[全解析]2015届深圳二模文科数学
[全解析]2015届深圳二模文科数学
15.(几何证明选讲选做题)如图 3 , AB 、 AC 是⊙ O 的两条切线,切点分别 为 B 、 C .若 ÐBAC = 60 ° , BC = 6 ,则⊙ O 的半径为 .
A
× O
C 图3
【解析】 2 3 ;连接 OB, OA 交于 H ,则 BC ^ OA , ÐOBH = 30° ,
第 2 页 共 8 页
ì x + 2 y ³ 2 ï 12.若实数 x, y 满足 í x £ 2 ,则 x 2 + y 2 的最小值为 ï y £ 1 î
【解析】 ;画出可行域如图所示, z = x + y =
y
.
1 O
H 2
P
4 5
2
2
(
x 2 + y 2 的几何意义为可行域
2 + 2 + 2 , i = 4 ;
第四次: S = 2 + 2 + 2 + 2 + 2 , i = 5 ;此时输出 S ,故①处可填写 i < 5? . 10.定义在 [ t , +¥ ) 上的函数 f ( x ) , g ( x ) 单调递增, f ( t ) = g ( t ) = M ,若对任意 k > M ,存在 x1 < x2 ,使
4 5
1 4
体积 V = 23 -
ì x = t + 3 ( t 为参数)相交于 A 、 B 两点,则 AB = _________. í 2 îy = t
【 解析 】 2 ; l : x + y - 3 = 0 , C : y = ( x - 3 ) ,联立 í
广东省深圳东方英文书院港台校2015届高考数学二模试卷(含解析)
广东省深圳东方英文书院港台校2015届高考数学二模试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣23.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.44.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.19.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.411.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是.15.(5分)在复数范围内解方程x2+2x+5=0,解为.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是.18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.广东省深圳东方英文书院港台校2015届高考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简可得z=﹣i,由复数的几何意义可得.解答:解:化简可得z=====﹣i,∴复数对应的点为(,),在第三象限,故选:C点评:本题考查复数的代数形式的乘除运算,涉及复数的几何意义,属基础题.2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣2考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,进行复数的乘法运算,化成最简形式,根据复数相等的充要条件写出关于a的方程,解方程即可.解答:解:∵=﹣i,∴∴∴2+=0,∴a=﹣故选B.点评:本题考查复数的代数形式的乘除运算,考查复数相等的充要条件,是一个基础题,这种题目经常出现在2015届高考题目的前三个题目中.3.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4考点:交集及其运算;子集与真子集.专题:计算题.分析:首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.解答:解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B点评:此题考查了交集的运算,属于基础题.4.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题意得,进一步得到,两式作比得答案.解答:解:由题意知,a1=1;当n≥2时,,,两式作比得(n≥2).∴当n≥2,.故选:C.点评:本题考查了数列递推式,考查了作商法求数列的通项公式,是基础题.5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)考点:对数函数的定义域;交集及其运算;指数函数单调性的应用.专题:计算题.分析:根据对数的运算性质和指数的运算性质化简集合A和集合B,然后根据交集的定义可求出所求.解答:解:A={x|lg(x﹣2)<1}={x|lg(x﹣2)<lg10}={x|2<x<12},B={x|<2x<8}={x|2﹣1<2x<23}={x|﹣1<x<3},∴A∩B={x|2<x<3}故选D.点评:本题主要考查了集合的运算,注意指数函数性质的灵活运用,同时考查了计算能力,属于基础题.6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较.分析:利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.解答:解:∵∵,故选A点评:本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:令x<0,则﹣x>0,运用偶函数的定义和已知解析式,即可得到所求的解析式.解答:解:令x<0,则﹣x>0,由于f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则f(﹣x)=﹣x(1﹣)=f(x),即有f(x)=﹣x(1﹣)(x<0)故选C.点评:本题考查函数的奇偶性的运用:求解析式,考查运算能力,属于基础题.8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.1考点:对数的运算性质.专题:计算题.分析:利用基本不等式先求出xy的范围,再根据对数的运算性质进行化简即可求得最大值.解答:解:∵x,y是满足2x+y=20的正数,∴2x+y=20≥2,即xy≤50.当且仅当2x=y,即x=5,y=10时,取等号.∴lgx+lgy=lgxy≤lg50=1+lg5,即最大值为1+lg5.故选C.点评:本题主要考查了函数的最值及其几何意义,最值问题是函数常考的知识点,属于基础题.9.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=ln(1+)=ln,由此利用累加法能求出a n.解答:解:∵在数列{a n}中,a1=2,a n+1=a n+ln(1+),∴a n+1﹣a n=ln(1+)=ln,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+ln2+ln+…+ln=2+ln()=2+lnn.故选:A.点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.4考点:反函数.专题:函数的性质及应用.分析:由函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,说明g(x)是f (x)的反函数,进一步说明f(x)的图象过(2,4),代入求出a的值后再由函数f(x)的函数值为2求得x的值得答案.解答:解:∵函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,∴g(x)是f(x)的反函数,由g(4)=2,得f(2)=4,∴a2﹣1=4,即a=4.∴f(x)=4x﹣1,由4x﹣1=2,解得:x=.∴g(2)=.故选:B.点评:本题考查了函数的反函数,考查了互为反函数的两个函数图象间的关系,是基础题.11.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f(x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个考点:对数函数的图像与性质;函数的周期性.专题:压轴题;数形结合.分析:根据定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,我们易画出函数f(x)的图象,然后根据函数y=f(x)﹣log3|x|的零点个数,即为对应方程的根的个数,即为函数y=f(x)与函数y=log3|x|的图象交点的个数,利用图象法得到答案.解答:解:若函数f(x)满足f(x+2)=f(x),则函数是以2为周期的周期函数,又由函数是定义在R上的偶函数,结合当x∈[0,1]时,f(x)=x,我们可以在同一坐标系中画出函数y=f(x)与函数y=log3|x|的图象如下图所示:由图可知函数y=f(x)与函数y=log3|x|的图象共有4个交点,即函数y=f(x)﹣log3|x|的零点个数是4个,故选B点评:本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.解答:解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故应填﹣1.点评:本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求a而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是1+i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:变形并化简可得z=﹣1﹣i,由共轭复数的定义可得.解答:解:∵复数z0=3+2i,复数z满足z•z0=3z+z0,∴z=====1﹣i,∴复数z的共轭复数=1+i故答案为:1+i点评:本题考查复数的代数形式的乘除运算,涉及共轭复数的求解,属基础题.15.(5分)在复数范围内解方程x2+2x+5=0,解为﹣1±2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用求根公式即可得出.解答:解:=﹣1±2i,故答案为:﹣1±2i.点评:本题实系数一元二次的求根公式,属于基础题.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为﹣7x﹣9.考点:二项式系数的性质.专题:计算题;函数的性质及应用.分析:首先根据题意列出函数关系式f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,②×(x﹣1)﹣①×(x+1)化简即可确定余式.解答:解:根据题意得:∵f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,∴②×(x﹣1)﹣①×(x+1)得:[(x﹣1)﹣(x+1)]f(x)=[h(x)﹣g(x)](x2﹣1)+(x﹣1)﹣8(x+1)=[h(x)﹣g(x)](x2﹣1)﹣7x﹣9∴f(x)除以(x2﹣1)的余式为﹣7x﹣9.故答案为:﹣7x﹣9.点评:本题考查了函数的性质,解题的关键是正确的变形,难度不大.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(3,+∞).考点:对数函数的值域与最值;对数的运算性质.专题:计算题.分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b 化为关于a的一元函数,利用函数单调性求函数的值域即可解答:解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1∴y=a+2b=a+,a∈(0,1)∵y=a+在(0,1)上为减函数,∴y>1+=3∴a+2b的取值范围是(3,+∞)故答案为(3,+∞)点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.考点:基本不等式;二次函数的性质.专题:计算题;压轴题.分析:由于二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以a>0,且△=0,从而得到a,c的关系等式,再利用a,c的关系等式解出a,把转化为只含一个变量的代数式利用均值不等式进而求解.解答:解:因为二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以⇒ac=4⇒c=,所以===1+由于a+≥12(当且仅当a=6时取等号)所以1+≤1+=.故答案为:点评:本题主要考查了基本不等式的应用,以及二次函数的性质,同时考查了计算能力,属于中档题.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.考点:绝对值不等式.专题:计算题;压轴题;分类讨论.分析:(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.解答:解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)根据条件构造等差数列,利用等差数列的通项公式即可求数列{a n}的通项公式;(Ⅱ)利用错位相减法即可求数列{a n}的前n项和S n.解答:解:(Ⅰ)由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得=+1,所以[]﹣[]=1,故{}是以为首项,公差d=1的等差数列,故=n﹣1,则a n=(n﹣1)λn+2n.故数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,则T n==,则数列{a n}的前n项和S n=+2n+1﹣2,当λ=1时,T n=.则数列{a n}的前n项和S n=.+2n+1﹣2.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和,要求熟练掌握构造法以及错位相减法在求解数列中的应用.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a n,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a n+1=a n2+2a n,∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.。
2015深圳二模 广东省深圳市2015届高三第二次调研考试数学文试题 扫描版含答案
2015年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k=,5b k=,3c k =()0k >,…………………………………………………………2分由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-, 因为A是△ABC的内角,所以sin 2A ==.…………………………………………6分 由正弦定理2s i na R A=,…………………………………………………………………………………7分得2sin 214a R A ==⨯=…8分由(1)设7a k =,即k =所以51b k ==,3c k ==10分所以1s i2ABC S bc A ∆=122=⨯ (11)分=所以△ABC的面积为45312分17.(本小题满分12分) 解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=.………………………………1分年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =÷=.……………2分年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以2a ÷=,解得2a =.…………………………………………………………………………3分根据频率直方分布图,得()0.040.030.01101c +++⨯=, 解得0.02c =. (4)分(2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a , ()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分 18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC 且11A D BC =,所以四边形11A BCD 是平行四边形. 所以11A BD C .…………………………………………2分在△1ABA 中,1AM AN ==,13AA AB ==,所以1AM ANAA AB=, 所以1MN.…………………………………………………………………………………………4分所以1MN DC .所以M,N,C,1D 四点共C 1ABA 1B 1D 1C DMN面.………………………………………………………………………6分(2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,连接1D A ,1D N ,DN ,则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥, 所以1111D AMN D ADN D CDN V V V V ---=++1111111333A M N A D N C D N S D A S D D SD D ∆∆∆=++………9分 111319333323232=⨯⨯+⨯⨯+⨯⨯132=.……………………………………………………………………………………………11分 从而11212722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1M N C D 分此正方体的两部分体积的比为1341.……………………………………………14分解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V , 因为平面11ABB A 平面11DCC D ,所以平面AMN平面1DDC .延长CN 与DA 相交于点P , 因为AN DC ,所以AN PA DC PD =,即133PA PA =+,解得32PA =. 延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点.C 1ABA 1B 1D 1CDMN所以几何体1AMN DD C-是一个三棱台.……………………………………………………………9分所以1111332AMV V -⎛⎫==⨯+⨯=⎪ ⎪⎝⎭,………………………………………………11分从而11212722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1M N C D 分此正方体的两部分体积的比为1341.……………………………………………14分19.(本小题满分14分)解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-. 所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)因为()1,32,n n f n n n -⎧=⎨-⎩为奇数为偶数,,假设存在k ∈*N ,使()()34f k f k +=成立.………………………………………………………7分①当k 为奇数时,3k +为偶数,则有()()33241k k +-=-,解得11k =,符合题意.………………………………………………………………………………10分②当k 为偶数时,3k +为奇数,则有()()31432k k +-=-, 解得1011k =,不合题意.………………………………………………………………………………13分综上可知,存在11k =符合条件.………………………………………………………………………14分20.(本小题满分14分) 解:(1)函数()f x 的定义域为()0,+∞,……………………………………………………………………1分因为()2ln f x x ax x =++,所以()121f x ax x'=++,………………………………………………………………………………2分依题意有()10f '=,即12a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++'==,所以当01x <<时,()0f x '>,当1x >时,()0f x '<, 所以函数()f x 在()0,1上是增函数,在()1,+∞上是减函数,………………………………………5分所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分(2)因为()121f x ax x '=++221ax x x++=,(ⅰ)当0a ≥时,………………………………………………………………………………………7分因为()0,x ∈+∞,所以()f x '2210ax x x++=>, 此时函数()f x 在()0,+∞是增函数.……………………………………………………………………9分(ⅱ)当0a <时,令()0f x '=,则2210ax x ++=.因为180a ∆=->,此时()f x '()()212221a x x x x ax x x x--++==,其中1x =,2x =因为a <,所以20x >,又因为12102x x a=<,所以10x <.……………………………………11分所以当20x x <<时,()0f x '>,当2x x >时,()0f x '<, 所以函数()f x 在()20,x 上是增函数,在()2,x +∞上是减函数.…………………………………13分综上可知,当0a ≥时,函数()f x 的单调递增区间是()0,+∞;当0a <时,函数()f x 的单调递增区间是180,4a ⎛+- ⎝⎭,单调递减区间是14a ⎛⎫+-+∞ ⎪ ⎪⎝⎭.……………………………………14分21.(本小题满分14分) 解:(1)方法一:设圆C的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-, 所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分解得1a =-,1r =.所以圆C的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分因为直线l的方程为1122y x -=+,即1y x =+,……………………………………………………2分所以圆心C的坐标为()1,0-.…………………………………………………………………………3分 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤. (5)分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110xx k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以12A B =-x =9分因为()220044y x =--,所以AB =10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max 2225564fx f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为⎦.…………………………………………………………………14分方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤. (5)分设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a,b为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===9分因为()220044y x =--,所以AB =10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以2AB =-=12分当532t =时,max AB =, 当14t =时,min AB = 所以AB的取值范围为4⎦.…………………………………………………………………14分。
