七年级数学答题卷(三)
2023年云南省(新中考)初中学业水平模拟考试数学试题卷(三)
2023年云南省(新中考)初中学业水平模拟考试数学试题卷(三)(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(共12题,每题3分,共36分)1.下列图标是中心对称图形的是()A .B .C .D .2.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1560000000用科学记数法表示为()A .1.56×109B .1.56×108C .15.6×108D .0.156×10103.下列计算正确的是()A .235a a a +=B .32a a a÷=C .326326a a a ⋅=D .()2224a a =++4.学校为了培养学生的践行精神和吃苦品质,每学期以班级为单位申报校内志愿者活动.2020年秋季学期某班40名学生参与志愿者活动情况如下表,则他们参与次数的众数和中位数分别是()参与次数12345人数6171421A .2,2B .17,2C .17,1D .2,35.如图,直线//b a ,直线c 与直线a ,b 分别交于点A ,点B ,AC AB ⊥于点A ,交直线b 于点C .如果134∠=︒,那么2∠的度数为()A .34︒B .56︒C .66︒D .146︒6.若正多边形的一个外角是60︒,则该正多边形的内角和为()A .360︒B .540︒C .720︒D .900︒7.抛物线2y x =向右平移2个单位,向下平移1个单位,所得函数的解析式为()A .221y x x =--B .221y x x =-+C .243y x x =+-D .243y x x =-+8.如图,在Rt ABC 中,∠C =90°,∠A =30°,AB +BC =9cm ,则AB 的长为()A .3cmB .4cmC .5cmD .6cm 9.如图是一个几何体的三视图,则这个几何体的侧面积是()A .48πB .57πC .24πD .33π10.如图,已知AB =AC ,AB =6,BC =4,分别以A 、B 两点为圆心,大于12AB 的长为半径画圆弧,两弧分别相交于点E 、F ,直线EF 与AC 相交于点D ,则△BDC 的周长为()A .15B .13C .11D .1011.下列说法正确的个数是()①2-的相反数是2②各边都相等的多边形叫正多边形③了解一沓钞票中有没有假钞,应采用普查的形式④一个多边形的内角和为720°,则这个多边形是六边形⑤在平面直角坐标系中,点()1,3A -关于原点对称的点的坐标是()1,3--⑥174A .2个B .3个C .4个D .5个12.从-3,-1,23,1,2这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组()137520x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的一元一次方程35ax x +=-有整数解,那么这5个数中所有满足条件的a 的值之和是()A .-2B .12-C .-3D .12二、填空题(共4题,每题2分,共8分)13.函数21y x =+中,自变量x 的取值范围是_____.14.如图,90C D ∠=∠=︒,3AC =,4EC =,4=AD ,则AB =______.15.因式分解:23xy x -=______.16.某校为了丰富学生的校园生活,准备购买一批陶笛.已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,根据题意列出正确的方程是_______________________.三、解答题(共8题,共56分)17.(6分)计算:212sin 6022-⎛⎫︒++ ⎪⎝⎭18.(6分)已知:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,,AC CE ACD B =∠=∠.求证:ABC CDE △≌△.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上值息,解答下列问题:(1)填空a=;b=;c=.(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生整体成绩谁更优异.为落实“垃圾分类”,环保部门要求垃圾要按A ,B ,C ,D 四类分别装袋、投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收物,D 类指其他垃圾.小明、小亮各自投放了一袋垃圾.(1)小明投放的垃圾恰好是C 类的概率是;(2)求小明投放的垃圾与小亮投放的垃圾是同一类的概率.21.(7分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.如图,O 是Rt ABC △的外接圆,90ACB ∠=︒,点E 是弧BC 的中点,过点E 作ED AC ⊥,交AC 的延长线于点D ,连接AE 交BC 于点F .(1)判断ED 与O 的位置关系,并证明你的结论;(2)若cos ∠D ,BF =15,求AE 的长.23.(8分)习近平总书记指出:“扶贫先扶志,扶贫必扶智”.某企业扶贫小组准备在春节前夕慰问贫困户,为贫困户送去温暖.该扶贫小组购买了一批慰问物资并安排两种货车运送.据调查得知;2辆大货车与4辆小货车一次可以满载运输700件;5辆大货车与7辆小货车一次可以满载运输1450件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)计划租用两种货车共10辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1300件,且总费用不超过46000元.请你指出共有几种运输方案,并计算哪种方案所需费用最少,最少费用是多少?如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上一动点(不与点A,B重合).过点P作x轴的垂线交直线AB于点C.作PD⊥AB于点D.(1)求抛物线的解析式;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,若这两个三角形的面积之比为2:3,求出m的值.。
七年级上册数学第三单元测试卷【含答案】
七年级上册数学第三单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。
()2. 一个等腰三角形的两个底角相等。
()3. 一个长方体的六个面都是长方形。
()4. 0是最小的自然数。
()5. 平行四边形的对边相等且平行。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 一个等边三角形的三个角都是______度。
3. 一个长方体的体积是长×宽×______。
4. 6是______和______的公倍数。
5. 两条平行线的特点是对边______且______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请解释等腰三角形的特点。
3. 请列举三个不同的长方体物品。
4. 请简述平行四边形的性质。
5. 请解释因数和倍数的概念。
五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。
2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求它的周长。
3. 一个数的因数有1、2、3、4、6,请找出这个数。
4. 两个质数相乘,积是35,请找出这两个质数。
5. 一个平行四边形的对边分别是8厘米和12厘米,求它的面积。
六、分析题(每题5分,共10分)1. 请分析一个长方体和正方体的相同点和不同点。
初一上册数学试卷及答案
初一上册数学试卷及答案本文将为大家提供初一上册数学试卷及答案,以供参考学习。
请大家按照试卷的格式进行答题,答案部分将根据试题依次给出。
希望本文能够帮助大家更好地复习和提高数学水平。
一、选择题1. 下面哪个数是一个整数?a) 5/3b) 0.7c) 1.5d) -2答案:d) -22. 一个正方形的边长是5cm,它的面积是多少平方厘米?a) 25b) 10c) 15d) 20答案:a) 253. 两个数的和为8,差为4,那么这两个数分别是多少?a) 6和2b) 5和3c) 7和1d) 4和4答案:b) 5和34. 如果甲汽车每小时行驶60公里,乙汽车每小时行驶50公里,它们同时从两个城市出发,两地相距450公里,那么它们相遇需要多长时间?a) 2小时b) 3小时c) 4小时d) 5小时答案:b) 3小时5. 算式7 × 8 + 3 × 5的计算结果是多少?a) 41b) 64c) 51d) 36答案:c) 51二、填空题1. 90÷(30-20)的计算结果是______。
答案:92. 每天学习2小时,连续学习7天,总共学习了______小时。
答案:143. 一个正方形的周长是20cm,它的边长是______cm。
答案:54. 一只母鸡5天能下蛋7个,那么15天能下蛋______个。
答案:215. (7 + 8 - 4) × 2的计算结果是______。
答案:22三、解答题1. 请计算17 × 3 + 15 ÷ 5的结果。
答案:等式中的优先顺序是先乘后加,先除后加。
所以,首先计算17 × 3 = 51。
然后计算15 ÷ 5 = 3。
最后51 + 3 = 54。
因此,17 × 3 + 15 ÷ 5 = 54。
2. 用三个相同的数字可以组成几个各位数字之和能被3整除的三位数?答案:首先要确定这个三位数的百位数字。
北师大版七年级上册数学第三章测试卷及答案
北师大版七年级上册数学第三章测试卷及答案考生作答时要沉着冷静,规范书写,确保字迹清楚、卷面整洁。
按照要求在指定位置正确填写信息、在与题号相对应的答题区域内答题一、选择题1.“x与y两数的平方差”可以用代数式表示为( )A. x²-y²B. x-y²C. (x-y)²D. x²-y2. 不一定相等的一组是( )A. a+b与b+aB. 3a与a+a+aC. a³与a·a·aD. 3(a+b)与3a+b3.下列代数式中多项式的个数有( )2a m−n63π+a5a−b2(x2−4).A. 2B. 3C. 4D. 54. 如果3aᵐ⁺³b⁴与a²b":是同类项,则mn的值为( )A. 4B. -4C. 8D. 125. 如图,长为4a的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为( )(用含a的式子表示)A. 4aB. 5aC. 6aD. 8a6. 已知a-2b=-1, 则代数式1-2a+4b的值是( )A. -3B. -1C. 2D. 37.某种商品进价为a元,在销售旺季,提价30%销售,旺季过后,商品以7折价格开展促销活动,这时一件商品的售价为( )A. aB. 0.7aC. 1.03aD.0.91a8. 下列说法正确的是( )A.1x +1是多项式B.3x+y3是单项式C. -mn⁵是五次单项式D. -x²y-2x³y是四次多项式9. 下列运算正确的是( )A. 2⁴=8B. 2x²-x²=2C. 2a+3b=5abD. 2x²y-x²y=x²y第1页共 10页10.如图,各网格中四个数之间都有相同的规律,则第7个网格中右下角的数为( )第1个第2个第3个A. 62B. 79C. 88D. 98二、填空题11. 有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为 .12. 如果a²+a=1,那么代数式3a²+3a+2的值为 .13. 多项式4x²y-3xy+1 的次数是 .14. 如果单项式−xyᵇ⁺¹与单项式12x a−2y3是同类项,那么代数式((a−b)²⁰²³=.三、计算题15. 计算:(1) -2⁴+(4-9)²-5×(-1)⁶;(2)(2a²b-ab²)-2(ab²+3a²b).四、解答题16.判断一个正整数能被3 整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的.17. 已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求(a+b+cd)x²-cd.18. 先化简, 再求值: (3a²+6a-1)-2(a²+2a-3). 其中a=-2.19. 观察下列三行数并按规律填空:-1, 2, -3, 4, -5, ▲ ,▲ , …;1,4,9, 16,25, ▲ , ▲ , …;0,3,8, 15, 24, ▲ ,▲ , …(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3) 取每行数的第10个数,计算这三个数的和.五、综合题20. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、 10元/本.(1)现购进a本甲种书和b本乙种书.请用含a, b的代数式表示,共付款元;第2页共 10页(2)若花费5×10⁴元购进甲种书、花费3×10³元购进乙种书,用科学记数法表示共花费元.21. 某商场计划投入一笔资金(即本金)采购一批商品,经过市场调查发现,有两种销售方式:方式A:若月末出售,可获利30%,但要支付仓储费用600元;方式B:若月初出售,可获利20%,并可用本金和利润再投资其他商品,到月末又可获利5%. 若商场投资本金x元.(1)分别用含x的最简代数式表示出按方式A,B出售所获得的利润;(2)若商场投资本金30000元,选择哪种销售方式获利较多?并求出此时获利金额.22. 已知x, y, z, m, n满足①5(x-y+3)²+2|m-2|=0;n³a²⁻ʸb⁵⁺ᶻ是一个关于a、b三次单项式且系数为-1:(1)求m, n的值;(2)求代数式(x−y)ᵐ⁺¹+(y−z)¹⁻ⁿ+(z−x)⁵的值.23.如图,用同样长的火柴棒按规律搭建图形,图①需要6根火柴棒,图②需要11根火柴棒,图③需要 16根火柴棒, ……(1)图⑥需要根火柴棒;(2)按照这个规律,图n需要火柴棒的根数为 .(用含a的式子表示)第3页共10页参考答案与解析1. 【答案】A【解析】【解答】解:“x与y两数的平方差”可以用代数式表示为:x²-y²,故A符合题意.故答案为: A.【分析】根据题意直接列出代数式即可。
北师大版2021~2022学年七年级数学(上)第一次月考测试卷(三)含答案与解析
方式一:购买不超过 5 斤百香果,每斤 12 元,超出 5 斤的部分,每斤打 8 折;
方式二:每斤售价 10 元.
