .C .D .二、填空题11.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.12.比较大小:10_____3.(填“>”、“=”或“<”)13.等腰三角形中有一个角的度数为40°,则底角为_____________.14.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.15.4的算术平方根是 .16.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.17.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .18.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)19.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .20.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题21.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?22.如图,直线l 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=,点(1,)P a 为坐标系中的一个动点.(1)请直接写出直线l 的表达式;(2)求出ABC ∆的面积;(3)当ABC ∆与ABP ∆面积相等时,求实数a 的值.23.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.24.某工厂计划生产A 、B 两种产品共50件,已知A 产品成本2000元/件,售价2300元/件;B 种产品成本3000元/件,售价3500元/件,设该厂每天生产A 种产品x 件,两种产品全部售出后共可获利y 元.(1)求出y 与x 的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?25.如图,已知直线y =kx +6经过点A (4,2),直线与x 轴,y 轴分别交于B 、C 两点.(1)求点B 的坐标;(2)求△OAC 的面积.四、压轴题26.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.27.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.28.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF29.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.30.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.3.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.B解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.6.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定.【详解】①满足SSS ,能判定三角形全等;②满足SAS ,能判定三角形全等;③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF △≌△全等的条件有3组.故选:C .【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.7.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.8.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;2D.故选C.9.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.10.B解析:B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.二、填空题11.70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.12.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.13.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.14.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.15.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.16.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0 17..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).18.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.19.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.20.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题21.(1)y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数);(2)共有25种租车方案;租用A型号客车21辆,B型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x)=100x+17360.∵30x+20(62-x)≥1441,∴x ≥20.1,又∵x 为整数,∴x 的取值范围为21≤x ≤62的整数.即y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数).(2)由题意100x+17360≤21940,∴x ≤45.8,∴21≤x ≤45,∴共有25种租车方案,又100>0,∴y 随x 的增大而增大,∴x=21时,y 有最小值.即租用A 型号客车21辆,B 型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.22.(1)223y x =-+;(2)132ABC S =;(3)当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【解析】【分析】 (1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,用待定系数法求解即可;(2)先根据勾股定理求出AB 的长,然后根据三角形的面积公式求解即可;(3)分点P 在第一象限和点P 在第四象限两种情况求解即可.【详解】解:(1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,得302k b b +=⎧⎨=⎩, 解得223b k =⎧⎪⎨=-⎪⎩, ∴223y x =-+ ; (2)∵(3,0)A 、(0,2)B , ∴OA=3,OB=2,在Rt ABC ∆中,依勾股定理得:222223213AB OA OB =+=+=,∵ABC ∆为等腰直角三角形,∴21322ABC AB S ==; (3)连接,,BP PO PA ,则:①若点P 在第一象限时,如图:∵1=23ABO OA SOB ⋅=,2213APO O S A a a ⋅==,1=121BOP OB S ⨯=, ∴132ABP BOP APO ABOS S S S =+-=, 即3131322a +-=,解得173a =; ②若点P 在第四象限时,如图:∵3312ABO APO BOP SS a S ==-=,,, ∴132ABP ABO APO BOP S S S S =+-=, 即3133122a --=,解得3a =-, ∴当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,三角形的面积公式,以及分类讨论的数学思想,分类讨论是解答本题的关键.23.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒1020-秒或3.75秒.【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=, 90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠ 又2,90DF DE PDF QDE ︒==∠=∠= PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或102秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.24.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,即y 与x 的函数表达式为y =﹣200x +25000;(2)∵该厂每天最多投入成本140000元,∴2000x +3000(50﹣x )≤140000,解得:x ≥10.∵y =﹣200x +25000,∴当x =10时,y 取得最大值,此时y =23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.25.(1)B (6,0);(2)12【解析】【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B 的坐标;(2)令x =0,求得C 的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y =kx +6经过点A (4,2),∴2=4k +6,解得k =﹣1∴直线为y =﹣x +6令y =0,则﹣x +6=0,解得x =6,∴B (6,0);(2)令x =0,则y =6,∴C (0,6),∴CO =6,∴△OAC 的面积=162⨯×4=12.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握. 四、压轴题26.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB −∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.在等腰直角△DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.27.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.30.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B .y=x+2 C.y=x-2 D.y=-x-22.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是()A.B.C.D.3.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩4.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE5.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm6.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .17.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 8.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.如果点P (m+1,m+3)在y 轴上,则m=_____.14.已知关于x 的方程211x m x -=-的解是正数,则m 的取值范围为__________. 15.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.16.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.17.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.18.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.19.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.20.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题21.先化简,再求值22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中2x =-22.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天. (1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23.(1)计算:203(12)125(39)(45)(45);π--+---+⨯- (2)求x 的值:23(3)27.x +=24.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.25.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x 小时,快车行驶的路程为y 1千米,慢车行驶的路程为y 2千米,图中折线OAEC 表示y 1与x 之间的函数关系,线段OD 表示y 2与x 之间的函数关系,请解答下列问题:(1)甲、乙两地相距 千米,快车休息前的速度是 千米/时、慢车的速度是 千米/时;(2)求图中线段EC 所表示的y 1与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.四、压轴题26.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .27.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.28.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P是线段CB上一动点(点P不与点B、C重合),连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF,BP,BD三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.解析:A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 4.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A ,∠B =∠C 利用 ASA 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 选项B ,BE =CD 不能说明 △ABE ≌△ACD ,说法错误,故此选项正确;选项C,AD =AE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误;选项D ,BD =CE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.5.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.6.D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 7.A解析:A【解析】试题解析:∵点P (3,-4)关于y 轴对称点P′,∴P′的坐标是:(-3,-4).故选A .8.C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.9.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.10.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m=-1.故答案为:-1.14.m>1且m≠2.【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=x-1解得:x=m-1因为x>0,所以解析:m>1且m≠2.【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】原方程整理得:2x-m=x-1解得:x=m-1因为x>0,所以m-1>0,即m>1.①又因为原式是分式方程,所以,x≠1,即m-1≠1,所以m≠2.②由①②可得,则m的取值范围为m>1且m≠2.故答案为:m>1且m≠2.【点睛】考核知识点:解分式方程.去分母,分母不等于0是注意点.15.x<-1.【解析】【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴解析:x<-1.【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.16.a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.17.【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.18.x >−2【解析】【分析】直线y =3x +b 与y =ax −2的交点的横坐标为−2,求不等式3x +b >ax −2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax −2的图象上方.【详解】解析:x >−2【解析】【分析】直线y =3x +b 与y =ax−2的交点的横坐标为−2,求不等式3x +b >ax−2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax−2的图象上方.【详解】解:从图象得到,当x >−2时,y =3x +b 的图象在y =ax−2的图象上方,∴不等式3x +b >ax−2的解集为:x >−2.故答案为x >−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.19.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.20.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD ,根据等边对等角可得∠A=∠ABD ,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD ,根据等边对等角可得∠A=∠ABD ,然后表示出∠ABC ,再根据等腰三角形两底角相等可得∠C=∠ABC ,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN 是AB 的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC ,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题21.29x ,92【解析】【分析】原式括号内两项通分并利用同分母分式的减法运算法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭, 22(3)(3)333x x x x x x x⎛⎫-++=-⋅ ⎪++⎝⎭ 2933x x x +=⋅+ 29x =当x =2992x == 【点睛】此题考查了分式的化简和求值,熟练掌握运算法则是解本题的关键.22.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.23.(1)4--2)120,6x x ==-【解析】【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=3511654---+=--(2)23(3)27.x += 2(3)9.x +=3 3.x +=±120,6x x ==-【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键24.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是()20x -元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩, 解得:40183a ≤≤, ∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,由题意得:()()()8050453040y m a a =--+--()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程25.(1)300,75,60;(2)y 1=100x ﹣150(3≤x ≤4.5);(3)点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【解析】【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A 、B 两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E 坐标,根据快车比慢车提前0.5小时到达目的地可得点C 坐标,然后利用待定系数法求解即可;(3)易得y 2与x 之间的函数关系式,然后只要求直线EC 与直线OD 的交点即得点F 坐标,为此只要解由直线EC 与直线OD 的的解析式组成的方程组即可,进而可得点F 的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E 的横坐标为:2+1=3,则点E 的坐标为(3,150),快车从点E 到点C 用的时间为:300÷60﹣0.5=4.5(小时),则点C 的坐标为(4.5,300),设线段EC 所表示的y 1与x 之间的函数表达式是y 1=kx +b ,把E 、C 两点代入,得:4.53003150k b k b +=⎧⎨+=⎩,解得:100150k b =⎧⎨=-⎩, 即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x ≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH ∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD ⊥x 轴于D,BE ⊥x 轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)y=43x+2;(2)(103,10);(3)存在, P坐标为(6,6)或(6,7+2)或(6,7).【解析】【分析】(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵C(6,10),D(0,2),设此时直线DP解析式为y=kx+b,把D(0,2),C(6,10)分别代入,得2610bk b=⎧⎨+=⎩,解得432kb⎧=⎪⎨⎪=⎩则此时直线DP解析式为y=43x+2;(2)设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA'-=8,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=103则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP 1P 1(6,);②当BP 2=DP 2时,此时P 2(6,6);③当DB=DP 3=8时,在Rt △DEP 3中,DE=6,根据勾股定理得:P 3∴AP 3=AE+EP 3,即P 3(6,+2),综上,满足题意的P 坐标为(6,6)或(6,+2)或(6,).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.28.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.29.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.30.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中,。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形5.下列四个图形中,不是轴对称图案的是( )A .B .C .D .6.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .2 7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)8.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 9. 4的平方根是( )A .2B .±2C .16D .±1610.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =3c = 11.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .49 12.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)13.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .12, 314.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-15.在平面直角坐标系xOy 中,线段AB 的两个点坐标分别为A (﹣1,﹣1),B (1,2).平移线段AB ,得到线段A ′B ′.已知点A ′的坐标为(3,1),则点B ′的坐标为( )A .(4,4)B .(5,4)C .(6,4)D .(5,3)二、填空题16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.17.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 18.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.19.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).20.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.21.计算:32()x y -=__________.22.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.23.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.24.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)25.点P (3,-4)到 x 轴的距离是_____________.三、解答题26.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.27.计算:(1)2(43)x y -(2)(1)(1)x y x y +++- (3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 28.计算: 1(10156)3⨯-⨯ 29.