七年级数学下册 11.2三角形的内角与外角教案 冀教版
冀教版数学七年级下册9.2《三角形的内角和外角》教学设计2
冀教版数学七年级下册9.2《三角形的内角和外角》教学设计2一. 教材分析冀教版数学七年级下册9.2《三角形的内角和外角》是学生在掌握了三角形的基本概念、性质的基础上,进一步研究三角形的内角和外角的性质。
本节内容通过探究三角形的内角和外角,培养学生的观察、思考、归纳能力,为后续学习三角形的不等式、多变形几何等知识打下基础。
本节课的内容在整体教材中起到承上启下的作用,既是对前面知识点的巩固,又是为后面知识的学习做铺垫。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念、性质,对三角形有了初步的认识。
但学生在学习过程中可能对内角和外角的概念、性质理解不够深入,对内角和外角之间的联系和转化还不够明确。
因此,在教学过程中,教师需要针对学生的实际情况,采用适当的教学方法,引导学生深入理解三角形的内角和外角的性质。
三. 教学目标1.知识与技能:使学生掌握三角形的内角和外角的性质,能够运用内角和外角的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的观察能力、动手能力、归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极向上的学习态度。
四. 教学重难点1.重点:三角形的内角和外角的性质。
2.难点:内角和外角之间的联系和转化。
五. 教学方法1.情境教学法:通过生活实例引入内角和外角的概念,让学生在实际情境中感受数学与生活的联系。
2.启发式教学法:在教学过程中,教师引导学生观察、思考、交流,激发学生的学习兴趣,培养学生自主探究的能力。
3.小组合作学习:通过小组讨论、合作探究,培养学生的团队协作能力,提高学习效果。
六. 教学准备1.教学课件:制作课件,展示三角形的内角和外角的性质。
2.教学素材:准备一些三角形图形,用于引导学生观察、操作。
3.教学视频:寻找相关教学视频,帮助学生更好地理解内角和外角的性质。
七. 教学过程1.导入(5分钟)教师通过生活实例引入三角形内角和外角的概念,激发学生的学习兴趣。
(冀教版)义务教育课程标准实验教科书《数学》目录
(冀教版)义务教育课程标准实验教科书《数学》目录冀教版七年级上册第一章几何图形的初步认识1.1 几何图形1.2 图形中的点、线、面1.3 几何体的表面展开图1.4 从不同方向看几何体1.5 用平面截几何体第二章有理数2.1 正数和负数2.2 数轴2.3 绝对值2.4 有理数的大小比较2.5 有理数的加法2.6 有理数的减法2.7 有理数的加减混合运算2.8 有理数的乘法2.9 有理数的除法2.10 有理数的乘方2.11 有理数的混合运算第三章估算与近似数3.1 估算3.2 近似数3.3 科学记数法3.4 用计算器进行数的计算3.5 感受大数第四章线段角4.1 点和线4.2 线段长短的比较4.3 角和角的度量4.4 角的比较4.5 角的运算第五章数量和数量之间的关系5.1用字母表示数5.2代数式5.3数量的表示5.4代数式的值5.5两个数量之间关系的初步认识第六章整式的加减6.1 整式6.2 合并同类项6.3 去括号6.4 整式的加减七年级下册第七章一元一次方程7.1 一元一次方程7.2 解一元一次方程7.3 用一元一次方程解决实际问题第八章相交线与平行线8.1 相交线8.2 两条直线平行的条件8.3 平行线的特征第九章二元一次方程组9.1 二元一次方程组9.2 二元一次方程组的解法9.3 二元一次方程组的应用第十章整式乘法与因式分解10.1 同底数幂的乘法10.2 幂的乘方与积的乘方10.3 同底数幂的除法10.4 整式的乘法10.5 乘法公式10.6 因式分解10.7 提公因式法10.8 公式法11.1 三角形的再认识11.2 三角形的内角与外角11.3 三角形的角平分线中线和高11.4全等图形11.5两个三角形全等的条11.6直角三角形全等的条件11.7 用尺规作在三角形第十二章统计的初步认识12.1 数据的收集12.2 数据的整理12.3 统计图形八年级上册第十三章一元一次不等式和一元一次不等式组13.1 不等式13.2 不等式的基本性质13.3 一元一次不等式13.4 一元一次不等式组第十四章分式14.1 分式14.2 分式的乘除14.3 分式的加减15.1生活中的对称轴15.2简单的轴对称图形15.3 轴对称的性质15.4 利用轴对称设计图案15.5 等腰三角形第十六章勾股定理16.1 勾股定理16.2 由边的数量关系识别直角三角形16.3 勾股定理的应用第十七章实数17.1 平方根17.2 立方根17.3 实数17.4 用计算器开平(立)方17.5 实数的运算第十八章平面直角坐标系18.1 确定平面上物体的位置18.2 平面直角坐标系18.3 图形与坐标18.4 二元一次方程(组)的解和点的坐标第十九章随机事件与概率19.1 确定事件和随机事件19.2 可能性大小19.3 