2015年广东高考文科数学预测模拟试卷带答案(深圳获奖原创)
深圳市2015年高考模拟试题命题比赛试卷数学(文科)命题人单位:布吉高级中学 命题人:周胥本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形 码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区 域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅 笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、 错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高。
一组数据1x ,2x ,…,n x 的方差])()()[(1222212x x x x x x ns n -++-+-= ,其中x 表示这组数据的平均数一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,R a ∈,若iia +-1一个纯虚数,则实数a 的值为 A .21- B .1- C .21D . 12.设集合{}0322≤-+=x x x M ,{}3,1,1-=N ,则=N MA.{}1-B.{}1,1-C.{}3,1-D.{}3,1 3.已知命题p :直线a ,b 不相交,命题q :直线a ,b 为异面直线,则p 是q 的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知向量)2,1(2x x a +-= ,)1,(x b = ,若b a //,则=xA .1- B.21-C.21D.15.某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项 等于前两项的和)的前2015项的和,他设计了一个程序框图,那 么在空白矩形框和判断框内应分别填入的语句是 A . 2014,≤=i c b B . 2014,≤=i a c C . 2015,≤=i c b D . 2015,≤=i a c6.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b += A.7B.6C.5D.47.某几何体的三视图如图所示,则该几何体的体积是A .6πB .3πC .32π D.π8.若点P (1,1)为圆()4222=+-y x 的弦MN 的中点,则弦MN 所在直线的斜率为 A .1 B .1-C .2D .2-9.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是 C.2D.510.已知集合{}(,)()M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +=成立,则称集合M 是“Ω集合”,给出下列4个集合:①(){}xe y y x M ==, ②(){}x y y x M cos ,==③()⎭⎬⎫⎩⎨⎧==x y y x M 1, ④(){})2ln(,+==x y y x M 其中所有“Ω集合”的序号是正视图左视图俯视图A .①③B .①④C .②④D .②③④二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
广东省深圳市2015年高三年级第二次调研考试数学试题(文科)(含详细答案)
2015年深圳市高三年级第二次调研考试数学(文科)试卷第1页共6页绝密★启用前试卷类型:A广东省2015年深圳市高三年级第二次调研考试数学试题(文科)2015.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:用最小二乘法求线性回归方程y bx a $$$的系数公式:121()()()nii i nii x x y y bx x $,a y bx $$,其中x ,y 是数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数11i在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.平面向量(1,2)a ,(2,)n b,若a // b ,则n 等于A .4B .4C .1D .2。
广东省深圳市2015届最新中考数学模拟试卷(二)(含答案)
2015 年广东省深圳市中考数学模拟试卷(二)一、选择题(共12 小题,每题3 分,共 36 分)1.在实数 0.3, 0, ,, 0.123456 中,无理数的个数是()A .2B .3C .4D .52.一个正方体的平面睁开图如下图,将它折成正方体后 “建 ”字对面是( )A .和B .谐C .凉D .山3.北京时间2010 年 4 月14 日 07 时49 分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一礼拜内接受了54840000元的捐钱,将54840000 用科学记数法(精准到百万)表示为()A . 54×106B . 55×106C . 5.484×107D .5.5×1074.假如一个有理数的平方根和立方根同样,那么这个数是( )A .±1B .0C . 1D .0和15.一组数据: 2, 4,5, 6, x 的均匀数是 4,则这组数的标准差是( )A .2B .C . 10D .6.如图:以下四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.一个面积等于3 的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和 x ,则y 对于x 的函数图象大概是图中的()A .B .C .D .8.以下各式计算正确的选项是()5 2 7A .( a ) =aB . 2x﹣2 =32C . 4a ?2a =8a 68 26D . a ÷a =a9.从 1, 2,3, 4 这四个数字中,随意抽取两个不一样数字构成一个两位数,则这个两位数能被 3 整除的概率是()A.B.C.D.10.“五 ?一”黄金周,巴中人民商场“女装部”推出“所有服饰八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购置了原价x 元,男装部购置了原价为y 元服饰各一套,优惠前需付700 元,而他实质付款580 元,则可列方程组为()A .B.C.D.11.如图,直线点 D.直线 ABAB :y= x+1 分别与 x 轴、 y 轴交于点 A ,点 B ,直线与 CD 订交于点 P,已知 S△ABD =4,则点 P 的坐标是(CD:y=x+b)分别与x 轴, y 轴交于点C,A.( 3,)B.(8,5)C .( 4,3) D .(,)12.如图,在等腰Rt△ABC 中,∠ C=90 °, AC=8 ,F 是AB 边上的中点,点D, E 分别在AC ,BC 边上运动,且保持AD=CE .连结DE, DF , EF.在此运动变化的过程中,以下结论:① △DFE 是等腰直角三角形;② 四边形CDFE 不行能为正方形,③DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤ △CDE 面积的最大值为8.此中正确的结论是()。
深圳市2015届高三数学(文数) 含详细解答
2/9
(二)选做题(14、15 题,考生只能从中选做一题) 14、 (坐标系与参数方程选做题)在平面直角坐标系中,直线 l 的参 数方程为
数 0, 2 ) ,则圆心到直线 l 的距离为
x 2 cos x t 3 (参数 t R ) , 圆的参数方程为 (参 y 2sin 1 y 3t
深圳市 2015 届普通高中毕业班教学质量监测 数学(文科)
本试卷共 4 页,21 小题,满分 150 分,考试用时 120 分钟. 注意事项: 1.答卷前,考生务必用 2B 铅笔在“考生号”处填涂考生号。用黑色字迹的钢笔或签字 笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在 答题卡上。用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定 区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不 准使用铅笔和涂改液。不按以上要求作答的答案无效。 4. 作答选做题时, 请先用 2B 铅笔填涂选做题的题组号对应的信息点, 再作答。 漏涂、 错涂、多涂的,答案无效。 5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:锥体体积公式为 V
2
1 Sh ,其中 S 为锥体的底面积、 h 为锥体的高; 3
球的表面积公式为 S 4 R ,其中 R 为球的半径; 方差公式为 s
2
1 2 2 2 x1 x x2 x xn x . n
2015市二模文科数学-
文科数学试题(二)参考答案一.CBDAC BCCBA AD二. 13.23π (或写成120) 14. 15()4sin()24f x x π=+(或写成1()4sin()24f x x π=-+) 15. 1416. c a b << 三.17.解: (Ⅰ)显然{}n a 是公比为2q =的正项等比数列,设它的首项为1a由2564a a ⋅=得4112264a a ⋅⋅⋅=,即1a =∴11222n n n a --== …………………6分(Ⅱ) 21332n n n n b log a n ,=+=-+ ∴数列{}n b 的前n 项和11()3(13)22213n n n n T +--=+- 2133222n n +=-+ …………………12分 18.(Ⅰ)证明:取AC 的中点G ,连接,FG BG ,则由FG12CD 及BE 12CD 知FG BE ,即BEFG 为平行四边形,∴//EF BG 又EF面ABC ,BG 面ABC ∴//EF 面ABC …………………6分(Ⅱ)解:易证平面ABC ⊥平面BCDE取AC 的中点H ,连接AH ,则有AH BC ⊥,即AH ⊥平面BCDE依题意得,1,2,BC BE CD AH ====∴111(12)13322A BCDE BCDE V S AH -=⋅=⨯⨯+⨯⨯=…………………12分19. 解:(Ⅰ)抽取的学生星期日运动时间少于60分钟的频率为115()3015001000100+⨯=,人数为5人,所以100m = 星期日运动时间在[90,120)内的频率为1112111()3015001000600300200100-+++++⨯0.25= …………………6分 (Ⅱ)依题意知,第一组人数为2人(用,A B 表示),第二组人数为3人(用,,C D E 表示),从这两组中任意抽出2人的事件为,,,,,,,,,AB AC AD AE BC BD BE CD CE DE ,其中至少有一人“星期日运动时间大于30分钟”的事件数为9,所求概率为910.……12分 (也可以用对立事件解决此题)20. 解:(Ⅰ)依题意得22222a b c c aa c ⎧=+⎪⎪=⎨⎪⎪+=+⎩解得 224,1a b == ∴椭圆22:14x C y += ……………5分 (Ⅱ)法1:显然直线l 的斜率存在,设直线:(l y k x =,即0kx y --=,则由 直线l 与圆221x y +=得1=,即212k =22222444(4(x y x k x y k x ⎧+=⎪⇒+=⎨=⎪⎩,即2222(14)1240k x x k +-+-= 将212k =代入得2320x -+=∴122AB x =-== ∵原点O 到直线l 的距离为1d =∴1121122OAB S AB d ∆=⋅=⨯⨯= ……………12分法2:设直线:l x ty =即0x ty --=,则由直线l 与圆221x y +=相切得1=,即22t =222244(44x y ty y x ty ⎧+=⎪⇒++=⎨=+⎪⎩,即22(4)10t y ++-=∴21224(1)4(21)2424t AB y y t ++=-====++ ∴1121122OAB S AB d ∆=⋅=⨯⨯= ……………12分 21. (Ⅰ)证明:由ln 1(),(0)x f x x x +=>得22(ln 1)(ln 1)ln (),x x x x x f x x x ''+-+'==- ∴(1)0f '=,知()y f x =在1x =处的切线平行于x 轴 ……………5分(Ⅱ)解: 不等式()()f x g x ≥(1)x >,即ln 1(1)1x k x x x +≥>- (1)(ln 1)(1)x x k x x -+⇔≤> 令(1)(ln 1)()(1)x x h x x x -+=> 则22[(1)(ln 1)][(1)(ln 1)]ln ()0(1)x x x x x x x x h x x x x''-+⋅--+⋅+'==>> 知()h x 在(1,)+∞递增,于是(1)0k h ≤=,即0k ≤ ……………12分22. 选修4—1:几何证明选讲(Ⅰ)因为A C B D =,所以A B C B C D ∠=∠.又因为EC 与圆相切于点C ,故A C E AB C∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故BC CD BE BC =.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分选修4-4:坐标系与参数方程解: (Ⅰ)曲线1:2sin C ρθ=化为直角坐标方程为221:(1)1C x y +-=,曲线2C:x t y =⎧⎪⎨=⎪⎩(t 为参数) 化为直角坐标方程为2C0y -=∵曲线1C 的圆心(0,1)到2C0y -=的距离为12d =∴AB ===……………5分(Ⅱ)由于曲线1C 的圆心(0,1)到2C0y -=的距离为12d =,因此曲线1C 上的点到曲线2C 的最大距离13122+= ……………10分 选修4-5:不等式选讲解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x ≥⎧⎨>⎩ 解得12x <- ……………5分 (Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。
广东省深圳市龙岗区2015届中考数学二模试卷含答案解析
2015年广东省深圳市龙岗区中考数学二模试卷一、选择题1.16的平方根是()A.4 B.16 C.±4 D.±162.2015年春节长假期间,全国旅游消费非常强劲,实现旅游收入1400亿元,1400亿元用科学记数法表示为()A.1.4×103元B.1.4×1011元C.14×1010元D.0.14×1012元3.一个几何体的三视图如图所示,则这个几何体可能是()A.圆锥 B.球C.圆柱 D.圆4.已知点P(x,3﹣x)关于x轴对称的点在第三象限,则x的取值范围是()A.x<0 B.x<3 C.x>3 D.0<x<35.一鞋店试销一种新款女鞋,卖出情况如下表所示:这个鞋店的经理最关心的是那种型号的鞋销量最大,则对他来说,下列统计量中,最重要的是()A.平均数B.众数 C.中位数D.方差6.要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象()A.向左平移2个单位 B.向右平移2个单位C.向左平移6个单位 D.向右平移6个单位7.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°8.“剪刀石头布”比赛时双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出相同手势,则算打平,则两人只比赛一局,出相同手势的概率为()A.B.C.D.9.设a,b是方程x2+x﹣2015=0的两个根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.201710.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1:3 B.2:3 C.:2 D.:311.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b12.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16二、填空题:13.因式分解:x2﹣4x=.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.15.如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=.16.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为.三、解答题:(共7小题,总分52分)17.计算:﹣22++(π﹣1)0﹣3×|﹣1+tan60°|.18.解不等式组,并将解集在数轴上表示出来.19.某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?20.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.21.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】22.如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC 向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P 运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)求AC的长;(2)在P,Q点运动过程中,∠APQ的度数变化吗?如果不变,求出大小;如果变化,说明理由;(3)以P为圆心,PQ长为半径作圆,问:在整个运动过程中,t为怎样的值时,⊙P与边BC只有1个公共点?23.如图,直线y=x+b经过点B(﹣,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线y=x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C 上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.2015年广东省深圳市龙岗区中考数学二模试卷参考答案与试题解析一、选择题1.16的平方根是()A.4 B.16 C.±4 D.±16【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±4)2=16,∴16的平方根是±4,故选:C.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.2.2015年春节长假期间,全国旅游消费非常强劲,实现旅游收入1400亿元,1400亿元用科学记数法表示为()A.1.4×103元B.1.4×1011元C.14×1010元D.0.14×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1400亿=1.4×1011,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,则这个几何体可能是()A.圆锥 B.球C.圆柱 D.圆【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选C.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.已知点P(x,3﹣x)关于x轴对称的点在第三象限,则x的取值范围是()A.x<0 B.x<3 C.x>3 D.0<x<3【考点】关于x轴、y轴对称的点的坐标;解一元一次不等式组.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得不等式组,根据解不等式组,可得答案.【解答】解:点P(x,3﹣x)关于x轴对称的点在第三象限,得,解得0<x<3故选:D.【点评】本题考查了关于x轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.一鞋店试销一种新款女鞋,卖出情况如下表所示:这个鞋店的经理最关心的是那种型号的鞋销量最大,则对他来说,下列统计量中,最重要的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择.【分析】鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最大的鞋号.【解答】解:由于众数是数据中出现最多的数,鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最多的鞋号.故鞋店的经理最关心的是众数.故选B.【点评】本题考查学生对统计量的意义的理解与运用.要求学生对统计量进行合理的选择和恰当的运用.6.要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象()A.向左平移2个单位 B.向右平移2个单位C.向左平移6个单位 D.向右平移6个单位【考点】一次函数图象与几何变换.【分析】根据“左加右减”的平移法则求解即可.