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =6,求△ADE 的周长.(2)若∠DAE =60°,求∠BAC 的度数.30.计算:(1)2(2)|3|86-+-+⨯(2)23(12)88-+- 31.在长方形纸片ABCD 中,点E 是边CD 上的一点,将△AED 沿AE 所在的直线折叠,使点D 落在点F 处.(1)如图1,若点F 落在对角线AC 上,且∠BAC =54°,则∠DAE 的度数为 °. (2)如图2,若点F 落在边BC 上,且AB =6,AD =10,求CE 的长.(3)如图3,若点E 是CD 的中点,AF 的沿长线交BC 于点G ,且AB =6,AD =10,求CG 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a、b,斜边为c.则满足a2+b2=c2.若各边都扩大k倍(k>0),则三边分别为ak、bk、ck(ak)2+(bk)2=k2(a2+b2)=(ck)2∴三角形仍为直角三角形.故选:A.【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.6.A解析:A【解析】【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【详解】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF//BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即4=2±±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.10.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2(2)≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 11.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.12.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.14.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.15.B解析:B【解析】【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.二、填空题16.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.17..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.18.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.19.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.20.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记ΔAOB内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4.故填3,4.【点睛】此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.21.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 22.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.23.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,- ∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩. 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.24.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x 轴,两点到y 轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y 轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x 轴,两点到y 轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y 轴对称,故答案为:y 轴.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x 轴对称;横坐标互为相反数,纵坐标相等的两点关于y 轴对称”是解题的关键. 25.4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值, 故点P (3,﹣4)到x 轴的距离是4.解析:4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.三、解答题26.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒或102秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=,90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠又2,90DF DE PDF QDE ︒==∠=∠=PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=,204PF QE ∴==6(204)1020BP BF PF ∴=-=-=-∴点P 运动时间为10202-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.27.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可; (3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b +-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a+-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b+=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-. 【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.28.【解析】【分析】先计算括号里面的,再计算二次根式的乘法,即可求出答案.【详解】解:原式===. 【点睛】此题主要考查了二次根式的混合运算,掌握运算法则是解题关键.29.(1)6;(2)120°【解析】【分析】(1)根据线段垂直平分线性质得出AD =BD ,CE =AE ,求出△ADE 的周长=BC ,即可得出答案;(2)由∠DAE =60°,即可得∠ADE +∠AED =120°,又由DA =DB ,EA =EC ,即可求得∠BAC 的度数.【详解】解:(1)∵在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DB =DA ,EA =EC ,又BC =6,∴△ADE 的周长=AD +DE +EA =BD +DE +EC =BC =6,(2)∵∠DAE =60°,∴∠ADE +∠AED =120°∵DB =DA ,EA =EC ,∴∠B =∠BAD ,∠C =∠CAE∴∠ADE =∠B +∠BAD =2∠B ,∠AED =∠C +∠CAE =2∠C∴2∠B +2∠C =120°∴∠B +∠C =60°∴∠BAC =180°﹣(∠B +∠C )=120°【点睛】本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.30.(1)2)1 【解析】【分析】(1)首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】(1)2(|+(2)2(1-+=3﹣24-=1﹣4+=1﹣4【点睛】此题主要考查二次根式的混合运算,熟练掌握,即可解题.31.(1)18;(2)CE的长为83;(3)CG的长为910.【解析】【分析】(1)由矩形的性质可知∠BAD=90°,易知∠DAC的度数,由折叠的性质可知∠DAE=12∠DAC,计算可得∠DAE的度数.(2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF长,由CF=BC﹣BF可求出CF长,设CE=x,则EF=ED=6﹣x,在Rt△CEF 中,根据勾股定理求出x值即可;(3)连接EG,由中点及折叠的性质利用HL定理可证Rt△CEG≌△FEG,结合全等三角形对应边相等的性质可设CG=FG=y,可用含y的代数式表示出AG、BG,在Rt△ABG中,根据勾股定理求解即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=12∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=83,即CE的长为83;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt △CEG 和△FEG 中,EG EG CE FE=⎧⎨=⎩, ∴Rt △CEG ≌△FEG (HL ),∴CG =FG ,设CG =FG =y ,则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,解得:y =910, 即CG 的长为910.【点睛】本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.若分式15x -在实数范围内有意义,则实数x 的取值范围是( )A .5x ≠B .5x =C .5x >D .5x <2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( ) A .12y y < B .12y y = C .12y y > D .不能确定 3.64的立方根是( )A .4B .±4C .8D .±84.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+5.下到图形中,不是轴对称图形的是( )A .B .C .D .6.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A.①②③④B.①③⑤C.①③④D.①③④⑤7.下列标志中,不是轴对称图形的是()A.B.C.D.8.一组不为零的数a,b,c,d,满足a cb d=,则以下等式不一定成立的是()A.ac=bdB.a bb+=c dd+C.9ab-=9cd-D.99a ba b-+=99c dc d-+9.某篮球运动员的身高为1.96cm,用四舍五人法将1.96精确到0.1的近似值为()A.2 B.1.9 C.2.0 D.1.9010.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2二、填空题11.关于x的分式方程211x ax+=+的解为负数,则a的取值范围是_________.12.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=__.13.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .14.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.15.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.16.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .17.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度; 18.计算:16=_______.19.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 20.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)三、解答题21.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE . (1)求证:ABE ∆是直角三角形; (2)求ACE ∆的面积.22.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.23.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .24.解方程: (1)4x 2﹣8=0; (2)(x ﹣2)3=﹣1.25.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)28.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.29.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒). (1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点v以原来的运动速度从点B同时出发,都顺时针沿三边运动,求经过多长时间,点P与点Q第一次在ABC的哪条边上相遇?30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据分式的定义即可求解. 【详解】依题意得50x -≠,解得5x ≠, 故选A. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.2.C解析:C 【解析】 【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可. 【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小, 又∵两点的横坐标2<3, ∴12y y > 故选C. 【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.4.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.5.C解析:C 【解析】 【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,故此选项错误; B 、是轴对称图形,故此选项错误; C 、不是轴对称图形,故此选项正确; D 、是轴对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.6.D解析:D 【解析】 【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断. 【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟 ∴货车走完全程所花时间为:1小时24分钟, ∴货车到达乙地的时间是8∶24,⑤正确; 综上:①③④⑤正确; 故选:D 【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.7.B解析:B 【解析】 【分析】根据轴对称图形的性质对各项进行判断即可. 【详解】 A. 是轴对称图形; B. 不是轴对称图形; C. 是轴对称图形; D. 是轴对称图形; 故答案为:B . 【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.8.C解析:C 【解析】 【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【详解】 解:一组不为零的数a ,b ,c ,d ,满足a cb d=, ∴a b c d =,11a c b d +=+,即a b c d b d++=,故A 、B 一定成立; 设a ck b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++,∴9999a b c da b c d--=++,故D一定成立;若99a cb d--=则99a cb b d d-=-,则需99b d=,∵b、d不一定相等,故不能得出99a cb d--=,故D不一定成立.故选:C.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.9.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析12..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.13.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5cm为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm.【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.14.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出,可求出HC的长度即为AF的长度.【详解】解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.15.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233a b , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.16.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 17.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 18.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.19.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.20.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4-【点睛】 本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 三、解答题21.(1)详见解析;(2)185. 【解析】【分析】 (1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.22.(1)详见解析;(2;(3【解析】【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE =,,根据(1)思路得.【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以AE=222AB AC AC +=因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.23.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定. 24.(1)=x (2)1x = 【解析】 【分析】(1)方程整理后,利用平方根定义开方即可求出解; (2)方程利用立方根定义开立方即可求出解. 【详解】解:(1)4x 2﹣8=0, 移项得:4x 2﹣8=0,即x 2=2,开方得:=x ; (2)(x ﹣2)3=﹣1, 开立方得:x ﹣2=﹣1, 解得:x =1. 【点睛】本题主要考查一元二次方程的解法及立方根,熟练掌握运算法则是解题的关键. 25.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫- ⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】 【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长 (2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标. 【详解】解:(1) ∵A (4,0)、B (0,3). ∴OA=3,OB=4,5AB ∴==(2)当点P 在y 轴上时当AB=BP 时, 此时OP=3+5=8或OP=5-3=2, ∴P 点坐标为(0,8)或(0,-2); 当AB=AP 时,此时OP=BO=3, ∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴2224(3)x x +=-7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1, ∴P 点坐标为(9,0)或(-1,0); 当AB=BP 时,此时OP=AO=4, ∴P 点坐标为(-4,0); 当AP=BP 时,设P(x ,0),∴2223(4)x x +=-:78x =;∴P 点坐标为7,08⎛⎫⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫- ⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】 【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标. 【详解】解:(1)根据平移规律可得:B 向左平移; m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位; 故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1) ∵移动后的点 B 和点 A 的纵坐标相等 ∴m+1=3m+3 ∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点, 设 K 点坐标为(-3,a ) M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a ) AM=3,BM=3,KC=a,KH=2 ∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用. 28.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<- 【解析】 【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一); (2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可. 【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P , 故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B , ∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上,∵点A 关于点B 的“正矩点”为点(,)C C C x y , ∴∠ABC=90°,BC=BA , ∴∠1+∠2=90°, ∵∠AOB=90°, ∴∠2+∠3=90°, ∴∠1=∠3. ∴△BFC ≌△AOB , ∴3FC OB ==, 可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3. ②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k+点3(3,3)C k-+,如图2, -1<C y ≤2, 即:-1<33k+≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.29.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇 【解析】 【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案. 【详解】(1)由题意知,BP=2t ,则 PC=BC-BP=6-2t , 故答案为:6-2t ; (2)全等,理由如下: ∵p Q V V =,t=1, ∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点, ∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ), 在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS ) 故答案为:全等. (3)∵p Q V V ≠, ∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C , ∴BP=PC=3cm ,CQ=BD=4cm , ∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇, ∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q走了824643⨯=(cm),∵ABC的周长为:8+8+6=22(cm),∴6422220÷=,∴20-8-8=4(cm),经过24s后,点P与点Q第一次在ABC的BC边上相遇,故答案为:24s,在 BC边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 2.下列成语描述的事件为随机事件的是( )A .守株待兔B .水中捞月C .瓮中捉鳖D .水涨船高 3.下列四个图形中,不是轴对称图案的是( )A .B .C .D .4.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .455.下列实数中,无理数是( )A .0B .﹣4C .5D .17 6.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .7.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±28.下列图案中,属于轴对称图形的是( )A .B .C .D .9.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4- 10.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对11.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 12.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A .32xB .23xC .33xD .3x13.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)14.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CD B .AD =2CD C .AD =3BD D .AB =2BC15.下列各数中,无理数是( )A .πB .C .D .二、填空题16.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.17.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______. 18.若x +2y =2xy ,则21+x y的值为_____. 19.等腰三角形中有一个角的度数为40°,则底角为_____________.20.