于老师决定买 35 斤百香果,通过计算说明用哪种方式购买更省钱.
学科网( 北京) 股份有 限公司
21.(8 分) 阅读下面文字:
对于(﹣5 5 )+(﹣9 2 )+17 3 +(﹣3 1 )
D.20
【答案】B
【详解】解:∵ 5+1+(−3)=3,而每行、每列、每条对角线上的三个数之和相等,
∴ a+5+0=3, 3+1+b=3, c+(−3)+4=3
∴ a=−2,b=−1,c=2
∴ -2(3a-2b-c)
= 2 3 2 2 1 2
=12
故选:B.
二、填空题:本题共 5 个小题,每小题 3 分,共 15 分。(请将下列各题正确答案写在答题
1. 在一条南北方向的跑道上,张强先向北走了 10 米,此时他的位置记作 10 米.又向南走
了 13 米,此时他的位置在( )
A. 23 米处
B. 13 米处C. 3 米处D. 23 米处
2. 数轴上到点-2 的距离为 5 的点表示的数为( )
A. -3
B. -7
C. 3 或7
D. 5 或3
3.﹣2 的绝对值是( )
b
学科网( 北京) 股份有 限公司
∴ 错误的有 3 个; 故选:C. 10.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5 分别填入九个空格内,使每行、每列、 每条对角线上的三个数之和相等,现在 a、b、c 分别标上其中的一个数,则-2(3a-2b-c) 的值为( )
浙教版七年级下数学第三章整式的乘除解答题精选及答案
浙教版初中数学七年级下册第三章整式的乘除解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分解答题(共35小题)1.计算:(1)(x﹣1)2+x(3﹣x)(2)(x2y﹣1)2•(x﹣1y2)3÷(﹣x﹣1y)42.计算:(1)﹣(﹣2)+(π﹣3.14)0+(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣1.3.若m p=,m2q=7,m r=﹣,求m3p+4q﹣2r的值4.先化简,再求值:(1)[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=2(2)(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.5.如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于,图②中的小正方形的边长等于;(2)图②中的大正方形的面积等于,图②中的小正方形的面积等于;图①中每个小长方形的面积是;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗?.6.我们规定:a﹣p=(a≠0),即a的负P次幂等于a的p次幂的倒数.例:4﹣2=(1)计算:5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=;如果a﹣2=,那么a=;(3)如果a﹣p=,且a、p为整数,求满足条件的a、p的取值.7.(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它长为;宽为;面积为.(2)由(1)可以得到一个公式:.(3)利用你得到的公式计算:20182﹣2019×2017.8.【规定】=a﹣b+c﹣d.【理解】例如:=3﹣2+1﹣(﹣3)=5.【应用】先化简,再求值:,其中x=﹣2,y=﹣.9.阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.10.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.11.阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999====;9999×9999+19999====(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.12.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.13.如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值;(3)已知(5+2x)2+(2x+3)2=60,求(5+2x)(2x+3)的值.14.先化简,再求值:,其中a=1,b =﹣2.15.小红家有一块L形的菜地,要把L形的菜地按如图所示分成两块面积相等的梯形,种上不同的蔬菜.这两个梯形的上底都是am,下底都是bm,高都是(b﹣a)m.(1)求小红家这块L形菜地的面积.(用含a、b的代数式表示)(2)当a=10,b=30时,求小红家这块L形菜地的面积.16.用4个相同的小长方形与1个小正方形密铺而成的大正方形图案如图所示,已知大正方形的面积为36,小正方形的面积为4,用x、y(x>y)分别表示小长方形的两边长.(1)求x2+y2的值;(2)求xy的值.17.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1方式放置(两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示.当a=5,b=4,AD ﹣AB=2时,若图1中阴影部分的面积为1,求AB的长.18.如图,某小区规划在一个长30米、宽20米的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.设通道的宽为x米,种植花草的面积为S平方米.(1)用含x的代数式表示S(要求有计算过程,结果化简);(2)当x=2时,求S的值.19.长方形和正方形按如图的样式摆放,求图中阴影部分的面积.20.甲、乙两长方形的边长如图所示(m为正整数),其面积分别为S1、S2.(1)用“<”或“>”号填空:S1S2;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m的代数式表示);②若该正方形的面积为S3,试探究:S3与S1的差(即S3﹣S1)是否为常数?若为常数,求出这个常数;如果不是,请说明理由;(3)若满足条件0<n<|S1﹣S2|的整数n有且只有10个,求m的值.21.阅读下面材料,解答问题:将4个数a、b、c、d排列成2行2列,两边各加一条竖线,记为叫做二阶行列式.意义是=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)请你计算的值;(2)若=9,求x的值.22.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个小长方形.拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新长方形.(1)用含m和n的代数式表示拼成的新长方形的周长;(2)根据两个图形的面积关系,得到一个数学公式,请你写出这个数学公式.23.如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.24.已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.25.阅读材料:若“三角形”表示运算a﹣b+c,表示运算ad﹣bc,求:当x=﹣1,y=2时,×的值.26.符号已知称为二阶行列式,他的运算法则=ad﹣bc,例如=2×4﹣3×(﹣5)=23,请根据二阶行列式的法则化简,并求出当x=﹣2时的值.27.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.28.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式,①如图1,根据图中阴影部分的面积可表示为,还可表示为,可以得到的恒等式是②类似地,用两种不同的方法计算同一各几何体的体积,也可以得到一个恒等式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块.用不同方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式是.29.(1)如图1,正方形ABCD和CEFG的边长分别为a、b,用含a、b的代数式表示△AEG的面积.S△AEG=.(2)如图2,边长为a的正方形ABCD、边长为b的正方形CEFG和边长为c的正方形MNHF的位置如图所示,点G在线段AN上,则S△AEN=.(请直接写出结果,不需要过程)30.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)31.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)分别用含a,b的代数式表示图1和图2中阴影部分的面积S1、S2;(2)如果a+b=5,ab=3,求S1的值;(3)当S1<S2时,求a﹣2b值的正负.32.特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=.33.观察以下等式:(x+1)(x2﹣x+1)=x3+1,(x+3)(x2﹣3x+9)=x3+27,(x+6)(x2﹣6x+36)=x3+216,……(1)按以上等式的规律,填空:(a+b)()=a3+b3;(2)运用上述规律猜想:(a﹣b)(a2+ab+b2)=;并利用多项式的乘法法则,通过计算说明此等式成立;(3)利用(1)(2)中的结论化简:(x+y)(x2﹣xy+y2)﹣(x﹣y)(x2+xy+y2).34.有若干块长方形和正方形硬纸片如图①所示,用若干块这样的硬纸片可以拼成个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个数学等式,例如图②可以得到(a+b)2=a2+2ab+b2.小明拼成了如图③的图形,请解答下列问题:(1)根据图中面积关系,写出图③所表示的数学等式;(2)若小明拼成的图③中的大长方形面积为310cm2,其中每块小长方形硬纸片的面积为22cm2,试求该大长方形的周长.35.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1,可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;(3)小明同学用2张边长为a的正方形、3张边长为b的正方形、5张边长为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,求9x+10y+6.参考答案与试题解析一.解答题(共40小题)1.解:(1)原式=x2﹣2x+1+3x﹣x2=x+1;(2)原式=x4y﹣2•x﹣3y6÷x﹣4y4=xy4÷x﹣4y4=x5.2.解:(1)原式=2+1+3+(﹣3)=3;(2)原式=4x4+12xy+9y2﹣(4x2﹣y2)=4x4+12xy+9y2﹣4x2+y2=12xy+10y2,当x=,y=﹣1时,原式=12××(﹣1)+10×(﹣1)2=﹣6+10=4.3.解:∵m p=,m2q=7,m r=﹣,∴m3p+4q﹣2r=(m p)3×(m2q)2÷(m r)2=×49÷=×49×=.4.解:(1)原式=(x2+y2﹣x2﹣2xy﹣y2+2x2﹣2xy)÷4x =(2x2﹣4xy)÷4x=x﹣y,当x﹣2y=2时,原式=(x﹣2y)=1;(2)原式=m2n2﹣4﹣m2n2+2mn﹣1=2mn﹣5,当m=2,n=时,原式=2×2×﹣5=2﹣5=﹣3.5.解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m ﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.6.