【解答】解:要得到一次函数y=3(x﹣2)的图象,必须将一次函数y=3x的图象向右平移2个单位即可.故选B.【点评】本题考查了一次函数图象与几何变换,掌握“左加右减,上加下减”的平移法则是解题的关键.7.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°【考点】三角形内角和定理.【分析】利用三角形角平分线的定义和三角形内角和定理可求出.【解答】解:AD平分∠BAC,∠BAD=30°,∴∠BAC=60°,∴∠C=180°﹣60°﹣40°=80°.故选B.【点评】本题主要利用三角形角平分线的定义和三角形内角和定理,关键是熟练掌握相关性质.8.“剪刀石头布”比赛时双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出相同手势,则算打平,则两人只比赛一局,出相同手势的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出相同手势情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两人出相同手势情况数是3种,∴出相同手势情况数概率==.故选B.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.设a,b是方程x2+x﹣2015=0的两个根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.2017【考点】根与系数的关系;一元二次方程的解.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a+b+2015,∵a,b是方程x2+x﹣2015=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2015=﹣1+2015=2014.故选A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1:3 B.2:3 C.:2 D.:3【考点】相似三角形的判定与性质;等边三角形的判定与性质.【分析】首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.【解答】解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,=,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故选:A.【点评】此题考查了相似三角形的判定与性质,以及直角三角形的性质.此题难度不是很大,解题时要注意仔细识图.11.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.【解答】解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.由m<n,可知对称轴左侧交点横坐标为m,右侧为n.由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.综上所述,可知m<a<b<n.故选:A.【点评】本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.12.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( )A .10B .12C .14D .16【考点】正方形的性质;三角形的面积. 【专题】几何图形问题;数形结合.【分析】连DB ,GE ,FK ,则DB ∥GE ∥FK ,再根据正方形BEFG 的边长为4,可求出S △DGE =S △GEB ,S △GKE =S △GFE ,再由S 阴影=S 正方形GBEF 即可求出答案. 【解答】解:如图,连DB ,GE ,FK ,则DB ∥GE ∥FK ,在梯形GDBE 中,S △DGE =S △GEB (同底等高的两三角形面积相等), 同理S △GKE =S △GFE . ∴S 阴影=S △DGE +S △GKE , =S △GEB +S △GEF , =S 正方形GBEF , =4×4 =16 故选:D .【点评】本题主要考查正方形的性质,三角形和正方形面积公式以及梯形的性质,属于数形结合题.二、填空题:13.因式分解:x2﹣4x=x(x﹣4).【考点】因式分解-提公因式法.【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为(2+2)米.【考点】解直角三角形的应用-坡度坡角问题.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.【点评】本题中求地毯的长度其实就是根据已知条件解相关的直角三角形.15.如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=12.【考点】反比例函数的性质.【专题】压轴题.【分析】欲求k,可由平移的坐标特点,求出双曲线上点的坐标,再代入双曲线函数式求解.【解答】解:设点A的坐标为(a,a),∵=2,取OA的中点D,∴点B相当于点D向右平移了个单位,∵点D的坐标为(a,a),∴B点坐标为(+a,a),∵点A,B都在反比例函数y=的图象上,∴a×a=a×(+a),解得a=3或0(0不合题意,舍去)∴点A的坐标为(3,4),∴k=12.【点评】本题结合图形的平移考查反比例函数的性质及相似形的有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且相等的性质.16.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为n2﹣n+1.【考点】规律型:图形的变化类.【专题】规律型.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.三、解答题:(共7小题,总分52分)17.计算:﹣22++(π﹣1)0﹣3×|﹣1+tan60°|.【考点】实数的运算.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=﹣4+3+1﹣3×|﹣1+|=﹣4+3+1﹣3(﹣1)=﹣4+3+1﹣3+3=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x<8,由②得:x≥2,∴不等式组的解集是2≤x<8,把不等式组的解集在数轴上表示为:【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.19.某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=8,b=0.08;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?【考点】频数(率)分布直方图;频数(率)分布表;概率公式.【专题】图表型.【分析】(1)根据频数分布图中每一组内的频数总和等于总数据个数,得到总人数,再计算故a的值;根据频率=频数÷数据总数计算b的值;(2)据(1)补全直方图;(3)不低于90分的学生中共4人,小华是其中一个,故小华被选上的概率是:.【解答】解:(1)根据频数分布图中每一组内的频数总和等于总数据个数,且知总人数为50人,故a=50﹣2﹣20﹣16﹣4=8,根据频数与频率的关系可得:b==0.08;(2)如图:(3)小华得了93分,不低于90分的学生中共4人,故小华被选上的概率是:.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.【考点】翻折变换(折叠问题);直角三角形全等的判定;矩形的性质.【专题】几何综合题.【分析】(1)由折叠的性质知,CB′=BC=AD,∠B=∠B′=∠D=90°,∠B′EC=DEA,则由AAS得到△AED≌△CEB′;(2)延长HP交AB于M,则PM⊥AB,PG=PM,PG+PH=HM=AD,∵CE=AE=CD﹣DE=8﹣3=5在Rt△ADE中,由勾股定理得到AD=4,∴PG+PH=HM=AD=4.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、全等三角形的判定和性质,矩形的性质,勾股定理求解.21.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】【考点】一次函数的应用.【专题】压轴题.【分析】(1)以10元/千克的价格销售,那么每天可售出300千克;以13元/千克的价格销售,那么每天可获取利润750元.就相当于直线过点(10,300),(13,150),然后列方程组解答即可.(2)根据利润=销售量×(销售单价﹣进价)写出解析式,然后利用配方法求最大值.【解答】解:(1)当销售单价为13元/千克时,销售量为:千克设y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:∴∴y与x的函数关系式为:y=﹣50x+800(x>0)(2)∵利润=销售量×(销售单价﹣进价)∴W=(﹣50x+800)(x﹣8)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.22.如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC 向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P 运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)求AC的长;(2)在P,Q点运动过程中,∠APQ的度数变化吗?如果不变,求出大小;如果变化,说明理由;(3)以P为圆心,PQ长为半径作圆,问:在整个运动过程中,t为怎样的值时,⊙P与边BC只有1个公共点?【考点】圆的综合题.【分析】(1)连接BD交AC于点E,由菱形的性质可知△AEB为直角三角形且∠EAB=30°,依据特殊锐角三角函数值可求得AE的长,从而得到AC的长;(2)依据两边对应成比例且夹角相等的两三角形相似证明△APQ∽△ACB,从而得到∠APQ=∠ACB=30°;(3)①当圆P与BC相切时,⊙P与边BC只有1个公共点,②当圆P与BC相交时,先求得圆P 经过点B和点C时的t的取值,从而可确定出t的取值范围.【解答】解:(1)连接BD交AC于点E.∵ABCD为菱形,∠DAB=60°,∴∠EAB=30°,∠AEB=90°,AE=CE.∴AE=AB×=2×=.∴AC=2.(2)∵由题意可知AP=t,AQ=t,∴==.又∵=,∴.又∵∠PAQ=∠CAB,∴△APQ∽△ACB.∴∠APQ=∠ACB=∠DCB=30°.(3)如图2所示:当圆P与BC相切时.∵∠PAQ=∠APQ=30°,∴PQ=AQ.又∵PQ=PE,∴AQ=PE.∵BC为圆P的切线,∴∠PEC=90°.∵在△PEC中,∠PEC=90°,∠PCE=30°,∴PC=2PE=2AQ=2t.∵AP+PC=2,AP=t,∴+2t=2.∴t=4﹣6.∴当t=4﹣6时,圆P与BC只有一个交点.如图3所示:当圆P经过点B时,连接PB.∵PQ=PB,∠PQB=60°,∴PQ=PB=QB.∵AQ=PQ,∴AQ=QB=t.∵AQ+QB=AB,∴2t=2.解得;t=1.如图4所示,当圆P经过点C时.∵AQ=PQ,PQ=PC,∴AQ=PC=t.∵AP=t,∴t+t=2.解得:t=3﹣.∴当1<t<3﹣时,圆P与BC只有一个交点.综上所述,当t=4﹣6或1<t<3﹣时,圆P与BC只有一个交点.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了菱形的性质、相似三角形的性质和判定、特殊锐角三角函数值、等边三角形的性质和判定,根据题意画出图形,求得圆P经过点B和点C时的t的取值是解题的关键.23.如图,直线y=x+b经过点B(﹣,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线y=x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C 上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)因为点B(﹣,2)在直线y=x+b上,所以把B点坐标代入解析式即可求出未知数的值,进而求出其解析式.根据直线解析式可求出A点的坐标及直线与y轴交点的坐标,根据锐角三角函数的定义即可求出∠BAO的度数.(2)根据抛物线平移的性质可设出抛物线平移后的解析式,由抛物线上点的坐标特点求出E点坐标及对称轴直线,根据EF∥x轴可知E,F,两点关于对称轴直线对称,可求出F点的坐标,把此坐标代入(1)所求的直线解析式就可求出未知数的值,进而求出抛物线C的解析式.(3)根据特殊角求出D点的坐标表达式,将表达式代入解析式,看能否计算出P点坐标,若能,则D点在抛物线C上.反之,不在抛物线上.【解答】解:(1)设直线与y轴交于点N,将x=﹣,y=2代入y=x+b得b=3,∴y=x+3,当x=0时,y=3,当y=0时x=﹣3∴A(﹣3,0),N(0,3);∴OA=3,ON=3,∴tan∠BAO==∴∠BAO=30°,(2)设抛物线C的解析式为y=(x﹣t)2,则P(t,0),E(0,t2),∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,t2),把x=2t,y=t2代入y=x+3得t+3=t2解得t1=﹣,t2=3∴抛物线C的解析式为y=(x﹣3)2或y=(x+)2.(3)假设点D落在抛物线C上,不妨设此时抛物线顶点P(m,0),则抛物线C:y=(x﹣m)2,AP=3+m,连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,又∵∠BAO=30°,∴△PAD为等边三角形,PM=AM=(3+m),∴tan∠DAM==,∴DM=(9+m),OM=PM﹣OP=(3+m)﹣m=(3﹣m),∴M=[﹣(3﹣m),0],∴D[﹣(3﹣m),(9+m)],∵点D落在抛物线C上,∴(9+m)=[﹣(3﹣m)﹣m]2,即m2=27,m=±3;当m=﹣3时,此时点P(﹣3,0),点P与点A重合,不能构成三角形,不符合题意,舍去.当m=3时P为(3,0)此时可以构成△DAB,所以点P为(3,0),∴当点D落在抛物线C上,顶点P为(3,0).【点评】此题将抛物线与直线相结合,涉及到动点问题,翻折变换问题,有一定的难度.尤其(3)题是一道开放性问题,需要进行探索.要求同学们有一定的创新能力.。
2014-2015学年第一学期广东省深圳市宝安区期末调研测试卷高二文科数学
高二文科数学 第1页 (共4页)2014-2015学年第一学期宝安区期末调研测试卷高二文科数学 2015.1一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.设集合},02|{2<-=x x x A },41|{≤≤=x x B 则A ∩B= A .]2,0( B .)2,1( C .)2,1[ D .)4,1( 2.在△ABC 中,“B A >”是“B A sin sin >”的 A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件 3.设,,a b c R ∈,且a b >,则 A .11()()22ab> B .11a b<C .22a b >D .33a b >4.下列结论正确的的是A .若q p ∨为真命题,则q p ∧为真命题B .一个命题的逆命题为真,它的否命题也一定为真C .命题"0,"2≤-∈∀x x R x 的否定是"0,"2≥-∈∃x x R xD .命题"032,1"2>---<x x x 则若的否命题"032,1"2≤---<x x x 则若 5.设n S 是等差数列{}n a 的前n 项和,公差0d ≠,若113132,24k S a a =+=,则正整数k 的值为A .9B .10C .11D .12 6.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c =A. B .2CD .17.若函数()f x =R ,则实数a 的取值范围为A .(0,4]B .[0,4]C .(,0][4,)-∞+∞D .(,0)[4,)-∞+∞8.已知双曲线2222:1x y C a b-=(0,0)a b >>的两条渐近线与抛物线24y x =的准线分别交于B A .,两点,O 为坐标原点,若AOB ∆的面积为3,则双曲线C 的离心率为A .2B .23 C .21 D .3329.数列{}n a 满足11112,,1n n n a a a a ++-==+其前n 项积.n T ,则2015T =A .1B .6-C .2D .310.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是 A .)3,51(B .),5()31,(+∞⋃-∞高二文科数学 第2页 (共4页)C .)5,31(D .)3,(-∞二、填空题(本大题共4小题,每小题5分,满分20分).11.曲线34y x x =-在点()1,3--处的切线方程是________________12.已知实数,6,9m 构成一个等比数列,则圆锥曲线221x y m+=的离心率为_______13.不等式组⎪⎩⎪⎨⎧≥-+≤-+≥-+02304202y x y x y x 表示的平面区域的面积为________.14.当0a >且1a ≠时,函数()log (1)1a f x x=-+的图像恒过点A ,若点A 在直线0mx y n -+=上,则42m n +的最小值为_ _ __三、解答题(共6小题,共80分)15.(本题满分12分)已知)0(0944:,5|21:|22>≤-+-≤-m m x x q x p ,若⌝p 是⌝q 的充分而不必要条件,求实数m 的取值范围.16.(本题满分13分)已知等差数列{}n a 的公差0≠d ,它的前n 项和为n S ,若,355=S 且2272,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列⎭⎬⎫⎩⎨⎧n S 1的前n 项和为n T ,求n T . 17.(本题满分13分) 如图,在△ABC 中,3π=∠B ,8=AB ,点D 在BC 边上,且2=CD ,71cos =∠ADC . (1)求BAD ∠sin ; (2)求AC BD ,的长.18.(本题满分14分) 已知函数()ln f x x x =.(1)求函数()f x 的极值;(2)设函数()()(1),g x f x a x =--其中,a R ∈求函数()g x 在[1]e ,上的最小值.高二文科数学 第3页 (共4页)19.(本题满分14分)各项均为正数的数列{}n a 中,n S a ,11=是数列{}n a 的前n 项和,对任意*∈N n ,有)(222R p p pa pa S n n n ∈-+= (1)求常数p 的值;(2)求数列{}n a 的通项公式; (3)记n nn n S b 234⋅+=,求数列{}n b 的前n 项和T 。
2015年(全国卷II)(含答案)高考文科数学
2015年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A={}{}=<<=<<-B A x x B x x 则,30,21( ) A.( −1,3) B 。
( −1,0 ) C.(0,2) D.(2,3) 2。
若a 实数,且=+=++a i iai则,312( ) A 。
—4 B. -3 C 。
3 D. 43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )2700260025002400210020001900)A.逐年比较,2008年减少二氧化碳排放量的效果最显著; B 。
2007年我国治理二氧化碳排放显现成效; C.2006年以来我国二氧化碳排放量呈减少趋势; D 。
2006年以来我国二氧化碳年排放量与年份正相关。
4。
已知向量=•+-=-=a b a b a )则(2),2,1(),1,0(( ) A. -1 B 。
0 C 。
1 D. 25。
设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则( )A 。
5B 。
7 C. 9 D. 116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 ( )A 。
81 B 。
71 C. 61 D. 51 7。
已知三点)32()30(),01(,,,,C B A ,则ABC 外接圆的圆心到原点的距离为( )A 。
35B 。
321C 。
352D 。
348。
右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a,b分别为14,18,则输出的a为()否否A。
0 B. 2 C。
4 D。
149。
已知等比数列{}=-==24531),1(4,41aaaaaan则满足()A. 2B. 1C.21D.8110.已知A,B是球O的球面上两点,为该球面上动点,CAOB,90︒=∠若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC。
2015年高考全国2卷文科数学试题(含解析)