频率与概率的关系第二十章平移与旋转20.1 平移20.2 旋转20.3 中心对称与中收对称图形20.4 图案的设计与欣赏第二十一章函数21.1 变量与函数21.2 函数关系的表示法21.3 函数的应用第二十二章四边形22.1 平行四边形的性质22.2 平行四边形的识别22.3 三角形的中位线22.4 矩形22.5 菱形22.6 正方形22.7 梯形22.8 多边形的内角和与外角和22.9 平面图形的镶嵌第二十三章分式方程23.1 分式方程23.2 分式方程的应用第二十四章命题与证明(一)24.1 命题24.2 命题的证明24.3 平行线的判定定理24.4 平行线的性质定理24.5 三角形内角和定理24.6 直角三角形全等的判定定理24.7 线段垂直平分线的性质定理及其逆定理24.8 角平分线的性质定理及其逆定理第二十五章一次函数25.1 一次函数25.2 一次函数的图像和性质25.3 确定一次函数表达式的方法25.4一次函数与方程、不等式的关系25.5一次函数的应用第二十六章数据的代表值与离散程度26.1 平均数与加权平均数26.2 中位数和众数26.3 方差和标准差九年级上册第二十七章圆(一)27.1 圆的基本概念和性质27.2 圆心角和圆周角27.3 过三点的圆27.4 弧长和扇形面积第二十八章一元二次方程28.1 一元二次方程28.2 解一元二次方程28.3 用一元二次方程解决实际问题28.4 方程的近似解第二十九章相似形29.1 形状相同的图形29.2 比例线段29.3 相似三角形29.4 三角形相似的条件29.5 相似三角形的性质29.6 相似多边形及其性质29.7 位似图形29.8 相似三角形的应用第三十章反比例函数30.1 反比例函数30.2 反比例函数的图像和性质30.3 反比例函数的应用第三十一章锐角三角函数31.1 锐角三角函数31.2 锐角三角函数值的求法31.3 锐角三角函数的应用第三十二章命题与证明(二)32.1 等腰三角形的性质定理和判定定理及其证明32.2 平行四边形的性质定理和判定定理及其证明32.3 矩形、菱形的性质定理和判定定理及其证明32.4 等腰梯形的性质定理和判定定理及其证明第三十三章概率的计算和估计33.1 用列举法求概率33.2 概率树形图33.3 概率的估计33.4 几何概率九年级下册第三十四章二次函数34.1 认识二次函数34.2 二次函数的三种表示方法34.3 二次函数的图像和性质34.4 二次函数的应用第三十五章圆(二)35.1 点与圆的位置关系35.2 直线与圆的位置关系35.3 探索切线的性质35.4 切线的判定35.5 圆与圆的位置关系第三十六章抽样调查与估计36.1 抽样调查36.2 数据的整理与表示36.3 由样本推断总体第三十七章投影与视图37.1 平行投影37.2 中心投影37.3 视点、视线、盲区37.4 三视图37.5 几何体的展开图及其应用11。
初一数学下册知识点冀教版
初一数学下册知识点冀教版初一下册数学《三角形》知识点一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
新冀教版七年级数学下册《三角形的内角和外角》教案
9.2三角形的内角和外角教学设计
第一课时
教材分析
本节教材是在学生已认可三角形内角和定理、三角形三个内角的和等于1800这个事实的基础上,通过严格合理的论证,使学生体会数学的严谨性,并领会辅助线在证明过程中的作用。
学情分析
学生对三角形内角和定理的内容掌握较好,但证明时从何处入手缺少头绪,辅助线的添加无从下手,所以本节教学仍以培养学生思路为重点。
教学目标
(1)掌握三角形内角和定理的证明并灵活应用
(2)体会多角度求证的思路,体验辅助线在证明中的作用。
重点、难点
重点:三角形内角和定理的证明和应用
难点:证明思路的形成,辅助线的添加
教学设计
1、2、3
本节课我们对三角形内角和定理加以了证明,体会到了辅
助线在证明中对我们的帮助。
第二课时
一、教材分析
本节教材是在学生已掌握三角形内角和定理的基础上,自然引申得到两个推论,并加以应用。
二、学情分析
学生易掌握三角形内角和定理推论的内容,但在应用时主动性不足,即往往忽略从外角的角度去考虑问题,复杂图形的读图能力较差。
三、教学目标
掌握并灵活应用三角形内角和定理的推论,解决有关问题。
四、重点、难点
重点:三角形内角和定理推论的理解和应用。
难点:推论的应用意识及读图能力的培养。
五、教学设计。
11.2.1三角形的外角教案
11.2.1三角形的外角教案篇一:11.2.2三角形的外角---教案11.2.2三角形的外角篇二:11.2.2三角形的外角(教案)八年级数学教学设计篇三:11.2.2三角形的外角教案11.2.2三角形的外角平邑兴蒙学校崔连金【教学任务分析】【教学环节安排】教后反思:1、课件的使用,激发了学生学好数学的决心。