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.21.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .22.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.23.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.24.等腰三角形的顶角为76°,则底角等于__________.25.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.三、解答题26.如图,已知直角三角形ABC 中,ABC ∠为直角,12AB =、16BC =,三角形ACD 为等腰三角形,其中503AD DC ==,且//AB CD ,E 为AC 中点,连接ED 、BE 、BD ,则三角形BDE 的面积为___________.27.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.28.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.29.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长x与等边△ABC的周长y的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时xy=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.30.如图,将一张边长为8的正方形纸片OABC 放在直角坐标系中,使得OA 与y 轴重合,OC 与x 轴重合,点P 为正方形AB 边上的一点(不与点A 、点B 重合).将正方形纸片折叠,使点O 落在P 处,点C 落在G 处,PG 交BC 于H ,折痕为EF .连接OP 、OH .初步探究(1)当AP =4时①直接写出点E 的坐标 ;②求直线EF 的函数表达式.深入探究(2)当点P 在边AB 上移动时,∠APO 与∠OPH 的度数总是相等,请说明理由. 拓展应用(3)当点P 在边AB 上移动时,△PBH 的周长是否发生变化?并证明你的结论.31.如图,在△ABC 中,AD 平分∠BAC ,点E 在BA 的延长线上,且EC ∥AD .证明:△ACE 是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.2.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A 符合题意;B.水中捞月是不可能事件,故B 不符合题意;C.瓮中捉鳖是必然事件,故C 不符合题意;D.水涨船高是必然事件,故D 不符合题意;故选:A .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A 不是轴对称图形,B 、C 、D 都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.4.B解析:B【解析】【分析】易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x .∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B .【点睛】 本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.5.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 6.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.7.C解析:C【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.8.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A 选项不是轴对称图形,故本选项不符合题意;B 选项不是轴对称图形,故本选项不符合题意;C 选项不是轴对称图形,故本选项不符合题意;D 选项是轴对称图形,故本选项符合题意;故选D .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.10.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y 随x 的增大而减小,∵1<2,∴a >b .故选A .11.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 12.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=x,∴AD=DC=x,∵△ABC是等边三角形,∴BC=AC=2x,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==∴==DE BD故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.13.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD=3BD,在Rt△ABC中,∠A=30°,AD=3CD=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.15.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题16.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.17.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键. 18.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy ,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y =2xy , ∴原式=22x y xy xy xy+==2, 故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.20.130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.21.y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2解析:y=32x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.22.【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA 、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,5=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.23.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.24.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.25.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出: BC=22EC BE -=2242-=23,∴菱形的面积=AE •BC=83.故答案为:83.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题26.563【解析】【分析】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,分别求出EG 、EH 的长,利用BDE ABC BEC EDC S S S S ∆∆∆∆=--求解即可.【详解】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,如图所示,∵△ABC 是直角三角形,AB=12,BC=16,∴222AC AB BC =+,即2222121620AC AB BC +=+=, ∵点C 为斜边AC 的中点,∴BE=CE=12AC=120102⨯= ∴CG=1116822BC =⨯=, 在Rt △EGC 中,22221086EC CG --=,∵AB ∥CD ,∠ABC=90°∴∠DCB=90°∵ EG ⊥BC ,FH ⊥DC ,∴∠EGC=∠DCB=∠EHC=90°∴四边形EGCH 为矩形,∴EH=GC=6,∴BDE ABC BEC EDC S S S S ∆∆∆∆=--=111222BC CD BC EG EH DC -- =150115016166823223⨯⨯-⨯⨯-⨯⨯, =563. 【点睛】本题主要考查了勾股定理以及等腰三角形的性质,正确作出辅助线是解题的关键.27.证明见解析.【解析】【分析】欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了.【详解】在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.28.作图见解析.【解析】试题分析:(1)根据正方形的面积为10正方形即可;(2)①,②试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.29.(1)BM+NC=MN;23xy;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.【解析】【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.30.(1)①(0,5);②152y x=-+;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.【解析】【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:185k bb=+⎧⎨=⎩,解得:125kb⎧=-⎪⎨⎪=⎩,故直线EF的表达式为:y=﹣12x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,APO OPHA OQPOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOP≌△QOP(AAS),∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.31.见解析.【解析】【分析】利用角平分线的性质及平行线的性质可得∠E=∠ACE,根据等角对等边可得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵EC∥AD,∴∠BAD=∠E,∠CAD=∠ACE,∴∠E=∠ACE,∴△ACE是等腰三角形.【点睛】本题考查了等腰三角形的判定,即有两个角相等的三角形是等腰三角形,还涉及了两直线平行同位角相等,两直线平行内错角相等,灵活利用角平分线的性质及平行线的性质证明角相等是解题的关键.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题 1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .12.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .3.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)4.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .5.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--6.11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A .B .C .D .8.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 9.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)-10.下列实数中,无理数是( )A .227B .3πC .4-D .32711.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是212.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <313.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.814.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+1215.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).17.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.18.1x -在实数范围内有意义的条件是__________. 19.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 20.点(2,1)P 关于x 轴对称的点P'的坐标是__________.21.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.22.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)23.若正比例函数y=kx 的图象经过点(2,4),则k=_____.24.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.25.若直角三角形斜边上的中线是6cm ,则它的斜边是 ___ cm .三、解答题26.计算:(1)()03420121+---; (2)1383322+-+. 27.已知函数y=(2m +1)x+m ﹣3.(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围.28.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a ,b ,c 为常数)行驶路程收费标准调价前调价后 不超过3km 的部分起步价6元 起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元 超出6km 的部分 每公里c 元 设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.29.数学概念:百度百科上这样定义绝对值函数:y=│x│=,(0),(0) x xx x≥⎧⎨-<⎩并给出了函数的图像(如图).方法迁移借鉴研究正比例函数y=kx与一次函数y=kx+b(k,b是常数,且k≠0)之间关系的经验,我们来研究函数y=│x+a│(a是常数)的图像与性质.“从‘1’开始”我们尝试从特殊到一般,先研究当a=1时的函数y=│x+1│.按照要求完成下列问题:(1)观察该函数表达式,直接写出y的取值范围;(2)通过列表、描点、画图,在平面直角坐标系中画出该函数的图像.“从‘1’到一切”(3)继续研究当a的值为-2,-12,2,3,…时函数y=│x+a│的图像与性质,尝试总结:①函数y=│x+a│(a≠0)的图像怎样由函数y=│x│的图像平移得到?②写出函数y=│x+a│的一条性质.知识应用(4)已知A(x1,y1),B(x2,y2)是函数y=│x+a│的图像上的任意两点,且满足x1<x2≤-1时, y1>y2,则a的取值范围是.30.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.31.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a=_____,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 2.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A 、是轴对称图形,不符合题意;B 、是轴对称图形,不符合题意;C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后3.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C 建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.4.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,故选项错误;B 、不是中心对称图形,故选项错误;C 、是中心对称图形,故选项正确;D 、不是中心对称图形,故选项错误.故选:C .【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.6.B解析:B【解析】【分析】直接利用32=9,42=16的取值范围.【详解】∵32=9,42=16,在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.7.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.8.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.解:∵D 是BC 的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等9.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.10.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、164=,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.13.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.14.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac+=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键. 15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y =﹣2x+1中,k =﹣2<0,∴y 随着x 的增大而减小.∵点A (x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 2,即可得出结论.【详解】∵一次函数y =﹣2x +1中,k =﹣2<0,∴y 随着x 的增大而减小.∵点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,且x 1<x 2,∴y 1>y 2.∴y 1﹣y 2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.17.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+ ∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.18.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意解析:1x>【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:1x>.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.【解析】【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ ,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,解析:3 4【解析】【分析】首先把113-=a b两边同时乘以ab,可得3b a ab-=,进而可得3a b ab-=-,然后再利用代入法求值即可.【详解】解:∵113 -=a b,∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.20.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x 轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;21.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.22.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键. 23.2【解析】解析:2【解析】⇒=4=22k k24.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .25.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:cm ;故答案为:12.【点睛】本题考查了直解析:12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm ,∴则它的斜边是:2612⨯=cm ;故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.三、解答题26.(1)4;(2)22+. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】解:(1)原式=2+1+1=4;(2)原式2=22+. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键.27.(1)m=3;(2)m<-12;(3)m≥3【解析】试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b中,y随x的增大而减小说明k<0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y随x的增大而减小说明k<0,即2m+1<0,m<-;(3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m>3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.28.(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(317,9);其意义为当 x<317时是方案调价前合算,当x>317时方案调价后合算.【解析】【分析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=317,y=9;所以,函数y1与y2的图象存在交点(317,9);其意义为当 x<317时是方案调价前合算,当 x>317时方案调价后合算.【点睛】本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.29.(1)y≥0.(2)见解析;(3)①见解析;②答案不唯一,如当x>-a时,y随x的增大而增大;当x<-a时,y随x的增大而减小.(4)a≤1.【解析】【分析】(1)根据绝对值的概念可以写出答案;(2)通过列表、描点、连线,即可画出函数图象;(3)当a的值为-2和3时,通过列表、描点、连线,画出函数图象,通过观察图象得出①、②的答案;(4)通过观察图象:函数y=│x+a│的对称轴为直线x a=-,根据函数的增减性,可以求得a的取值范围.【详解】(1)根据绝对值的性质得:y≥0.(2)列表:x-4-3-2-1012y=│x+1│3210123(3)当a的值为-2和3时,仿照(2)的方法在同一平面直角坐标系中画出函数的图像,如下图:x-125y=│x-2│303x-6-30y=│x+3│303①函数y=│x+a│(a≠0)的图像是由函数y=│x│的图像向左(a>0)或向右(a<0)平移│a│个单位得到.②答案不唯一,如:当x>-a时,y随x的增大而增大;当x<-a时,y随x的增大而减小.=-,(4)通过观察函数的图象知:函数y=│x+a│的对称轴为直线x a=-的左侧,根据题意:满足x1<x2≤-1时, y1>y2,属于减函数,是在对称轴x a所以-1≤-a,a≤.所以1【点睛】本题考查了一次函数图象的性质,利用数形结合、从特殊到一般的方法是解题的关键.30.(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC是直角三角形.【解析】、两点的坐标建立平面直角坐标系即可;试题分析:(1)根据A B(2)作出各点关于y轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 31.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】 【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可; 【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩,当3.6 4.5x <≤时,60y x =. 【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( ) A . B . C . D .3.下列实数中,无理数是( )A .227B .3πC .4-D .3274.某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是( )A .2y x =B .1y x =+C .1y x =--D .1y x =-5.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A .B .C .D .7.下列四个实数中,属于无理数的是( )A .0B .9C .23D .128.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 9. 4的平方根是( )A .2B .±2C .16D .±16 10.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.5 11.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 12.下列各数中,无理数的是( )A .0B .1.01001C .πD 4 13.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命14.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1515.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.18.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.19.4的算术平方根是 .20.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.21.若代数式321x x -+有意义,则x 的取值范围是______________. 22.使函数6y x =-有意义的自变量x 的取值范围是_______.23.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.24.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.25.