2006(2)工科高数试卷
2006考研数学(二)真题及参考答案
2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。
2006年浙江省普通高校“2 2”联考《高等数学A》试卷.
----------------------2006年浙江省普通高校“2+2”联考《高等数学A》试卷-------------------2006年浙江省普通高校“2+2”联考《高等数学A》试卷考试说明:1、考试为闭卷,考试时间为150分钟,满分为150分;2、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;3、密封线左边各项要求填写清楚完整;4、答案写在密封线内的无效。
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个小题,每一小题3分,共24分)21. 曲线在处的切线方程y为 .x22. 已知 f(x) 在内连续设sinx则设为球面的外侧 , 则33322224. 幂级数的收敛域为25. 已知 n 阶方阵 A 满足其中 E 是 n 阶单位阵, k 为任意实数,则6. 已知矩阵 A 相似于矩阵则7. 已知则 P(A|B) = .第页,共 10 页----------------------2006年浙江省普通高校“2+2”联考《高等数学A》试卷-------------------8. 设fξ(x) 是随机变量ξ 的概率密度函数 , 则随机变量η= 的概率密度函数fη(y)= .二.选择题. (本题共有8个小题,每一小题3分,共24分,每个小题给出的选项中,只有一项符合要求)1. lim1⎡π2πnπ⎤= ( ). sin+sin+ +sin⎥n→∞n⎢nnn⎣⎦(B) (A) 2 1 2 (C) π 2 (D) 22. 微分方程(2x-y)dx+(2y-x)dy=0的通解为 ( ). (C 为任意常数)(A) x+xy+y=C (B) x-xy+y=C(C) 2x2-xy+3y2=C (D) 2x2+xy+3y2=C 2222⎡xx2x3⎤(-1)nn3. ⎰⎢1-+-+ +x+ ⎥e2xdx = ( ) . 1!2!3!n!⎦0⎣(A) e-1(C) (B) e (D)e-1 31 13(e-1) 34. 曲面 x2+y2=z,x2+y2=4 与 xOy 面所围成的立体体积为 ( ).(A) 2π5. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为次未投中, 第二次投中的概率为(B) 4π (C) 6π (D) 8π 1 ; 若第一279 ; 若第一, 第二次均未投中, 第三次投中的概率为,则该投1010(C) 手未获奖的概率为 ( ). (A)1 200 (B)2 2003 200 (D)4 200第页,共 10 页 2----------------------2006年浙江省普通高校“2+2”联考《高等数学A》试卷-------------------6.设α1,α2, ,αk 是 k 个 m 维向量,则命题“ α1,α2, ,αk线性无关” 与命题()不等价。
2006年高考数学试题全国II卷郑州高考补习学
2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a ∥b ,则x=(A )9 (B )6 (C )5 (D )3(2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x << (C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π (4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3 (C ) y=-2x+3 (D )y=-2x-3(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B =(A )4(B )6(C )8(D )9(8)函数ln 1(0)y x x =+>的反函数为(A )1()x y e x R +=∈ (B )1()x y e x R -=∈ (C )1(1)x y e x +=> (D )1(1)x y e x -=> (9)已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为 (A )53 (B )43 (C )54 (D )32(10)若(sin )3cos2,f x x =-则(cos )f x =(A )3cos 2x - (B )3sin 2x - (C )3cos 2x + (D )3sin 2x + A'B'A B βα(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0(C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种二.填空题:(13)在4101()x x +的展开式中常数项是_____。
2006考研数学二真题及答案解析
( ) 设函数 f (u)在(0, +∞) 内具有二阶导数,= 且 Z f
x2 + y2
满足等式
∂2z ∂x2
+
∂2z ∂y 2
= 0
(I)验证 f ′′(u) + f ′(u) = 0 ; (II)若= f (1) 0= , f ′(1) 1, 求函数 f (u)的表达式 . u
(21)(本题满分 12 分)
增量, y 与 dy 分别为 f (x) 在点 x0 处对应增量与微分,若 x > 0 ,则( )
(A) 0 < dy < y
(B) 0 < y < dy
(C) y < dy < 0
(D) dy < y < 0
x
∫ (8) 设 f (x) 是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t)dt 是( ) 0
=1 3
注: 0 型未定式,可以采用洛必达法则;等价无穷小量的替换 sin x2 x2 0
❤
(3)【答案】1 2
【详解】
∫ ∫ +∞ xdx =1 +∞ dx2 =− 1 ⋅ 1 +∞ =1
0 (1+ x2 )2 2 0 (1+ x2 )2 2 1+ x2 0 2
(4) 【答案】 Cxe− x .