教学过程中对于外角和两个内角的关系时,稍微用的时间比较长,有些学生觉着是这么回事,但是不理解,从做题中还是使用三角形内角和可以看出来,因此教师可以把一个题用两种方法都做出来,通过比较提高学生的认识,强调做数学题要用简便方法.2、任何一个三角形都有6个外角,其中两两互为对顶角.而三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.这一点应重点强调,上课时忽落了这一点,辅导时要加以强调.3、内外结合,天下无敌(利用内角和定理和外角关系,能解决三角形角度问题).篇四:《11.2.2三角形的外角》教学设计《11.2.2三角形的外角》教学设计一、教学目标:1、知识与技能:了解三角形的外角概念和三角形外角的性质,初步学会数学说理。
2、过程与方法:能剪剪拼拼,动手操作,探索发现有关结论。
3、情感与态度目标:通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯。
二、教学重点与难点:重点:三角形的外角及其性质难点:运用三角形外角性质进行有关计算时能准确地表达推理的过程和方法。
三、教材分析:教材由学生已经熟悉的三角形的内角和定理引入,然后探索三角形外角的性质。
采用“问题—探究—发现”的研究模式,并采用了拼图和数学说理两种方法,一方面,让学生通过剪剪拼拼,动手操作,探索发现有关结论,另一方面又加以简单的数学说理,使学生初步体会,要得到一个数学结论,可以采用观察实验的方法,还可以采用数学推导说理的方法,观察实验只能给我们带来一个直观形象的数学结论,而推导说理才能使我们确信这一数学结论是否正确,当然对于这一点的认识还有待于以后学习。
七年级数学三角形的内角和外角
6x
D C
练 习
A
3、如图,在锐角△ABC中, CD⊥ AB 、BE ⊥AC,垂足分别 是D、E,且CD、BE交于一点P, 若∠A=50°,则∠BPC的度数是 ( ) A . 150 ° B . 130 ° A B C.120°D.100° D
E P C
练 习
B
请同学们谈一谈本 节课自己的收获
A
B
1
D
C
练习
1、如图,在△ABC中,D是AC延长 线上的一点,∠BCD=___ 98 度.
A
36°
62 ° B
°
C
D
例 如图,在Rt△ABC 中∠ACB=90º , ∠A=27º , ∠BEF=44º .求: (1)∠B的度数。 C (2)∠D的度数。
D F B
A
E
解:(1)在Rt△ABC中
因为∠A+∠B=90º 所以∠B=90º -∠ A =90º -27º =63º
B.最多有一个直角
C.必有一个角大于60° D.至少有一个角不小于60°
ቤተ መጻሕፍቲ ባይዱ
三角形的内角与外角:
A
1
B C
外角 D
A
∠ACD是△ABC的外角
B C D
是△ACD的内角.
内、外角是相对而言的.
(2)
内角与外角有什么关系?
A
(1) 相邻:
B C D
发现:
∠ACD和∠ACB互为邻补角
即: ∠ACD(外角)+∠ACB(相邻内角)=180°
D
所以 ∠A+∠C=∠CBD 三角形的外角性质: ② 过点A作AE BC ③ 过点C作CE AB 1、三角形的一个外角等于与它不相邻的两个 C C E E 内角的和; 2、三角形的一个外角大于任何一个与它不相 邻的内角。 D D A B A B
冀教版数学七年级下册三角形的内角和外角(一)课件
内容
三角形的内角 和等于180°.
通过作辅助线,借助平 行线转移角,得出定理
应用
求三角形的 内角度数.
谢 谢!
对于这种拼接方法,BC和CE在同一 条直线上吗?为什么?
A
D
3 12
B
CE
自主探究2
对于这种拼接方法,BC和CE在同一 条直线上吗?为什么?
A
D
3 12
B
CE
互动辨析2
对于这种拼接方法,BC和CE在同一 条直线上吗?为什么?
A
D
3 12
B
CE
展示评价2
对于这种拼接方法,BC和CE在同一 条直线上吗?为什么?
B
A C
互动辨析3
小组内交流,交流结果以小组为单位Pad拍 照上传
已知:△ABC
A
说明: ∠A+∠B+∠C=180°
B
C
展示评价3
已知:△ABC
说明: ∠A+∠B+∠C=180°
B
A C
A
D
1
E 2
A
E
1
B
CB
2
C
D
平行线也可以实现角的转移!
三角形内角和定理:
A
三角形的内角和等于180°.
几何语言:
创设问题1
射线AD和射线AE在同一条直线上吗?为什么?
DA
E
2
3
1
B
C
自主探究1
射线AD和射线AE在同一条直线上吗?为什么?
DA
E
2
3
1
B
C
互动辨析1
射线AD和射线AE在同一条直线上吗?为什么?
七年级数学下册课件(冀教版)三角形的内角和外角
总结
判定一个角是三角形的外角的三个条件:一 是顶点在三角形的一个顶点上;二是一边是三角 形的一条边;三是另一边是三角形的另一条边的 延长线.
∠A 等于( A )
A.40°
B.60°
C.80°
D.90°
7 在△ABC 中,∠A∶∠B∶∠C=3∶4∶5,则∠C 等于( C )
A.45°
B.60°
C.75°
D.90°
知识点 2 三角形内角和的应用
例2 在△ABC 中,∠A∶∠B∶∠C=1∶2∶3,试判断△ABC
的形状,并说明理由.