绝密★启用前 2015年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3- B .()1,0- C .()0,2 D .()2,32.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4.已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()1A.81B.71C.61D.57.已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.334D.38.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.21D.810.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π11.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )12.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知函数()32f x ax x=-的图像过点(-1,4),则a=.14.若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为.15.已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为. 16.已知曲线lny xx =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a=.三、解答题(题型注释)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (Ⅰ)求sin sin BC∠∠ ;(Ⅱ)若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表 满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数 2814106(Ⅰ)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B DC上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法与理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,点(在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.21.(本小题满分12分)已知()()ln 1f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形ABC 内一点,圆O 与△ABC 的底边BC 交于M,N 两点,与底边上的高交于点G,且与AB,AC 分别相切于E,F 两点.(Ⅰ)证明EFBC ;(Ⅱ)若AG 等于圆O 半径,且AE MN ==求四边形EBCF 的面积. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB最大值.24.(本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(Ⅰ)若ab cd > ,>>a b c d-<-的充要条件.参考答案1.A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A.考点:本题主要考查不等式基础知识及集合的交集运算. 2.D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:本题主要考查复数的乘除运算,及复数相等的概念. 3. D【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解 4.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a ba a ab .故选C.考点:本题主要考查向量数量积的坐标运算. 5.A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 考点:本题主要考查等差数列的性质及前n 项和公式的应用. 6.D 【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D. 考点:本题主要考查三视图及几何体体积的计算. 7.B 【解析】试题分析:△ABC 外接圆圆心在直线BC 垂直平分线上即直线1x =上,设圆心D ()1,b ,由DA=DB得3b b =⇒=,所以圆心到原点的距离3d ==. 故选B. 考点:本题主要考查圆的方程的求法,及点到直线距离公式. 8.B 【解析】试题分析:由题意可知输出的a 是18,14的最大公约数2,故选B. 考点:本题主要考查程序框图及更相减损术. 9.C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算.【解析】试题分析:设球的半径为R,则△AOB 面积为212R ,三棱锥O ABC - 体积最大时,C 到平面AOB 距离最大且为R,此时313666V R R ==⇒= ,所以球O 的表面积24π144πS R ==.故选C.考点:本题主要考查球与几何体的切接问题及空间想象能力. 11.B 【解析】试题分析:由题意可得ππππ12424f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由此可排除C,D ;当π04x <<时点P 在边BC 上,tan PB x =,PA =,所以()tan f x x =可知π0,4x ⎛⎫∈ ⎪⎝⎭时图像不是线段,可排除A,故选B. 考点:本题主要考查函数的识图问题及分析问题解决问题的能力. 12.A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以()()()()()2212121212113f x f x f x f x x x x x x >-⇔>-⇔>-⇔>-⇔<< .故选A.考点:本题主要考查函数的奇偶性、单调性及不等式的解法. 13.-2 【解析】试题分析:由()32f x ax x=-可得()1242f a a -=-+=⇒=- .考点:本题主要考查利用函数解析式求值.【解析】试题分析:不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩表示的可行域是以()()()1,1,2,3,3,2为顶点的三角形区域,2z x y =+的最大值必在顶点处取得,经验算,3,2x y ==时max 8z =. 考点:本题主要考查线性规划知识及计算能力.15.2214x y -= 【解析】试题分析:根据双曲线渐近线方程为12y x =±,可设双曲线的方程为224x y m -= ,把(代入224x y m -=得1m =.所以双曲线的方程为2214x y -=.考点:本题主要考查双曲线几何性质及计算能力. 16.8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:本题主要考查导数的几何意义及直线与抛物线相切问题. 17.(Ⅰ)12;(Ⅱ)30. 【解析】试题分析:(Ⅰ)利用正弦定理转化得:sin 1.sin 2B DC C BD ∠==∠(Ⅱ)由诱导公式可得()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(Ⅰ)知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 试题解析:(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2s i n s i n B C ∠=∠,所以tan 30.B B ∠=∠= 考点:本题主要考查正弦定理及诱导公式的应用,意在考查考生的三角变换能力及运算能力. 18.(Ⅰ)见试题解析(Ⅱ)A 地区的用户的满意度等级为不满意的概率大. 【解析】试题分析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(II )由直方图得()A P C 的估计值为0.6,()B PC 的估计值为0.25.,所以A 地区的用户的满意度等级为不满意的概率大. 试题解析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(Ⅱ)A 地区的用户的满意度等级为不满意的概率大.记A C 表示事件“A 地区的用户的满意度等级为不满意”;B C 表示事件“B 地区的用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B PC 的估计值为()0.0050.02100.25.+⨯=,所以A 地区的用户的满意度等级为不满意的概率大. 考点:本题主要考查频率分布直方图及概率估计. 19.(Ⅰ)见试题解析(Ⅱ)97 或79【解析】试题分析:(Ⅰ)分别在,AB CD 上取H,G,使10AH DG ==;长方体被平面α 分成两个高为10的直棱柱,可求得其体积比值为97 或79试题解析:解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作,EM AB ⊥ 垂足为M,则14AM A E ==,112EB =,18EM AA ==,因为EHGF 是正方形,所以10EH EF BC ===,于是6,10, 6.MH AH HB ====因为长方体被平面α 分成两个高为10的直棱柱,所以其体积比值为97 (79也正确). 考点:本题主要考查几何体中的截面问题及几何体的体积的计算.20.(Ⅰ)2222184x y +=(Ⅱ)见试题解析【解析】试题分析:(Ⅰ)由2242,1,2a a b=+=求得228,4a b ==,由此可得C 的方程.(II )把直线方程与椭圆方程联立得()222214280.k x kbx b +++-=,所以12222,,22121M M M x x kb bx y kx b k k +-===+=++于是1,2M OM M y k x k==-12OM k k ⇒⋅=-.试题解析:解:(Ⅰ)由题意有2242,1,2a a b =+= 解得228,4a b ==,所以椭圆C 的方程为2222184x y +=. (Ⅱ)设直线():0,0l y kx b k b =+≠≠,()()()1122,,,,,M M A x y B x y M x y ,把y kx b=+代入2222184x y +=得()222214280.k x kbx b +++-=故12222,,22121M M M x x kb bx y kx b k k +-===+=++ 于是直线OM 的斜率1,2M OM M y k x k ==- 即12OM k k ⋅=-,所以直线OM 的斜率与直线l 的斜率乘积为定值. 考点:本题主要考查椭圆方程、直线与椭圆及计算能力、逻辑推理能力.21.(Ⅰ)0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111l n1l n 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122l n 10f a a aa ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22. 【解析】试题分析:(Ⅰ)要证明EFBC ,可证明,AD BC ⊥AD EF ⊥;(Ⅱ)先求出有关线段的长度,然后把四边形EBCF 的面积转化为△ABC 和△AEF 面积之差来求. 试题解析:(Ⅰ)由于△ABC 是等腰三角形,,AD BC ⊥ 所以AD 是CAB ∠的平分线,又因为圆O 与AB,AC 分别相切于E,F,所以AE AF =,故AD EF ⊥,所以EFBC .(Ⅱ)由(Ⅰ)知AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 为圆O 的弦,所以O 在AD 上,连接OE,OF,则OE AE ⊥,由AG 等于圆O 的半径得AO=2OE,所以30OAE ∠=,因此,△ABC 和△AEF 都是等边三角形,,因为AE =,所以4,2,AO OE == 因为2,OM OE ==12DM MN == 所以OD=1,于是AD=5,AB = 所以四边形DBCF的面积为(221122⨯-⨯=⎝⎭考点:本题主要考查几何证明、四边形面积的计算及逻辑推理能力.23.(Ⅰ)()30,0,22⎛⎫⎪ ⎪⎝⎭;(Ⅱ)4.试题分析:(Ⅰ)把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解方程组可得交点坐标;(Ⅱ)先确定曲线1C 极坐标方程为(),0,θαρρ=∈≠R 进一步求出点A 的极坐标为()2si n ,αα,点B 的极坐标为(),αα,,由此可得2sin 4sin 43AB πααα⎛⎫=-=-≤ ⎪⎝⎭.试题解析:解:(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=,联立两方程解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标()30,0,22⎛⎫⎪ ⎪⎝⎭.(Ⅱ)曲线1C 极坐标方程为(),0,θαρρ=∈≠R 其中0απ≤< ,因此点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,所以2sin cos 4sin 3AB πααα⎛⎫=-=- ⎪⎝⎭,当56πα=时AB 取得最大值,最大值为4.考点:本题主要考查参数方程、直角坐标及极坐标方程的互化.圆的方程及三角函数的最值. 24. 【解析】试题分析:(Ⅰ)由a b c d +=+及ab cd >,可证明22>,开方即得>(Ⅱ)本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.解:(Ⅰ)因为22a b c d =++=++由题设a b c d +=+,ab cd >,得22>,>(Ⅱ)(ⅰ)若a b c d-<-,则()()22a b c d -<-,即()()2244,a b ab c d cd +-<+- 因为a b c d +=+,所以ab cd >,>(ⅱ)若>,则22>,即a b c d ++>++因为a b c d +=+,所以ab cd >,于是()()()()222244,a b a b a b c d c dc d-=+-<+-=-因此a b c d-<-,综上a b c d-<-的充要条件.考点:本题主要考查不等式证明及充分条件与必要条件.。
高三第二次调研考试数学文试题.docx
高中数学学习材料马鸣风萧萧*整理制作绝密★启用前 试卷类型:A2015年深圳市高三年级第二次调研考试数学(文科) 2015.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效. 3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式: 用最小二乘法求线性回归方程y bx a =+$$$的系数公式:121()()()niii nii x x y y b x x ==--=-∑∑$,a y bx =-$$,其中x ,y 是数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数11i+在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.平面向量(1,2)=-a ,(2,)n =-b ,若a // b ,则n 等于A .4B .4-C .1-D .23.已知集合{}10A x x =->,{}21xB x =>,则A B =IA .∅B .{}01x x <<C .{}0x x <D .{}1x x > 4.命题0:0p x ∃>,0012x x +=,则p ⌝为 A .0x ∀>,12x x +=B .0x ∀>,12x x +≠ C .0x ∀>,12x x +≥ D .0x ∃>,12x x+≠5.已知直线l ,平面,,αβγ,则下列能推出//αβ的条件是A.l α⊥,//l βB.//l α,//l βC.α⊥γ,γβ⊥D.//αγ,//γβ 6.已知某路口最高限速50km/h ,电子监控测得连续6辆汽车的速 度如图1的茎叶图(单位:km/h ).若从中任取2辆, 则恰好有1辆汽车超速的概率为 A.415 B.25 C.815 D.357.将函数π()sin(2)3f x x =+的图象向右平移ϕ个单位,得到的图象关于原点对称,则ϕ的最小正值为 A .π6 B .π3 C .5π12 D .7π128.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与圆03422=+-+y y x 相切,则此双曲线的离心率等于 A .12B.2C.3 D .2 9.如图2所示的程序框图的功能是求2+2+2+2+2的值,则框图中的①、②两处应 分别填写A .5?i <,2S S =+B .5?i ≤,2S S =+开始2,1S i ==1i i =+(图1)3 8 44 1 3 65 5 8俯视图22 主视图22 左视图图3俯视图C .5?i <,2S S =+D .5?i ≤,2S S =+10.定义在[+t ∞,)上的函数()f x ,()g x 单调递增,()()f t g t M ==,若对任意k M >,存在12x x <,使得12()()f x g x k ==成立,则称()g x 是()f x 在[+t ∞,)上的“追逐函数”.已知2()f x x =,下列四个函数:①()g x x =;②()ln 1g x x =+;③()21xg x =-;④1()2g x x=-.其中是()f x 在[1+∞,)上的“追逐函数”的有A .1个 B.2个 C .3个 D .4个 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题,每道试题考生都必须做答. 11.等差数列{}n a 中,44a =,则1592a a a ++= .12.若实数,x y 满足2221x y x y +≥⎧⎪≤⎨⎪≤⎩,则22x y +的最小值为 .13.某几何体的三视图如图3所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为 .(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分.14.(坐标系与参数方程选做题)在直角坐标系中,已知直线l :12x sy s=+⎧⎨=-⎩(s 为参数)与曲线C :23x t y t=+⎧⎨=⎩(t 为参数)相交于A 、B 两点,则AB =_________. 15.(几何证明选讲选做题)如图4,AB 、AC 是⊙O 的两条切线,切点分别为B 、C .若60BAC ∠=︒,6BC =, 则⊙O 的半径为 .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,已知π11sin()214A +=,1cos(π)2B -=-.(1)求sin A 与B 的值;(2)若角A ,B ,C 的对边分别为a ,b ,c ,且5a =,求b ,c 的值.17.(本小题满分12分)PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:(1) 根据上表数据,请在下列坐标系中画出散点图;时间 周一周二 周三 周四 周五 车流量x (万辆) 5051 54 57 58 PM2.5的浓度y (微克/立方米)69 70 74 78 79(图4)⋅ABCO50 52 54 56 5872 7074 76 78 80y x O(2)根据上表数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+$$$;(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?18.(本小题满分14分)如图5,ABC ∆是边长为4的等边三角形,ABD ∆是等腰直角三角形,AD BD ⊥,平面ABC ⊥平面ABD ,且EC ⊥平面ABC ,2EC =. (1)证明://DE 平面ABC ; (2)证明:AD ⊥BE .19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足12a =-,1320n n a S +++=(*n ∈N ).(1)求2a ,3a 的值; (2)求数列{}n a 的通项公式;(3)是否存在整数对(,)m n ,使得等式248n n a m a m -⋅=+成立?若存在,请求出所有满足条件的(,)m n ;若不存在,请说明理由.DCABE(图5)20.(本小题满分14分)已知平面上的动点P 与点(0,1)N 连线的斜率为1k ,线段PN 的中点与原点连线的斜率为2k ,1221k k m =-(1m >),动点P 的轨迹为C . (1)求曲线C 的方程; (2)恰好存在唯一一个同时满足以下条件的圆:①以曲线C 的弦AB 为直径; ②过点N ;③直径2AB NB =.求m 的取值范围.21.(本小题满分14分)已知函数()ln (,)R b f x x ax a b x =-+∈,且对任意0x >,都有0)1()(=+xf x f . (1)求a ,b 的关系式;(2)若)(x f 存在两个极值点1x ,2x ,且12x x <,求出a 的取值范围并证明0)2(2>af ;(3)在(2)的条件下,判断()y f x =零点的个数,并说明理由.2015年深圳市高三年级第二次调研考试文科数学参考答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分50分. 1 2 3 4 5 6 7 8 9 10 DABBDCADCB二、填空题:本大题每小题5分;第14、15两小题中选做一题,如果两题都做,以第14题的得分为最后得分),满分20分. 11.16. 12.45. 13.82π- 14.2. 15.23 . 三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在ABC ∆中,已知π11sin()214A +=,1cos(π)2B -=-.(1)求sin A 与B 的值;(2)若角A ,B ,C 的对边分别为a ,b ,c ,且5a =,求b ,c 的值. 解:(1)πsin()cos 2A A +=Q ,11cos 14A ∴=,…………………………………………………………………………………2分又0πA <<Q ,………………………………………………………………………………3分53sin 14A ∴=.………………………………………………………………………………4分 1cos(π)cos 2B B -=-=-Q ,且0πB <<,π3B ∴=.………………………………………………………………………………………6分(2)法一:由正弦定理得sin sin a bA B=, sin 7sin a B b A⋅∴==,…………………………………………………………………………8分另由2222cos b a c ac B =+-得249255c c =+-,解得8c =或3c =-(舍去),………………………………………………………………11分7b ∴=,8c =.………………………………………………………………………………12分法二:由正弦定理得sin sin a bA B=, sin 7sin a Bb A⋅∴==,…………………………………………………………………………8分又()cos cos cos()C A B A B π=--=-+Q ,5331111sin sin cos cos 1421427A B A B =-=⨯-⨯=,……………………10分 2222cos c a b ab A ∴=+-得212549257647c =+-⨯⨯⨯=, 即8c =,………………………………………………………………………………………11分7b ∴=,8c =.………………………………………………………………………………12分【说明】本题主要考查解三角形的基础知识,正、余弦定理,诱导公式,同角三角函数的基本关系,两角和与差的余弦公式等知识,考查了考生运算求解的能力.17.