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.三、解答题26.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.27.(1)计算:03( 3.14)98|3|π--++-(2)求x 的值:228x =.28.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.29.如图1,在Rt △ABC 中,∠ACB =90°,动点M 从点A 出发沿A -C -B 向点B 匀速运动,动点N 从点B 出发沿B -C -A 向点A 运动.设MC 的长为y 1(cm),NC 的长为y 2(cm),点M 的运动时间为x (s);y 1、y 2与x 的函数图像如图2所示.(1)线段AC= cm,点M运动 s后点N开始运动;(2)求点P的坐标,并写出它的实际意义;(3)当∠CMN=45°时,求x的值.30.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.31.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.3.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.4-=-2,4-是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.4.D解析:D【解析】【分析】分别求出每个函数与x 轴的交点,即可得出结论.【详解】A .y =2x 与x 轴的交点为(0,0),故本选项错误;B .y =x +1与x 轴的交点为(-1,0),故本选项错误;C .y =-x -1与x 轴的交点为(-1,0),故本选项错误;D .y =x -1与x 轴的交点为(1,0),故本选项正确.故选:D .【点睛】本题考查了一次函数的性质.掌握求一次函数与x 轴的交点坐标的方法是解答本题的关键.5.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°.故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.7.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D 正确;03=,23是有理数,故ABC 错误; 故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义. 8.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S=8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.9.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即4=2±±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.10.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222GH GE HE=+=+=,2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.11.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD,在Rt△ABC中,∠A=30°,AD=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.12.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.13.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 15.D解析:D【解析】【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.18.【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC解析:3【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC于点G,连接OA,OB,OC,∵AB=AC=BC=2,∴BG=12BC=1,∴∵S△ABC=S△ABO+S△BOC+S△AOC,∴12AB×(OD+OE+OF)=12BC•AG,∴.【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.19.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.20.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.21.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.22.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可. 【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条解析:6x≤【解析】 【分析】 根据二次根式a ,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵6y x =-有意义∴6-x≥0∴6x ≤故答案为:6x ≤【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,掌握二次根式a ,被开方数a≥0是解题的关键. 23.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC 的度数,然后利用等边对等角以及三角形内角和定理求得∠C 的度解析:65°或25°【解析】【分析】分两种情况:①当ABC 为锐角三角形;②当ABC 为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC 的度数,然后利用等边对等角以及三角形内角和定理求得∠C 的度数.【详解】解:①当ABC 为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC 为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°; 故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.24.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=∠A OB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=12∠AOB,∵∠AOP=90°-∠OPE,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定. 25.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD 是∠BAC 的平分线,∴DH =DC =4,∴△ABD 的面积=12×16×4=32. 故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键. 三、解答题26.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】 此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.27.(1)3;(2)2x =±【解析】【分析】(1)先根据零指数幂、算术平方根、立方根、绝对值的意义逐项化简,再算加减即可; (2)根据平方根的意义求解即可.【详解】解:(1)原式1323=-++3=;(2)∵228x =,∴24x =,∴2x =±.【点睛】本题考查了实数的混合运算,熟练掌握零指数幂、算术平方根、立方根、绝对值的意义是解答本题的关键.28.见详解.【解析】试题分析:按轴对称的特征进行添涂即可.试题解析:如图所示:29.(1)10,1;(2)P 为(103,0);点P 的实际意义为:点M 运动到点C ,MC=0;(3)当∠CMN=45°时,x 的值为2或4.【解析】【分析】 (1)由函数图像可知,AC=10,点M 运动1秒后,点N 开始运动;(2)由点M 为匀速运动,则先计算点M 的速度,然后求出点M 运动到点C 时的时间,即求出点P 的坐标;(3)先求出点N 在BC 上的运动速度和在AC 上的运动速度,结合∠CMN=45°,则CM=CN ,可分为两种情况进行分析:①点M 在AC 上,点N 在BC 上;②点M 在BC 上,点N 在AC 上;分别列式求解即可.【详解】解:(1)根据函数的图像可知,当点M 与点A 重合时,AC=MC=10cm ,当点N 与点B 重合时,BC=NC=8cm ,由图可知,点M 运动1秒后,点N 开始运动,故答案为:10,1;(2)由题意,点M 为匀速运动,则点M 的速度为:1083/6cm s +=, ∴当点M 运动到点C 时,MC=0,则点P 的横坐标为:103,∴点P 的坐标为:(103,0); 点P 的实际意义为:点M 运动到点C ,MC=0;(3)由图可知,点N 在BC 上运动的速度为:84/31cm s =-, 点N 在AC 上运动的速度为:102/83cm s =-; ∵∠CMN=45°,∴△CMN 是等腰直角三角形,即MC=NC ,①如图,当点M 在AC 上,点N 在BC 上时,有设x 秒后,∠CMN=45°,∴103MC x =-,84(1)NC x =--,∴10384(1)x x -=--,解得:2x =;②如图,当点M 在BC 上,点N 在AC 上时,有点N 到达点C 所用的时间为3x =,设x 秒后,∠CMN=45°,∴310MC x =-,2(3)NC x =-,∴3102(3)x x -=-,解得:4x =;综合上述,当∠CMN=45°时,x 的值为2或4.【点睛】本题考查了等腰直角三角形的判定和性质,从函数图像获取信息,解一元一次方程,线段动点问题,解题的关键是弄清函数图像,根据函数图像找到关键点,从而进行计算,注意运用分类讨论的思想进行解题.30.(1)1小时,30千米/时;(2)y =24x ﹣24(1≤x ≤3.5);(3)x =17327【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.31.(1)①2+k;②y=2x+4;(2)①0;②12 23k<<.【解析】【分析】(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;②根据三角形的面积即可求得k的值,从而可得直线解析式;(2)①把点B和点C代入函数解析式即可求得s的值;②根据两条直线的交点坐标的横坐标的取值范围即可求得k的取值范围.【详解】(1)①把B(﹣1,2)代入y=kx+b,得b=2+k.故答案为:2+k;②∵S△OAB=12(2+k)×1=2解得:k=2,所以直线l1的表达式为:y=2x+4;(2)①∵直线l1:y=kx+b经过点B(k﹣2b,b﹣b2)和点C(﹣1,s).∴k(k﹣2b)+b=b﹣b2,﹣k+b=s整理得,(b﹣k)2=0,所以s=b﹣k=0;②∵直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),∴kx1+b=x1(1﹣k)x1=b,∵b﹣k=0,∴b=k,∴x1=1k k -∵0<x1<2,∴1kk->0或1kk-<2解得:12 23k<<.答:k的取值范围是12 23k<<.【点睛】本题考查了待定系数法求一次函数解析式,交点坐标适合两个解析式是解题的关键.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m3.下列四个实数中,属于无理数的是( ) A .0 B 9C .23D 124.把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的125.计算021( 3.14)()2π--+=( )A .5B .-3C .54D .14-6.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .76 7.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,09.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-10.下列标志中,不是轴对称图形的是( ) A .B .C .D .11.2x -x 的取值范围( ) A .x≥2 B .x≤2 C .x >2D .x <212.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量13.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )A .1个B .2个C .3个D .4个 14.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 15.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( )A .﹣2B .﹣1C .0D .2二、填空题16.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.17.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.18.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.19.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.20.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.21.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.22.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.23.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.24.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.25.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题26.先化简,再求值22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中2x =-27.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围. 28.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE . (1)求证:ABE ∆是直角三角形; (2)求ACE ∆的面积.29.如图①,在A 、B 两地之间有汽车站C ,客车由A 地驶往C 站,货车由B 地驶往A 地,两车同时出发,匀速行驶,图②是客车、货车离 C 站的路程1y 、2y (km)与行驶时间x(h)之间的函数图像.(1)客车的速度是 km/h ;(2)求货车由 B 地行驶至 A 地所用的时间; (3)求点E 的坐标,并解释点 E 的实际意义. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中x =2﹣23. 31.在平面直角坐标系中,直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,直线l 2:y =kx +2(k >0)与坐标轴交于点C ,D ,直线l 1,l 2与相交于点E .(1)当k =2时,求两条直线与x 轴围成的△BDE 的面积;(2)点P (a ,b )在直线l 2:y =kx +2(k >0)上,且点P 在第二象限.当四边形OBEC 的面积为233时. ①求k 的值;②若m =a +b ,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可. 【详解】 2211+2, ∴点A 2. 故选C. 【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.D解析:D 【解析】 【分析】作BD ⊥OC 于点D ,首先由题意得:AO=BD=3m ,AB=OD=2m ,然后根据OC=6米,得到DC=4 m ,最后利用勾股定理得BC 的长度即可. 【详解】解:如图,作BD ⊥OC 于点D ,由题意得:AO=BD=3m ,AB=OD=5-3=2m , ∵OC=6m , ∴DC=6-2=4m ,∴由勾股定理得:2234+, ∴旗杆的高度为5+5=10m , 故选:D . 【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.D解析:D 【解析】 【分析】根据无理数的定义,即可得到答案. 【详解】1223=D 正确; 093=,23是有理数,故ABC 错误; 故选择:D. 【点睛】本题考查了无理数的定义,解题的关键是熟记定义.4.A解析:A 【解析】把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y ⋅==---,由此可得分式的值不变,故选A.5.A解析:A 【解析】 【分析】根据0指数幂和负整数幂定义进行计算即可. 【详解】021( 3.14)()1452π--+=+=故选:A 【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.6.B解析:B 【解析】 【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数. 【详解】∵DE 是AC 的垂直平分线, ∴AE=BE , ∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE , ∴∠A=76°÷2=38°, ∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°, 故选B. 【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.7.C解析:C 【解析】 【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位. 【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001. 故选:C . 【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.8.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.9.C解析:C 【解析】分析:根据第二象限内点的坐标特征,可得答案. 详解:由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.10.B解析:B 【解析】 【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.11.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.13.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.14.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.15.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点是的平分线上一点,且,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.17.【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得与的长,BM=,然后设MO=x ,由在Rt △中,,即可得方程,继而求得M 的坐标,然后利用待定系数法 解析:132y x =-+ 【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得'AB 与'OB 的长,BM='B M ,然后设MO=x ,由在Rt △'OMB 中,222OM OB B M ''+=,即可得方程,继而求得M 的坐标,然后利用待定系数法即可求得答案.【详解】令y=0得:x=6,令x=0得y=8,∴点A 的坐标为:(6,0),点B 坐标为:(0,8),∵∠AOB=90°,∴10=,由折叠的性质,得:AB='AB =10,∴OB '=AB '-OA=10-6=4,设MO=x ,则MB=MB '=8-x ,在Rt △OMB '中,222OM OB B M '+=,即2224(8)x x +=-,解得:x=3,∴M(0,3),设直线AM 的解析式为y=km+b ,代入A(6,0),M(0,3)得: 603k b b +=⎧⎨=⎩解得:123k b ⎧=-⎪⎨⎪=⎩∴直线AM 的解析式为:132y x =-+ 【点睛】本题考查了折叠的性质,待定系数法,勾股定理,解决本题的关键正确理解题意,熟练掌握折叠的性质,能够由折叠得到相等的角和边,能够利用勾股定理求出直角三角形中未知的边. 18.【解析】【分析】把点P (2,2)分别代入y =﹣x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P (2,解析:【解析】【分析】把点P (2,2)分别代入y =﹣12x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】 解:把点P (2,2)分别代入y =﹣12x+m 和y =2x+n , 得,m =3,n =﹣2,∴直线l 1:y =﹣12x+3,直线l 2:y =2x ﹣2,对于y=﹣12x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l1:y=﹣12x+3与y轴的交点为(0,3),∴△PAB的面积=12×5×6﹣12×5×2=10,故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.19.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.20.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. 21.200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50=-, 解得:x=200.检验:当x=200时,x (x ﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器. 22.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.23.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.24.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.25.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题26.29x ,92【解析】【分析】 原式括号内两项通分并利用同分母分式的减法运算法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭, 22(3)(3)333x x x x x x x⎛⎫-++=-⋅ ⎪++⎝⎭ 2933x x x +=⋅+ 29x=当x =2992x == 【点睛】 此题考查了分式的化简和求值,熟练掌握运算法则是解本题的关键.27.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.28.(1)详见解析;(2)185. 【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.29.(1)60;(2)14h ;(3)点E 代表的实际意义是在行驶143h 时,客车和货车相遇,相遇时两车离C 站的距离为80km .【解析】【分析】(1)由图象可知客车6小时行驶的路程是360km ,从而可以求得客车的速度;(2)由图象可以得到货车行驶的总的路程,前2h 行驶的路程是60km ,从而可以起求得货车由B 地行驶至A 地所用的时间;(3)根据图象利用待定系数法分别求得EF 和DP 所在直线的解析式,然后联立方程组即可求得点E 的坐标,根据题意可以得到点E 代表的实际意义.【详解】解:(1)由图象可得,客车的速度是:360÷6=60(km/h ),故答案为:60;(2)由图象可得,货车由B 地到A 地的所用的时间是:(60+360)÷(60÷2)=14(h ),即货车由B 地到A 地的所用的时间是14h ;(3)设客车由A 到C 对应的函数解析式为y=kx+b , 则36060b k b =⎧⎨+=⎩,得60360k b =-⎧⎨=⎩, 即客车由A 到C 对应的函数解析式为y=-60x+360;根据(2)知点P 的坐标为(14,360),设货车由C 到A 对应的函数解析式为y=mx+n , 则2014360m n m n +=⎧⎨+=⎩,得3060m n =⎧⎨=-⎩, 即货车由C 到A 对应的函数解析式为y=30x-60;∴603603060y x y x =-+⎧⎨=-⎩,得14380x y ⎧=⎪⎨⎪=⎩, ∴点E 的坐标为(143,80), 故点E 代表的实际意义是在行驶143h 时,客车和货车相遇,相遇时两车离C 站的距离为80km .【点睛】 本题考查一次函数的应用,解答此类问题的关键是明确题意,利用待定系数法求出一次函数解析式,然后利用一次函数的性质和数形结合的思想解答.30.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x - =2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x -⋅--=﹣21(2)x -, 当x =2﹣时,原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.31.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0)解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB , ∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2, 15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.下列实数中,无理数是()A.0 B.﹣4 C.5D.172.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB的中点E 处,则∠A等于( )A.25°B.30°C.45°D.60°3.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩4.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.5.满足下列条件的△ABC,不是直角三角形的是()A.a:b:3c =:4:5 B.A∠:B∠:9C∠=:12:15C.C A B∠=∠-∠D.222b a c-=6.下列图案中,不是轴对称图形的是()A.B.C .D .7.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.88.