解:(1)5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=3;如果a﹣2=,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为:(1);;(2)3;±4.7.解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,a+b,a﹣b,(a+b)(a﹣b);(2)由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)20182﹣2019×2017=20182﹣(2018+1)(2018﹣1)=20182﹣20182+1=1.8.解:=(3xy+2x2)﹣(2xy+y2)+(﹣x2+2)﹣(2﹣xy)=3xy+2x2﹣2xy﹣y2﹣x2+2﹣2+xy=2xy+x2﹣y2,当x=﹣2,y=﹣时,原式=2×(﹣2)×(﹣)+(﹣2)2﹣(﹣)2=2+4﹣=5.9.解:(1)∵a﹣b=﹣3,ab=﹣2,∴(a+b)(a2﹣b2)=(a+b)2(a﹣b)=[(a﹣b)2+4ab](a﹣b)=[(﹣3)2+4×(﹣2)]×(﹣3)=﹣3.(2)(a﹣b)2+c2=[(a﹣b)﹣c]2+2(a﹣b)c=(﹣10)2+2×(﹣12)=76.10.解:∵甲正确得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10 对应的系数相等,2b﹣3a=11,ab=10,乙错误的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.11.解:(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,得999×999+1999=9992+2×999+1=(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108.(2)根据(1)中规律,9999999999×9999999999+19999999999=(9999999999+1)2=100000000002=1020.12.解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,即a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,∵(x﹣2016)2+(x﹣2018)2=34,∴(a+1)2+(a﹣1)2=34,∴a2+2a+1+a2﹣2a+1=34,∴2a2+2=34,∴2a2=32,∴a2=16,即(x﹣2017)2=16.13.解:(1)根据图中条件得,该图形的总面积=a2+2ab+b2,该图形的总面积=(a+b)2;(2)由(1)可得:(a+b)2=a2+2ab+b2,∵a2+b2=57,ab=12,∴(a+b)2=57+24=81,∵a+b>0,∴a+b=9;(3)设5+2x=a,2x+3=b,则a2+b2=60,a﹣b=(5+2x)﹣(2x+3)=2,∵a2+b2﹣2ab=(a﹣b)2,∴60﹣2ab=4,∴ab=28,∴(5+2x)(2x+3)=28.14.解:=[a2+ab+b2﹣a2+ab﹣b2](4a2﹣b2)(b2+4a2)=ab(16a4﹣b4)=a5b﹣ab5,当a=1,b=﹣2时,原式=.15.解:(1)小红家这块L形菜地的面积是2×(a+b)(b﹣a)=(b2﹣a2)m2;(2)当a=10,b=30时,原式=302﹣102=800(m2),所以小红家这块L形菜地的面积为800m2.16.解:(1)∵大正方形的面积为36,小正方形的面积为4,∴(x+y)2=36,(x﹣y)2=4,即x2+2xy+y2=36,x2﹣2xy+y2=4,两式相加,可得2(x2+y2)=40,∴x2+y2=20;(2)∵x2+2xy+y2=36,x2﹣2xy+y2=4,两式相减,可得4xy=32,∴xy=8.17.解:5﹣4=1,设AB的长为x,则AD=x+2,依题意有(x+2)(x﹣4)﹣5×1=1,解得x1=1+,x2=1﹣.故AB的长为1+.18.解:(1)S=(30﹣2x)(20﹣x)=600﹣30x﹣40x+2x2=2x2﹣70x+600;(2)当x=2时,S=2×22﹣70×2+600=468(平方米).19.解:图中阴影部分的面积为2a•3a+a2﹣•2a•(3a+a)=6a2+a2﹣a•4a=7a2﹣4a2=3a2.20.解:(1)图①中长方形的面积S1=(m+7)(m+1)=m2+8m+7,图②中长方形的面积S2=(m+4)(m+2)=m2+6m+8,比较:∵S1﹣S2=2m﹣1,m为正整数,m最小为1∴2m﹣1≥1>0,∴S1>S2;故答案为:>;(2)①2(m+7+m+1)÷4=m+4;②S3﹣S1=(m+4)2﹣(m2+8m+7)=9定值;(3)由(1)得,|S1﹣S2|=|2m﹣1|,且m为正整数,2m﹣1>0,∴S1﹣S2=2m﹣1,∵0<n<|S1﹣S2|,∴0<n<2m﹣1,由题意得10<2m﹣1≤11,解得:<m≤6,∵m为正整数,∴2m﹣1=11,∴m=6.21.解:(1)=5×﹣=;(2)∵=9,∴(x+1)(2x+1)﹣3x=9,∴3x2﹣8=0,解得:x1=,x2=.22.解:(1)新长方形的周长=2[(m+n)+(m﹣n)]=4m.(2)由题意:m2﹣n2=(m+n)(m﹣n).23.解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.24.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.25.解:由题意知×=(xy2+2xy2)×(﹣+)=3xy2×(﹣)=3×(﹣1)×22×(﹣)=﹣12×(﹣)=1.26.解:=x(x﹣2)﹣(x+3)(x﹣1)=x2﹣2x﹣x2﹣3x+x+3=﹣4x+3,当x=﹣2时,原式=8+3=11.27.解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.28.解:①∵阴影部分的面积=大正方形的面积﹣中间小正方形的面积即:(a+b)2﹣(a﹣b)2,又∵阴影部分的面积由4个长为a,宽为b的小正方形构成即:4ab,∴(a+b)2﹣(a﹣b)2=4ab;故答案为:(a+b)2﹣(a﹣b)2;4ab;(a+b)2﹣(a﹣b)2=4ab;②∵八个小正方体和长方体的体积之和是:a3+a2b+a2b+ab2+a2b+ab2+ab2+b3,∴(a+b)3=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3,∴(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3.29.解:(1)如图1,连接AC,由题可得,∠ACB=∠GEC=45°,∴AC∥GE,∴S△AEG=S△CEG=S正方形CEFG=b2;故答案为:b2(2)如图2,连接AC,GE,FN,由(1)可得,S△AEG=S△CEG=S正方形CEFG=b2;由题可得,∠HFN=∠FGE=45°,∴GE∥FN,∴S△NEG=S△FEG=S正方形CEFG=b2;∴S△AEN=S△AEG+S△NEG=b2+b2=b2;故答案为:b2.30.解:(1)由图可得,阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可得,矩形的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2;故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(2m+n﹣p)(2m﹣n+p)=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.31.解:(1)S1=a2+b2﹣﹣b(a+b)=a2+b2﹣ab,(2分)S2=a(a+b)﹣b2﹣a2﹣(a﹣b)(a+b)=ab﹣b2.(5分)(2)∵a+b=5,ab=3,∴S1=a2+b2﹣ab=(a+b)2﹣ab=﹣=8.(8分)(3)∵S1<S2,即a2+b2﹣ab<ab﹣b2.∴a2+b2﹣ab<0,∴a2+2b2﹣3ab<0,∴(a﹣2b)(a﹣b)<0,∵a>b,∴a﹣2b<0.(14分)32.解:(1)83和87满足题中的条件,即十位数都是8,8>3,且个位数字分别是3和7,之和为10,那么它们的乘积是一个4位数,前两位数字是8和9的乘积,后两位数字就是3和7的乘积,因而,答案为:7221;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz=100x2+100x+yz=100x(x+1)+yz得证;(3)1×9=991×99=909991×999=99009…99991×99999=9999000009.故答案是:9999000009.33.解:(1)(a+b)(a2﹣ab+b2)=a3+b3,故答案为:a2﹣ab+b2;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;故答案为:a3﹣b3;(3)(x+y)(x2﹣xy+y2)﹣(x﹣y)(x2+xy+y2)=x3+y3﹣(x3﹣y3)=x3+y3﹣x3+y3=2y3.34.解:(1)大长方形的面积=(2a+b)(a+2b),大长方形的面积=2a2+5ab+2b2,∴(2a+b)(a+2b)=2a2+5ab+2b2,故答案为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)由题可得,2a2+5ab+2b2=310,ab=22,∴2a2+2b2=310﹣5×22=200,即a2+b2=100,∴(a+b)2=a2+b2+2ab=144,∴a+b=12,(负值已舍去)∴大长方形的周长=2(2a+b+a+2b)=6(a+b)=72(cm).35.解:(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2bc+2ca,所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=92﹣26×2=81﹣52=29.(3)长方形的面积=2a2+5ab+3b2=(2a+3b)(a+b).所以长方形的边长为2a+3b和a+b,所以较长的一边长为2a+3b.(4)∵长方形的面积=xa2+yb2+zab=(25a+7b)(2a+5b)=50a2+14ab+125ab+35b2=50a2+139ab+35b2,∴x=50,y=35,z=139.∴9x+10y+6=450+350+6=806.。
七年级上册数学第三单元试卷【含答案】
七年级上册数学第三单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 18厘米B. 20厘米C. 22厘米D. 24厘米答案:C3. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D4. 一个正方形的边长为6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米答案:B5. 下列哪个数是奇数?A. 120B. 121C. 122D. 123答案:D二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
(×)2. 一个三角形的两边之和一定大于第三边。
(√)3. 一个数的因数一定比这个数小。
(×)4. 两个奇数的和一定是偶数。
(×)5. 两个偶数的和一定是偶数。
(√)三、填空题(每题1分,共5分)1. 23和29之间的质数是______。
答案:292. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
答案:53. 一个数的最大因数是它本身,这个数是______。
答案:任何数4. 一个正方形的对角线长度是10厘米,那么它的边长是______厘米。