导引:引用辅助量x °,用x °表示出△ABC 的三个内角, 在△ABC 中,运用三角形内角和定理构造方程,解 方程后,求出△ABC 中各角的度数,再判断△ABC
5 直角三角尺和直尺如图放置.若∠1=20°,则∠2的度数为( C ) A.60° B.50° C.40° D.30°
6 如图,在△ABC中,∠ABC,∠ACB 的平分线BE,CD 相交于 点F,∠ABC=42°,∠A=60°,则∠BFC=( C )
A.118° B.119° C.120° D.121°
解:(1)如图,过A 作AF∥BD,∴∠BAF=∠ABD=40°. 显然AF∥EC,∴∠CAF=∠ECA=50°.∴∠BAC= ∠BAF+∠CAF=40°+50°=90°.∴△ABC 为直
角三角形.
(2)∵∠DBC=75°,∠DBA=40°,∴∠ABC= ∠DBC-∠DBA=75°-40°=35°.∴在Rt△ABC 中,∠BCA=90°-∠ABC=90°-35°=55°.
七年级数学下册第九章《三角形》9.2三角形的内角和外角三角形“五心歌”素材(新版)冀教版
七年级数学下册第九章《三角形》素材:
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清,
(H为垂心,点A.F、H、E共圆,
点E.H、D.C共圆,
点F、B.D.H共圆)
内心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
0为三角形外心
旁心
三角形有三内角,尚有外角两个三,
三对外角平分线,两两相交有一点,
点点命名曰“旁心”,只因能作旁切圆.。
数学教案:《三角形的内角和与外角和》(初中)
数学教案:《三角形的内角和与外角和》(初中)三角形是几何学中的基本概念,研究三角形的性质和特点对于初中数学学习来说非常重要。
其中,内角和与外角和是三角形属于常见而又基础的概念之一。
本文将围绕《三角形的内角和与外角和》展开讲解,并提供相应教案。
一、引入在开始研究内角和与外角和之前,我们先明确下什么是内角和和外角和。
1. 内角和:一个多边形的各个内角之和称为该多边形的内角和。
2. 外角和:一个多边形的各个外角之和称为该多边形的外角和。
在数学中,我们主要关注的是三角形的内角和与外角和。
下面将从不同视角分别介绍这两个概念。
二、三角形内部结构与内部关系1. 三条边三条边决定一个三角形,在任意给定两条边长时,第三条边都不可任意取长,需满足两条边之和大于第三条边才能成立。
2. 角度与直线在一个平面上有无数条直线画过 , 它们相互过于分离或相互相交 , 延长或重叠和其他的不同情况。
下面主要围绕如何来对待相交两直线的内角和外角,提出三角形内( 外) 角问题。
三、研究内角和1. 定义三角形的每个内角对应一个度数。
将这些内角按顺序相加,就得到了三角形的内角和。
对于 ABC 的三个内角∠A, ∠B, ∠C ,它们的和为180°。
2. 性质与推论* 任意一个三角形 abc 都有△a+b+c=180°。
* 任一条边上的两个外弧共计原完整地组成圆周而且仍等于360°即:∠a + 这个所在圏弧等南东跟+ 某南西叫等外弧。
四、研究外角和1. 定义通过延长边 BC、CA 和 AB,可以得到三个外角。
这些外角以补余边作为衡量单位,并按顺序相加得到三角形的外角和。
2. 性质与推论* 每个外角都是由一个切线与一条割线所组成,每个割线都与它所在的边有共同的外端点。
* 三角形的一个外角等于其两个不相邻内角之和。
* 垂直补角定理:一个角的补角与其垂直,且与该角共用一条边。
五、教学活动设计接下来,我们为初中数学教师设计一节关于《三角形单位和及外局和》的教学活动,帮助您更好地引导学生理解和巩固相关概念。
七年级数学暑假专题—三角形中的线段和角冀教版
初一数学暑假专题—三角形中的线段和角冀教版【本讲教育信息】一. 教学内容:暑假专题——三角形中的线段和角1. 利用三角形的内角和外角进行角度的转化和计算.2. 三角形的角平分线、中线、高的应用.二. 知识要点:1. 三角形的内角和外角(1)三角形的内角和是180°.(2)三角形的一个外角等于与它不相邻的两个内角的和. (3)三角形的一个外角大于与它不相邻的任意一个内角. 2. 三角形中的三条重要线段(1)角平分线的性质:把一角平分.(2)中线的性质:把一边平分,把三角形面积平分. (3)高线的性质:把三角形分成两个直角三角形.三. 考点分析:中考要求会利用三角形内角和及内外角的关系求三角形内、外角的度数,能灵活运用内角和解决相关问题. 三角形内角和的应用是中考热点,中考常利用其求角的度数,常出现填空、选择题,大题中求角的度数也是离不开它的. 会画出三角形中的三条主要线段并会应用它们的性质解决有关问题也是中考的常见题型.【典型例题】题型一 利用三角形内角和求值例1. 在△ABC 中,2∠A =3∠B ,且∠C -30°=∠A +∠B ,则△ABC 是( ) A. 锐角三角形 B. 钝角三角形C. 有一个角是30°的直角三角形D. 等腰直角三角形分析:根据题意有⎩⎪⎨⎪⎧2∠A =3∠B ①∠C -30°=∠A +∠B ②∠A +∠B +∠C =180°③,由②得∠A +∠B -∠C =-30°④,③-④得2∠C =210°,即∠C =105°,所以△ABC 是钝角三角形.解:B题型二三角形外角与内角关系的运用例2.如图所示,D是△ABC中∠C的外角平分线与BA的延长线的交点. 试说明∠BAC >∠B.分析:本题考查的是三角形角之间的关系及角的平分线定义. 