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限 B .第二象限C .第三象限D .第四象限9.若2x -在实数范围内有意义,则x 的取值范围( )A .x≥2B .x≤2C .x >2D .x <210.估算x =5值的大小正确的是( ) A .0<x <1B .1<x <2C .2<x <3D .3<x <4二、填空题11.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.12.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.13.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 14.若x +2y =2xy ,则21+x y的值为_____. 15.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.16.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .17.若代数式321xx -+有意义,则x 的取值范围是______________. 18.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.19.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.20.16_______.三、解答题21.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A . (1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标; (3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.22.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.23.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围; (3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.24.如图,己知,A (0, 4),B (t ,0)分别在y 轴,x 轴上,连接AB ,以AB 为直角边分别作等腰Rt △ABD 和等腰Rt △ABC .直线BC 交y 轴于点E. 点G (-2,3)、H (-2,1)在第二象限内.(1)当t =-3时,求点D 的坐标.(2)若点G 、H 位于直线AB 的异侧,确定t 的取值范围. (3)①当t 取何值时,△ABE 与△ACE 的面积相等.②在①的条件下,在x 轴上是否存在点P ,使△PCB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.25.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x 小时,快车行驶的路程为y 1千米,慢车行驶的路程为y 2千米,图中折线OAEC 表示y 1与x 之间的函数关系,线段OD 表示y 2与x 之间的函数关系,请解答下列问题:(1)甲、乙两地相距 千米,快车休息前的速度是 千米/时、慢车的速度是 千米/时;(2)求图中线段EC 所表示的y 1与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2). (1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ; ②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.28.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .(1)如图①,求证:CE AE BE +=;(提示:在BE 上截取BF DE =,连接AF .)(2)如图②、图③,请直接写出线段CE ,AE ,BE 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若26BD AE ==,则CE =__________.29.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由. 30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可. 【详解】解:0,﹣4是整数,属于有理数;17故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B解析:B 【解析】 【分析】先根据图形折叠的性质得出BC=CE ,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE ,进而可判断出△BEC 是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论. 【详解】解:∵△ABC 沿CD 折叠B 与E 重合, ∴BC=CE ,∵E 为AB 中点,△ABC 是直角三角形, ∴CE=BE=AE ,∴△BEC 是等边三角形. ∴∠B=60°, ∴∠A=30°, 故选B .本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.3.A解析:A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组111222,y k x by k x b=+⎧⎨=+⎩的解为2,4.xy=⎧⎨=⎩故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.4.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.5.B解析:B分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案. 详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形; B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形;C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形. 故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.6.D解析:D 【解析】 【分析】根据轴对称图形的概念求解. 【详解】解:A 、是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项符合题意. 故选:D . 【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.7.B解析:B 【解析】 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩解得,t =1.8∴a =3.2+1.8=5(小时), 故选B . 【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.8.D解析:D【解析】【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P 一定不在第四象限.故选D .9.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x 的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.10.C解析:C【解析】【分析】.【详解】∴23,故选:C .【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.二、填空题11.【解析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.12.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.13.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.14.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y =2xy ,∴原式=22x y xy xy xy+==2, 故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACDSS S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF ∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.【点睛】 此题主要考查了角平分线的性质,熟记概念是解题的关键.16.y=x-3【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y =kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2解析:y=32x-3 【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2时,y=6x =3,∴A(2,3),B (2,0), ∵y=kx 过点 A(2,3),∴3=2k ,∴k=32, ∴y=32x , ∵直线y=32x 平移后经过点B , ∴设平移后的解析式为y=32x+b , 则有0=3+b ,解得:b=-3,∴平移后的解析式为:y=32x-3, 故答案为:y=32x-3. 【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.17.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.18.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CB D,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.19.15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.20.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.三、解答题21.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE 周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34 110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.22.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.23.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】(1)把3x =-代入243y x =-, 得4y =.∴C (-3,4) 把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.24.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标.(2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时3=-2k+4,12k = 此时AB 的解析式142y x =+ 当y=0时,1042x =+,x=-8 此时B (-8,0)当点H (-2,1)在直线AB 上时1=-2k+4,32k 此时AB 的解析式243y x =+ 当y=0时,3042x =+,x=83- 此时B (83-,0)∵点G, H 位于直线AB 的异侧,∴由图像可知直线AB 与线段MN 相交,且点M ,N 不在直线AB 上∴88-3t -<< (3)①t=-2时,△ABE 与△ACE 的面积相等.如图,过点B 做x 轴垂线,构造直角三角形ARB 和直角三角形BQC ,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ ,在△ARB 和△BQC 中,=R Q ABR BCQ AB BC ∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB ≌△BQC (AAS )∴AR=BQ,BR=QC=4,若△ABE 与△ACE 的面积相等,则BE=EC ,∴BO=CN=2,∴B (-2,0)②P(6,0),P(12,0),5,0),5,0) 由②可得C (2,-2)当BP=BC时,BC=2242=25,∴BP=25∴P(-25-2,0)或P(25-2,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),P(-25-2,0),P(25-2,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.25.(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【解析】【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E 坐标,根据快车比慢车提前0.5小时到达目的地可得点C 坐标,然后利用待定系数法求解即可;(3)易得y 2与x 之间的函数关系式,然后只要求直线EC 与直线OD 的交点即得点F 坐标,为此只要解由直线EC 与直线OD 的的解析式组成的方程组即可,进而可得点F 的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E 的横坐标为:2+1=3,则点E 的坐标为(3,150),快车从点E 到点C 用的时间为:300÷60﹣0.5=4.5(小时),则点C 的坐标为(4.5,300),设线段EC 所表示的y 1与x 之间的函数表达式是y 1=kx +b ,把E 、C 两点代入,得:4.53003150k b k b +=⎧⎨+=⎩,解得:100150k b =⎧⎨=-⎩, 即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x ≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x=时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣或2m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M 在直线y =2上,由等边三角形的性质和题意得出OD =OE =12DE =1,EF =DF =DE =2,得出OF OD①当点N 在边EF 上时,若点N 与E 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣3,2)或(1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣2);得出m 的取值范围为﹣3≤m ≤﹣或2﹣≤m ≤1;②当点N 在边DF 上时,若点N 与D 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(22);得出m 的取值范围为2≤m ≤3或2﹣≤m ≤1;即可得出结论.【详解】解:(1)①∵b =﹣2,∴点B 的坐标为(﹣2,0),如图2﹣1所示:∵点A 的坐标为(1,2),∴由矩形的性质可得:点A ,B 的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A ,B 的“相关矩形”的面积=|b ﹣1|×2=8,∴|b ﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.28.(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.5或4.5【解析】【分析】(1)在BE上截取BF DE=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取BF DE=,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE=,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .52.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D .4.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .6 5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C.D.6.下列图案属于轴对称图形的是()A. B.C.D.7.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2 B.2或C.或D.2或或8.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B.2C.2.4 D.3.59.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,﹣3)C.(3,2)D.(3,﹣2)10.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2二、填空题11.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.使3x -有意义的x 的取值范围是__________. 14.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.15.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .18.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.19.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于_____.20.函数y1=x+1与y2=ax+b的图象如图所示,那么,使y1、y2的值都大于0的x的取值范围是______.三、解答题21.已知函数y1=2x-4与y2=-2x+8的图象,观察图象并回答问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)求函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积?22.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.23.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?24.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).27.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.28.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.29.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;52,故错误;故选C.【考点】估算无理数的大小.2.C解析:C【解析】【分析】连接BQ,由矩形的性质,设BC=AO=a,AB=OC=b,利用勾股定理得到222+=,然后得到y与x的关系式,判断关系式,即可得到答案.PQ PB BQ【详解】解,如图,连接BQ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.3.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.4.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME 与△AMN 中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB=,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.5.B解析:B【解析】【分析】根据四个选项图像可以判断y kx=过原点且k<0,12y x k=-,-k>0 即可判断.【详解】解:A .y kx=与12y x k=-图像增减相反,得到k<0,所以12y x k=-与y轴交点大于0 故错误;B.y kx=与12y x k=-图像增减相反,得到k<0,所以12y x k=-与y轴交点大于0 故正确;C.y kx=与12y x k=-图像增减相反,12y x k=-为递增一次函数且不过原点,故错误;过原点,而图中两条直线都不过原点,故错误.D .y kx故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.6.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=GH GE HE2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.9.C解析:C【解析】【分析】直接利用关于y轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M(﹣3,2)关于y轴对称的点的坐标为:(3,2).故选:C.【点睛】本题考查的知识点是关于x轴、y轴对称的点的坐标,属于基础题目,易于掌握.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;14.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:21-<<b【解析】【分析】=+与△OAB由题意,可知点A坐标为(1),点B坐标为(2,0),由直线y x b的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1, ∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 15.(,)【解析】【分析】根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,解析:(185,185) 【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为y x=,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合y x=,即可求出点P的坐标.【详解】解:在Rt△ABO中,∠OBA=90°,AB=OB,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.18.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.19.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y1>0,当x<2时,y2>0,∴使y1、y2的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于0三、解答题21.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y 1=2x -4与y 2=-2x +8,解得x=3,y=2,∴函数y 1=2x -4与y 2=-2x +8的图象的交点坐标为(3,2),所以函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.22.图见详解;P (197,127) 【解析】【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD =3,DC =1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4) 设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】 本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.23.(1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【解析】【分析】(1)应用勾股定理求出AC 的高度,即可求解;(2)应用勾股定理求出B′C的距离即可解答.【详解】(1)如图,在Rt△ABC中AB2=AC2+BC2,得AC=2222-=-=24(米)AB BC257答:这个梯子的顶端距地面有24米.(2)由A'B'2=A'C2+CB'2,得B'C=2222-=--=15(米),A B A C'''25(244)∴BB'=B'C﹣BC=15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.24.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③2【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A 2C 1的长,A 2C 1=2,∴QA 2+QC 2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上,∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.27.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案) 一、选择题 1.4的平方根是( )A .2B .2±C .2D .2± 2.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2) 4.计算021( 3.14)()2π--+=( ) A .5 B .-3 C .54 D .14- 5.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM 6.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h7.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .33C .6D .38.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5) B .(-4,-3) C .(0,-3) D .(-2,1)9.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c = 10.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .11.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .312.下列实数中,无理数是( )A .227B .3πC .4-D 32713.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限14.下列各数中,无理数是( ) A .π B . C . D .15.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.18.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.19.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .20.