答案:约7.075. 下列哪个数既是偶数又是合数?______答案:4四、简答题(每题2分,共10分)1. 请列举出前五个质数。
答案:2, 3, 5, 7, 112. 请简述等边三角形的性质。
答案:等边三角形的三条边都相等,三个角也都相等,每个角都是60度。
3. 请简述偶数和奇数的区别。
答案:偶数是2的倍数,奇数不是2的倍数。
4. 请简述正方形的性质。
答案:正方形的四条边都相等,四个角也都相等,每个角都是90度。
5. 请简述因数和倍数的区别。
答案:因数是能够整除一个数的数,倍数是一个数的整数倍。
2022-2023学年上学期七年级数学期末模拟测试卷(03)
2022-2023学年上学期七年级数学期末模拟测试卷(03)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣1的倒数是()A.B.﹣C.1D.﹣12.下列计算正确的是()A.x2y+2yx2=3x2y B.5xy﹣3xy=2C.x+y=xy D.4x2y+xy2=5x3y33.下列方程中,是一元一次方程的是()A.2x﹣3=﹣x B.x﹣=0C.x2﹣2x﹣1=0D.x+y=24.如图所示,A、B两个村庄在公路l(不计公路的宽度)的两侧,现要在公路l旁建一个货物中转站,使它到A、B两个村庄的距离之和最小.如图中所示的C点(l与AB的交点)即为所建的货物中转站的位置,则这样做的理由是()A.两直线相交只有一个交点B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.某种商品每件的标价是a元,按标价的八折销售时,仍可获利15%,则这种商品每件的进价为()A.0.8×(1﹣15%)a元B.元C.元D.0.8×(1+15%)a元6.实数a、b在数轴上的位置如图所示,则下列说法正确的是()A.a+b>0B.a﹣b>0C.ab>0D.|a|>|b|7.观察下列图形,其中是正方体的表面展开图的是()A.B.C.D.8.小文带了仅够买20个冰淇淋的钱去超市,到达超市后她发现冰淇淋正在促销,如果按原价买第一个冰淇淋,那么第二个可优惠原价的,则小文最多能买()个冰淇淋.A.20B.24C.28D.309.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是()A.120°B.130°C.140°D.150°10.如图,已知直线AB和CD相交于点O,OE⊥AB,OF平分∠DOB.若∠EOF=107.5°,则∠1的度数为()A.70°B.65°C.55°D.45°二、填空题(本大题共8小题,每小题2分,共16分。
七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区
惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。
学霸智慧课堂数学七年级下册试卷期末复习三
学霸智慧课堂数学七年级下册试卷期末复习三一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1、已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A、在⊙O外B、在⊙O上C、在⊙O内D、不能确定2、已知△ABC中,∠C=90°,AC=6,BC=8,则cosA的值是()A、0.6B、0.75C、0.8D、0.853、△ABC中,点M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是()A、1B、2C、3D、44、既是中心对称图形又是轴对称图形的是()A、1B、-1C、2D、-25、已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()A、外离B、外切C、内切D、相交6、某二次函数y=ax2+bx+c的图像,则下列结论正确的是()A、ao,bo,coB、ao,bo,coC、ao,bo,coD、ao,bo,co7、下列命题中,正确的是()A、平面上三个点确定一个圆B、等弧所对的圆周角相等C、平分弦的直径垂直于这条弦D、与某圆一条半径垂直的直线是该圆的切线8、把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是()A、y=-(x+3)2-2B、y=-(x+1)2-1C、y=-x2+x-5D、前三个答案都不正确二、填空题(本题共16分,每小题4分)9、已知两个相似三角形面积的比是2∶1,则它们周长的比_____。
10、在反比例函数y=中,当x0时,y随x的增大而增大,则k的取值范围是_________。
11、水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________。
12、已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为_________cm。
最新七年级(下)期末数学试卷 解析版 (3)
一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.22.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<48.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为组.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为.3 4 x﹣2 y a2y﹣x c b15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为.16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.2021-2022学年湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣π<﹣3<﹣<2,∴在、﹣π、﹣3、2这四个数中,最小的数是﹣π.故选:B.2.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】根据平行线的判定方法进行分析即可.【解答】解:A、∠1=∠2不能判定AD∥BC,故此选项错误;B、∠2=∠3能判定AD∥BC,故此选项正确;C、∠1=∠4可判定AB∥CD,不能判定AD∥BC,故此选项错误;D、∠3=∠4不能判定AD∥BC,故此选项错误;故选:B.3.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c【分析】根据不等式的性质,可得答案.【解答】解:c是正是负无法确定,根据不等式的基本性质,A、C 无法判定;当c<0时,a+c<b,则B不一定成立;不等式a>b两边都减去同一个数c,不等号方向不改变,则D正确.故选:D.4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵,∴,∴点P在第三象限.故选:C.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测【分析】根据随机抽样逐项判断得结论【解答】解:在公园、医院、卫生院选择老人调查,样本不具有代表性,故选项A、C抽样不合理;随机调查10人,样本容量太小,不具有代表性,故选项B抽样不合理;利用所辖派出所的户籍网随机调查10%老年人进行调查,抽样具有随机性和代表性,抽样合理.故选:D.7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<4【分析】根据max{a,b,c}表示这三个数中最大数,对于max{3,8﹣2x,2x﹣5}=3,可得不等式组,可得结论;【解答】解:∵max{3,8﹣2x,2x﹣5}=3,则,∴x的取值范围为:≤x≤4,故选:B.8.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒【分析】用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.【解答】解:估计这袋黄豆约有25÷=500(粒),故选:D.9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【解答】解:①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题;④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C.10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8【分析】先把不等式组解出,再根据解为正数列关于a的不等式组解出即可得到a的范围;根据题意得出b=4﹣a>0,即可得到1<a<4,代入z=a﹣3b得到z=4a﹣12,根据a的取值可得结论.【解答】解:解这个方程组的解为:,由题意,得,则原不等式组的解集为a>1;∵a+b=4,b>0,∴b=4﹣a>0,∵a>1,∴1<a<4,∵a﹣3b=a﹣3(4﹣a)=4a﹣12,z=a﹣3b,故﹣8<z<4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于5 .【分析】直接利用点的坐标特点得出答案.【解答】解:点(﹣5,1)到y轴的距离等于:|﹣5|=5.故答案为:5.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为9 组.【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【解答】解:最大值与最小值的差是:176﹣150=26,则可以分成的组数是:26÷3≈9(组),故答案为:9.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集x≥5或x≤﹣.【分析】仿照阅读材料中的方法求出所求不等式的解集即可.【解答】解:根据“异号两数相乘,积为负”可得:①或②,解①得:x≥5;解②得:x≤﹣,∴原不等式的解集为x≥5或x≤﹣.故答案为:x≥5或x≤﹣.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为 1 .3 4 x﹣2 y a2y﹣x c b【分析】根据“每行、每列和对角线上的数字和都相等”列出方程组并解答.【解答】解:根据题意,得.解得.所以x+y=﹣1+2=1.故答案是:1.15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为(6065,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2021÷4=505余1,P2021的纵坐标与P1相同为2,横坐标为5+12×505=6065,∴P2021(6065,2),故答案为(6065,2).16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=﹣.【分析】求出不等式的解集,根据已知得出3a+6<a≤3a+7,求出﹣3.5≤a<﹣3,设m=3a+6,则a=m﹣2,得出不等式组﹣3.5≤m﹣2<﹣3,求出m即可.【解答】解:解不等式x﹣a<0得:x<a,∵关于x的不等式x﹣a<0的最大整数解为3a+6,∴3a+6<a≤3a+7,解得:﹣3.5≤a<﹣3,∵3a+6为整数,设m=3a+6,则a=m﹣2,即﹣3.5≤m﹣2<﹣3,解得:﹣4.5≤m<﹣3,∵m为整数,∴m=﹣4,即a=(﹣4)﹣2=﹣,故答案为:﹣.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②×2得:11x=22,解得:x=2,把x=2代入①得:y=0,则方程组的解为.18.