(A)连续的奇函数
(C)在 x = 0 间断的奇函数
(B)连续的偶函数
(D)在 x = 0 间断的偶函数
(9) 设函数 g(x) 可微,= h(x) e1+g(x)= , h′(1) 1,= g′(1) 2, 则 g(1) 等于( )
2006年高考文科数学试题及答案(全国卷2)
2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a ∥b ,则x=(A )9 (B )6 (C )5 (D )3 (2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π (4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3(C ) y=-2x+3 (D )y=-2x-3(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400 (7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B = (A )4 (B )6 (C )8 (D )9(8)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>A'B'A B βα(9)已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若(sin )3cos2,f x x =-则(cos )f x =(A )3cos2x - (B )3sin 2x -(C )3cos2x + (D )3sin 2x +(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0 (C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种 二.填空题:(13)在4101()x x+的展开式中常数项是_____。
(完整版)2006考研数学二真题及答案解析
2006年数学(二)考研真题及解答一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则0A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln31-. (B )ln3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212x x xy C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--=(B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。
2006年考研数学二真题及答案
2006年考研数学二真题一、填空题(1~6小题,每小题4分,共24分。
) (1)曲线y =x+4sinx 5x−2cosx的水平渐近线方程为_________。
【答案】y =15。
【解析】limx→∞x+4sinx5x−2cosx=limx→∞1+4sinxx 5−2cosx x=15故曲线的水平渐近线方程为y =15。
综上所述,本题正确答案是y =15【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线 (2)设函数f (x )={1x 3∫sint 2dt,x ≠0,x 0a,x =0在x =0处连续,则a =_________。
【答案】13。
【解析】a =lim x→01x 3∫sint 2dt x 0=limx→0sinx 23x 2=13.综上所述,本题正确答案是13【考点】高等数学—函数、极限、连续—初等函数的连续性 (3)反常积分∫xdx (1+x 2)2+∞=_________。
【答案】12。
【解析】∫xdx (1+x 2)2+∞=lim b→+∞∫xdx(1+x 2)2b0=lim b→+∞12∫d (1+x 2)(1+x 2)2=12b 0lim b→+∞(−11+x 2)|0b=12lim b→+∞(1−11+b 2)=12综上所述,本题正确答案是12【考点】高等数学—一元函数积分学—反常积分(4)微分方程y′=y(1−x)x的通解为__________。
【答案】y=Cxe−x,C为任意常数。
【解析】dyy =1−xxdx⇒ln|y|=ln|x|−lne x+ln|C|即y=Cxe−x,C为任意常数综上所述,本题正确答案是y=Cxe−x。
【考点】高等数学—常微分方程—一阶线性微分方程(5)设函数y=y(x)由方程y=1−xe y确定,则dydx |x=0=__________。
【答案】−e。
【解析】等式两边对x求导得y′=−e y−xe y y′将x=0代入方程y=1−xe y可得y=1。
06级高数(下)试题及答案-8页word资料
一、 填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r==,则当y =时, rr a b ⊥;当y = 时, //rr a b .2. 函数 (,,)u x y z z x y=--221的间断点是.3. 设函数z x y y =+22, 则 dz =.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 2、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧.2、判别正项级数 122nn n ∞=+∑ 的敛散性.六、解下列各题(共2小题. 每小题8分, 共16分): 1、设幂级数11n n nx ∞-=∑. (1). 求收敛半径及收敛区间 . (2). 求和函数. 2、求微分方程'''x y y y e ++=222 的通解.七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.南昌大学 2019~2019学年第二学期期末考试试卷及答案 一、填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r ==,则当y =-103时, rr a b ⊥;当y = 6时, //rr a b .2. 函数(,,)u x y z z x y=--221的间断点是{}(,,)|x y z z x y =+22.3. 设函数z x y y =+22, 则 dz =()xydx x y dy++222.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是P Q y x∂∂=∂∂.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( A ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( C ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( B ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( D ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( D ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.解法一: 所求平面的法向量(,,),(,,)n n OM ⊥-⊥=-412632u u u ur r r .则(,,)(,,)(,,)-⨯-=-412632446. 取 (,,)n =-223r.故所求平面方程为:x y z +-=2230. 解法二: 设所求平面法向量(,,),n A B C =r则,(,,)n OM n ⊥⊥-412u u u ur r r .于是有 ,.A B C A B C -+=⎧⎨-+=⎩6320420解得: ,A B C B ==-32. 