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 21.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.22.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .23.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________24.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.25.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.28.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a ,b ,c 为常数) 行驶路程收费标准调价前调价后 不超过3km 的部分起步价6元 起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分 每公里c 元 设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.29.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.30.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).31.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2±故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键.2.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 3.D解析:D【解析】【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.4.A解析:A【解析】【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】021( 3.14)()1452π--+=+= 故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.5.D解析:D【解析】【分析】由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF 是AB 的垂直平分线,所以AM =BM ,AE =BE ,EF ⊥AB ,即选项A,B,C 均正确,CM 是AB 边上的中线,AB =2CM 错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.6.C解析:C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .7.D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.8.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.9.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 10.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.11.D解析:D【解析】【分析】根据图1可知,可分P在BC上运动和P在CD上运动分别讨论,由此可得BC和CD的的面积.值,进而利用三角形面积公式可得BCD【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,当P在BC段运动,△ABP面积y随x的增大而增大;当P在CD段运动,因为△ABP的底边不变,高不变,所以面积y不变化.由图2可知,当0<x<2时,y随x的增大而增大;当2<x<5时,y的值不随x变化而变化.综上所述,BC=2,CD=5-2=3,故1123322BCDS CD BC∆.故选:D.【点睛】本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x轴的直线代表未发生变化.12.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.13.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.14.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.二、填空题16.【解析】【分析】根据x轴上点的纵坐标为0列方程求解即可.【详解】∵点在x轴上,∴3m−5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.17.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACDSS S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF ∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.【点睛】 此题主要考查了角平分线的性质,熟记概念是解题的关键.18.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾 解析:(1912,0) 【解析】【分析】画图,设点P 的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC 2+PC 2=BD 2+PD 2.【详解】已知如图所示;设点P 的坐标是(x,0),因为PA=OB根据勾股定理可得:AC 2+PC 2=BD 2+PD 2所以32+(x+2)2=42+(4-x)2解得1912x =所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.19.y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y =kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得. 【详解】当x=2解析:y=32x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3, 故答案为:y=32x-3. 【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k 的值是解题的关键.20.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.22.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.23.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.24.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.25.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的解析:2x≥【解析】【分析】观察函数图象得到,当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b≥mx+n的解集.【详解】∵当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题26.y=-13x-2或y=13x-2.【解析】【分析】分一次函数与x轴交点Q在正半轴与负半轴两种情况确定出Q的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x轴的交点为Q,则①当一次函数与x轴交点Q在x轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q(-6,0),设一次函数解析式为y=kx+b,将P与Q坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键. 27.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.28.(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(317,9);其意义为当 x<317时是方案调价前合算,当x>317时方案调价后合算.【解析】【分析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=317,y=9;所以,函数y1与y2的图象存在交点(317,9);其意义为当 x<317时是方案调价前合算,当 x>317时方案调价后合算.【点睛】本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.29.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.30.详见解析.【解析】【分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【详解】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.【点睛】此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.31.(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得1504560k bb+=⎧⎨=⎩,解得:11060kb⎧=-⎪⎨⎪=⎩,∴该一次函数解析式为y=﹣110x+60;(2)当y=﹣110x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角2.如图,一只蚂蚁从点A沿数轴向右直爬行2个单位到达点B,点A表示-2,设点B 所表示的数为m,则1m-+(m+6)的值为 ( )A.3 B.5 C.7 D.93.下列成语描述的事件为随机事件的是()A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高4.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为()A.82°B.78°C.68°D.62°5.下列无理数中,在﹣1与2之间的是()A.﹣3B.﹣2C.2D.56.下列二次根式中属于最简二次根式的是()A.8B.36C.ab(a>0,b>0) D.77.已知等腰三角形的两边长分别为3和4,则它的周长为()A.10 B.11 C.10或11 D.78.下列有关一次函数y=-3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为C.当时,D.函数图象经过第一、二、四象限9.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A .平行B .相交C .垂直D .平行、相交或垂直10.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 11.4 的算术平方根是( )A .16B .2C .-2D .2±12.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1513.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26515.下列各组数是勾股数的是( ) A .6,7,8 B .132 C .5,4,3D .0.3,0.4,0.5二、填空题16.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.17.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.18.因式分解:24ax ay -=__________.19.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 20.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.21.若代数式321xx -+有意义,则x 的取值范围是______________. 22.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.23.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).24.已知直角三角形的两边长分别为3、4.则第三边长为________.25.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.三、解答题26.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点. (1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.27.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形. 28.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片? 29.解方程:21142x xx x --=-+ 30.(模型建立)(1)如图1,等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△CDA ≌△BEC . (模型运用)(2)如图2,直线l 1:y =43x +4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转90°至直线l 2,求直线l 2的函数表达式. (模型迁移)如图3,直线l 经过坐标原点O ,且与x 轴正半轴的夹角为30°,点A 在直线l 上,点P 为x 轴上一动点,连接AP ,将线段AP 绕点P 顺时针旋转30°得到BP ,过点B 的直线BC 交x 轴于点C ,∠OCB =30°,点B 到x 轴的距离为2,求点P 的坐标.31.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中x =2﹣3.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.C解析:C 【解析】 【分析】 【详解】解:意,得2+2 ∴0<m <1, ∴|m-1|+(m+6) =1-m+m+6 =7, 故选C . 【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范围.3.A解析:A 【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.5.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;52,故错误;故选C.【考点】估算无理数的大小.6.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.7.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.8.C解析:C【解析】【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】A、∵k=-3<0,∴当x值增大时,y的值随着x增大而减小,正确;B、函数图象与y轴的交点坐标为(0,2),正确;C、当x>0时,y<2,错误;D、∵k<0,b>0,图象经过第一、二、四象限,正确;故选C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.A解析:A 【解析】【分析】先判断出OA=OB ,∠OAB=∠ABO ,分两种情况判断出△AOC ≌△ABD ,进而判断出∠ABD=∠AOB=60°,即可得出结论. 【详解】∵∠AOB=60°,OA=OB , ∴△OAB 是等边三角形, ∴OA=AB ,∠OAB=∠ABO=60° ①当点C 在线段OB 上时,如图1, ∵△ACD 是等边三角形, ∴AC=AD ,∠CAD=60°, ∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△ABD , ∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO ﹣∠ABD=60°=∠AOB , ∴BD ∥OA ;②当点C 在OB 的延长线上时,如图2, ∵△ACD 是等边三角形, ∴AC=AD ,∠CAD=60°, ∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△ABD , ∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO ﹣∠ABD=60°=∠AOB , ∴BD ∥OA , 故选A .【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.10.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.11.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.12.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 13.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE =AE ′=85,∴E ′H =AH -AE ′=2,∴P ′C +P ′E =CP ′+P ′E ′=CE =265, 故选:D .【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系. 15.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题16.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.17.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B 为(3,0),(4,0)记ΔAOB 内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B 为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4. 故填3,4.【点睛】 此题考查了点的坐标,关键是根据题意画出图形,找出点B 的横坐标与△AOB 内部(不包括边界)的整点m 之间的关系,考查数形结合的数学思想方法.18.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【解析】【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.19.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 20.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.21.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.22..【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 23.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2解析:<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.【详解】解:∵一次函数y =-2x +1中k =-2<0,∴y 随x 的增大而减小,∴y1<y2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.24.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.25.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.三、解答题26.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,、;(3)如图3,连接AC,因为AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,所以AB2= AC2+ BC2,AC=BC∴三角形ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.27.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE ⊥CD ,AF ⊥BE ,∴∠BEC =∠AFB =90°,∴∠ABE +∠BAF =90°.∵∠ABC =90°,∴∠ABE +∠EBC =90°,∴∠BAF =∠EBC .在ΔABF 和ΔBCE 中,∵∠AFB =∠BEC ,AF =BE ,∠BAF =∠EBC ,∴ΔABF ≌ΔBCE .(2)∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵∠BED =90°,∴∠DBE +∠BDE =90°.∵BD 分∠ABE ,∴∠ABD =∠DBE ,∴∠DBC =∠BDE ,∴BC =CD ,即ΔBCD 是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF ≌ΔBCE .28.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.29.3x =【解析】【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21142x x x x --=-+, 方程两边同时乘以(2)(2)x x +-,得2(1)(2)4x x x x ---=-,解这个方程,得3x =.验证:当3x =时,(2)(2)0x x +-≠ ∴原方程的解为:3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(1)见解析;(2)3944y x =--;(3)点P 坐标为(4,0)或(﹣4,0) 【解析】【分析】(1)由“AAS ”可证△CDA ≌△BEC ;(2)如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E ,由(1)可知△BOA ≌△AED ,可得DE =OA =3,AE =OB =4,可求点D 坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP ≌△CPB ,可得OP =BC =4,即可求点P 坐标.【详解】(1)证明:∵AD ⊥DE ,BE ⊥DE ,∴∠D =∠E =90°,∴∠BCE+∠CBE=90°,∵∠ACB =90°,∴∠ACD +∠BCE=90°,∴∠ACD=∠CBE ,又CA =BC ,∠D =∠E =90°∴△CDA ≌△BEC (AAS )(2)如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E∵直线y=43x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得3703k bk b=-+⎧⎨=-+⎩解得3494kb⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l2的函数表达式为:3944y x=--(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP ≌△CPB (AAS )∴OP =BC =4,∴点P (4,0)若点P 在x 轴负半轴,如图4,过点B 作BE ⊥OC ,∵BE =2,∠BCO =30°,BE ⊥OC∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP ,∴AP =BP ,∠APB =30°,∵∠APE +∠BPE =30°,∠BCE =30°=∠BPE +∠PBC ,∴∠APE =∠PBC ,∵∠AOE =∠BCO =30°,∴∠AOP =∠BCP =150°,且∠APE =∠PBC ,PA =PB∴△OAP ≌△CPB (AAS )∴OP =BC =4,∴点P (﹣4,0) 综上所述:点P 坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.31.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x-=2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x -⋅--=﹣21(2)x -,当x =2﹣时,原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m2.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .3.对函数31y x =-,下列说法正确的是( ) A .它的图象过点(3,1)- B .y 值随着x 值增大而减小 C .它的图象经过第二象限D .它的图象与y 轴交于负半轴4.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒5.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .6.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD7.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:38.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个B .2个C .3个D .4个9.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm11.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1512.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( )A .B .C .D .13.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A.12cm B.1cm C.2cm D.32cm14.一组不为零的数a,b,c,d,满足a cb d=,则以下等式不一定成立的是()A.ac=bdB.a bb+=c dd+C.9ab-=9cd-D.99a ba b-+=99c dc d-+15.若关于x的分式方程211x ax-=+的解为负数,则字母a的取值范围为()A.a≥﹣1 B.a≤﹣1且a≠﹣2 C.a>﹣1 D.a<﹣1且a≠﹣2二、填空题16.49的平方根为_______17.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a 的取值范围是_____.18.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为_____.19.如图,△ABC中,5BC=,AB边的垂直平分线分别交AB、BC于点D、E,AC边的垂直平分线分别交AC、BC于点F、G,则△AEG周长为____.20.4的算术平方根是 .21.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.22.