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①得:x≥3,由②得:x<8,∴不等式组的解集为3≤x<8,在数轴上表示如下:.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.【分析】(1)由点M在y轴负半轴上,可得点M的横坐标等于0,列出关于a的绝对值方程,可解得a的值,则点M的坐标可求得;(2)由直线MN∥x轴及点M的坐标,可设N(x,﹣5),结合线段MN长度为4,可得关于x的方程,解得x的值,则点N的坐标可得.【解答】解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣3a<0,∴a=±3,且a>,∴a=3.∴4﹣3a=﹣5,∴M(0,﹣5);(2)∵直线MN∥x轴,M(0,﹣5),∴设N(x,﹣5),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣5)或(﹣4,﹣5).20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?【分析】(1)根据扇形统计图中的数据和A组的频数比B组小48,可以求得本次调查的人数,然后即可计算出a、b的值;(2)根据直方图中的数据,可以计算出扇形图中D部分所对的圆心角的度数和C组的人数,从而可以将频数分布直方图补充完整;(3)根据扇形统计图中的数据,可以计算出成绩优秀的学生有多少名.【解答】解:(1)本次调查的学生有:48÷(20%﹣8%)=400(人),a=400×8%=32,b=400×20%=80,即a的值是32,b的值是80;(2)扇形图中D部分所对的圆心角的度数:360°×=126°,C组的人数为:400×25%=100,补全的频数分布直方图如右图所示;(3)1000×(1﹣8%﹣20%﹣25%)=470(名),答:成绩优秀的学生有470名.21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.【分析】(1)利用点的坐标的确定x轴和y轴;(2)①M点的横坐标与B点的横坐标相同;②利用点A、C点的坐标变换规律写出D点坐标,然后描点即可;③点P在直线AB与坐标轴的两交点所得线段上时,P点到x轴和到y轴的距离和有最小值.【解答】解:(1)如图;(2)①M点的坐标为(2,0);②如图,CD为所作,D点坐标为(﹣1,﹣1);③P点到x轴和到y轴的距离和的最小值为4,此时P点横坐标的取值范围为0≤x≤4.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需280万元;A型公交车2辆,B型公交车1辆,共需260万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过900万元”和“10辆公交车在该线路的年均载客量总和不少于670万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型新能源公交车每辆需x万元,购买B 型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).【分析】(1)过点G作GE∥AB,根据平行线的性质得∠AMG+∠CNG=∠MGN,再由垂直的定义得答案;(2)过G作GE∥AB,过P作PH∥AB,通过平行线的性质,和角平分的定义及角的和差得∠MGN+∠MPN=3∠BMG,便可求得结果;(3)过E作EK∥AB,过G作GH∥AB,通过平行线的性质,和角平分的定义及角的和差,由2∠MEN+∠MGN=108°,得∠AMF 的方程,求得∠AMF,便可求得结果.【解答】解:(1)过点G作GE∥AB,如图1,∵AB∥CD,∴AB∥GE∥CD,∴∠AMG=∠MGE,∠CNG=∠NGE,∴∠AMG+∠CNG=∠MGE+∠NGE=∠MGN,∵GM⊥GN,∴∠AMG+∠CNG=∠MGN=90°;(2)过G作GE∥AB,过P作PH∥AB,如图2,∵AB∥CD,∴AB∥EG∥CD∥FP,∴∠BMG=∠MGE,∠DNG=∠NGE,∠BMP=∠FPM,∠FPN=∠DNP,∵MG平分∠BMP,ND平分∠PNG,∴∠BMP=2∠BMG=2∠PMG,∠PND=∠DNG=∠PNG,∴∠MGN+∠MPN=∠MGE+∠NGE+∠FPM﹣∠FPN=∠BMG+∠PND+2∠BMG﹣∠PND=3∠BMG,∵∠BMG=28°,∴∠MGN+∠MPN=84°;(3)∠AME=48°.理由如下:如图3,过E作EK∥AB,过G作GH∥AB,∵AB∥CD,∴∠KEM=∠AME,∠KEN=∠CNE,∠AMF=∠BMG=∠MGH,∠DNG=∠NGH,∵MF平分∠AME,NE平分∠CNG,∴∠AME=2∠AMF,∠CNE=∠ENG,∴∠DNG=180°﹣2∠CNE,∴∠MEN=∠KEN﹣∠KEM=∠CNE﹣2∠AMF,∠MGN=∠MGH+∠NGH=∠AMF+180°﹣2∠CNE,∵2∠MEN+∠MGN=108°,∴2(∠CNE﹣2∠AMF)+(∠AMF+180°﹣2∠CNE)=108°,即﹣3∠AMF+180°=108°,∴∠AMF=24°,∴∠AME=2∠AMF=48°.24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.【分析】(1)根据非负性得出n=4,m=5,即可得出点A的坐标;(2)根据三角形面积得出方程,解方程即可;(3)分情况讨论,根据图形的平移和图形面积解答即可.【解答】解:(1)∵,∴,∴n=4,∴=0,∴m=5,∴点A的坐标为(5,4);(2)如图1:∵A(5,4).B(1,2),M(2,b),∴S△ABM=(5﹣1)(b﹣2)﹣(2﹣1)(b﹣2)﹣×(5﹣2)(b﹣4)﹣(5﹣1)(4﹣2)=5,或S△ABM=(5﹣1)(4﹣b)﹣(2﹣1)(2﹣b)﹣(5﹣2)(4﹣b)﹣(5﹣1)(4﹣2)=5,解得:b=5,或b=0;(3)分两种情况:①当线段AB向上平移c个单位长度,如图2:则A′(5,4+c),B'(1,2+c),∵P点的坐标为(7,0),∴S△A′B′P=(4+c+2)×(7﹣1)﹣×2×(5﹣1)﹣×(4+c)×(7﹣5)=4,解得:c=﹣3<0,不合题意舍去;②当线段AB向下平移c个单位长度,如图3:则A′(5,4﹣c),B(1,2﹣c),则S△A′B′P=×(c﹣2)×(7﹣1)﹣×(5﹣1)×2﹣×(c ﹣4)×2﹣2×2=4,解得:b=10.综上所述,把线段AB向下平移10个单位,恰使△ABP的面积S△ABP=4.。
河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)
2024-2025学年上学期阶段性评价卷一七年级数学(华师版)注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项、其中只有一个是正确的。
1.表示( )A .2024的倒数B.的相反数 C .的绝对值D .的倒数2.数轴上表示数a 的点的位置如图所示,则a 可以是()A .B .C .0D .33.下列有关0的说法中,不正确的是( )A .0是整数B .0既不是正数,也不是负数C .0乘任何有理数仍得0D .0除以任何有理数仍得04.下表是12月份河南省其中4个市某一天的平均气温,则这天平均气温最低的是()地区郑州市安阳市焦作市洛阳市平均气温/2A .郑州市B .安阳市C .焦作市D .洛阳市5.将算式改写成省略加号和括号的形式是( )A .B .C .D .6.下面各组大小关系中,正确的是( )A .B .C .D .7.下列各式中,与的运算结果相同的是( )A . B . C . D . 8.定义一种新运算*,已知,则的结果为( )A .B .C .0D .9.如图,圆的周长为3个单位长度,该圆上的3个点将圆的周长平均分成3份,在3个点处分别标上1,2,3,先让圆周上表示数字1的点与数轴上表示0的点重台,再将圆沿着数轴向右滚动,则数轴上表示2024的点2024-120242024-12024-4-2-C ︒1-2-2(1)(3)(4)--+--+2134-+-2134+--2134++-2134+-+302>-332288⎛⎫--=-- ⎪⎝⎭113333⎛⎫⎛⎫÷-<⨯- ⎪ ⎪⎝⎭⎝⎭(4)3|43|--<-+48577÷÷48577⎛⎫÷÷⎪⎝⎭48577⎛⎫÷⨯⎪⎝⎭84577⎛⎫÷÷⎪⎝⎭78547⨯⨯1*21211,2*(3)2(3)28=⨯-=-=⨯--=-1*(1)2-1-12-12与圆周上重合的点上标的数字为( )A .1B .2C .3D .无法确定10.在一条可以折叠的数轴上,点A ,B 表示的数分别是,5,如图,以点C 为折点,将此数轴向右对折,使A ,B 之间的距离为1,则点C 表示的数是()A .0B .C .或D .或二、填空题(每小题3分,共15分)11.请写出一个使的a 值:__________.12.2024年巴黎奥运会结束后,部分运动员组成代表团访问香港和澳门,弘扬体育强国精神,激励港澳同胞的爱国热情.大帽山是香港最高的山峰,海拔为,记作,螺洲门是香港海拔最低点,海拔为海平面以下,记作__________.13.数轴上与点A 距离3个单位长度的点表示的数是1,则点A 表示的数是__________.14.小华在计算时(代表一个有理数),误将“”看成“”,按照正确的运算顺序计算,结果为,则的正确结果是__________.15.一只蜗牛从树根沿竖直方向往上爬,每天白天向上爬行,晚上又下滑,这只蜗牛要爬到距离树根的树洞处,需要__________天.(填整数)三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1) (2)17.(8分)把下列各数填入相应的大括号里.正整数集:{ …}负数集:{ …}分数集:{ …}非负有理数集:{ …}18.(9分)阅读下面题目的运算过程,并解答问题.计算:10-2-1-2-2-3-a a >958m 958m +66m 2(30)5-÷⨯☆☆÷+26-2(30)5-÷⨯☆24cm 10cm 1m 233136135454⎛⎫⎛⎫⎛⎫⎛⎫-++-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭157(24)368⎛⎫-⨯+- ⎪⎝⎭354,,0,10,1.090909,|3|,1,(1)27------ 4(8)25625(6)10253⎛⎫-⨯-⨯+-⨯-+⨯ ⎪⎝⎭解:原式①②③④.⑤(1)第①步运用的运算律是____________________;第②步运用的运算律是____________________;(2)上述计算过程,从第__________步出现错误,本题运算的正确结果是__________;(3)运用上述解法,计算:.19.(9分)(1)如图,在数轴上画出表示下列各数的点:(2)如图,已知A ,B ,C ,D 是数轴上的点.①若点A 和点C 表示的数互为相反数,则点B 表示的数为__________;②如果将点D 向右移动2个单位长度,再向左移动5个单位长度,终点表示的数是,求原来点D 表示的数.20.(9分)规定表示不超过有理数a 的最大整数,例如:.(1)填空:__________,__________;(2)比大小:__________;(填“>”“<”或“=”)(3)计算:.21.(10分)学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,例如:.