由题意可知:想直接判断∠BAC与∠B的大小关系有些困难,因而可找一个与它们都有关系的角,由图可知,∠BAC 是∠DAC的外角,故∠BAC>∠ACD,同理∠DCE>∠B,又由题意知,∠ACD=∠DCE,此题得解.ABC D E解:在△ACB中,∠BAC是△CAD的外角.所以∠BAC>∠ACD(三角形的外角大于与它不相邻的任意一个内角)因为CD平分∠ACE(已知)所以∠ACD=∠DCE(角平分线定义)又因为∠DCE是△BCD的外角所以∠DCE>∠B(三角形的外角大于与它不相邻的任意一个内角)所以∠BAC>∠B.评析:要善于看一个角是哪一个三角形的外角,能跟哪些角有关系.题型三三角形的中线例3.如图所示,等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分成15和6两部分,求这个三角形的腰及底边长.分析:由题意可知,中线BD将△ABC的周长分成AB+AD和BC+CD两部分,故有两种可能:(1)AB+AD=15且BC+CD=6. (2)AB+AD=6且BC+CD=15. 再由AB =AC=2AD=2CD及三角形三边关系知(1)成立,(2)不成立.AB CD解:设AB =AC =2x ,则AD =CD =x(1)当AB +AD =15,BC +CD =6时,有2x +x =15. 所以x =5,2x =10,BC =6-5=1.(2)当BC +CD =15,AB +AD =6时,有2x +x =6 所以x =2,2x =4, 所以BC =15-2=13又因为4+4<13,故不能组成三角形,舍去. 答:三角形的腰长为10,底边长为1.评析:涉及等腰三角形的边的问题时,常要分情况讨论,讨论这条边是等腰三角形的腰还是底,然后看它们是否满足三角形的三边关系,不满足的要舍去.题型四 中线平分三角形面积例4. 如图所示,△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =4cm 2,求阴影部分的面积S 阴.分析:S 阴=12S △BEC ,如何求△BEC 的面积成为解题关键,由点E 的由来,即为AD 的中点可得S △BED =12S △ABD ,S △ECD =12S △ADC ,因此S △BEC =12S △ABC =2cm 2,S 阴=1cm 2.ABD解:因为E 为AD 中点 所以S △BED =12S △ABD ,S △DEC =12S △ADC所以S △BED +S △DEC =12S △ABD +12S △ADC即S △BEC =12S △ABC =12×4=2cm 2又因为F 为EC 中点 S 阴=12S △BEC =12×2=1cm 2.评析:运用中线把一个三角形面积平分成相等的两部分.题型五 与三角形高线相关的角例5.△ABC 中,已知∠A =58°,BD 、CE 是△ABC 的两条高线,BD 交CE 于H ,求BD 与CE 的夹角.分析:依题意画出图形,图中直角三角形较多,与∠A 相关的三角形可选择其中的R t△ABD ,可求∠1,在R t △BEH 中,已知∠1可求∠2,∠2求出后可求边BD 与CE 的夹角.A BC E DH12解:因为BD 、CE 是△ABC 的高 所以△ABD 、△BEH 为直角三角形 所以∠1=90°-∠A =90°-58°=32°∠2=90°-∠1=90°-32°=58°(直角三角形两锐角互余) 而∠DHC =∠2=58°,∠BHC =∠EHD =180°-∠2=112° 所以BD 与CE 夹角为58°或112°.评析:在图中∠2与∠A 均为∠1的余角,所以∠A =∠2,因此三角形两条高夹角等于第三个角或其补角.题型六 三角形的高线与面积关系的转化例6. 如图所示,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求(1)△ABC 的面积;(2)CD 的长.ABCD分析:直角三角形面积有两种求法:(1)S R t △=12ab (a 、b 为直角边). (2)S R t △=12ch(c 为斜边,h 为斜边上的高). 利用两种表示法可得ab =ch .解:(1)因为R t △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°所以S △ABC =12AC ·BC =12×12×5=30(cm 2)(2)因为CD 是AB 边上的高 所以S △ABC =12AB ·CD ,即30=12×13×CD所以CD =6013(cm )【方法总结】1. 角的计算常和三角形内角和联系起来,列出方程求解.2. 三角形的角平分线常与平行线的性质综合运用,而三角形的中线将三角形面积二等分,常用在一些实际问题的作图中.3. 学习本节内容一定要“数形结合”,善于将问题转化.【模拟试题】(答题时间:30分钟)一. 选择题1. 如图所示,AB ⊥BD ,AC ⊥CD ,∠A =35°,则∠D 的度数为( ) A. 35°B. 65°C. 55°D. 45°ABCDE2. 如图所示,已知△ABC 的角平分线BD 、CE 交于点F ,∠A =60°,则∠BFC =( ) A. 100°B. 105°C. 110°D. 120°A BCDEF3. 如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B =35°,∠C =65°,则∠DAE =( )A. 30°B. 20°C. 15°D. 10°ABCDE 4. 