由平面的点法式方程可知,所求平面方程为Ax By Cz ++=0.将,A B C B ==-32代入上式,并约去()B B ≠0,便得:x y z +-=2230. 即为所求平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.解:'.zy f x∂=⋅∂2 ()'''''z f y f f x x y∂=++⋅∂∂222122'''''.f yf xyf =++22122四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 解:x y Ded d ed πρσθρρ+=⋅⎰⎰⎰⎰2222200().e d e e ρρπρππ⎡⎤===-⎣⎦⎰2222240012122、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.解:,,Q P x x x y ∂∂=-=-∂∂2422 .Q P x y∂∂-=-∂∂2 由格林公式,有 原式().Dd σππ=-=-⋅⋅=-⎰⎰222318五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧. 解:,,.P x Q y R z ===,,PQRxy z∂∂∂===∂∂∂111 则由高斯公式有原式().dv abc Ω=++=⎰⎰⎰11132、判别正项级数 122nn n ∞=+∑ 的敛散性.解:lim lim n n n n n n u n u n ++→∞→∞⎛⎫+=⋅ ⎪+⎝⎭113222Qlim .()n n n →∞+==<+311222所以原级数收敛.六、解下列各题(共2小题. 每小题8分, 共16分):1、设幂级数11n n nx ∞-=∑.(1). 求收敛半径及收敛区间 . (2). 求和函数.解: (1). limlim .n n n na n a n ρ+→∞→∞+===111 所以收敛半径.R =1当x =1时,n n ∞=∑1发散;当x =-1时,()n n n ∞-=-∑111 发散.所以收敛区间为:(,)-11.(2). 设和函数为:()n n S x nx ∞-==∑11. ()xx xn n n n S x dx nx dx nx dx ∞∞--==⎛⎫== ⎪⎝⎭∑∑⎰⎰⎰110011 .x n nn n x x x x ∞∞==⎡⎤===⎣⎦-∑∑1101故 '().().()x S x x x x ⎛⎫==-<< ⎪--⎝⎭2111112、求微分方程'''x y y y e ++=222 的通解.解:..r r r r ++===-2122101()x Y C C x e -∴=+12.λ=2Q 不是特征根,所以设特解为: *x y Ae =2.则(*)',(*)''x x y Ae y Ae ==2224,代入原方程得A =29. *xy e ∴=229.故通解为:().x x y C C x e e -=++21229七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.解: 依题意: ',().y x y y =+⎧⎨=⎩200则: x y x Ce =--+22.把()y =00 代入上式, 得C =2.故().x y e x =--21。
2006年普通高等学校招生全国统一考试数学试卷全国卷Ⅱ理
2006年普通高等学校招生全国统一考试数学(理工农医类)第一卷参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)球的表面公式S=4πR2 其中R表示球的半径如果事件A、B相互独立,那么P(A*B)=P(A)*P(B)球的体积公式V=πR2 其中R表示球的半径如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率:P(k)=P k(1-P)n-k一、选择题(1)已知集合M={x|x<3},N={x|log2x>1},则M∩N=(A)∅(B){x|0<x<3}(C){x|1<x<3}(D){x|2<x<3}(2)函数y=sin2x cos2x的最小正周期是(3)23 (1)i= -(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(5)已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(6)函数y=ln x-1(x>0)的反函数为(A)y=e x+1(x∈R) (B)y=e x-1(x∈R)(C)y=e x+1(x>1) (D) y=e x-1(x>1)(7)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,则A B∶A′B′=(A)2∶1 (B)3∶1 (C)3∶2 (D)4∶3(8)函数y=f(x)的图像与函数g(x)=log2x(x>0)的图像关于原点对称,则f(x)的表达式为(9)已知双曲线的一条渐近线方称为,则双曲线的离心率为(10)若f(sin x)=3-cos2x,则f(cos x)=(A)3-cos2x(B)3-sin2x(C)3+cos2x(D)3+sin2x(11)设S n是等差数列{a n}的前n项和,若3613SS=,则612SS=(12)函数191()nf x x n==-∑的最小值为(A)190 (B)171 (C)90 (D)45第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡上.(13)在4101()xx+的展开式中常数项是(用数字作答)(14)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.(15)过点的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.(16)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量(sin,1),(1,cos),.22 a bππθθθ==-<<(Ⅰ)若,a b⊥,求θ;(Ⅱ)求a b+的最大值.(18)(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;(Ⅱ)设AA1=AC=AB,求二面角A1-AD-C1的大小.(20)(本小题满分12分)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且=λ(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明·为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.(22)(本小题满分12分)设数列{a n}的前n项和为S n,且方程x2-a n x-a n=0有一根为S n-1,n=1,2,3,….(Ⅰ)求a1,a2;(Ⅱ){a n}的通项公式.。
2006年高考数学试题全国II卷郑州高考补习学