(本小题满分12分)PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表: (1)根据上表数据,请在时间 周一周二周三周四周五车流量x (万辆) 5051 54 57 58 PM2.5的浓度y (微克/立方米)69 70 74 78 79y下列坐标系中画出散点图;(2)根据上表数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+$$$;(3)若周六同一时间段的车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?解:(1)散点图如下图所示. ………………………………………………………………2分(2)5051545758545x ++++==Q ,6970747879745y ++++==,………6分51()()4534344564iii x x y y =--=⨯+⨯+⨯+⨯=∑,5222221()(4)(3)3450ii x x =-=-+-++=∑,51521()()641.2850()iii ii x x y y b x x ==--===-∑∑$, 74 1.2854 4.88a y bx =-=-⨯=$, …………………………………………………9分故y 关于x 的线性回归方程是:ˆ 1.28 4.88yx =+.…………………………………10分 y 50 52 54 56 58∙∙∙∙∙x72 70 74 76 7880O(3)当25x =时, 1.2825 4.8836.8837y =⨯+=≈所以可以预测此时PM2.5的浓度约为37.…………………………………………12分 【说明】本题主要考查了线性回归分析的方法,包括散点图,用最小二乘法求参数,以及用回归方程进行预测等知识,考查了考生数据处理和运算能力.18.(本小题满分14分)如图,ABC ∆是边长为4的等边三角形,ABD ∆是等腰直角三角形,AD BD ⊥,平面ABC ⊥平面ABD ,且EC ⊥平面ABC ,2EC =. (1)证明://DE 平面ABC ; (2)证明:AD ⊥BE .证明:(1)取AB 的中点O ,连结DO 、CO ,…………1分Q ABD ∆是等腰直角三角形,AD BD ⊥,∴DO AB ⊥,122DO AB ==,………………2分 又Q 平面ABD ⊥平面ABC ,平面ABD I 平面ABC AB =,∴DO ⊥平面ABC ,………………………………3分由已知得EC ⊥平面ABC ,∴//DO EC ,…………………………………………………………………………………4分又2EC DO ==,∴四边形DOCE 为平行四边形,……………………………………………………………5分 ∴//DE OC ,…………………………………………………………………………………6分而DE ⊄平面ABC ,OC ⊂平面ABC ,∴//DE 平面ABC .……………………………………………………………………………7分(2)Q O 为AB 的中点,ABC ∆为等边三角形,∴OC AB ⊥,…………………………………………………………………………………8分DCABEODCABE(第18题图)由(1)知DO ⊥平面ABC ,而OC ⊂平面ABC ,可得DO OC ⊥,………………………………………………………………………………9分 Q DO AB O =I ,OC ∴⊥平面ABD ,…………………………………………………………………………10分 而AD ⊂平面ABD ,∴OC AD ⊥,………………………………………………………………………………11分 又Q //DE OC ,∴DE AD ⊥,………………………………………………………………………………12分 而BD AD ⊥,DE BD D =I ,AD ∴⊥平面BDE ,…………………………………………………………………………13分 又BE ⊂平面BDE ,∴AD ⊥BE .…………………………………………………………………………………14分【说明】本题主要考察空间点、线、面的位置关系,考查空间想象能力、运算能力和逻辑推理能力.19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足12a =-,1320n n a S +++=(*n ∈N ).(1)求2a ,3a 的值;(2)求数列{}n a 的通项公式;(3)是否存在整数对(,)m n ,使得等式248n n a m a m -⋅=+成立?若存在,请求出所有满足条件的(,)m n ;若不存在,请说明理由.解:(1)当1n =得21320a S ++=,解得24a =,………………………………………1分 当2n =得32320a S ++=,2122S a a =+=,解得38a =-,…………………………………………………………………………………3分(2)当2n ≥时,11()3()0n n n n a a S S +--+-=,即1()30n n n a a a +-+=,12n n a a +=-(2n ≥),…………………………………………4分 另由212a a =-得12n n a a +=-,所以数列{}n a 是首项为2-,公比为2-的等比数列,……………………………………5分 (2)n n a ∴=-.…………………………………………………………………………………6分(2)把(2)n n a =-代入248n n a m a m -⋅=+中得2(2)(2)48n n m m --⋅-=+, 即2(2)8(2)4n n m --=-+,……………………………………………………………………………7分 2(2)1688(2)4(2)4(2)4n n n n m --+∴==--+-+-+,…………………………………………8分 要使m 是整数,则须有8(2)4n -+是整数, (2)4n ∴-+能被8整除,……………………………………………………………………9分当1n =时,(2)42n -+=,84(2)4n =-+,此时2m =-,……………………………10分 当2n =时,(2)48n -+=,81(2)4n =-+,此时1m =,………………………………11分 当3n =时,(2)44n -+=-,82(2)4n =--+,此时14m =-,………………………12分 当4n ≥,(2)420n -+≥,8(2)4n -+不可能是整数,…………………………………13分 综上所求,所求满足条件的整数对有(2,1)-,(1,2),(14,3)-.………………………14分【说明】本题主要考查等比数列的定义,会根据数列的递推关系求数列的前几项以及通项公式,考查考生运算求解、推理论证、处理变形的能力.20.(本小题满分14分)已知平面上的动点P 与点(0,1)N 连线的斜率为1k ,线段PN 的中点与原点连线的斜率为2k ,1221k k m=-(1m >),动点P 的轨迹为C . (1)求曲线C 的方程; (2)恰好存在唯一一个同时满足以下条件的圆:①以曲线C 的弦AB 为直径;②过点N ;③直径2AB NB =.求m 的取值范围.解:(1)设(,)P x y ,记PN 的中点为M ,所以1(,)22x y M +. 由题意11y k x-= (0x ≠),2122y k x += (0x ≠), 由1221k k m =-可得:()211122y y x m x +⎛⎫-⋅ ⎪⎝⎭=-⋅(0x ≠), 化简整理可得:2221x y m+=(0x ≠), 曲线C 的方程为2221x y m+=(0x ≠).……………………………………………6分 (2)由题意()0,1N ,若存在以曲线C 的弦AB 为直径的圆过点N ,则有NA NB ⊥,所以直线NA 、NB 的斜率都存在且不为0,设直线NA 的斜率为k (不妨设0k >),所以直线NA 的方程为1y kx =+,直线NB 的方程为11y x k=-+, 将直线NA 和曲线C 的方程联立,得22211y kx x y m=+⎧⎪⎨+=⎪⎩, 消y 整理可得()2222120m k x m kx ++=, 解得22221A m k x m k =-+,所以2222211m k NA k m k=+⋅+, 以k 1-替换k ,可得22222222212111m k m NB k m k k m k=+⋅=+⋅++, 又因为2AB NB =,即有22NA AB NB NB =-=,所以2222222222111m km k k m k k m +⋅=+⋅++, 所以32221k m k m k +=+,即()()221110k k m k ⎡⎤-+-+=⎣⎦,(1)当3m =时,()()()32211110k k m k k ⎡⎤-+-+=-=⎣⎦,解得1k =; (2)当 13m <<时,方程()22110k m k +-+=有()22140m ∆=--<,所以方程()()()32211110k k m k k ⎡⎤-+-+=-=⎣⎦有唯一解1k =;(3)当3m >时,方程()22110k m k +-+=有()22140m ∆=-->, 且()2211110m +-⨯+≠,所以方程()()()32211110k k m k k ⎡⎤-+-+=-=⎣⎦有三个不等的根. 综上,当 13m <≤时,恰有一个圆符合题意.21.(本小题满分14分) 已知函数()ln (,)R b f x x ax a b x =-+∈,且对任意0x >,都有0)1()(=+xf x f . (1)用含a 的表达式表示b ;(2)若)(x f 存在两个极值点1x ,2x ,且12x x <,求出a 的取值范围,并证明0)2(2>a f ; (3)在(2)的条件下,判断()y f x =零点的个数,并说明理由.解:(1)法一:根据题意:令1x =,可得0)11()1(=+f f ,∴(1)0f a b =-+=,…………………………………………………………………………1分 经验证,可得当a b =时,对任意0x >,都有0)1()(=+x f x f ,∴b a =.………………………………………………………………………………………2分 法二:1()()ln ln b a f x f x ax x bx x x x+=-+--+Q b a ax bx x x=-+-+, 1()()0b a x x=-+=,………………………………………………1分∴要使上式对任意0x >恒成立,则须有0b a -=,即b a =.……………………………2分(2)由(1)可知()ln a f x x ax x=-+,且0x >, 2221'()a ax x a f x a x x x-+-∴=--=,………………………………………………………3分 令2()g x ax x a =-+-,要使)(x f 存在两个极值点1x ,2x ,则须有()y g x =有两个不相等的正数根, 20102140(0)0a a a g a >⎧⎪⎪>⎪∴⎨⎪∆=->⎪=-<⎪⎩或20102140(0)0a a a g a <⎧⎪⎪>⎪⎨⎪∆=->⎪=->⎪⎩,解得102a <<或无解,………………………5分 a ∴的取值范围102a <<,可得21028a <<, 由题意知2ln 22ln 2222ln )2(3322--+=+-=a a a a a a a f , 令32()2ln ln 22x h x x x =+--,则2422223344'()22x x x h x x x x-+-=--=, 而当1(0,)2x ∈时,4434434(1)0x x x x -+-=---<,即'()0h x <, ()h x ∴在1(0,)2上单调递减, ∴1163()()2ln 24ln 23ln e 021616h x h >=-+-->->, 即102a <<时,0)2(2>a f .……………………………………………………………7分 (3)∵2221'()a ax x a f x a x x x-+-=--=,2()g x ax x a =-+-, 令0)('=x f 得:211142a x a --=,221142a x a+-=,由(2)知210<<a 时,()y g x =的对称轴1(1,)2x a=∈+∞,2140a ∆=->,(0)0g a =-<, ∴21x >,又121x x =,可得11x <,此时,)(x f 在),0(1x 上单调递减,),(21x x 上单调递增,),(2∞+x 上单调递减,所以()y f x =最多只有三个不同的零点,…………………………………………………10分 又∵(1)0f =,∴()f x 在)1,(1x 上递增,即1[,1)x x ∈时,()0f x <恒成立,根据(2)可知0)2(2>a f 且21028a <<所以21(,1)2a x ∉,即21(0,)2a x ∈ ∴201(,)2a x x ∃∈,使得0)(0=x f ,……………………………………………………12分 由0101x x <<<,得011x >,又0)1(,0)()1(00==-=f x f x f , ∴()f x 恰有三个不同的零点:001,1,x x . 综上所述,()y f x =恰有三个不同的零点.………………………………………………14分【说明】本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.。
二模文科数学试题及答案.docx
鑫达捷试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(文科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式()11223hV S S S S =++,其中1S ,2S 分别是台体的上,下底面积,h 是台体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240o 的值为A .32 B .12 C .12- D .32- 2.已知函数()3xf x =()x ∈R 的反函数为()g x ,则12g ⎛⎫=⎪⎝⎭A .3log 2-B .3log 2C .2log 3-D .2log 33.已知双曲线C :22214x y b-=经过点()4,3,则双曲线C 的离心率为 A .12B .32C .72D .1324.执行如图1所示的程序框图,则输出的z 的值是鑫达捷A .21B .32C .34D .645.已知命题p :x ∀∈R ,20x >,命题q :,αβ∃∈R ,使()tan tan tan αβαβ+=+,则下列命 题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝ 6.设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B ⊆,则实数a 的取值范围为 A .[]1,3 B .()1,3 C .[]3,1--D .()3,1--7.已知数列{}n a 满足13a =,且143n n a a +=+()*n ∈N ,则数列{}n a 的通项公式为 A .2121n -+ B .2121n -- C .221n + D .221n -8.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425B .12C .23 D .19.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A .13B .7C .433 D .33210.设函数()3233f x x ax bx =++有两个极值点12x x 、,且[]11,0x ∈-,[]21,2x ∈,则点(),a b 在aOb平面上所构成区域的面积为 A .14 B .12 C .34D .1 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题) 11.已知i 为虚数单位,复数1iiz -=,则z = . 12.已知向量(),1x =a ,()2,y =b ,若()1,1=-a +b ,则x y += .13.某种型号的汽车紧急刹车后滑行的距离y ()km 与刹车时的速度x ()km/h 的关系可以用2y ax =来描述,已知这种型号的汽车在速度为60km/h 时,紧急刹车后滑行的距离为b ()km .一辆这种型号的汽车紧急刹车后滑行的距离为3b ()km ,则这辆车的行驶速度为 km/h . (二)选做题(14~15题,考生只能从中选做一题)BACDEFG图3鑫达捷14.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥, 垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 外接圆的半径为14,求△ABC 的面积. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.年龄 分组 抽取份数 答对全卷 的人数 答对全卷的人数 占本组的概率[20,30) 4028 0.7 [30,40) n27 0.9[40,50) 10 4b[50,60]20a0.1(1)分别求出n ,a ,b ,c 的值;(2)从年龄在[]40,60答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[]50,60的人中至少有1人被授予“环保之星”的概率. 18.(本小题满分14分)如图4,已知正方体1111ABCD A B C D -的棱长为3,M ,N 分别是棱1AA ,AB 上的点,且1AM AN ==. (1)证明:M ,N ,C ,1D 四点共面;C 1 ABA 1B 1D 1C D MN年龄频率/组距 20 30 40 50 600.01c 0.04 0.03 0鑫达捷(2)平面1MNCD 将此正方体分为两部分,求这两部分的体积 之比.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)若(),,n n a n f n b n ⎧=⎨⎩为奇数为偶数,,是否存在k ∈*N ,使()()34f k f k +=成立?若存在,求出所有符合条件的k 值;若不存在,请说明理由.20.(本小题满分14分)已知函数()2ln f x x ax x =++()a ∈R .(1)若函数()f x 在1x =处的切线平行于x 轴,求实数a 的值,并求此时函数()f x 的极值; (2)求函数()f x 的单调区间. 21.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.2015年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.题号 1 2 3 4 5 6 7 8 9 10 答案 D A C B C A D B B D二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.鑫达捷题号 11 12 13 14 15答案23-603 43 116.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k +-=⨯⨯…………………………………………………………3分 12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以23sin 1cos 2A A =-=.…………………………………………6分 由正弦定理2sin aR A=,…………………………………………………………………………………7分 得32sin 2141432a R A ==⨯⨯=.…………………………………………………………………8分 由(1)设7a k =,即23k =,所以5103b k ==,363c k ==.………………………………………………………………10分所以1sin 2ABC S bc A ∆=131036322=⨯⨯⨯……………………………………………………11分 453=.所以△ABC 的面积为453.…………………………………………………………………………12分 17.(本小题满分12分)解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=.………………………………1分年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =÷=.……………2分 年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以200.1a ÷=,解得2a =.…………………………………………………………………………3分 根据频率直方分布图,得()0.040.030.01101c +++⨯=,鑫达捷解得0.02c =.……………………………………………………………………………………………4分 (2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a , ()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b , ()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分 18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC P 且11A D BC =, 所以四边形11A BCD 是平行四边形.所以11A B D C P .…………………………………………2分 在△1ABA 中,1AM AN ==,13AA AB ==,所以1AM ANAA AB=, 所以1MN A B P .…………………………………………………………………………………………4分 所以1MN D C P .所以M ,N ,C ,1D 四点共面.………………………………………………………………………6分 (2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,连接1D A ,1D N ,DN ,则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥,C 1 ABA 1B 1D 1C DMNC 1 ABA 1B 1D 1 CDMN鑫达捷所以1111D AMN D ADN D CDN V V V V ---=++1111111333AMN ADN CDN S D A S D D S D D ∆∆∆=++g g g ………9分 111319333323232=⨯⨯+⨯⨯+⨯⨯132=.……………………………………………………………………………………………11分从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分 解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V , 因为平面11ABB A P 平面11DCC D ,所以平面AMN P 平面1DD C . 