如图所示,点I 是△ABC 的三条角平分线的交点,∠BIC =130°,则∠A 的度数是( ) A. 40°B. 50°C. 65°D. 80°A BCI5. △ABC 中,∠C =90°,BC =6,AC =8,AB =10,则边AB 上的高的长是( ) A. 8B. 6*6. 锐角三角形中,最大锐角x 的取值X 围是( )A. 0°<x <180°B. 60°<x <90°C. 60°≤x <90°D. 0°<x ≤60° 二. 填空题1. 在R t △ABC 中,锐角A 的平分线与锐角B 的平分线相交于点D ,则∠ADB =__________.2. 根据图示直接写出∠α的度数.(1)α62°38°(2)20°α25°30°150°α(3)70°α(4)70°60°20°α(5)20°α45°135°(6)(1)∠α=__________,(2)∠α=__________,(3)∠α=__________, (4)∠α=__________,(5)∠α=__________,(6)∠α=__________, 三. 解答题1. 如图所示,AD 是△ABC 的中点,E 为AD 上任意一点,那么S △ABE 与S △AEC 的面积是什么关系?说明理由.ABCDE**2. 如图所示,在△ABC 中,∠B =∠C ,D 为BC 上的点,∠BAD =30°,AC 上有点E ,且∠ADE =∠AED ,求∠EDC 的度数.ABCDE**3. 已知,如图所示,在△ABC 中,AB =AC ,AC 边上的中线把三角形的周长分成12和15两部分,求△ABC 各边长.ADB C【试题答案】一. 选择题1. A2. D3. C4. D5. C6. C二. 填空题1. 135°2.(1)100°,(2)35°,(3)60°,(4)70°,(5)30°,(6)70°三. 解答题1. S△ABE=S△AEC. 因为AD是△ABC的中线,所以S△ABD=S△ACD,且S△BDE=S△CDE,所以S△ABD-S△BDE=S△ACD-S△CDE,即S△ABE=S△AEC.2. 设∠EDC=x°. 因为∠AED是△DCE的一个外角,所以∠AED=x°+∠C,又因为∠ADC=∠ADE+x°=∠AED+x°是△ABD的一个外角,所以∠ADE+x°=∠B+∠BAD,所以∠AED+x°=∠B+30°,即x°+∠C+x°=∠B+30°,所以2x°=30°,x=15.3. 当AB+AD=12,BC+CD=15时,AB=AC=8、BC=11;当AB+AD=15,BC+CD=12时,AB=AC=10、BC=7. 这两种情况都满足题意.。
三角形中角度的计算 课件 河北省保定市莲池区冀英中学北师大版数学七年级下册(共17张PPT)
冀英中学七年级数学组
类型1 直接计算角度
1.如图,在△ABC中,AD是高,AE是角平分线.若∠B=72°,
∠DAE=16°,则∠C= 40 度.
思考:直接计算角 度的依据是什么呢?
2.在△ABC中,三个内角度数之比为2:3:4,则相应邻补
角之比为7:6:5
.
解:根据题意可设三个内角度数分别为2x,3x,4x,则可得 2x+3x+4x=180 (三角形内角和等于180°) 解得x=20 故2x=40 3x=60 4x=80
解:∵在△ABE中,∠A=70° ∠B=30°
∴∠AEB=180°-70°-30°=80°
∴∠CED=80°
∴∠C+∠D=180°-80°=10A+∠B=∠C+∠D 可进行角度转化。
证明?
跟踪训练
8.已知,∠A=60°,求(1) ∠ABC+∠ACB;
(2)求∠D+∠E+∠F+∠G的度数。
谢谢大家!
跟踪训练
11.已知点A、D、B在一条直线上,△EAD≌△ABC, ED交AC于点F,∠EAD=120°,求∠EFA的度数。
解析:可将目标角转化为全等三角形中的角 解:∵△EAD≌△ABC
∴∠E=∠CAB ∴∠EFA+∠E+∠EAF=180° ∴∠EFA+∠CAB+∠EAF=180° ∴∠EFA+∠EAD=180° 又∵∠EAD=120° ∴∠EFA=180°-120°=60°
解:(1)∵在△ABC中,∠A=60° ∴∠ABC+∠ACB=180°-∠A =180°-60° =120°
(2)∵∠D+∠E=∠A+∠ACB 又∵∠F+∠G=∠A+∠ABC ∴∠D+∠E+∠F+∠G =∠A+∠ACB+∠A+∠ABC =∠A+180°
比较教案:三角形内角和与外角和的异同点比较
比较教案:三角形内角和与外角和的异同点比较三角形是几何学中最基本、最重要的图形之一,它有着众多的性质和定理。
而其中,内角和与外角和是一个常见的概念。
通过本文的学习,我们将通过教学案例的分析,探究三角形内角和与外角和的异同点。
一、内角和的概念内角和是指三角形内部所有角度的和,对于任何一个三角形来说,其内角和都是固定的。
设三角形的三个角分别为A、B、C,则其内角和为A+B+C,其中A、B、C为三角形的内角。
二、外角和的概念外角和是指任意取三角形内一个顶点,分别将不与该顶点共边的两个角叫做该点的两个外角,把三个外角的度数相加,所得的和称作该三角形的外角和。
设三角形的三个内角为A、B、C,则其对应的三个外角分别为α、β、γ,则有α=B+C-180°,β=C+A-180°,γ=A+B-180°,因此该三角形的外角和为α+β+γ=2(A+B+C)-3×180°。
三、三角形内外角和的异同点比较1.内角和与外角和的计算在计算上,三角形的内角和是直接计算三个内角之和得出的,而求外角和则需要在内角和的基础上做出一些变化,应用到外角和的解法中。