2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a ∥b ,则x=(A )9 (B )6 (C )5 (D )3 (2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N = (A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π(4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3(C ) y=-2x+3 (D )y=-2x-3(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400 (7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B = (A )4 (B )6 (C )8 (D )9(8)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(9)已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若(sin )3cos2,f x x =-则(cos )f x =A'B'A B βα(A )3cos 2x - (B )3sin 2x - (C )3cos 2x + (D )3sin 2x +(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0 (C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种 二.填空题:(13)在4101()x x+的展开式中常数项是_____。
06级 高等数学(II) (A,B)
高等数学(II )试题(A )一 填空 (每小题3分 共15分 )1 曲面122-+=y x z 在点)4,1,2(的切平面的方程为____。
0624=--+z y x2 设隐函数),(y x z z =是由方程2=++yze xz e 确定的,则=∂∂==0y x xz _____。
03 设1:=++∑z y x 在第一卦限部分,则⎰⎰∑=++dS z y x )(___________。
23 4 设)(x f 周期为π2,且⎩⎨⎧<≤-<≤=0,0,)(x x x e x f x ππ,)(x S 是)(x f 的Fourier 级数的和函数,则 =)0(S ______________。
215 设幂级数∑∞=1n nn x a 在2=x 处条件收敛,则幂级数∑∞=13n nnn x a 的收敛半径=R _。
6 二 选择(每小题2分 共10分 )1 设D 是平面区域,则下面说法正确的是( D )A.若),(y x f 在D 上可微,则),(y x f 的一阶偏导在D 上一定连续B.若),(y x f 在D 上一阶偏导存在,则),(y x f 在D 上一定可微C.若),(y x f 在D 上一阶偏导存在,则),(y x f 在D 上一定连续D.若在D 上xy f 与yx f 均连续,则xy f yx f = 2 下列级数中绝对收敛的级数是 ( A )A.∑∞=-12)1(n n nn B.∑∞=+1)11ln(n n C.n n n1sin )1(1∑∞=- D.∑∞=+-11)1(n nn n 3 直线过点 )3,0,0(且与直线z y x ==垂直相交,则交点的坐标是( B ) A.)1,2,2(- B.)1,1,1( C.)2,1,1(-- D.)0,0,0( 4 方程08422=+-+x z y 表示 D 。
A.单叶双曲面B.双叶双曲面C.锥面D.旋转抛物面 5 一阶微分方程0)(332=+-dy y x ydx x 的类型是( C )A.全微分方程B.可分离变量方程C.齐次方程D.一阶线性微分方程三(6)设)(r f u =是具有二阶连续导数的函数,222z y x r ++=,求22xu∂∂。
2006年数二真题、标准答案及解析
2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x xa x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰ .(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1y y xe =-确定,则A dydx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<< (D )0.dy y <∆< 【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】 (9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.-- (D )ln 2 1.- 【 】(10)函数212x x x y C e C e xe -=++满足一个微分方程是 (A )23.x y y y xe '''--= (B )23.x y y y e '''--=(C )23.x y y y xe '''+-= (D )23.x y y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).x f x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(D )00(,).f x y dx ⎰⎰ 【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=.(D )若00(,)0x f x y '≠,则00(,)0y f x y '≠. 【 】 (13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关. (C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -= (C ).T C P AP = (D ).T C PAP = 三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y+=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<==设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim(n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且z f =满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1T Tαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得T Q AQ A =.2006年全国硕士研究生入学考试数学(二)真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分220(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1y y xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y y y e xe y ''=-- 001(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A] (A )0dy y <<∆ (B )0y dy <∆< (C )0y dy ∆<< (D )0dy y <∆< 由()0()f x f x '>可知严格单调增加 ()0()f x f x ''>可知是凹的 即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数 (9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31-- (C )ln 21-- (D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e += g (1)= ln 21-- (10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--= (C )23x y y y xe '''+-= (D )23x y y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A)0(,)xdxf x y dy ⎰(B)0(,)dxf x y dy ⎰(C)0(,)yf x y dx ⎰(D)0(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则 (B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今 000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''=' 今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设1,2,…,s都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s线性相关,则A 1,A 2,…,A s线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s线性相关. (D) 若1,2,…,s 线性无关,则A1,A2,…,As线性无关.