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式(不算出结果):4(8)256251025(6)3⎛⎫=-⨯-⨯+⨯+-⨯- ⎪⎝⎭4(8610)25(6)3⎛⎫=--+⨯+-⨯- ⎪⎝⎭442563=⨯-⨯1008=-92=11(170)3(2)0.2524.5525%42⎛⎫⎛⎫-⨯--⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭1,(2),2.5,0,|4|2--+--1-[]a [1.2]1,[ 1.8]2=-=-[3.7]=94⎡⎤-=⎢⎥⎣⎦[0.8][ 4.2]+-[0.8 4.2]-73[3.14π][π 3.14]22⎡⎤---+-⨯⎢⎥⎣⎦|23|23,|23|32,|32|32,|23|23+=+-=--=---=+①__________;②__________;③__________;(2)用合理的方法计算:.22.(10分)奥运pin (徽章)是奥运会期间由主办方、参赛代表队等推出的一种纪念品,奥运pin 的交换,不仅是一种收藏行为,更是一种跨越语言障碍的文化交流,也传递了奥林匹克精神中的团结与相互理解.巴黎奥运会期间,中国的熊猫pin 因其可爱的形象和精美的工艺深受大家的喜爱.某工厂从制作的熊猫pin 中抽取30枚样品,检测每枚的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)30枚样品中,质量最大的一枚比质量最小的一枚多__________g ;(2)与标准质量相比,30枚样品总计超过或不足的质量为多少克?(3)①若允许有的误差,30枚样品中不合格的有__________枚;②海枚熊猫pin 的制作成本是12元,工厂以20元的价格批发给某代理商800枚(不合格产品占),不合格产品需要返厂重新加工(重新加工费用忽略不计),且工厂需将不合格产品的进价费用返还代理商并承担每枚0.5元的返还运费,工厂在这次销售中的利润是多少?(利润=总价-成本)与标准质量的差值/g0123枚数135964223.(10分)观察下列等式,并解答问题.第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)按以上规律填空:①第5个等式:____________________;②第50个等式:____________________;(2)计算:.213-=| 5.44|-+=|3π|--=237037011999399322-+---2g ±8%3-2-1-211133=-⨯2113535=-⨯2115757=-⨯2117979=-⨯2222213355779399401+++++⨯⨯⨯⨯⨯2024-2025学年上学期阶段性评价卷一七年级数学(华师版)参考答案一、选择题(每小题3分,共30分)1.D 2.A 3.D 4.C 5.B 6.C 7.B 8.A 9.C 10.D二、填空题(每小题3分,共15分)11.(答案不唯一)12.13.或414. 15.7三、解答题(本大题共8个小题,共75分)16.解:(1)原式2分3分5分(2)原式2分.5分17.解:正整数集:10,; 2分负数集:; 4分分数集:;6分非负有理数集:.8分18.解:(1)加法交换律 乘法分配律 2分(2)③ 4分(3)原式 5分7分9分19.解:(1)画图如下所示:1-66m -2-65-233136135454=-+-+233131635544⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭510=-+5=157(24)(24)(24)368=-⨯+-⨯--⨯82021=--+7=-(1)--54,|3|,17----35,1.090909,127- 3,0,10,1.090909,(1)2-- 92-11(170)0.2524.5525%3(2)42⎛⎫⎛⎫=-⨯-+⨯--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭11117024.5 5.532444=⨯+⨯+⨯+⨯1(17024.5 5.5)324=⨯+++⨯1200324=⨯+⨯56=5分(2)① 7分②.所以原来点D 表示的数是2. 9分20.解:(1)3 2分(2)<4分(3)因为,所以. 6分原式9分21.解:(1)①2分② 4分③ 6分(2)原式 8分10分22.解:(1)62分(2). 4分因为,所以30枚样品总计超过的质量为. 5分(3)①36分②由题意得,不合格产品有(枚),(元).答:工厂在这次销售中的利润是5088元.10分23.解:(1)① 2分② 4分(2)原式6分05-.(1)522-+-=3-0 3.14π1,1π 3.140>->->->[3.14π]1,[π 3.14]0-=--=310(4)2=--+-⨯7=-213-5.44-3π+370213701993929932=-+--29=-(3)1(2)3(1)5091624326(g)-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=60>6g 8008%64⨯=.800(18%)2080012640.55088⨯-⨯-⨯-⨯=211911911=-⨯2119910199101=-⨯11111111113355779399401⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++- ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9分. 10分11111111113355779399401=-+-+-+-++-11401=-400401=。
广东省中山市2023-2024学年七年级上学期期末数学试题(含解析)
A.16B.26C.﹣16D10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分)14a b a(1)画射线;(2)连接;(3)在直线l 上确定点D 四、解答题(二)(共21.第19届亚运会于2023年的精神,在比赛场上屡创佳绩.本次亚运会中国队获得金、银、铜牌共银牌的2倍少21枚,铜牌比银牌少22.一般情况下,算式AB BC 24a b +=(1)请计算图中“工”形框中七个数的和是中间数(2)在数阵中任意做一个这样的“工”形框,(1)中的关系是否仍成立(3)用这样的“工”形框能框出和为2023的七个数吗能,请写出理由.24.对于数轴上的三点A ,B ,C ,给出如下定义:若的“距离和m 点”.如图,点A 表示的数为(1)若点N 表示的数为,点N 为点A ,B 的“距离和m 点”,求m 的值;(2)点D 在数轴上,若点D 是点A ,B 的“距离和7点”,求点D 表示的数;3-2-【分析】分别将甲乙丙三位同学折成的无盖长方体的容积计算出来,即可比较大小.【详解】甲:长方体的长为5cm ,宽为3 cm ,高为3 cm ,容积为乙:长方体的长为10 cm ,宽为2 cm ,高为2 cm ,容积为丙:长方体的长为6 cm ,宽为4 cm ,高为2 cm ,容积为所以,丙>甲>乙故选C【点睛】本题主要考查了长方体的体积,掌握长方体的体积公式是解题的关键.11.【分析】根据相反数的定义直接求得结果.【详解】解:5的相反数是.故答案为:.【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.12.1【分析】本题考查了一元一次方程解得定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把代入,然后解关于m 的方程即可.【详解】解:把代入,得:,解得:.故答案为:1.13.2【分析】此题考查了线段的和差计算,正确理解线段的数量关系是解题的关键.根据,得到,即,即可求出.【详解】解:∵,∴,故,∵,∴,353345cm ⨯⨯=3102240cm ⨯⨯=364248cm ⨯⨯=5-5-5-3x =2mx m -=3x =2mx m -=32m m -=1m =AD BC =AC CD BD CD +=+AC BD =BD AD BC =AC CD BD CD +=+AC BD =2cm =AC 2cm BD =∵两点之间线段最短,∴此时最小.20.【分析】本题主要考查了角的度数的计算,邻补角的定义,角平分线的定义AD CD +20DOE ∠=︒则七个数的和为:,故七个数的和为是中间数的7倍.(3)解:设中间数为x ,依题得,解得:,经检验289处于数表的第一列,故不能框出和为2023的七个数.24.(1)(2)点D 表示的数为3或(3)点E 表示的数为或或或1或或3【分析】本题考查了数轴上表示有理数,一元一次方程的应用:(1)根据若,则称点C 叫做点A ,B 的“距离和m 点”的定义,列式计算得m 的值;(2)依题意,结合点D 是点A ,B 的“距离和7点”,设D 点表示的数为x ,进行分类讨论,然后列式计算,即可作答.(3)①点E 是点A ,B 的“距离和6点”时,设E 点表示的数为,列式计算;或点A 是点B ,E 的“距离和6点”时,或点B 是点A ,E 的“距离和6点”时,列式计算,即可作答.【详解】(1)解:∵点N 为点A ,B 的“m 和距离点”,且点N 在数轴上表示的数为,∴,,∴(2)解:设D 点表示的数为x ,当D 点在线段上时,,不符合题意;当D 点在A 点左侧时,,解得:;当D 点在点右侧时,,解得:;∴点D 表示的数为:3或;(3)解:①点E 是点A ,B 的“距离和6点”时,设E 点表示的数为,当E 点在线段上时,,不符合题意;()()()()()()2018161618207x x x x x x x x -+-+-+++++++=72023x =289x =5m =4-4- 3.5-2- 2.5AC CB m +=y 2-1AN =4BN =5m AN BN =+=AB 5AD BD AB +==()327x x --+-+=4x =-B 327x x ++-=3x =4-y AB 5AE BE AB +==当E 点在A 点左侧时,,解得:;当E 点在点右侧时,,解得:;∴点E 表示的数为:或②点A 是点B ,E 的“距离和6点”时,∵,∴,∴点E 表示的数为:或.③点B 是点A ,E 的“距离和6点”时,∵,∴,∴点E 表示的数为:1或3∴点E 表示的数为或或或1或2.5或3.()326y y --+-+= 3.5y =-B 326y y ++-= 2.5y =3.5- 2.556AE AB AE +=+=1AE =4-2-56BE AB BE +=+=1BE =4- 3.5-2-。
七年级数学试卷答题模板
【答题步骤】1. 仔细阅读题目,理解题意。
2. 根据题目要求,分析题目所涉及的知识点。
3. 运用所学知识,对每个选项进行分析和判断。
4. 选择符合题意的正确答案。
【答题示例】1. 若a、b、c是等差数列,且a=3,b=5,那么c的值为()A. 7B. 8C. 9D. 10【答案】B2. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆形【答案】D二、填空题【答题步骤】1. 仔细阅读题目,理解题意。
2. 根据题目要求,分析题目所涉及的知识点。
3. 运用所学知识,填写正确的答案。
【答题示例】1. 若x+y=10,那么x²+y²的值为()【答案】1002. 在直角坐标系中,点A(2,3)关于y轴的对称点为()【答案】(-2,3)【答题步骤】1. 仔细阅读题目,理解题意。
2. 分析题目所涉及的知识点,明确解题思路。
3. 按照解题步骤,逐步解答。
4. 检查答案,确保正确无误。
【答题示例】1. 已知一元二次方程x²-5x+6=0,求方程的解。
【解题过程】Step 1:将方程因式分解,得(x-2)(x-3)=0。
Step 2:根据零因子法则,得到x-2=0或x-3=0。
Step 3:解得x₁=2,x₂=3。
【答案】方程的解为x₁=2,x₂=3。
2. 已知直角三角形ABC,∠C=90°,AC=6cm,BC=8cm,求斜边AB的长度。
【解题过程】Step 1:根据勾股定理,得到AB²=AC²+BC²。
Step 2:将AC和BC的值代入,得AB²=6²+8²。
Step 3:计算AB²,得AB²=36+64。
Step 4:开平方,得AB=√100。
Step 5:化简,得AB=10。
【答案】斜边AB的长度为10cm。
四、简答题【答题步骤】1. 仔细阅读题目,理解题意。