具体来说,三角形的内角和是固定的,因为它是由三个角度相加而成的。
而外角和则需要在内角和的基础上加上如上所述的三个180度相减得出的值,来得到最终的外角和。
这样比较起来,在计算上,求内角和要相对简单一些。
2.内角和与外角和在三角形内部的位置在三角形内部位置上,内角和是指所有内部角度(即三角形内部三个角度)的和,所以它是一种内部的属性。
而外角和则指三角形的三个顶点对应的外角度数之和。
因此,我们可以得出内角和是三角形内部的属性,外角和则是三角形的顶点属性。
3.内角和与外角和的关系三角形的内角和与外角和之间是有关系的。
具体来说,对于任意一个三角形,如果知道内角和,那么可以通过利用三角形的欧拉公式来算出三角形的外角。
而如果知道了一个三角形的外角和,借助于如上所述的公式,同样也可以算出其内角和。
小学数学教案:探究三角形的内角和与外角和
小学数学教案:探究三角形的内角和与外角和一、教学目标1. 知道三角形的内角和与外角和的概念;2. 了解三角形内角和与外角和的关系;3. 掌握计算三角形内角和与外角和的方法;4. 培养学生观察、发现和解决问题的能力。
二、教学重点1. 三角形内角和的计算;2. 三角形外角和的计算;3. 三角形内角和与外角和的关系。
三、教学难点1. 严密条理的思维方式;2. 小学阶段较高的数学知识水平。
四、教学方法1. 讲解法;2. 探究法;3. 演示法;4. 实验法。
五、教学内容三角形是几何中最基本的图形,也是我们日常生活和工作中经常用到的图形之一。
了解三角形内角和与外角和的概念和关系,有助于我们更好地理解和运用三角形。
1. 三角形的内角和三角形由三条边和三个内角组成。
三角形的内角和是指三个内角的度数之和。
对于任意一个三角形ABC,其内角和的计算公式为:∠A+∠B+∠C=180°举个例子,如图1所示,三角形ABC的三个内角分别为∠A、∠B 和∠C,它们的度数分别为70°、50°和60°。
三角形ABC的内角和为:∠A+∠B+∠C=70°+50°+60°=180°图1 三角形ABC的内角和2. 三角形的外角和三角形的外角和是指三个外角的度数之和。
对于任意一个三角形ABC,其三个外角分别为∠A′、∠B′和∠C′,其度数均为其对角内角的补角,即:∠A′=180°−∠B∠B′=180°−∠C∠C′=180°−∠A三角形ABC的外角和的计算公式为:∠A′+∠B′+∠C′=360°举个例子,如图2所示,三角形ABC的三个对角外角分别为∠A′、∠B′和∠C′,其对角内角分别为∠B、∠C和∠A。
三角形ABC的对角外角分别为:∠A′=180°−∠B=180°−70°=110°∠B′=180°−∠C=180°−50°=130°∠C′=180°−∠A=180°−60°=120°三角形ABC的外角和为:∠A′+∠B′+∠C′=110°+130°+120°=360°图2 三角形ABC的外角和3. 三角形内角和与外角和的关系我们可以发现,三角形的内角和与外角和之和为360°,即:∠A+∠B+∠C+∠A′+∠B′+∠C′=180°+360°=540°这说明,三角形的内角和与外角和之间有一定的关系。
七年级下册数学第九章三角形的外角与内角
七年级下册数学第九章三角形的外角与内角摘要:一、三角形的外角与内角的基本概念二、三角形外角与内角的关系三、三角形外角与内角的性质与应用四、如何利用外角与内角解决实际问题五、总结与拓展正文:一、三角形的外角与内角的基本概念在七年级下册数学的第九章,我们将学习三角形的外角与内角。
三角形的外角是指一个三角形的一个角的外部角,而内角则是指三角形的一个角的内部角。
外角和内角是三角形的重要构成部分,它们之间的关系和性质对于我们理解和解决实际问题具有重要意义。
二、三角形外角与内角的关系根据外角和内角的定义,我们可以知道三角形的外角和内角之间存在以下关系:1.外角和等于内角和:一个三角形的一个外角与它所对应的内角之和等于180度。
2.外角大于任何一个不相邻的内角:对于一个三角形,它的任意一个外角都大于与之不相邻的内角。
三、三角形外角与内角的性质与应用掌握了三角形外角与内角的关系后,我们可以运用这些性质来解决实际问题。
例如,在解决几何图形的面积、周长等问题时,可以利用外角与内角的关系进行简化。
此外,外角与内角的关系在证明几何命题时也具有很高的实用价值。
四、如何利用外角与内角解决实际问题下面我们通过一个实例来展示如何利用外角与内角解决实际问题。
题目:已知一个三角形的两边长分别为3和4,求这个三角形的最大面积。
解:根据三角形外角与内角的关系,我们可以先求得这个三角形的一个外角,然后利用外角与内角的关系求得第三个内角,进而求得三角形的面积。
五、总结与拓展通过本章的学习,我们掌握了三角形的外角与内角的基本概念和性质,并学会了如何利用这些性质解决实际问题。
在今后的学习中,我们要不断加强对三角形外角与内角的理解,熟练运用它们的性质,提高解决实际问题的能力。
三角形的内角和与外角和教案
三角形的内角和与外角和教案课题:三角形的内角和与外角和目标:- 理解三角形的内角和与外角和的概念- 掌握计算三角形内角和及外角和的方法教学重点:- 三角形内角和的计算方法- 三角形外角和的计算方法教学环节:1. 导入新课:通过举例引入三角形的内角和与外角和的概念。
让学生思考有没有发现三角形内角和之间或与三角形外角和之间的关系。
2. 内角和的计算:- 提示学生三角形的内角和等于180°,然后引导学生思考如果知道两个内角,如何计算第三个内角。