解: (A)本题考的是线性相关性的判断问题,可以用定义解.若1,2,…,s线性相关,则存在不全为0的数c1,c2,…,c s使得c11+c22+…+c s s=0,用A左乘等式两边,得c1A1+c2A2+…+c s A s=0,于是A1,A2,…,A s线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1.1,2,…,s⇔ r(1,2,…,s)=s.2. r(AB)≤ r(B).矩阵(A1,A2,…,A s)=A(1,2,…,s),因此r(A1,A2,…,A s)≤ r(1,2,…,s).由此马上可判断答案应该为(A).(14)设A是3阶矩阵,将A的第2列加到第1列上得B,将B的第1列的-1倍加到第2列上得C.记 1 1 0P= 0 1 0 ,则0 0 1(A) C=P-1AP. (B) C=PAP-1.(C) C=P T AP. (D) C=PAP T.解: (B)用初等矩阵在乘法中的作用得出B=PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)(()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得 B +1=A ①C +B +12=0 ②1026B C ++= ③ 式②-③得120233B B +==-则 代入①得 13A =代入②得 16C =(16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰ 2arcsin 1t dut u =-+-⎰ arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥, 计算二重积分2211DxyI dxdy x y +=++⎰⎰. 解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1limn n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,limn n x A →∞=存在 在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式1sin lim "1"n xn n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 2011sin lim lnsin lim t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t t t te→-=2323330010()0()26cos sin lim lim22t t t t t t t t t t tt te e→→⎡⎤⎡⎤-+--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-+ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a>>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==求函数()f u的表达式. 证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f xx y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+=+=∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积. 解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt⎛⎫ ⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处 (0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t⎛⎫-=-+ ⎪⎝⎭,设2001x t =+,20004y t t =-, 则2223200000000241(2),4(2)(2)t t t t t t t t⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+ (III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=+解出t 得 由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰333322002(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解. 解:① 设1,2,3是方程组的3个线性无关的解,则2-1,3-1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换: 1 0 2 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意. (23) 设3阶实对称矩阵A 的各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ. 解:① 条件说明A (1,1,1)T =(3,3,3)T ,即=(1,1,1)T 是A 的特征向量,特征值为3.又1,2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于1,2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c 0, c ≠0. 属于0的特征向量:c 11+c 22, c 1,c 2不都为0.② 将单位化,得=(33,33,33)T .对1,2作施密特正交化,的1=(0,-22,22)T ,2=(-36,66,66)T. 作Q =(,1,2),则Q 是正交矩阵,并且3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0分数分配:11+11+11+12+12+10+9+9+9。
2006年全国各地高考数学试题02--第二章函数
第二章函数1.(2006年福建卷)函数2log (1)1xy x x =>-的反函数是................(A) (A)2(0)21x xy x =>- (B)2(0)21xx y x =<- (C)21(0)2x x y x -=> (D)21(0)2x x y x -=< 2.(2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩...的反函数是(...)A.,020x x y x ⎧≥⎪=<.B.2,00x x y x ≥⎧⎪=<.C.,020x x y x ⎧≥⎪=⎨⎪<⎩..D.2,00x x y x ≥⎧⎪=⎨<⎪⎩2.解:有关分段函数的反函数的求法,选C 。