延长CN 与DA 相交于点P , 因为AN DC P ,所以AN PA DC PD =,即133PA PA =+,解得32PA =. 延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点.所以几何体1AMN DD C -是一个三棱台.……………………………………………………………9分 所以1111199133322222AMN DD CV V -⎛⎫==⨯+⨯+⨯= ⎪ ⎪⎝⎭,………………………………………………11分 从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分 所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分 19.(本小题满分14分)鑫达捷解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分 (2)因为()1,32,n n f n n n -⎧=⎨-⎩为奇数为偶数,,假设存在k ∈*N ,使()()34f k f k +=成立.………………………………………………………7分 ①当k 为奇数时,3k +为偶数, 则有()()33241k k +-=-,解得11k =,符合题意.………………………………………………………………………………10分 ②当k 为偶数时,3k +为奇数, 则有()()31432k k +-=-,解得1011k =,不合题意.………………………………………………………………………………13分 综上可知,存在11k =符合条件.………………………………………………………………………14分20.(本小题满分14分)解:(1)函数()f x 的定义域为()0,+∞,……………………………………………………………………1分因为()2ln f x x ax x =++,所以()121f x ax x'=++,………………………………………………………………………………2分 依题意有()10f '=,即1210a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++'==,所以当01x <<时,()0f x '>,当1x >时,()0f x '<,鑫达捷所以函数()f x 在()0,1上是增函数,在()1,+∞上是减函数,………………………………………5分 所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分(2)因为()121f x ax x'=++221ax x x ++=,(ⅰ)当0a ≥时,………………………………………………………………………………………7分因为()0,x ∈+∞,所以()f x '2210ax x x++=>, 此时函数()f x 在()0,+∞是增函数.……………………………………………………………………9分 (ⅱ)当0a <时,令()0f x '=,则2210ax x ++=. 因为180a ∆=->,此时()f x '()()212221a x x x x ax x x x--++==,其中11184a x a --=-,21184a x a+-=-.因为0a <,所以20x >,又因为12102x x a=<,所以10x <.……………………………………11分 所以当20x x <<时,()0f x '>,当2x x >时,()0f x '<,所以函数()f x 在()20,x 上是增函数,在()2,x +∞上是减函数.…………………………………13分 综上可知,当0a ≥时,函数()f x 的单调递增区间是()0,+∞;当0a <时,函数()f x 的单调递增区间是1180,4a a ⎛⎫+-- ⎪ ⎪⎝⎭,单调递减区间是118,4a a ⎛⎫+--+∞ ⎪ ⎪⎝⎭.……………………………………14分 21.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分鑫达捷方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k 满足00211k y kx k -+-=+,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-()()220000220000412122y y x x x x x x -+⎡⎤=-⎢⎥++⎣⎦……………………………………………9分 因为()220044y x =--, 所以()02056222x AB x -=+.…………………………………………………………………………10分鑫达捷设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y , 则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C 相切,所以()0022001a y ax y a x -+=-+,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分鑫达捷 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以()24AB a b a b ab =-=+- 200002422y x x x ⎛⎫=+ ⎪++⎝⎭ ()()2000204422y x x x ++=+.……………………………………………………………………9分 因为()220044y x =--, 所以()02056222x AB x -=+……………………………………………………………………………10分 ()2001652222x x =-+++.………………………………………………………………11分 令012t x =+,因为026x ≤≤,所以1184t ≤≤. 所以222165AB t t =-+252522163264t ⎛⎫=--+ ⎪⎝⎭,………………………………………12分 当532t =时,max 524AB =, 当14t =时,min 2AB =. 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.…………………………………………………………………14分。
2015年广东省深圳高中高二上学期数学期中试卷和解析(文科)
2014-2015学年广东省深圳高中高二(上)期中数学试卷(文科)一、选择题(在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)命题p:3是奇数,q:5是偶数,则下列说法中正确的是()A.p或q为真B.p且q为真C.非p为真D.非q为假2.(5分)“x2﹣x=0”是“x=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为()A.(x﹣2)2+(y﹣3)2=5 B.(x﹣2)2+(y﹣3)2=25 C.(x﹣2)2+(y+3)2=5 D.(x﹣2)2+(y+3)2=254.(5分)若直线x+y+a=0与圆(x﹣a)2+y2=2相切,则a=()A.1 B.﹣1 C.D.1或﹣15.(5分)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2x C.D.6.(5分)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个 B.2个 C.3个 D.4个7.(5分)过点P(﹣1,4)作圆x2+y2﹣4x﹣6y+12=0的切线,则切线长为()A.3 B.C. D.58.(5分)与直线4x﹣y+3=0平行的抛物线y=2x2的切线方程是()A.4x﹣y+1=0 B.4x﹣y﹣1=0 C.4x﹣y﹣2=0 D.4x﹣y+2=09.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2 B.2 C.2 D.410.(5分)已知f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为()A.(,+∞)B.(﹣∞,﹣)C.(﹣,﹣2)D.(2,)二.填空题:(本大题共4小题,每小题5分,满分20分)11.(5分)已知f(x)=lnx+cosx,则f′=.12.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.13.(5分)椭圆的离心率为,则实数m的值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)已知函数的最小正周期为π.(1)求ω和的值;(2)求函数f(x)的最大值及相应x的集合.16.(12分)设直线2x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于点A、B.(1)求弦AB的垂直平分线方程;(2)求弦AB的长.17.(14分)设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.18.(14分)设F1,F2分别为椭圆C:(a>b>0)的左、右两个焦点,椭圆C上的点到两点的距离之和等于4.(Ⅰ)求椭圆C的方程和焦点坐标;(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点求|PQ|的最大值.19.(14分)如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.20.(14分)已知函数f(x)=,g(x)=alnx﹣x(a≠0).(1)a>0时,求函数f(x)的单调区间;(2)求证:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.2014-2015学年广东省深圳高中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(在每小题给出的四个选项中,有且只有一项是符合要求的)1.(5分)命题p:3是奇数,q:5是偶数,则下列说法中正确的是()A.p或q为真B.p且q为真C.非p为真D.非q为假【解答】解:根据奇数和偶数的定义,得命题p是真命题,命题q是假命题.∵命题q是假命题∴命题“p且q”为假命题,故B错误命题“非q”为真命题,故D错误又∵命题p是真命题∴命题“p或q”是真命题,故A正确命题“非p”为假命题,故C错误故选:A.2.(5分)“x2﹣x=0”是“x=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若x2﹣x=0 则x=0或x=1.即x2﹣x=0推不出x=1.反之,若x=1,则x2﹣x=0,即x=1推出x2﹣x=0所以“x2﹣x=0”是“x=1”的必要不充分条件.故选:B.3.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为()A.(x﹣2)2+(y﹣3)2=5 B.(x﹣2)2+(y﹣3)2=25 C.(x﹣2)2+(y+3)2=5 D.(x﹣2)2+(y+3)2=25【解答】解:设圆心C(2,m),根据圆C与y轴交于两点A(0,﹣4),B(0,﹣2),可得CA2=CB2,即4+(m+4)2=4+(m+2)2,求得m=﹣3,可得圆心为(2,﹣3)、半径为CA=,∴圆C的方程为(x﹣2)2+(y+3)2=5,故选:C.4.(5分)若直线x+y+a=0与圆(x﹣a)2+y2=2相切,则a=()A.1 B.﹣1 C.D.1或﹣1【解答】解:∵直线x+y+a=0与圆(x﹣a)2+y2=2相切,∴圆心(a,0)到直线x+y+a=0的距离等于圆的半径,∴,∴a=1或﹣1.故选:D.5.(5分)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2x C.D.【解答】解:由已知得到,因为双曲线的焦点在x轴上,故渐近线方程为;故选:C.6.(5分)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个 B.2个 C.3个 D.4个【解答】解:由图象得:导函数f′(x)=0有3个根,只有在b附近的根满足根的左边为负值,根的右边为正值,故函数只有1个极小值点,故选:A.7.(5分)过点P(﹣1,4)作圆x2+y2﹣4x﹣6y+12=0的切线,则切线长为()A.3 B.C. D.5【解答】解:∵圆x2+y2﹣4x﹣6y+12=0的标准方程是(x﹣2)2+(x﹣3)2=1,∴圆心(2,3)到点P的距离是d==;圆的半径r=1,∴切线长为l===3.故选:A.8.(5分)与直线4x﹣y+3=0平行的抛物线y=2x2的切线方程是()A.4x﹣y+1=0 B.4x﹣y﹣1=0 C.4x﹣y﹣2=0 D.4x﹣y+2=0【解答】解:∵y=2x2 ∴y'=4x,∵直线4x﹣y+3=0的斜率为4,由4x=4得x=1,当x=1时,代入抛物线方程得y=2,∴切点坐标为(1,2)∴与直线4x﹣y+3=0的平行的抛物线y=2x2的切线方程是y﹣2=4(x﹣1)即4x﹣y﹣2=0故选:C.9.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2 B.2 C.2 D.4【解答】解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C.10.(5分)已知f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为()A.(,+∞)B.(﹣∞,﹣)C.(﹣,﹣2)D.(2,)【解答】解:f(x)=|xe x|=,易知f(x)在[0,+∞)上是增函数,当x∈(﹣∞,0)时,f(x)=﹣xe x,f′(x)=﹣e x(x+1),故f(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数;作其图象如下,且f(﹣1)=;故若方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则方程x2+tx+1=0(t∈R)有两个不同的实根,且x1∈(0,),x2∈(,+∞)∪{0},故,或1=0解得,t∈(﹣∞,﹣),故选:B.二.填空题:(本大题共4小题,每小题5分,满分20分)11.(5分)已知f(x)=lnx+cosx,则f′=.【解答】解:,∴,故答案为:.12.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].13.(5分)椭圆的离心率为,则实数m的值为.【解答】解:当m>5时,=,解得m=,当m<5时,=解得m=3符合题意,故答案为:14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.【解答】解:依题意可知∠F1PF2=90°|F1F2|=2c,∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c,由双曲线定义可知|PF1|﹣|PF2|=2a=(﹣1)c∴e==.故答案为:.三.解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(12分)已知函数的最小正周期为π.(1)求ω和的值;(2)求函数f(x)的最大值及相应x的集合.【解答】解:(1)∵函数f(x)=sin()的周期是π且ω>0∴T=,解得ω=2∴f(x)=sin(2x+)∴f()=sin()=sin=(2)∵﹣1∴当2x+=+2kπ(k∈Z)即x=时f(x)取得最大值1,此时x的集合为{x/x=}.16.(12分)设直线2x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于点A、B.(1)求弦AB的垂直平分线方程;(2)求弦AB的长.【解答】解:(1)圆方程可整理为:(x﹣1)2+y2=4,圆心坐标为(1,0),半径r=2,易知弦AB的垂直平分线l过圆心,且与直线AB垂直,而,∴.所以,由点斜式方程可得:,整理得:3x﹣2y﹣3=0.(2)圆心(1,0)到直线,故.17.(14分)设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.【解答】解:(1)…(2分)令∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);单减区间为(﹣2,0).…(6分)(2)令∴x=0和x=﹣2,…(8分)∴∴f(x)∈[0,2e2]…(11分)∴m<0…(12分)18.(14分)设F1,F2分别为椭圆C:(a>b>0)的左、右两个焦点,椭圆C上的点到两点的距离之和等于4.(Ⅰ)求椭圆C的方程和焦点坐标;(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点求|PQ|的最大值.【解答】解:(Ⅰ)∵椭圆C上的点A(1,)到椭圆+=1(a>b>0)两焦点F1,F2的距离之和等于4,∴2a=4,a=2.∴+=1,∴b2=3,∴椭圆的方程为:+=1,其焦点坐标为F1(﹣1,0),F2(1,0);(Ⅱ)设P(2cosθ,sinθ),∵Q(0,),∴|PQ|2=4cos2θ+=4﹣4sin2θ+3sin2θ﹣sinθ+=﹣sin2θ﹣sinθ+=﹣+5≤5.∴|PQ|的最大值为.19.(14分)如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.【解答】解:(I)由已知条件,可设抛物线的方程为y2=2px∵点P(1,2)在抛物线上∴22=2p×1,得p=2故所求抛物线的方程是y2=4x准线方程是x=﹣1(II)设直线PA的斜率为k PA,直线PB的斜率为k PB则,∵PA与PB的斜率存在且倾斜角互补∴k PA=﹣k PB由A(x1,y1),B(x2,y2)在抛物线上,得y12=4x1(1)y22=4x2(2)∴∴y1+2=﹣(y2+2)∴y1+y2=﹣4由(1)﹣(2)得直线AB的斜率20.(14分)已知函数f(x)=,g(x)=alnx﹣x(a≠0).(1)a>0时,求函数f(x)的单调区间;(2)求证:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.【解答】解:(1)函数f(x)的定义域为R,,当a>0时,当x变化时,f'(x),f(x)的变化情况如下表:当a>0时,f(x)的单调递增区间为(﹣1,1),单调递减区间为(﹣∞,﹣1),(1,+∞);(2)证明:由(1)可知,当a>0时,f(x)在(0,1)上单调递增,f(x)>f(0)=a;f(x)在[,e]上单调递减,且.则f(x2)>a,∵g′(x)=,①当0<a<e时,g(x)=alnx﹣x在(0,a)上单调递增,在[a,e]上单调递减;故g(x1)max=g(a)=alna﹣a;则alna﹣a﹣a=a(lna﹣2)<0;故对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立;②当a≥e时,g(x)=alnx﹣x在(0,e]上单调递增,故g(x1)max=g(e)=a﹣e;故a﹣e﹣a=﹣e<0,故对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.综上所述,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
广东省深圳东方英文书院港台校高考数学二模试卷(含解析)