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____. 23.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.24.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.25.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题26.如图,已知某开发区有一块四边形空地ABCD ,现计划在该空地上种植草皮,经测量∠ADC=90°,CD=6m ,AD=8m ,BC=24cm ,AB=26m ,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?27.(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;(模型应用)(2)①已知直线l1:y=43x+8与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,-6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=-3x+6上的动点且在y轴的右侧.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.28.老师在黑板上写了一个代数式的正确计算结果,随后用“黑板擦”遮住原代数式的一部分,如图:232 222x xx x x+⎫-÷=⎪-+-⎭(1)求被“黑板擦”遮住部分的代数式,并将其化简;(2)原代数式的值能等于1-吗?请说明理由.29.某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10),请你结合表格和图象:付款金额y a7.51012b购买量x(千克)1 1.52 2.53(1)a=,b=;(2)求出当2x >时,y 关于x 的函数解析式;30.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)画出△A 1B 1C 1沿x 轴向右平移4个单位长度后得到的△A 2B 2C 2;(3)如果AC 上有一点M(a ,b)经过上述两次变换,那么对应A 2C 2上的点M 2的坐标是______.31.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用) (2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.2.A解析:A【解析】【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置应该大于0,可以排除B 选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项, 故选A . 【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.D解析:D 【解析】 【分析】根据一次函数的性质,对每一项进行判断筛选即可. 【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确. 故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质.4.C解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案. 【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称, ∴∠A =∠A ′=30°,∠C =∠C ′=60°; ∴∠B =180°−30°-60°=90°. 故选:C . 【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.5.D解析:D 【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.6.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.7.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.8.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可. 【详解】,∴这一组数中的无理数有:32个. 故选:B . 【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.D解析:D 【解析】 【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答. 【详解】∵()()m 1m 4m 1m 450+--=+-+=>, ∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标. ∴点P 一定不在第四象限. 故选D .10.D解析:D 【解析】 【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论. 【详解】解:当三边是2cm ,2cm ,5cm 时,不符合三角形的三边关系; 当三角形的三边是5cm ,5cm ,2cm 时,符合三角形的三边关系, 此时周长是5+5+2=12cm . 故选:D . 【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.11.A解析:A 【解析】 【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 12.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.13.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm .故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.14.C解析:C【解析】【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】 解:一组不为零的数a ,b ,c ,d ,满足a c b d=, ∴a b c d =,11a c b d +=+,即a b c d b d ++=,故A 、B 一定成立; 设a c k b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++, ∴9999a b c d a b c d --=++,故D 一定成立; 若99a c b d --=则99a c b b d d -=-,则需99b d=, ∵b 、d 不一定相等,故不能得出99a c b d --=,故D 不一定成立. 故选:C .【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.15.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.二、填空题16.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±. 【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根 解析:23 【解析】【分析】利用平方根立方根定义计算即可.【详解】 ∵224=39⎛⎫± ⎪⎝⎭, ∴49的平方根是±23, 故答案为±23. 【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.17.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.18.70°.【解析】【分析】根据全等三角形的性质得出AB =AD ,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB =AD ,∠BAC =∠DAE ,求出∠BAD =∠EAC =40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.19.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.20.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.21.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于022.y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y 解析:y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.23.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.24.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:∴菱形的面积=AE•故答案为:【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.25.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题26.19200【解析】【分析】连接AC,在Rt△ACD中,根据勾股定理求出AC2,由于AC2+BC2=AB2根据勾股定理的逆定理求出∠ACB=90°,由S四边形ABCD=S△ACB-S△ACD可得最终结果.【详解】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB 2=262,BC 2=242,而102+242=262,即AC 2+BC 2=AB 2,∴∠ACB=90°,S 四边形ABCD =S △ACB -S △ACD =12•AC•BC -12AD•CD , =12×10×24-12×8×6=96. 所以需费用96×200=19200(元).【点睛】本题主要考查勾股定理及其逆定理的灵活应用.27.(1)证明见解析;(2)①y=-7x-42;② (2,0)或(5,-9)【解析】【分析】(1)根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定△ACD ≌△CBE ;(2)①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD=AO=6,CD=OB=8,求得C (-8,14),最后运用待定系数法求直线l 2的函数表达式;②根据△APD 是以点D 为直角顶点的等腰直角三角形,当点D 是直线y=-3x+6上的动点且在y 轴的右侧时,分两种情况:当点D 在矩形AOCB 的内部或边上时,当点D 在矩形AOCB 的外部时,设D (x ,-3x+6),分别根据△ADE ≌△DPF ,得出AE=DF ,据此列出方程进行求解即可.【详解】解:(1)证明:如图1,∵△ABC 为等腰直角三角形,∴CB=CA ,∠ACD+∠BCE=90°,又∵AD ⊥ED ,BE ⊥ED ,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC ,在△ACD 与△CBE 中,D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS );(2)①如图2,过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,∵∠BAC=45°,∴△ABC 为等腰直角三角形,由(1)可知:△CBD ≌△BAO ,∴BD=AO ,CD=OB ,∵直线l 1:y =43x +8中,若y=0,则x=-6;若x=0,则y=8, ∴A (-6,0),B (0,8),∴BD=AO=6,CD=OB=8,∴OD=8+6=14,∴C (-8,14),设l 2的解析式为y=kx+b ,则 14806k b k b =-+⎧⎨=-+⎩解得742k b =-⎧⎨=-⎩∴l 2的解析式:y=-7x-42;②D (2,0),(5,-9)理由:当点D 是直线y=-3x+6上的动点且在y 轴右侧时时,分两种情况:当点D 在矩形AOCB 的内部或边上时,如图,过D 作x 轴的平行线EF ,交直线OA 于E ,交直线BC 于F ,设D (x ,-3x+6),则OE=3x-6,AE=6-(3x-6)=12-3x ,DF=EF-DE=8-x ,由(1)可得,△ADE ≌△DPF ,则DF=AE ,即:12-3x=8-x ,解得2x=4,x=2,∴-3x+6=0,∴D (2,0),即点D 为直线y=-3x+6与x 轴交点,此时,PF (PC )=ED (OD )=2,AO=6=CD ,符合题意;准确图形如下:当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,-3x+6),则OE=3x-6,AE=OE-OA=3x-6-6=3x-12,DF=EF-DE=8-x,同理可得:△ADE≌△DPF,则AE=DF,即:3x-12=8-x,解得x=5,∴-3x+6=-9,∴D(5,-9),此时,ED=PF=5,AE=BF=DF=3,BP=PF-BF=5-3=2 <6,点P在线段BC上,符合题意.【点睛】本题考查一次函数综合题,主要考查点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.28.(1)232xx--;(2)原代数式的值不能等于1-;理由详见解析【解析】【分析】(1)设被遮住的部分为A,进而通过分式的化简即可得解;(2)令212xx+=--,求得x的值,进行判断即可的解.【详解】(1)设被遮住的部分为A,即232 ()222x xAx x x+ -÷=-+-∴2232323+=222222x x x x A x x x x x x +-=⋅-=-+----; (2)令212x x +=--,解得0x =,当0x =时,02x x =+ ∵除数不能为0∴原代数式的值不能等于1-. 【点睛】本题主要考查了分式的化简及分式的意义,熟练掌握分式的相关计算是解决本题的关键.29.(1)5,14a b ==;(2)42y x =+【解析】【分析】(1)根据函数图象可得:购买量是函数的自变量x ,也可看出2千克的金额为10元,从而可求1千克的价格,即a 的值,由表格可得出:当购买量大于等于2千克时,购买量每增加0.5千克,价格增加2元,进而可求b 的值;(2)先设关系式为y=px+q ,然后将(2,10),且x=3时,y=14,代入关系式即可求出p ,q 的值,从而确定关系式;【详解】解:(1)购买量是函数中的自变量x ,设射线OA 解析式为:y=mx ,把A (2,10)代入得:10=2m ,即m=5,∴射线OA 解析式为y=5x ,把x=1代入得:y=5,即a=5;根据题意得:b=2×5+(3-2)×5×80%=10+4=14;故答案为:5;14.(2)当x >2时,设y 与x 的函数关系式为:y=px+q ,∵y=px+q 经过点(2,10),又x=3时,y=14,∴210314p q p q +=⎧⎨+=⎩, 解得:42p q =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y=4x+2;【点睛】此题主要考查了一次函数的应用和待定系数法求一次函数解析式等知识,根据已知得出图表中点的坐标是解题关键.30.(1)画图见解析;(2)画图见解析;(3)(a +4,-b )【解析】分析:(1)直接利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.本题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,−b).故答案为(a+4,−b).31.(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(203,223-).【解析】【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定BEC CDA∆≅∆;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD =AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBCCA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721 kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x+6=223 -,∴D(203,223-),此时,ED=PF=203,AE=BF=43,BP=PF−BF=163<6,符合题意,综上所述,D点坐标为:(4,−2)或(203,223-)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.。
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,3 3.下列各点中在第四象限的是( )A .()2,3--B .()2,3-C .()3,2-D .()3,24.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE5.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()6.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1 B 3 C .2 D 57.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-8.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-9.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案: 方案(一):第一次提价%p ,第二次提价%q ; 方案(二):第一次提价%q ,第二次提价%p ; 方案(三):第一、二次提价均为2%p q+; 其中p ,q 是不相等的正数. 有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价; ③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价. 其中正确的有( ) A .②③B .①③C .①④D .②④10.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:311.下列标志中,不是轴对称图形的是( ) A .B .C .D .12.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1B .2C .4D .无数13.一组不为零的数a ,b ,c ,d ,满足a cb d=,则以下等式不一定成立的是( ) A .a c =b d B .a b b +=c dd+ C .9a b -=9c d- D .99a b a b -+=99c dc d-+ 14.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( ) A .48 kgB .48.9 kgC .49 kgD .49.0 kg15.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A.x>-1 B.x<-1 C.x<-2 D.无法确定二、填空题16.2(5)-=_____.17.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是________.18.使3x-有意义的x的取值范围是__________.19.如果2x-有意义,那么x可以取的最小整数为______.20.如图①的长方形ABCD中, E在AD上,沿BE将A点往右折成如图②所示,再作AF⊥CD于点F,如图③所示,若AB=2,BC=3,∠BEA=60°,则图③中AF的长度为_______.21.阅读理解:对于任意正整数a,b,∵2a b≥,∴0a ab b-≥,∴2a b ab+≥a b=时,等号成立;结论:在2a b ab+≥a、b均为正实数)中,只有当a b=时,+a b有最小值2ab若1m1mm-有最小值为__________.22.计算222mm m+--的结果是___________23.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.24.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.25.在实数22,4π,227-,3.14,16中,无理数有______个.三、解答题26.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌; (2)求证:ADE ∆为等边三角形.27.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌; (深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______. (拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图28.(1)计算:()1131133-⎛⎫⎪⎝⎭-+---(2)已知()23227x -=,求x 的值.29.王阿姨到超市购买大米,元旦前按原价购买,用了105元,元旦后,这种大米8折出售,她用168元又买了一些,两次一共购买了45kg ,这种大米的原价是多少?30.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =. 求证:AE BD =.31.如图,正方形网格中每个小正方形的边长为1,格点△ABC 的顶点A (2,3)、B (﹣1,2),将△ABC 平移得到△A ′B ′C ′,使得点A 的对应点A ′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C7)2+32≠42,可以构成直角三角形,故C选项错误.D.12+2)232,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.【详解】解:A.(-2,-3)在第三象限;B.(-2,3)在第二象限;C.(3,-2)在第四象限;D.(3,2)在第一象限;故选:C.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.4.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.5.A解析:A【解析】【分析】根据题意分别求出1A、2A、3A、4A…横坐标,再总结出规律即可得出.【详解】解:根据规律1A (0,1)、2A (2,1)、3A (3,0)、4A (3,0), 5A (4,1)、6A (6,1)、7A (7,0)、8A (7,0) …每4个一个循环,可以判断2020A 在505次循环后与4A 一致,即与2019A 相等,坐标应该是(2019,0) 故选 A 【点睛】此题主要考查了通过图形观察规律的能力,并根据规律进行简单计算的能力.6.D解析:D 【解析】 【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得. 【详解】在平面直角坐标系中,点(1,2)P = 故选:D 【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.7.A解析:A 【解析】 【分析】令点P 的横坐标小于0,列不等式求解即可. 【详解】解:∵点P P (1+m ,3)在第二象限, ∴1+m <0, 解得: m <-1. 故选:A . 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.C解析:C 【解析】 【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可. 【详解】 依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解, 故选:C. 【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键.9.B解析:B 【解析】 【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解. 【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++ 方案(二):(1%)(1%)1%%%%q p q p q p ++=+++ ∴方案(一)、方案(二)提价一样 ∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知:21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多 ∴③对,④错 ∴①③对 故选:B. 【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.10.B解析:B 【解析】 【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.11.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.12.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.13.C解析:C【解析】【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数a ,b ,c ,d ,满足a c b d=, ∴a b c d =,11a c b d +=+,即a b c d b d ++=,故A 、B 一定成立; 设a c k b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++, ∴9999a b c d a b c d --=++,故D 一定成立; 若99a c b d --=则99a c b b d d -=-,则需99b d=, ∵b 、d 不一定相等,故不能得出99a c b d --=,故D 不一定成立. 故选:C .【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.14.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.15.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.二、填空题16.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.17..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21 xy=⎧⎨=⎩.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.18.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的解析:3x ≥【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为3x ≥【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;19.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x ≥2,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单. 20.