3.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
3.解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+。
4.(2006年广东卷)函数)13lg(13)(2++-=x xx x f 的定义域是..A.),31(+∞-.........B..)1,31(-....C..)31,31(-........D..)31,(--∞4.解:由1311301<<-⇒⎩⎨⎧>+>-x x x ,故选B.5.(2006年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是A..R x x y ∈-=,3........B..R x x y ∈=,sin ....C..R x x y ∈=,........D..R x xy ∈=,)21( 5、B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.7.(2006年广东卷)函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点)2,0(P (如图2所示),则方程0)(=x f 的根是=x A..4........B..3...C..2........D.17.0)(=x f 的根是=x 2,故选C 7.(2006年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于(.C..).(A)3 (B)4 (C)5 (D)68.(2006年陕西卷)已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则.(A) (A)12()()f x f x > (B)12()()f x f x < (C)12()()f x f x = (D)1()f x 与2()f x 的大小不能确定9.(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(C)(A)7,6,1,4 (B)6,4,1,7 (C)4,6,1,7 (D)1,6,4,7 10.(.2006年重庆卷)如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是..(.D.)..........题 (9)图....................................11..(2006年上海春卷)方程1)12(log 3=-x 的解=x ..2..... 12..(2006年上海卷)函数]1,0[,53)(∈+=x x x f 的反函数=-)(1x f.[]8,5),5(31∈-x x .........13..(2006年上海春卷)已知函数)(x f 是定义在),(∞+∞-上的偶函数..当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,=)(x f ...4x x --........ 14.(2006年全国卷II)函数y =ln x -1(x >0)的反函数为..(B.)(A )y =e x +1(x ∈R )......................(B )y =e x -1(x ∈R )(C )y =e x +1(x >1).........................(D )y =e x -1(x >1)15.(2006年全国卷II)函数y =f (x )的图像与函数g (x )=log 2x (x >0)的图像关于原点 对称,则f (x )的表达式为..(D.)(A )f (x )=1log 2x(x >0)..........(B )f (x )=log 2(-x )(x <0)(C )f (x )=-log 2x (x >0)........(D )f (x )=-log 2(-x )(x <0)16.(2006年天津卷)已知函数)(x f y =的图象与函数xa y =(0>a 且1≠a )的图象关于直线x y =对称,记]1)2(2)()[()(-+=f x f x f x g .若)(x g y =在区间]2,21[上是增函数,则实数a 的取值范围是( D )....A.),2[+∞.... .B.)2,1()1,0( . . C.)1,21[.........D.]21,0(.17..(2006年湖北卷)设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为.(B)..A..()()4,00,4 -.......................B..()()4,11,4 --... C..()()2,11,2 --.......................D..()()4,22,4 --17.解选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006(2)华南农业大学工科高数期末考试试卷(A )卷
一.填空题(每题3分,共15分)
1.设),3
4
,2(),1,2,3(k b a ==→
→
,若→→b a //,则=k _____
2.设
2),(y xy y x y x f -=-+,则=),(y x f _____
3.将三重积分⎰
⎰
⎰
------++R
R x R x R y x R dz z y x dy dx 2
2222
220
222化为球面坐标的累次
积分为_____ 4.微分方程
054///=+-y y y 的通解为_____
5.幂级数
∑∞
=--1
1
2)
1(n n
n n
x 的收敛半径=R _____ 二.选择题(每题3分,共15分) 1.过点)4,3,2(-且垂直于平面043=+-+
z y x 的直线方程是( )
A. 14
1332+=--=--z y x
B. 24
1332-=--=-z y x C. 1
4
1332--=-=-z y x
D. 1
4
1332-=-=--z y x 2.设D 是区域01,10≤≤-≤≤y x ,则=⎰⎰
D
xy dxdy xe ( ) A. 0
B. e
C. e
1
D. e
11+
3.微分方程ydy x dx y dy x
222
-=是( )
A.可分离变量方程
B.一阶线性方程
C.齐次方程
D.二阶线性方程
4.设L 是区域32,21:≤≤≤≤
y x D 的正向边界,则=-⎰L
ydx xdy 2( )
A.1
B.2
C.3
D.4 5.下列级数中为条件收敛的级数是( )
A.∑∞
=+-11)1(n n
n n B.∑∞=-1)1(n n n C.∑∞
=-1
1)1(n n n D.∑∞
=-1
21
)
1(n n
n
三.计算题(每题7分,共49分)
1.判别级数∑∞
=+12
31
n n
的敛散性
2.设z
e z y x =-+2
,求
y
z x z ∂∂∂∂, 3.计算二次积分⎰⎰
-+=1
10
222
)sin(y dx y x dy I
4.求二重积分
⎰⎰⎥⎦
⎤⎢⎣⎡++D y x dxdy xe y )(2
12
21的值,其中D 是由直线
1,1,=-==x y x y 围成的平面区域
5.求微分方程0112
2=--+
dy y
x dx 的通解.
6.试将函数x
3展开成x 的幂级数,并求其收敛域
7.计算曲面积分⎰⎰
∑
+dxdz x 2
)1(,:∑半球面2222R z y x =++)0(≥y 的外侧 四.解答题(每题7分,共21分)
1.设⎪⎭
⎫
⎝⎛=23
x y f x z ,其中f
为可微函数,证明z y
z y x z x 32=∂∂+∂∂ 2.在所有对角线为d 的长方体中,求最大体积的长方体的各边之长
3.设函数
)
(x ϕ连续可微,且
2
1)0(=
ϕ,试求
)
(x ϕ,使曲线积分
[]
⎰-+L
x
dy x ydx x e
)()(ϕϕ与路径无关。