广东省深圳东方英文书院港台校2015届高考数学二模试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣23.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.44.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.19.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.411.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是.15.(5分)在复数范围内解方程x2+2x+5=0,解为.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是.18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.广东省深圳东方英文书院港台校2015届高考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知i为虚数单位,则复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简可得z=﹣i,由复数的几何意义可得.解答:解:化简可得z=====﹣i,∴复数对应的点为(,),在第三象限,故选:C点评:本题考查复数的代数形式的乘除运算,涉及复数的几何意义,属基础题.2.(5分)若a为实数,=﹣i,则a等于()A.B.﹣C.2D.﹣2考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,进行复数的乘法运算,化成最简形式,根据复数相等的充要条件写出关于a的方程,解方程即可.解答:解:∵=﹣i,∴∴∴2+=0,∴a=﹣故选B.点评:本题考查复数的代数形式的乘除运算,考查复数相等的充要条件,是一个基础题,这种题目经常出现在2015届高考题目的前三个题目中.3.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4考点:交集及其运算;子集与真子集.专题:计算题.分析:首先根据M∩{a1,a2,a3}={a1,a2}可知a1,a2是M中的元素,a3不是M中的元素,由子集的定义即可得出答案.解答:解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选B点评:此题考查了交集的运算,属于基础题.4.(5分)某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有()A.a n=2n﹣1 B.a n=n2C.a n=D.an=考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由题意得,进一步得到,两式作比得答案.解答:解:由题意知,a1=1;当n≥2时,,,两式作比得(n≥2).∴当n≥2,.故选:C.点评:本题考查了数列递推式,考查了作商法求数列的通项公式,是基础题.5.(5分)若集合A={x|lg(x﹣2)<1},集合B={x|<2x<8},则A∩B=()A.(﹣1,3)B.(﹣1,12)C.(2,12)D.(2,3)考点:对数函数的定义域;交集及其运算;指数函数单调性的应用.专题:计算题.分析:根据对数的运算性质和指数的运算性质化简集合A和集合B,然后根据交集的定义可求出所求.解答:解:A={x|lg(x﹣2)<1}={x|lg(x﹣2)<lg10}={x|2<x<12},B={x|<2x<8}={x|2﹣1<2x<23}={x|﹣1<x<3},∴A∩B={x|2<x<3}故选D.点评:本题主要考查了集合的运算,注意指数函数性质的灵活运用,同时考查了计算能力,属于基础题.6.(5分)设a=log 3π,b=log2,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较.分析:利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.解答:解:∵∵,故选A点评:本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.7.(5分)设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(﹣∞,0)时,f(x)等于()A.x(1+)B.﹣x(1+)C.﹣x(1﹣)D.x(1﹣)考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:令x<0,则﹣x>0,运用偶函数的定义和已知解析式,即可得到所求的解析式.解答:解:令x<0,则﹣x>0,由于f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则f(﹣x)=﹣x(1﹣)=f(x),即有f(x)=﹣x(1﹣)(x<0)故选C.点评:本题考查函数的奇偶性的运用:求解析式,考查运算能力,属于基础题.8.(5分)设x、y是满足2x+y=20的正数,则lgx+lgy的最大值是()A.50 B.2 C.1+lg5 D.1考点:对数的运算性质.专题:计算题.分析:利用基本不等式先求出xy的范围,再根据对数的运算性质进行化简即可求得最大值.解答:解:∵x,y是满足2x+y=20的正数,∴2x+y=20≥2,即xy≤50.当且仅当2x=y,即x=5,y=10时,取等号.∴lgx+lgy=lgxy≤lg50=1+lg5,即最大值为1+lg5.故选C.点评:本题主要考查了函数的最值及其几何意义,最值问题是函数常考的知识点,属于基础题.9.(5分)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+ln n B.2+(n﹣1)ln n C.2+n ln n D.1+n+ln n考点:数列递推式.专题:等差数列与等比数列.分析:由已知得a n+1﹣a n=ln(1+)=ln,由此利用累加法能求出a n.解答:解:∵在数列{a n}中,a1=2,a n+1=a n+ln(1+),∴a n+1﹣a n=ln(1+)=ln,∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+ln2+ln+…+ln=2+ln()=2+lnn.故选:A.点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累加法的合理运用.10.(5分)函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,并且g(4)=2,则g(2)的值是()A.B.C.2 D.4考点:反函数.专题:函数的性质及应用.分析:由函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,说明g(x)是f (x)的反函数,进一步说明f(x)的图象过(2,4),代入求出a的值后再由函数f(x)的函数值为2求得x的值得答案.解答:解:∵函数y=g(x)的图象与函数f(x)=a x﹣1的图象关于y=x对称,∴g(x)是f(x)的反函数,由g(4)=2,得f(2)=4,∴a2﹣1=4,即a=4.∴f(x)=4x﹣1,由4x﹣1=2,解得:x=.∴g(2)=.故选:B.点评:本题考查了函数的反函数,考查了互为反函数的两个函数图象间的关系,是基础题.11.(5分)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞)B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据定义的运算法则化简函数f(x)=(x2﹣2)⊗(x﹣1),的解析式,并画出f(x)的图象,函数y=f(x)﹣c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围.解答:解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.点评:本题考查二次函数的图象特征、函数与方程的综合运用,及数形结合的思想.属于基础题.12.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3|x|的零点个数是()A.多于4个B.4个C.3个D.2个考点:对数函数的图像与性质;函数的周期性.专题:压轴题;数形结合.分析:根据定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,我们易画出函数f(x)的图象,然后根据函数y=f(x)﹣log3|x|的零点个数,即为对应方程的根的个数,即为函数y=f(x)与函数y=log3|x|的图象交点的个数,利用图象法得到答案.解答:解:若函数f(x)满足f(x+2)=f(x),则函数是以2为周期的周期函数,又由函数是定义在R上的偶函数,结合当x∈[0,1]时,f(x)=x,我们可以在同一坐标系中画出函数y=f(x)与函数y=log3|x|的图象如下图所示:由图可知函数y=f(x)与函数y=log3|x|的图象共有4个交点,即函数y=f(x)﹣log3|x|的零点个数是4个,故选B点评:本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.二、填空题(共6小题,每小题5分,满分30分)13.(5分)设函数为奇函数,则a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.解答:解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故应填﹣1.点评:本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求a而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.14.(5分)已知复数z0=3+2i,复数z满足z•z0=3z+z0,则复数z的共轭复数是1+i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:变形并化简可得z=﹣1﹣i,由共轭复数的定义可得.解答:解:∵复数z0=3+2i,复数z满足z•z0=3z+z0,∴z=====1﹣i,∴复数z的共轭复数=1+i故答案为:1+i点评:本题考查复数的代数形式的乘除运算,涉及共轭复数的求解,属基础题.15.(5分)在复数范围内解方程x2+2x+5=0,解为﹣1±2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用求根公式即可得出.解答:解:=﹣1±2i,故答案为:﹣1±2i.点评:本题实系数一元二次的求根公式,属于基础题.16.(5分)设f(x)以(x﹣1)除之,余式为8,以(x+1)除之的余式为1,求(x2﹣1)除之的余式为﹣7x﹣9.考点:二项式系数的性质.专题:计算题;函数的性质及应用.分析:首先根据题意列出函数关系式f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,②×(x﹣1)﹣①×(x+1)化简即可确定余式.解答:解:根据题意得:∵f(x)=g(x)(x﹣1)+8①,f(x)=h(x)(x+1)+1②,∴②×(x﹣1)﹣①×(x+1)得:[(x﹣1)﹣(x+1)]f(x)=[h(x)﹣g(x)](x2﹣1)+(x﹣1)﹣8(x+1)=[h(x)﹣g(x)](x2﹣1)﹣7x﹣9∴f(x)除以(x2﹣1)的余式为﹣7x﹣9.故答案为:﹣7x﹣9.点评:本题考查了函数的性质,解题的关键是正确的变形,难度不大.17.(5分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是(3,+∞).考点:对数函数的值域与最值;对数的运算性质.专题:计算题.分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b 化为关于a的一元函数,利用函数单调性求函数的值域即可解答:解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1∴y=a+2b=a+,a∈(0,1)∵y=a+在(0,1)上为减函数,∴y>1+=3∴a+2b的取值范围是(3,+∞)故答案为(3,+∞)点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题18.(5分)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最大值为.考点:基本不等式;二次函数的性质.专题:计算题;压轴题.分析:由于二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以a>0,且△=0,从而得到a,c的关系等式,再利用a,c的关系等式解出a,把转化为只含一个变量的代数式利用均值不等式进而求解.解答:解:因为二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),所以⇒ac=4⇒c=,所以===1+由于a+≥12(当且仅当a=6时取等号)所以1+≤1+=.故答案为:点评:本题主要考查了基本不等式的应用,以及二次函数的性质,同时考查了计算能力,属于中档题.三、解答题(共4小题,满分60分)19.(15分)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.考点:绝对值不等式.专题:计算题;压轴题;分类讨论.分析:(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.解答:解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.20.(15分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.21.(15分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)根据条件构造等差数列,利用等差数列的通项公式即可求数列{a n}的通项公式;(Ⅱ)利用错位相减法即可求数列{a n}的前n项和S n.解答:解:(Ⅰ)由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得=+1,所以[]﹣[]=1,故{}是以为首项,公差d=1的等差数列,故=n﹣1,则a n=(n﹣1)λn+2n.故数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,则T n==,则数列{a n}的前n项和S n=+2n+1﹣2,当λ=1时,T n=.则数列{a n}的前n项和S n=.+2n+1﹣2.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和,要求熟练掌握构造法以及错位相减法在求解数列中的应用.22.(15分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a n,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a n+1=a n2+2a n,∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.。
广东省深圳市高考数学二模试卷 文(含解析)
广东省深圳市2015届高考数学二模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i是虚数单位,复数z=1+在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)平面向量=(1,﹣2),=(﹣2,x),若∥,则x等于()A.4 B.﹣4 C.﹣1 D.23.(5分)已知集合={x|1﹣x>0},B={x|2x>1},则A∩B=()A.∅B.{x|0<x<1} C.{x|x<0} D.{x|x>1}4.(5分)命题p:∃x0>0,x0+=2,则¬p为()A.∀x>0,x+=2 B.∀x>0,x+≠2C.∀x>0,x+≥2D.∃x>0,x+≠25.(5分)已知直线l,平面α,β,γ,则下列能推出α∥β的条件是()A.l⊥α,l∥βB.l∥α,l∥βC.α⊥γ,γ⊥βD.α∥γ,γ∥β6.(5分)已知某路口最高限速50km/h,电子监控测得连续6辆汽车的速度如图的茎叶图(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为()A.B.C.D.7.(5分)将函数的图象向右平移φ个单位,得到的图象关于原点对称,则φ的最小正值为()A.B.C.D.8.(5分)已知双曲线的中心在原点,焦点在x轴上,若其渐近线与圆x2+y2﹣4y+3=0相切,则此双曲线的离心率等于()A.B.C.D.29.(5分)如图所示的程序框图的功能是求的值,则框图中的①、②两处应分别填写()A.i<5?,B.i≤5?,C.i<5?,D.i≤5?,10.(5分)定义在[t,+∞)上的函数f(x)、g(x)单调递增,f(t)=g(t)=M,若对任意k>M存在x1<x2,使得f(x1)=g(x2)=k成立,则称g(x)是f(x)在[t,+∞)上的“追逐函数”,已知f(x)=x2,给出下列四个函数:①g(x)=x;②g(x)=lnx+1;③g(x)=2x﹣1;④g(x)=2﹣;其中f(x)在[1,+∞)上的“追逐函数”有()A.1个B.2个C.3个D.4个二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题,每道试题考生都必须作答.11.(5分)等差数列{a n}中,a4=4,则2a1+a5+a9=.12.(5分)若实数x,y满足,则x2+y2的最小值为.13.(5分)某几何体的三视图如图所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为.(坐标系与参数方程选做题)14.(5分)在直角坐标系中,已知直线l:(s为参数)与曲线C:(t为参数)相交于A、B两点,则|AB|=.(几何证明选讲选做题)15.如图,AB、AC是⊙O的两条切线,切点分别为B、C.若∠BAC=60°,BC=6,则⊙O的半径为.三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)在△ABC中,已知,cos(π﹣B)=﹣.(1)求sinA与B的值;(2)若角A,B,C的对边分别为a,b,c,且a=5,求b,c的值.17.(12分)PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:时间周一周二周三周四周五车流量x(万辆)50 51 54 57 58PM2.5的浓度y(微克/立方米)69 70 74 78 79(1)根据表数据,请在下列坐标系中画出散点图;(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?18.(14分)如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.(1)证明:DE∥平面ABC;(2)证明:AD⊥BE.19.(14分)已知数列{a n}的前n项和为S n,且满足a1=﹣2,a n+1+3S n+2=0(n∈N*).(1)求a2、a3的值;(2)求数列{a n}的通项公式;(3)是否存在整数对(m、n),使得等式a n2﹣m•a n=4m+8成立?若存在,请求出所有满足条件的(m,n);若不存在,请说明理由.20.(14分)已知平面上的动点P与点N(0,1)连线的斜率为k1,线段PN的中点与原点连线的斜率为k2,k1k2=﹣(m>1),动点P的轨迹为C.(1)求曲线C的方程;(2)恰好存在唯一一个同时满足以下条件的圆:①以曲线C的弦AB为直径;②过点N;③直径|AB|=|.求m的取值范围.21.(14分)已知函数f(x)=lnx﹣ax+(a,b∈R),且对任意x>0,都有.(1)求a,b的关系式;(2)若f(x)存在两个极值点x1,x2,且x1<x2,求出a的取值范围并证明;(3)在(2)的条件下,判断y=f(x)零点的个数,并说明理由.广东省深圳市2015届高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i是虚数单位,复数z=1+在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则和几何意义即可得出.解答:解:复数z=1+=1=1﹣i在复平面内对应的点(1,﹣1)位于第四象限.故选:D.点评:本题考查了复数的运算法则和几何意义,属于基础题.2.(5分)平面向量=(1,﹣2),=(﹣2,x),若∥,则x等于()A.4 B.﹣4 C.﹣1 D.2考点:平面向量的坐标运算;平行向量与共线向量.专题:计算题;平面向量及应用.分析:根据两向量平行的坐标表示,列出方程组,求出x的值即可.解答:解:∵平面向量=(1,﹣2),=(﹣2,x),且∥,∴1•x﹣(﹣2)•(﹣2)=0,解得x=4.故选:A.点评:本题考查了平面向量平行的坐标表示及其应用问题,是基础题目.3.(5分)已知集合={x|1﹣x>0},B={x|2x>1},则A∩B=()A.∅B.{x|0<x<1} C.{x|x<0} D.{x|x>1}考点:交集及其运算.专题:集合.分析:求出集合,然后求解交集即可.解答:解:集合={x|1﹣x>0}={x|x<1},B={x|2x>1}={x|x>0},则A∩B={x|0<x<1}.故选: B.点评:本题考查集合的基本运算,交集的求法,考查计算能力.4.(5分)命题p:∃x0>0,x0+=2,则¬p为()A.∀x>0,x+=2 B.∀x>0,x+≠2C.∀x>0,x+≥2D.∃x>0,x+≠2考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题,所以,命题p:∃x0>0,x0+=2,则¬p为:∀x>0,x+≠2.故选:B.点评:本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.5.(5分)已知直线l,平面α,β,γ,则下列能推出α∥β的条件是()A.l⊥α,l∥βB.l∥α,l∥βC.α⊥γ,γ⊥βD.α∥γ,γ∥β考点:平面与平面平行的判定.专题:空间位置关系与距离.分析:根据空间中的平行与垂直关系,对选项中的问题进行判断分析,以便得出正确的结论.解答:解:对于A,当l⊥α,l∥β时,有α⊥β,或α∥β,∴A不符合条件;对于B,当l∥α,l∥β时,α与β可能平行,也可能相交,∴B不符合条件;对于C,当α⊥γ,γ⊥β时,α与β可能平行,也可能相交,∴C不符合条件;对于D,当α∥γ,γ∥β时,有α∥β,∴D满足题意.故选:D.点评:本题考查了空间中的平行与垂直的应用问题,也考查了几何符号语言的应用问题,是基础题目.6.(5分)已知某路口最高限速50km/h,电子监控测得连续6辆汽车的速度如图的茎叶图(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为()A.B.C.D.考点:古典概型及其概率计算公式;茎叶图.专题:概率与统计.分析:求出基本事件的总数,满足题意的数目,即可求解概率.解答:解:不同车速有6辆,从中任取2辆,共有C62=15.则恰好有1辆汽车超速的数目:2×4=8.从中任取2辆,则恰好有1辆汽车超速的概率为:.故选:C.点评:本题考查古典概型的概率的求法,基本知识的考查.7.(5分)将函数的图象向右平移φ个单位,得到的图象关于原点对称,则φ的最小正值为()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得平移后函数的解析式为y=sin (2x+﹣2φ),再根据正弦函数的图象的对称性,可得﹣2φ=kπ,k∈z,由此求得φ的最小正值.解答:解:将函数的图象向右平移φ个单位,得到的图象对应的函数解析式为 y=sin[2(x﹣φ)+]=sin(2x+﹣2φ),再根据所得函数的图象关于原点对称,可得﹣2φ=kπ,k∈z,即φ=﹣,则φ的最小正值为,故选:A.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题8.(5分)已知双曲线的中心在原点,焦点在x轴上,若其渐近线与圆x2+y2﹣4y+3=0相切,则此双曲线的离心率等于()A.B.C.D.2考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线(a>0,b>0)的一条渐近线y=x与圆x2+y2﹣4y+3=0相切⇔圆心(0,2)到渐近线的距离等于半径r,利用点到直线的距离公式和离心率的计算公式即可得出.解答:解:取双曲线(a>0,b>0)的一条渐近线y=x,即bx﹣ay=0.由圆x2+y2﹣4y+3=0化为x2+(y﹣2)2=1.圆心(0,2),半径r=1.∵渐近线与圆x2+y2﹣4y+3=0相切,∴=1化为3a2=b2.∴该双曲线的离心率e===2.故选:D.点评:熟练掌握双曲线的渐近线方程、直线与圆相切的性质、点到直线的距离公式、离心率的计算公式是解题的关键.9.(5分)如图所示的程序框图的功能是求的值,则框图中的①、②两处应分别填写()A.i<5?,B.i≤5?,C.i<5?,D.i≤5?,考点:程序框图.专题:图表型;算法和程序框图.分析:根据流程图所表示的算法功能可知求的值,从而应该利用来累加,根据循环的次数,可得处理框应填结果.解答:解:程序框图是计算的值,则可利用循环结构累加,共循环4次,则第一个处理框应为i<5,然后计算,第二空应填写.故选:C.点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,本题属于基础题.10.