2. 根据题目要求,分析题目所涉及的知识点。
七年级数学试卷答题卡
一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -5B. 0C. 3D. -82. 下列各数中,是正数的是()A. -2B. 0C. 5D. -53. 下列各数中,绝对值最大的是()A. -3B. 3C. -2D. 24. 下列各数中,是整数的是()A. 1.5B. -4C. 0.7D. 2.55. 下列各数中,是分数的是()A. 2B. -3C. 1/2D. 06. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 67. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 78. 下列各数中,是质数的是()A. 4B. 5C. 6D. 89. 下列各数中,是合数的是()A. 2B. 3C. 4D. 510. 下列各数中,是互质数的是()A. 6和9B. 8和10C. 11和12D. 7和14二、填空题(每题3分,共30分)11. 5的倒数是______。
12. 2的平方是______。
13. 4的立方是______。
14. 0除以任何数(0除外)都等于______。
15. 两个负数相乘的结果是______。
16. 一个数乘以1等于它本身,这个数是______。
17. 一个数除以1等于它本身,这个数是______。
18. 两个互质数的乘积是______。
19. 一个数的相反数是它本身,这个数是______。
20. 一个数的倒数是它本身,这个数是______。
三、解答题(每题10分,共30分)21. 计算下列各式的值:(1)-5 + 3(2)2 - 4(3)7 × 8(4)12 ÷ 422. 判断下列各题的正误,并说明理由:(1)0是质数。
()(2)-3是奇数。
()(3)2的平方根是±2。
()(4)0除以任何数都等于0。
()23. 已知一个数的绝对值是5,写出这个数。
四、应用题(每题10分,共20分)24. 小明有5个苹果,小华有3个苹果,他们一共有多少个苹果?25. 小红买了一个书包,用了60元,找回15元,这个书包的价格是多少元?答题卡填写说明:1. 请在每题的题号后填写你的答案。
数学七年级上册期末测试卷 (3)
学年度上学期期末质量检测七年级数学试题温馨提示:1.本卷共25题,满分120分,考试时限120分钟.2.在密封区内写明校名,姓名和考号,不要在密封区内答题.一、选择题(本题共10个小题,每小题3分,满分30分.下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填入下面的答题框内)1.在-3,5,-1中,最小的数比最大的数小()A.8B.3C.-8D.22.2016年竹溪县参加中考的学生数为2535人,将2535用科学记数法表示是()A.25.35×102B.2.535×102C.253.5×10D.2.535×1033.已知关于x的方程2x+3m=5的解是x=-2,则m的值为()A.12B.3C.-12D.-34.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点确定一条直线B.两点之间,射线最短C.两点之间,线段最短D.两点之间,直线最短5.单项式-2x3y的系数和次数分别为()A.-2,3B.-2,4C.2,3D.2,46.绝对值相等的两数在数轴上对应两点的距离为6,则这两个数为( )A.0和-6 B .0和6C.±6D.3和-37.已知线段AB 的长度为6cm ,延长线段AB 到C ,使得BC =2AB ,点D 是AC 的中点,则BD 的长为( )A.1cmB.2cmC.3cmD.4cm8.如果代数式4b 2-2b+5的值是7,那么代数式2b 2-b+1的值等于( )A.1B.0C.2D.-29.一件商品按进价提高50%后标价,又以八折销售,售价为每件240元,则每件服装获利( )A.100元B.80元 C .60元D.40元10.如图由火柴棒拼出的一系列图形中,第n 个图形是由n 个正方形组成的,通过观察可以发现,则第2016个图形中火柴棒的根数是( )A.6049B.6048C.6047D.6060二、填空题(每题3分,共18分.请直接将答案填写在横线上,不写过程) 11.-2的倒数是_______________.12.已知|a|=3,|b|=7,且满足a<0,b>0,则a+b 的值为_______________. 13.若)35(+x 与)92(+-x 互为相反数,则x =_______________. 14.已知∠α的余角等于20°,则∠α的补角=_______________.15.多项式1262+-x x 与753323+-+x mx x 相加后,不含x 的二次项,则常数m 等于_______________.16.有理数a ,b ,c 在数轴上的对应点如图所示,下列式子:①b <0<a ;②∣c ∣>∣a ∣;③|a -b |+b =a ;④b +a <a -b ;⑤∣b -a ∣-∣c +b -a ∣-∣a -b -c ∣=-a +b +2c .其中正确的是 .(只填序号) 三、解答题:(本题有9个小题,共72分)17.(5分)计算:])3(12[31134-+⨯--18.(5分)计算:6)2()433221(⨯-⨯-+19.(5分)解方程:754113-=++x x x20.(6分)解方程:6151312-=-+x x21.(9分)22222)]23(43[2xy y x xy xy y x +---,其中x =2,y=-1.22.(10分)一辆公路检修车沿东西走向检修线路,约定向东为正,某天从A 地出发到下班时,行走记录如下(单位:千米):(1)到下班时,检修车在A 地的哪一边,距A 地多远; (2)这一天检修车所有行程是多少千米;(3)若检修车每千米耗油3升,已知检修车出发时油箱有油200升,问下班前是否需要在途中加油?若加应加多少?若不加,还剩下多少.23.(10分)竹溪县某住房小区建设中,为了提高业主的宜居环境,小区规划修建一个休闲广场(平面图形如图所示)(1)用含a、b的代数式表示该广场的面积S;(2)若a、b满足(a-8)2+|b-5|=0,求出该广场的面积.24.(10分)请根据图中提供的信息,回答下列问题:(1)一本书与一个水杯分别是多少元?(2)甲、乙两家超市同时出售同样的书和水杯,两家超市都在搞促销活动。
2022年秋季学期七年级上册学业水平阶段性抽测期末模拟数学 试题卷(三)
2022年秋季学期七年级上册学业水平阶段性抽测期末模拟数学试题卷(三)(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(共12题,每题3分,共36分)1.2022-的相反数是()A .12022-B .12022C .2022-D .20222.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A .直线比曲线短B .两点之间,线段最短C .两点确定一条直线D .两点之间的线段的长度叫做两点间的距离3.下列方程是一元一次方程的是()A .210x x --=B .24x y +=C .=2y -D .122x =+4.下列各数:71,6,2,0.9,334---,其中负分数的个数是()A .2B .3C .4D .55.如图是一个小正方体的展开图,把展开图折叠成小正方体后,“建”字对面的字是()A .和B .谐C .社D .会6.下列说法正确的是()A .ab π-的次数为3B .a -表示负数C .1x y +不是整式D .5ab 的系数为57.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数字338600000用科学记数法可简洁表示为()A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯8.以下五个结论:①符号相反的数互为相反数;②一个有理数不是整数就是分数;③倒数等于其本身的有理数只有1;④a -一定是负数.其中错误的有()A .1个B .2个C .3个D .4个9.“⊕”表示一种运算符号,其意义是2a b a b ⊕=-,若()132x ⊕⊕=,则x 等于()A .32B .2C .12D .110.如图所示,AOD BOC ∠=∠,若100AOB ∠=︒,40COD ∠=︒,则BOD ∠的度数为()A .100︒B .40︒C .30︒D .25︒11.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”译文:“假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱。
人教版七年级下学期期末考试数学试题及答案三
人教版七年级下学期期末考试数学试题及答案亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。
每题留下的横线可能较长,但答案可能很短。
一.选择题(每题3分,共30分)1.平方根等于它自己的数是()A.0B.1C.﹣1D.42.下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.x=3y D.xy=93.如图,在梯形ABCD中,∠B=115°,则∠C的大小是()A.50°B.65°C.75°D.85°(3题图)(4题图)(6题图)4.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A.100°B.120°C.140°D.160°5.在﹣,﹣,0,﹣3四个数中,满足不等式x+2>0的有()A.1个B.2个C.3个D.4个6.光线在不同介质中的传播速度不同,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,当∠1=45°,∠2=122°时,∠3和∠4的度数分别是()A.45°,68°B.45°,58°C.45°,45°D.58°,122°7.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.样本容量是34000C .1800名学生的视力情况是总体的一个样本D .本次调查是抽样调查 8.由方程组可得x 与y 的关系式是( ) A .3x =7+3mB .5x ﹣2y =10C .﹣3x +6y =2D .3x ﹣6y =29.已知a <b ,下列不等式成立的是( ) A .a +2<b +1B .﹣3a >﹣2bC .m ﹣a >m ﹣bD .am 2<bm 210.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm 的小正方形.则每个小长方形的长和宽分别为( )A .8cm 和6cmB .12cm 和8cmC .10cm 和8cmD .10cm 和6cm二.填空题(每题3分,共15分) 11.已知x 2=64,则= .12.阅读下列材料:设=0.333…①,则10x =3.333…②,则由②﹣①得:9x =3,即.所以=0.333…=.根据上述提供的方法把下列这个数化成分数.= .13.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是在第 象限.14.如图,有一条直的等宽纸条按图折叠时,则图中∠α= . 15.已知02=+-n mm ,则当m ≥2时,m +n 的取值范围是 . 三.解答题(共75分) 16.(8分)解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3解法二:由②得3x+(x﹣3y)=5③把①代入③得3x+8=5(1)上述两种消元过程是否正确?你的判定是.A.都正确B.解法一错C.解法二错D.两种都错(2)请选择一种你喜欢的方法解此方程组.17.(10分)解不等式组:,在数轴上画出它的解集并写出该不等式组的非负整数解.18.(8分)下面数据是20位同学的身高(单位:cm):159、157、164、161、167、153、166、163、162、158162、164、160、172、166、162、168、167、161、156(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是.(3)完成下面频数分布表,并将频数分布直方图补充完整.19.(8分)如图,这是一所学校的平面示意图.(1)若校门的坐标为(﹣2,0)、图书馆的坐标为(2,3),请在图中画出对应的坐标系,这时实验楼的坐标为;(2)以国旗杆的位置为坐标原点,校门的坐标可以不可以表示为(﹣1,0)?若可以请写出这时实验楼的坐标,若不可以请说明理由。