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2, ∴112AH AB ==,根据勾股定理BH ==∵BC=3,∴3AF HC BC BH ==-=-故填:3【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.21.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3, 故答案为:3.【点睛】 准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.22.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】 【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.23.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】由数轴可得:0<a <2,则a+=a+=a+(2﹣a )=2.故答案为2.【点睛】本题主要考查了解析:【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.24.x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解析:x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解:从图象得到,当x>−2时,y=3x+b的图象在y=ax−2的图象上方,∴不等式3x+b>ax−2的解集为:x>−2.故答案为x>−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.25.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】,4π属于无理数,所以无理数有2个. 故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键. 三、解答题26.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.27.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(--.【解析】【分析】根据等腰直角三角形的性质,OA=AB,题干中已知A点坐标,即可求得OB的长度,表示出B点坐标即可.根据等腰直角三角形的性质得到90CAP OAB︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP也为直角三角形,且AB 垂直BP,且AB=OB=1,即可得出P点的横坐标.先根据题意,确定B点、A点坐标,设出P点和C点坐标,分情况进行讨论,当OP=OB 时,当OB=BP时,当OP=BP时,分别利用两点间距离公式求出点P点的坐标,然后分别算出AP的长,最后利用AP=AC计算出A点坐标即可.【详解】解:(1)∵点A的坐标为(0,1)△OAB是等腰直角三角形,且OA=AB,OA⊥BA∴B点坐标为(1,1).(2)证明:在等腰直角三角形ACP中,AC AP=,90CAP∠=︒在等腰直角三角形AOB中,AO AB=,90OAB∠=︒90CAP OAB︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B ,,,, 设P (1,y ),C (x ,0),当OB=OP解得:1y =或1y =+,则AP ==AP ==解得:x =所以C 点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.28.(1) )- (2) x=5或x=-1 【解析】【分析】(1) 按顺序分别进行0指数幂运算,负指数幂运算,化简绝对值,然后再按运算顺序进行计算即可;(2) 利用直接开平方法进行求解即可. 【详解】(1)原式=1-3-)=)-(2) ()23227x -=(x-2)2=9x-2=±3x=5或x=-1.【点睛】此题主要考查了实数的综合运算能力及解一元二次方程的方法,熟记概念是解题的关键. 29.7元/千克【解析】【分析】设这种大米原价是每千克x 元,根据题意列出分式方程,解出并检验即可.【详解】解:设这种大米原价是每千克x 元,根据题意得: 105168450.8x x+=, 解得x=7 经检验x=7是原分式方程的解,答:这种大米的原价是7元/千克.【点睛】此题主要考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.30.见解析【解析】【分析】利用SAS 证出△AOE ≌△BOD ,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO ⊥,DO EO ⊥,∴∠DOE =∠AOB =90°∴∠DOE +∠AOD =∠AOB +∠AOD∴∠AOE=∠BOD在△AOE 和△BOD 中AO BO AOE BOD EO DO =⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△BOD (SAS )∴AE BD =【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等是解决此题的关键.31.(1)见解析;(2)(﹣3,﹣4)【解析】【分析】(1)根据点A 和点B 的坐标可建立平面直角坐标系;(2)利用平移变换的定义和性质可得答案.【详解】解:(1)如图所示,(2)如图所示,△A′B′C′即为所求,其中点C′的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点睛】本题考查的知识点是作图-平移变换,找出三角形点A的平移规律是解此题的关键.。
苏科版八年级上册数学期末易错试题汇总(含答案)
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.如图,一只蚂蚁从点A沿数轴向右直爬行2个单位到达点B,点A表示-2,设点B 所表示的数为m,则1m-+(m+6)的值为 ( )A.3 B.5 C.7 D.92.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)3.7的平方根是()A.±7 B.7 C.-7 D.±74.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 6.下列实数中,无理数是()A.227B.3πC.4-D.3277.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE 的长为()A 3x B.23x C3x D3x8.下列以a、b、c为边的三角形中,是直角三角形的是()A.a=4,b=5,c=6 B.a=5,b=6,c=8C.a=12,b=13,c=5 D.a=1,b=1,c39.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C10.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+12二、填空题11.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.12.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.13.若点(1,35)P m m +-在x 轴上,则m 的值为________.14.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.17.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.18. 在实数范围内分解因式35x x -=___________.19.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.20.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.三、解答题21.(1)计算:03( 3.14)98|3|π--++-(2)求x 的值:228x =.22.如图,等边三角形ABC 的边长为8,点E 是边BC 上一动点(不与点,B C 重合),以BE 为边在BC 的下方作等边三角形BDE ,连接,AE CD .(1)在运动的过程中,AE 与CD 有何数量关系?请说明理由.(2)当BE=4时,求BDC ∠的度数.23.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.24.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =25.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.四、压轴题26.阅读并填空: 如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.28.在平面直角坐标系中点 A (m −3,3m +3),点 B (m ,m +4)和 D (0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0). ①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m <1,∴|m-1|+(m+6)=1-m+m+6=7,故选C .【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】∵(±7)2=7,∴7的平方根是±7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.5.B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.6.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.7.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.8.C解析:C【解析】【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠)2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.10.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac+=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键.二、填空题11.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120︒【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.12.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.13.【解析】【分析】根据x轴上点的纵坐标为0列方程求解即可.【详解】∵点在x轴上,∴3m−5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.14.<m <2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (m ﹣2,2m ﹣1)在第二象限,∴,解不等式①得,m <2,解不等式 解析:12<m <2. 【解析】【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (m ﹣2,2m ﹣1)在第二象限,∴20210m m -<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC解析:70°.【解析】【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16.(-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).17.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.18.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x19.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a>b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征解析:a >b【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征.20.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE ⊥OA ,PF ⊥OB ,PE =PF∴OP 是∠AOB 的平分线,∠OEP=90°, ∴∠AOP=12∠AOB, ∵∠AOP=90°-∠OPE ,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定. 三、解答题21.(1)3;(2)2x =±【解析】【分析】(1)先根据零指数幂、算术平方根、立方根、绝对值的意义逐项化简,再算加减即可; (2)根据平方根的意义求解即可.【详解】解:(1)原式1323=-++3=;(2)∵228x =,∴24x =,∴2x =±.【点睛】本题考查了实数的混合运算,熟练掌握零指数幂、算术平方根、立方根、绝对值的意义是解答本题的关键.22.(1)AE=CD ,理由见解析;(2)90°【解析】【分析】(1)如图,证明△ABE ≌△CBD ,即可解决问题.(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.【详解】解:(1)AE=CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;在△ABE 与△CBD 中,AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD (SAS ),∴AE=CD .(2)∵BE=4,BC=8∴E 为BC 的中点;又∵等边三角形△ABC ,∴AE ⊥BC ;由(1)知△ABE ≌△CBD ,∴∠BDC=∠AEB=90°.【点睛】本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.23.(1)y=2x-4;(2)-6<y <0.【解析】【分析】(1)设y=k (x-2),把x=1,y=-2代入求出k 值即可;(2)把x=-1,x=2代入解析式求出相应的y 值,然后根据函数的增减性解答即可.【详解】解:(1)因为y 与x-2成正比例,可得:y=k (x-2),把x=1,y=-2代入y=k (x-2),得k (1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.24.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中,ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.25.见解析【解析】【分析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中,12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE△≌△,(ASA)∴CD FE=(全等三角形对应边相等)∵AB AC=(已知)∴ACB B=∠∠(等边对等角)∴EFB B∠=∠(等量代换)∴BE FE=(等角对等边)∴CD BE=;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS≅△△,根据全等三角形的性质得到BD CE=;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.30.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中,EDF DCADFE CADDE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .3.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-4.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④5.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( ) A .1B .5C .7D .49 7.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A 3xB .23xC 3xD 3x8.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A.SSS B.SAS C.AAS D.ASA9.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体B.个体C.样本D.样本容量10.下列各数中,无理数是()A.πB.C.D.二、填空题11.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km.12.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).13.如图,点A的坐标为(-2,0),点B在直线y x上运动,当线段AB最短时,点B 的坐标是__________.14.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.15.等边三角形有_____条对称轴.16.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.17.等腰三角形的顶角为76°,则底角等于__________.18.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________。
19.平行四边形的周长是20,两条对角线相交于O,△AOB的周长比△BOC的周长大2,则AB的长为_____.20.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是_____.三、解答题21.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?22.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km), y1、y2与x的函数关系如图所示.(1)填空:A 、C 两港口间的距离为_______km ,a = _______;(2)求图中点P 的坐标;(3)若两船的距离不超过8km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.23.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.24.如图,CA CD =,12∠=∠,BC EC =.(1)求证:AB DE =;(2)当21A ∠=︒,39E ∠=°时,求ACB ∠的度数.25.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .四、压轴题26.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.27.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .28.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)29.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.30.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C .2.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.3.C解析:C【解析】【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可.【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C.【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键. 4.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.5.D解析:D【解析】画函数的图象,选项A,点(1,0)代入函数,01=,错误.由图可知,B,C错误,D,正确. 选D.6.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.7.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.8.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.10.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.12.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.13.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.14.【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平解析:8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.16.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 17.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.18.a<b【解析】【分析】先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.【详解】∵点M(-1,a)和点N(-2,b)是一次函数y=-2x解析:a<b【解析】【分析】先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.【详解】∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为:a<b.【点睛】本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.19.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.20.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题21.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.22.(1)120,2;(2)(1,30);(3)1115≤x≤1915或4115≤x≤3【解析】【分析】(1)由甲船行驶的函数图象可以看出,甲船从A港出发,0.5h后到达B港,ah后到达C 港,又由于甲船行驶速度不变,则可以求出a的值;(2)分别求出0.5h后甲乙两船行驶的函数表达式,联立即可求解;(3)将该过程划分为0≤x≤0.5、0.5<x≤1、x>1三个范围进行讨论,得到能够相望时x的取值范围.【详解】解:(1)A、C两港口间距离s=30+90=120(km),又由于甲船行驶速度不变,故30÷0.5=60(km/h),则a=2(h).(2)由点(3,90)求得,y2=30x.当0.5<x≤2时,设解析式为y1=ax+c,由点(0.5,0),(2,90)则,0.50 290a ca c+=⎧⎨+=⎩解得:6030 ac=⎧⎨=-⎩∴y1=60x-30,当y1=y2时,60x-30=30x,解得,x=1.此时y1=y2=30.所以点P的坐标为(1,30).(3)))①当x≤0.5时,依题意,(-60x+30)+30x≤8.解得,x≥1115.不合题意.②当0.5<x≤1时,依题意,30x-(60x-30)≤8解得,x≥1115.所以1115≤x≤1.③当1<x≤2时,依题意,(60x-30)-30x≤8解得,x≤1915.所以1<x≤1915④当2<x≤3时,甲船已经到了而乙船正在行驶,∵90-30x≤8,解得x≥41 15,所以,当4115≤x≤3,甲、乙两船可以相互望见;综上所述,当1115≤x≤1915或4115≤x≤3时,甲、乙两船可以相互望见.【点睛】本题考查一次函数的应用以及函数方程、函数图象与实际结合的问题,解题关键是利用数形结合得出关键点坐标.23.证明见解析.【解析】【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【详解】在△ABD和△CBD中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24.(1)详见解析;(2)120°【解析】【分析】(1)根据题意,由“SAS ”证明ABC DEC ∆≅∆即可得解;(2)由ABC DEC ∆≅∆及三角形的内角和定理即可求解.【详解】(1)∵12∠=∠∴12ACE ACE ∠+∠=∠+∠∴ACB DCE ∠=∠在ABC ∆与DEC ∆中CA CD ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴ABC DEC ∆≅∆(SAS )∴AB DE =;(2)∵ABC DEC ∆≅∆,39E ∠=°∴39B ∠=︒∵21A ∠=︒∴1801803921120ACB B A ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了三角形全等的判定及性质、三角形的内角和定理,熟练掌握三角形全等的证明方法是解决本题的关键.25.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3-3)、E(3+2,1-3)、F(0+2,0-3),即D(3,0)、E(5,-2)、F(2,-3);如图:(2)△DEF的面积:11133131322=9 1.5 1.52=4 222⨯-⨯⨯-⨯⨯-⨯⨯---.【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.四、压轴题26.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.29.(1)HL ;(2)见解析;(3)如图②,见解析;△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL ”证明;(2)过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,根据等角的补角相等求出∠CBG=∠FEH ,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH ,再利用“HL ”证明Rt △ACG 和Rt △DFH 全等,根据全等三角形对应角相等可得∠A=∠D ,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D ,E 与B 重合,F 与C 重合,得到△DEF 与△ABC 不全等;(4)根据三种情况结论,∠B 不小于∠A 即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL .(2)证明:如图①,分别过点C 、F 作对边AB 、DE 上的高CG 、FH ,其中G 、H 为垂足.。