(5分)定义在[t,+∞)上的函数f(x)、g(x)单调递增,f(t)=g(t)=M,若对任意k>M存在x1<x2,使得f(x1)=g(x2)=k成立,则称g(x)是f(x)在[t,+∞)上的“追逐函数”,已知f(x)=x2,给出下列四个函数:①g(x)=x;②g(x)=lnx+1;③g(x)=2x﹣1;④g(x)=2﹣;其中f(x)在[1,+∞)上的“追逐函数”有()A.1个B.2个C.3个D.4个考点:函数单调性的性质.专题:新定义;函数的性质及应用.分析:求出M=1,解方程求得x1,x2,运用函数的单调性和特殊值法,判断是否存在x1<x2,即可得到结论.解答:解:对于①,可得f(1)=g(1)=1=M,∀k>1,有x12=x2=k,即为x1=,x2=k,<k显然成立,存在x1<x2;对于②,易得M=1,∀k>1,有x12=1+lnx2=k,即为x1=,x2=e k﹣1,即有<e k﹣1⇔k<e2k﹣2,由x>1时,x﹣e2x﹣2的导数为1﹣2e2x﹣2<0,即有x<e2x﹣2,则存在x1<x2;对于③,易得M=1,∀k>1,有x12=﹣1=k,即为x1=,x2=log2(k+1),当k=100时,>log2(k+1),即不存在x1<x2.对于④,易得M=1,∀k>1,有x12=2﹣=k,即为x1=,x2=,当k=4,不存在x1<x2.故f(x)在[1,+∞)上的“追逐函数”有①②故选B.点评:本题考查新定义的理解和运用,主要考查函数的单调性的运用,以及特殊值的运用,考查判断能力,属于中档题和易错题.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题,每道试题考生都必须作答.11.(5分)等差数列{a n}中,a4=4,则2a1+a5+a9=16.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:设等差数列{a n}的公差为d,由通项公式可得2a1+a5+a9=2(4﹣3d)+(4+d)+(4+5d),化简可得.解答:解:设等差数列{a n}的公差为d,∵a4=4,∴2a1+a5+a9=2(4﹣3d)+(4+d)+(4+5d)=16故答案为:16.点评:本题考查等差数列的通项公式,属基础题.12.(5分)若实数x,y满足,则x2+y2的最小值为.考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由题意画出图形,由点到直线的距离公式求得可行域内点与原点距离最小值的平方得答案.解答:解:由约束条件作出可行域如图,由图可知,x2+y2的最小值为坐标原点O到直线x+2y﹣2=0的距离的平方,等于.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13.(5分)某几何体的三视图如图所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为8﹣2π.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是一正方体,去掉一圆柱体的组合体,再根据题目中的数据求出它的体积.解答:解:根据几何体的三视图,得;该几何体是一正方体,去掉一圆柱体的组合体,且正方体的棱长为2,圆柱体的底面圆半径为2,高为2;∴该几何体的体积为V=V正方体﹣V圆柱体=23﹣×π×22×2=8﹣2π.故答案为:8﹣2π.点评:本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力与计算能力,是基础题目.(坐标系与参数方程选做题)14.(5分)在直角坐标系中,已知直线l:(s为参数)与曲线C:(t为参数)相交于A、B两点,则|AB|=.考点:直线与圆锥曲线的关系;点到直线的距离公式.专题:圆锥曲线的定义、性质与方程.分析:把直线l的参数方程化为直角坐标方程,把曲线C的参数方程化为直角坐标方程,联立方程组求出交点坐标,再利用两点间的距离公式求出结果.解答:解:把直线l:(s为参数)消去参数,化为直角坐标方程为 x+y﹣3=0.把曲线C:(t为参数)消去参数,化为直角坐标方程为 y=(x﹣3)2.把直线方程和曲线C的方程联立方程组解得,或.故|AB|==,故答案为:.点评:本题主要考查把参数方程化为普通方程的方法,求直线和曲线的交点坐标,两点间的距离公式,属于中档题.(几何证明选讲选做题)15.如图,AB、AC是⊙O的两条切线,切点分别为B、C.若∠BAC=60°,BC=6,则⊙O的半径为2.考点:弦切角.专题:立体几何.分析:直接利用切线长定理解得:BD=3,∠AOB=60°,进一步利用勾股定理求出OD的长,最后求出半径的长.解答:解:连接OB,OA交BC于点D,AB、AC是⊙O的两条切线,切点分别为B、C.且∠BAC=60°,BC=6,则:∠ABO=90°,∠AOB=60°,且BD=3,设:OD=x,则:BO=2x,利用勾股定理得:x2+9=4x2解得:x=所以:圆的半径为2.故答案为:2点评:本题考查的知识要点:勾股定理的应用,切线长定理的应用,及相关的运算问题.三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)在△ABC中,已知,cos(π﹣B)=﹣.(1)求sinA与B的值;(2)若角A,B,C的对边分别为a,b,c,且a=5,求b,c的值.考点:正弦定理.专题:三角函数的图像与性质;解三角形.分析:(1)利用诱导公式与同角三角函数基本关系式即可得出;(2)利用正弦定理与余弦定理即可得出.解答:解:(1)∵,∴,又∵0<A<π,∴.∵,且0<B<π,∴.(2)由正弦定理得,∴,另由b2=a2+c2﹣2accosB得49=25+c2﹣5c,解得c=8或c=﹣3(舍去),∴b=7,c=8.点评:本题主要考查解三角形的基础知识,正、余弦定理,诱导公式,同角三角函数的基本关系,两角和与差的余弦公式等知识,考查了考生运算求解的能力,属于中档题.17.(12分)PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:时间周一周二周三周四周五车流量x(万辆)50 51 54 57 58PM2.5的浓度y(微克/立方米)69 70 74 78 79(1)根据表数据,请在下列坐标系中画出散点图;(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?考点:线性回归方程.专题:应用题;概率与统计.分析:(1)利用描点法可得数据的散点图;(2)根据公式求出b,a,可写出线性回归方程;(3)根据(2)的性回归方程,代入x=25求出PM2.5的浓度.解答:解:(1)散点图如图所示.…(2分)(2)∵,,…(6分),,,,…(9分)故y关于x的线性回归方程是:.…(10分)(3)当x=25时,y=1.28×25+4.88=36.88≈37所以可以预测此时PM2.5的浓度约为37.…(12分)点评:本题主要考查了线性回归分析的方法,包括散点图,用最小二乘法求参数,以及用回归方程进行预测等知识,考查了考生数据处理和运算能力.18.(14分)如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.(1)证明:DE∥平面ABC;(2)证明:AD⊥BE.考点:直线与平面平行的判定;空间中直线与直线之间的位置关系.专题:证明题;空间位置关系与距离.分析:(1)取AB的中点F,连接DF,CF,由已知可证DF EC,可得四边形DEFC为平行四边形,可得DE∥FC,由DE⊄平面ABC,从而可证DE∥平面ABC.(2)以FA,FC,FD为x,y,z轴的正方向建立直角坐标系,求出向量,的坐标,由•=0,即可证明AD⊥BE.解答:证明:(1)取AB的中点F,连接DF,CF,∵△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,∴DF⊥CF,∵DF=BC=2又∵EC⊥平面ABC,既有:EC⊥FC,EC=2.∴DF EC,故四边形DEFC为平行四边形,∴DE∥FC∴DE⊄平面ABC,可得DE∥平面ABC.(2)以FA,FC,FD为x,y,z轴的正方向建立直角坐标系,则有:A(2,0,0),D(0,0,2),B(﹣2,0,0),E(0,2,2)=(﹣2,0,2),=(﹣2,2,2)由于•=0,故AD⊥BE.点评:本题主要考查了直线与平面平行的判定,空间中直线与直线之间的位置关系,考查了空间想象能力和转化思想,属于基本知识的考查.19.(14分)已知数列{a n}的前n项和为S n,且满足a1=﹣2,a n+1+3S n+2=0(n∈N*).(1)求a2、a3的值;(2)求数列{a n}的通项公式;(3)是否存在整数对(m、n),使得等式a n2﹣m•a n=4m+8成立?若存在,请求出所有满足条件的(m,n);若不存在,请说明理由.考点:数列递推式;数列的应用.专题:点列、递归数列与数学归纳法.分析:(1)根据递推公式即可求出a2、a3的值;(2)a n+1+3S n+2=0,①,a n+2+3S n+1+2=0,②,得到a n+2=﹣2a n+1,继而得到数列{a n}是以﹣2为首项,以﹣2为公比的等比数列,问题得以解决;(3)由题意求出m=(﹣2)n﹣4+,分别代入n的值求出(m,n)的坐标.解答:解:(1)a1=﹣2,a n+1+3S n+2=0(n∈N*),∴a2+3S1+2=0,a3+3S2+2=0,∴a2+3a1+2=0,a3+3(a1+a2)+2=0,∴a2=4,a3=﹣8,(2)a n+1+3S n+2=0,①,a n+2+3S n+1+2=0,②,②﹣①得,a n+2﹣a n+1+3(S n+1+S n)=0,∴a n+2=﹣2a n+1,∴=﹣2,∴数列{a n}是以﹣2为首项,以﹣2为公比的等比数列,∴a n=﹣2×(﹣2)n﹣1=(﹣2)n,(3)∵a n2﹣m•a n=4m+8,∴m====(﹣2)n﹣4+,∵m为整数,则为整数,当n=1时,m=﹣2,当n=2时,m=1,当n=3时,m=﹣14,则满足条件的(m,n)共有(﹣2,1),(1,2),(﹣14,3).点评:本题考查了数列的递推公式,等比数列的通项公式,考查了学生的运算能力,属于中档题.20.(14分)已知平面上的动点P与点N(0,1)连线的斜率为k1,线段PN的中点与原点连线的斜率为k2,k1k2=﹣(m>1),动点P的轨迹为C.(1)求曲线C的方程;(2)恰好存在唯一一个同时满足以下条件的圆:①以曲线C的弦AB为直径;②过点N;③直径|AB|=|.求m的取值范围.考点:轨迹方程;直线与圆的位置关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)设P(x,y),记PN的中点为M,所以,求出斜率,利用k1k2=﹣(m>1),可得曲线C的方程;(2)若存在以曲线C的弦AB为直径的圆过点N,则有NA⊥NB,所以直线NA、NB的斜率都存在且不为0,设出方程与曲线联立,求出|NA|,|NB|,利用|AB|=|,确定k,m的关系,分类讨论求m的取值范围.解答:解:(1)设P(x,y),记PN的中点为M,所以.由题意(x≠0),(x≠0),由可得:(x≠0),化简整理可得:(x≠0),曲线C的方程为(x≠0).…(6分)(2)由题意N(0,1),若存在以曲线C的弦AB为直径的圆过点N,则有NA⊥NB,所以直线NA、NB的斜率都存在且不为0,设直线NA的斜率为k(不妨设k>0),所以直线NA的方程为y=kx+1,直线NB的方程为,将直线NA和曲线C的方程联立,得,消y整理可得(1+m2k2)x2+2m2kx=0,解得,所以,以替换k,可得,又因为,即有,所以,所以k3+m2k=1+m2k2,即(k﹣1)[k2+(1﹣m2)k+1]= 0,(1)当时,(k﹣1)[k2+(1﹣m2)k+1]=(k﹣1)3=0,解得k=1;(2)当时,方程k2+(1﹣m2)k+1=0有△=(1﹣m2)2﹣4<0,所以方程(k﹣1)[k2+(1﹣m2)k+1]=(k﹣1)3=0有唯一解k=1;(3)当时,方程k2+(1﹣m2)k+1=0有△=(1﹣m2)2﹣4>0,且12+(1﹣m2)×1+1≠0,所以方程(k﹣1)[k2+(1﹣m2)k+1]=(k﹣1)3=0有三个不等的根.综上,当时,恰有一个圆符合题意.点评:本题考查曲线方程,考查直线与曲线的位置关系,考查分类讨论的数学思想,考查学生的计算能力,难度大.21.(14分)已知函数f(x)=lnx﹣ax+(a,b∈R),且对任意x>0,都有.(1)求a,b的关系式;(2)若f(x)存在两个极值点x1,x2,且x1<x2,求出a的取值范围并证明;(3)在(2)的条件下,判断y=f(x)零点的个数,并说明理由.考点:利用导数研究函数的单调性;函数零点的判定定理;利用导数研究函数的极值.专题:函数的性质及应用;导数的概念及应用;导数的综合应用.分析:(1)先利用赋值法,结合f(1)=0得到关于a,b的关系式,然后对恒成立进行证明;(2)因为该函数有两个极值点,所以导函数等于零有两个异号根,在此基础上得到关于a,b 的关系式,然后代入f(),再证明函数g(a)=f()>0恒成立即可;(3)利用导数结合函数的极值点、单调性、最值等以及利用数形结合思想确定出函数零点的个数,注意分类讨论.解答:解:(1)根据题意:令x=1,可得,∴f(1)=﹣a+b=0,经验证,可得当a=b时,对任意x>0,都有,∴b=a.(2)由(1)可知,且x>0,∴,令g(x)=﹣ax2+x﹣a,要使f(x)存在两个极值点x1,x2,则须有y=g(x)有两个不相等的正数根,∴或,解得或无解,∴a的取值范围,可得,由题意知,令,则,而当时,﹣3x4+4x﹣4=﹣3x4﹣4(1﹣x)<0,即h'(x)<0,∴h(x)在上单调递减,∴,即时,.(3)∵,g(x)=﹣ax2+x﹣a,令f'(x)=0得:,,由(2)知时,y=g(x)的对称轴,△=1﹣4a2>0,g(0)=﹣a<0,∴x2>1,又x1x2=1,可得x1<1,此时,f(x)在(0,x1)上单调递减,(x1,x2)上单调递增,(x2,+∞)上单调递减,所以y=f(x)最多只有三个不同的零点,又∵f(1)=0,∴f(x)在(x1,1)上递增,即x∈[x1,1)时,f(x)<0恒成立,根据(2)可知且所以,即∴,使得f(x0)=0,…(12分)由0<x0<x1<1,得,又,∴f(x)恰有三个不同的零点:.综上所述,y=f(x)恰有三个不同的零点.点评:本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 页 共 8 页
ì x + 2 y ³ 2 ï 12.若实数 x, y 满足 í x £ 2 ,则 x 2 + y 2 的最小值为 ï y £ 1 î
【解析】 ;画出可行域如图所示, z = x + y =
y
.
1 O
H 2
P
4 5
2
2
(
x 2 + y 2 的几何意义为可行域
b 2a 2 x 即 bx - ay = 0 与圆 x 2 + ( y - 2 ) = 1 相切,所以 d = 2 a b + a 2
开始
= 1 ,即 2a = c ,即 e =
c = 2 . a
S = 2, i = 1
i = i + 1 ② ①
否 输出S 结束 图 2 是
(Ⅰ) 求 sin A 与 B 的值; (Ⅱ) 若角 A , B , C 的对边分别为 a , b , c ,且 a = 5 ,求 b , c 的值. 【解析】(Ⅰ)依题意 sin ç
5 3 11 æπ ö + A ÷ = cos A = ,……2 分 又 0 < A < π ,所以 sin A = .………4 分 14 14 è2 ø 1 π 又 cos ( π - B ) = - cos B = - ,且 0 < B < π , 所以 B = .…………………………………6 分 2 3 a b a × sin B (Ⅱ)方法一:由正弦定理 = ,得 b = = 7 ,……………………………8 分 sin A sin B sin A
3 8
4 1 3 6
5 5 8
图 1
4 15
B.
2 5
C.
8 15
3 5
【解析】 C ; 所有可能的情况为: ( 38, 41) , ( 38, 43 ) , ( 38, 46 ) , ( 38, 55 ) , ( 38,58 ) , ( 41, 43 ) , ( 41, 46 ) , ( 41,55 ) ,
BH = 3 ,所以⊙ O 的半径 OB = 2 3 .
16.(本小题满分 12 分) 在 DABC 中,已知 sin ç
三、解答题:本大题共 6 小题,满分 80 分,解答须写出文字说明、证明过程或演算步骤.
1 æπ ö 11 + A ÷ = , cos ( π - B ) = - . 2 è2 ø 14
j=-
kp p p + ,当 k = 0 时, j 取得最小正值为 . 2 6 6
) B. 2 C. 3 D. 2
8. 已知双曲线的中心在原点,焦点在 x 轴上,若其渐近线与圆 x 2 + y 2 - 4 y + 3 = 0 相切,则此双曲线的离 心率等于( A.
1 2
【解析】 D ; 由对称性,不妨设渐近线 y =
( 41,58 ) , ( 43, 46 ) , ( 43,55 ) , ( 43,58 ) , ( 46,55 ) , ( 46, 58) , ( 55, 58 ) 共 15 种情况,其中恰有 1 辆汽车超速
的有 8 种,故所求概率为
8 . 15
第 1 页 共 8 页
7. 将函数 f ( x ) = sin ç 2 x + ( A. )
æ è
π ö ÷ 的图象向右平移 j 个单位,得到的图象关于原点对称,则 j 的最小正值为 3 ø
B.
π 6
π 3
C.
5π 12
D.
7π 12
【 解析 】 A ; f ( x - j ) = sin ç 2 ( x - j ) +
æ è
π ö pö p æ j + ÷ 为奇函数,所以 -2 j + = kp ,所以 ÷ = sin ç 2 x - 2 3ø 3 ø 3 è
图 3 俯视图 1 p × 22 × 2 = 8 - 2 p. 4 (二) 选做题(14、15 题,考生只能从中选做一题,两题全答的,只计前一题的得分) ì x = 1 + s 14.(坐标系与参数方程选讲选做题)在直角坐标系中,已知直线 l : í ( s 为参数)与曲线 C : î y = 2 - s
2 + 2 + 2 , i = 4 ;
第四次: S = 2 + 2 + 2 + 2 + 2 , i = 5 ;此时输出 S ,故①处可填写 i < 5? . 10.定义在 [ t , +¥ ) 上的函数 f ( x ) , g ( x ) 单调递增, f ( t ) = g ( t ) = M ,若对任意 k > M ,存在 x1 < x2 ,使
1 = 1 - i 在复平面内对应的点为 (1, -1) ,位于第四象限. i
) D. 2 B. - 4 C. - 1
2.平面向量 a = (1, - 2 ) , b = ( - 2, n ) ,若 a // b ,则 n 等于( A. 4 【解析】A;因为 a // b ,所以1 ´ n = ( -2 ) ´ ( -2 ) ,即 n = 4 . 3. 已知集合 A = x 1 - x > 0 , B = x 2 x > 1 ,则 A I B = ( A. Æ B. x 0 < x < 1
中 x , y 是数据的平均数.
一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的.
1. i 是虚数单位,复数 1 + 在复平面内对应的点位于( A.第一象限 【解析】D; 1+ B.第二象限
1 i
) C.第三象限 D.第四象限
2 得 f ( x1 ) = g ( x2 ) = k 成立,则称 g ( x ) 是 f ( x ) 在 [ t , +¥ ) 上的“追逐函数”.已知 f ( x ) = x ,下列四
个函数:① g ( x ) = x ;② g ( x ) = ln x + 1 ;③ g ( x ) = 2 - 1 ;④ g ( x ) = 2 上的“追逐函数”的有( A.1 个 ) B. 2 个 C. 3 个
4 5
1 4
体积 V = 23 -
ì x = t + 3 ( t 为参数)相交于 A 、 B 两点,则 AB = _________. í 2 îy = t
【 解析 】 2 ; l : x + y - 3 = 0 , C : y = ( x - 3 ) ,联立 í
2
ì ï x + y - 3 = 0 2 消去 y 得 ( x - 3 )( x - 2 ) = 0 ,故 y = x 3 ( ) ï î
a b a × sin B = ,得 b = = 7 ,……………………………8 分 sin A sin B sin A 1 又 cos C = cos ( π - A - B ) = - cos ( A + B ) = sin A sin B - cos A cos B = ……10 分 7 1 所以 c 2 = a 2 + b 2 - 2ab cos A 得 c 2 = 25 + 49 - 2 ´ 5 ´ 7 ´ = 64 ,即 c = 8 ,………11 分 7 所以 b = 7 , c = 8 .………………………………………………………………………………12 分 a b a × sin B 方法三:由正弦定理 = ,得 b = = 7 ,……………………………8 分 sin A sin B sin A
二、填空题:本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分) (一)必做题(11~13 题) 11.等差数列 {a 中, a4 = 4 ,则 2a1 + a5 + a9 = . n }
【解析】16 ; 2a1 + a5 + a9 = ( a1 + a5 ) + ( a1 + a9 ) = 2 a3 + 2 a5 = 为( x0
B. "x > 0 , x +
)
1 = 2 x
1 1 ¹ 2 C. "x > 0 , x + ³ 2 x x
)
D. $x > 0 , x +
1 ¹ 2 x
【解析】B;特称命题的否定是全称命题. 5. 已知直线 l ,平面 a , b , g ,则下列能推出 a // b 的条件是( A. l ^ a , l // b B. l // a , l // b 【解析】D;ABC 可能得到 a , b 相交. 6. 已知某路口最高限速 50km / h ,电子监控测得连续 6 辆汽车的速度如图1 的茎叶图 (单位: km / h ).若从中任取 2 辆,则恰好有1 辆汽车超速的概率为( A. ) D . C. a ^ g , g ^ b D. a // g , g // b
9. 如图 2 所示的程序框图的功能是求 2 + 2 + 2 + 2 + 2 的值,则框图 中的①、②两处应分别填写( A. i < 5? , S = ) B. i £ 5? , S =
2 + S
2 + S
C. i < 5? , S = 2 + S
D. i £ 5? , S = 2 + S
【解析】C;②中显然填写 S = 2 + S ,第一次: S = 2 + 2 , i = 2 ; 第二次: S = 2 + 2 + 2 , i = 3 ;第四次: S = 2 +