答案卷2022学年第一学期七年级期中质量检测 数学
2022学年第一学期七年级期中质量检测 数学答题卷学校: 班级: 姓名:一、选择题(本题10个小题,每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCABABDCCC二、填空题(本题6个小题,每题4分,共24分);11. -20 12.π (大于3的无理数都可) 13. >;> 14. ③⑥ 15. 62- 16.3 ; 25 ;0或1 (1分一个) 三、解答题(本题7个小题,共66分); 17.(本小题满分6分) 每题3分(1)36416-+ (2)2(2) 3.14 3.14π-+-+ 440=-+=2 3.14 3.142ππ=+-+=+18.(本小题满分8分)每题2分(1)12(7)-- (2) 212(27)9327+⨯-(-) 12719=+= 212(27)(27)(27)932769213=⨯-+⨯--⨯-=--+=-(3) 4320223116(1)2--÷+-⨯-(-2) (4)25923+⨯--(-3)3116212 1.52.5=--÷=-++=(-8)+5932312=+⨯-= 19.(本小题满分8分)(1)求剩余铁皮的面积; 22ab a - …(4分)(2)当a =3,b =5时,求剩余铁皮的面积.当a =3,b =5时,原式22235321=⨯⨯-=(米) …(4分)20.(本小题满分10分)(1)请通过计算说明A 站是哪一站?436892710+-+-+--+= A 为火车南站…(5分)(2)若相邻两站之间的平均距离为1.2千米,求这次小王志愿服务期间乘坐地铁行进的总路程约是多少千米?4368927140++-+++-+++-+-+-= …(4分)1.24048⨯=(千米) …(1分)答:这次小王志愿服务期间乘坐地铁行进的总路程约是48千米21. (本小题满分10分)(1)求图中阴影部分的面积.10 …(2分)(2)阴影正方形的边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)1034介于和之间 …(2分)与3更接近 …(2分)(3)若阴影正方形的边长的值的整数部分为x ,小数部分为y ,求10x(y-)的值.3,103x y ==- …(2分)33(10)(10310)(3)27x y -=--=-=- …(2分)22.(本小题满分12分)(1)已知1,2a b ==-,求2a b +的值.当1,2a b ==-时,2a b +=1+4=5 …(4分)(2)若x 是8-的立方根,y 的绝对值是5,且0xy >,求2x y -的值.姑娘桥双桥火车南站通惠中路育才北路人民广场金鸡路博奥路滨康路江晖路聚财路∵x 是8-的立方根 ∴2x =-∵y 的绝对值是5 ∴5y =± ∵0xy >∴2x =-,5y =-∴222(5)2108x y -=--⨯-=-+= …(4分)(3)已知代数式2434p p -+的值为6,求代数式2867p p -++的值. ∵2434p p -+=6∴2432p p -= …(2分)∴228672(43)72273p p p p -++=--+=-⨯+= …(2分) 23.(本小题满分12分)(1)点A 、点B 在数轴上所表示的数互为相反数,且A 、B 两点之间距离为4. ①若A 、C 两点之间距离为2,且点C 在点A 的左侧,则点C 所表示的数为________.4- …(2分)②点D 位于点C 的左侧,且点D 到B 、C 两点的距离之和为7,则点D 所表示的数为______.4.5- …(2分)③数轴上是否存在点P ,使得点P 到A 、B 、C 三点的距离之和为9。
七年级上册数学第三章测试卷【含答案】
七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。
()7. 一个正方形的对角线把它分成两个相等的直角三角形。
()8. 任何一个合数都可以分解为几个质数的乘积。
()9. 如果两个角是对顶角,那么这两个角一定相等。
()10. 在三角形中,最长边所对的角一定是直角。
()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。
12. 一个长方体的表面积是______。
13. 等边三角形的每个内角是______度。
14. 如果一个数是6的倍数,那么这个数最小可能是______。
15. 1千米等于______米。
四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。
17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。
19. 什么是比例?请给出一个比例的例子。
20. 请解释什么是平行线,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
22. 一个等边三角形的周长是24厘米,求这个三角形的边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018--2019学年第二学期七年级期末数学答题卷(三) 第 1 页 共 2 页
2018---2019学年第二学期期末 七年级数学答题卷(三)
考生注意:
1.本试卷共四道大题,满分100分。
考试时间100分钟,考试形式为闭卷。
2.答题时要冷静思考,仔细审题,答题规范,书写整洁。
预祝你取得优异成绩!
一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑每小题涂对得4分,满分48分
1.如图所示,直线AB 、CD 相交于点O ,且∠AOD +∠BOC =110°,则∠AOC 的度数是( )
A .110°
B .115°
C .120°
D .125°
2.在0,32,(﹣5)2,﹣4,﹣|﹣16|,x 中,有平方根的数的个数是( )
A .3个
B .4个
C .5个
D .6个 3.下列调查中,最适合采用全面调查(普查)的是( )
A .对重庆市居民日平均用水量的调查
B .对一批LED 节能灯使用寿命的调查
C .对重庆新闻频道“天天630”栏目收视率的调查
D .对某校九年级(1)班同学的身高情况的调查
4.已知a >b >0,则下列不等式不一定成立的是( )
A .ab >b 2
B .a +c >b +c
C .<
D .ac >bc
5.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为( )
A .先右转50°,后右转40°
B .先右转50°,后左转40°
C .先右转50°,后左转130°
D .先右转50°,后左转50° 6.下列命题中,属于真命题的是( )
A .互补的角是邻补角
B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c
C .同位角相等
D .在同一平面内,如果a ∥b ,b ∥c ,则a ∥c 7.已知点A (﹣1,﹣5)和点B (2,m ),且AB 平行于x 轴,则B 点坐标为( )
A .(2,﹣5)
B .(2,5)
C .(2,1)
D .(2,﹣1)
8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现在又有36张白铁皮.设用x 张制作盒身,y 张制作盒底可以使盒身和盒底正好配套,则所列方程组正确的( )
A .
B .
C .
D .
9.如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若李心通同学在此餐厅点了橙
汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过20元,则他的第二份餐点最多有几种选择( )
A .5
B .7
C .9
D .11
10.如图,在平面直角坐标系中,有若干个横纵坐标分别为y 整数的点,其顺序按图中“→”方向排列,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,2),…,根据这个规律,第2015个点的坐标为( )
A .(0,672)
B .(672,672)
C .(672,0)
D .(0,0)
二、填空题,每题4分,共24分 11.
+
+|
﹣1|= .
12.在下列各数中,无理数有 个.
,0,0.5757757775…(相邻两个
5之间的7的个数逐次加1).
13.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有 间宿舍, 名女生. 14.已知关于x 的不等式组
的整数解共有4个,则a 的取值范围为 .
15.定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a +b )+1,其中等式右边是通常的加法、减法及
南 瓜 养 生 粥 番 茄 蛋 炒 饭 凤 梨 蛋 炒 饭 酥 炸 排 骨 饭 和 风 烧 肉 饭 蔬 菜 海 鲜 面 香 脆 炸 鸡 饭 清 蒸 鳕 鱼 饭 香 烤 娲 鱼 饭 红 烧 牛 腩 饭 橙 汁 鸡 丁 饭 白 酒 蛤 蜊 面 海 鲜 墨 鱼 面 嫩
烤
猪
脚
饭
6 元 6 元
7 元
8 元 8 元
9 元 9 元 10 元 10 元 11 元 12 元 12 元 14 元 15元
2018--2019学年第二学期七年级期末数学答题卷(三) 第 2 页 共 2 页
乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式﹣3⊕x <13的解集为 . 16.如图,将一条两边沿互相平行的纸带按图折叠,则∠α的度数等于 .
三、解答题
17.解不等式组,并把解集在数轴上表示出来.
18.甲、乙两人同解方程组时,甲看错了方程(1)中的a ,解得,乙看错
(2)中的b ,解得,试求a 2017+(﹣
)2018的值.
19.如图,BD ⊥AC 于D ,EF ⊥AC 于F ,∠AMD =∠AGF ,∠1=∠2=35°. (1)求∠GFC 的度数; (2)求证:DM ∥B C .
20.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,
△ABC 的顶点在格点上.且A (1,﹣4),B (5,﹣4),C (4,﹣1)
(1)画出△ABC ;
(2)求出△ABC 的面积;
(3)若把△ABC 向上平移2个单位长度,再向左平移4个单位长度得到△A ′B ′C ′,在图中画出△A ′B ′C ′,并写出B ′的坐标.
21.长方形OABC ,O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限. (1)求点B 的坐标;
(2)如图,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标.
22.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.
(1)求购买A 型和B 型公交车每辆各需多少万元?
(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?。