- 引导学生通过举例计算三角形内角的具体方法,例如:已知一个内角为60°,另一个内角为80°,则第三个内角为180° - 60° - 80° = 40°。
3. 外角和的计算:- 引导学生思考三角形的外角和与相应的内角之间的关系。
提示学生一个外角与其相邻的两个内角之和等于180°。
- 通过举例让学生计算三角形外角的具体方法,例如:已知一个内角为60°,则相应的外角为180° - 60° = 120°。
4. 练习与巩固:- 给学生一些练习题,让他们计算三角形的内角和与外角和。
- 强调计算过程的重要性,特别是注意单位和过程的清晰性。
5. 拓展与应用:- 引导学生思考,如果一个三角形的两个内角和为100°,应该如何计算第三个内角和三个外角和。
- 引导学生通过练习和应用题提升对三角形内角和与外角和的计算能力。
6. 总结与展望:- 对三角形的内角和与外角和进行总结,并提醒学生加深对该概念的理解和掌握。
- 展望下一节课的内容,如三角形的分类及性质。
教学资源:- 课件或黑板、白板- 练习题评估方式:- 平时表现观察- 教师提问- 练习题作业评定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2三角形的内角与外角
姓名____________
【学习目标】
1.知道三角形内角、外角的关系,会进行角度的计算和大小的比较;
2.知道直角三角形的两个锐角互余,会进行直角三角形中角度的计算;
3.知道三角形按照角度分为三类,会判断三角形的种类.
【学习重点】
1. 三角形按角分类
2.三角形内角、外角的关系,会进行角度的计算和大小的比较
【学习难点】
外角性质的语言论述过程。
【学习过程】
一、知识回顾:
1、请在右图标出的四个角中,指出三角形的内角、外角.简
诉三角形外角的定义。
_________________________________________________,
叫做三角形的外角。
2、回忆一下角的分类:
3、三角形内角和定理:______________________________________________________.
二、探索新知(一):
1、思考::一个三角形中可以有几个直角,可以有几个钝角?
2、预习尝试:三角形按角分类,可以分为几类?试着写一写
____________________________________________________________
3、在一个直角三角形中两个锐角存在一种什么关系?______________________________.
三、探索新知(二): B A
C D
1、已知: △ABC ,∠A =60°,∠B =40°,动手测量∠ACD =___;
2、请把你准备的纸片按照课本P133图11-6剪开,再拼接起来.
你发现三角形的外角和与其不相邻的两个内角有什么关系?
________________________________________________________
3、自己试着写一写∠ACD =∠A +∠B 的理由
理由是:_________________________________ _________________________________ ___________________________________
__________________________________
____________________________________
(提示:自己尝试添加辅助线)
4、通过以上活动自己总结一下有何结论?写一写
_________________________________________________________________________ __________________________________________________________________________
四、课时知识总结:
1.关于三角形的内角、外角有那些性质?__________________________________
2.利用角度大小判定三角形的形状有几种方法?
(1)看内角中有几个锐角、直角、钝角?
(2)看外角中有几个锐角、直角、钝角?
五 作业:(必做题)
(一) 、判断题;
1. 三角形角的一边与另一边的反向延长线组成的角叫做三角形的外角( )
2. 三角形的外角一定大于不相邻的内角( )
3. 三角形的外角一定大于相邻的内角( )
(二) 、填空题
1. 已知∠1,∠2,∠3是△ABC 的不同的三个外角,则∠1+∠2+∠3=
2. 三角形的三个外角中,最多有 个锐角,最多有 个钝角,最多有 个直角。
B
A
C D
3. △ABC的两个内角平分线BE、CE交于E点,∠A=50°,则∠BEC= .
4. 已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D= .
5. 三角形的一个外角是锐角,则这个三角形是三角形。
6. 三角形的一个外角是直角,则这个三角形是三角形。
7. 三角形的一个外角是钝角,则这个三角形是三角形。
8. 在直角三角形中,一个锐角是30°,则另一个锐角是。
9. Rt△的两个锐角的和是度。
(三)解答题
1、在△ABC中,已知AD是角平分线,B=60°,C=45°,求∠ADB和∠ADC的度数。
选做题:在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHE的度数。