2009年新疆乌鲁木齐市中考数学试题及答案
2009年中考数学试题分类汇编之03 整式试题及答案
2009年中考试题专题之3-整式试题及答案一、选择题1.(2009年台湾)已知(19x -31)(13x -17)-(13x -17)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则a +b +c =?A .-12B .-32C .38D .72 。
【关键词】分解因式 【答案】A2.(2009年台湾)将一多项式[(17x 2-3x +4)-(ax 2+bx +c )],除以(5x +6)后,得商式为(2x +1),余式为0。
求a -b -c =?A .3B .23C .25D .29 【关键词】整式除法运算 【答案】D3.(2009年重庆市江津区) 下列计算错误的是 ( ) A .2m + 3n=5mn B .426a a a =÷ C .632)(x x = D .32a a a =⋅ 【关键词】幂的运算 【答案】A4.(2009年重庆市江津区)把多项式a ax ax 22--分解因式,下列结果正确的是 ( ) A.)1)(2(+-x x a B. )1)(2(-+x x a C.2)1(-x a D. )1)(2(+-ax ax 【关键词】分解因式 【答案】A5.(2009年北京市)把3222x x y xy -+分解因式,结果正确的是 A.()()x x y x y +-B.()222x x xy y -+ C ()2x x y + D ()2x x y -【关键词】分解因式 【答案】D6. (2009年仙桃)下列计算正确的是( ). A 、235a a a += B 、623a a a ÷= C 、()326a a = D 、236a a a ⨯=【关键词】整式运算性质. 【答案】C7. (2009年四川省内江市) 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .2222)(b ab a b a ++=+B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+【关键词】用不同形式的代数式来表示同一部分的面积。
新疆乌鲁木齐市高中招生数学试卷
新疆乌鲁木齐市2009年高中招生考试数学试卷(问卷)注意事项:1.本卷共4页,满分150分.考试时间120分钟.考试时可使用科学计算器.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试卷指定的位置上. 3.选择题的每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚.4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效.在草稿纸、本试卷上答题无效.5.作图可先用2B铅笔绘出图,确定后必须用0.5毫米的黑色字迹的签字笔描黑. 6.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共7小题,每小题4分,共28分)每题的选项中只有一项符合题目要求. 1.2-的绝对值是( ) A.2-ﻩﻩ B.2ﻩﻩ C.12-ﻩﻩﻩD.122.下列运算中,正确的是( )A .623x x x ÷=ﻩﻩ ﻩ B.22(3)6x x -= ﻩﻩ C .3232x x x -=ﻩﻩﻩ D .327()x x x =3.若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ) A.1ﻩﻩﻩB.2ﻩﻩﻩC .3ﻩﻩﻩD.44.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A.5ﻩﻩﻩB .6ﻩﻩﻩC.7 ﻩﻩD.85.下列几何体中,其主视图、左视图与俯视图均相同的是( ) A.正方体 B.三棱柱ﻩ C.圆柱ﻩﻩﻩD.圆锥6.如图1,正比例函数y mx =与反比例函数ny x=(m n 、是 非零常数)的图象交于A B 、两点.若点A 的坐标为(1,2), 则点B 的坐标是( )A.(24)--, ﻩﻩ B .(21)--,ﻩﻩﻩC.(12)--,ﻩ ﻩ D.(42)--,7.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( )A .向左平移2个单位,再向下平移2个单位 B.向右平移2个单位,再向上平移2个单位 C.向左平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答题卡的相应位置处. 8.在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 9.如图2,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .10.化简:224442x x xx x ++-=-- . 11.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .12.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是 .13.如图3,点C D 、在以AB 为直径的O ⊙上,且CD 平分ACB ∠,若215AB CBA =∠=,°,则CD 的长为 .三、解答题(本大题Ⅰ-Ⅴ题,共10小题,共98分)解答时应在答题卡的相应位置处写出文字说明、证明过程或演算过程.Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:⎛÷ ⎝15.解方程33122x x x-+=--.A D ECB图2图3。
新疆乌鲁木齐市中考数学试题有答案(Word版)
新疆乌鲁木齐市中考数学试题一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上点A 表示数a ,则a 是( )A .2B .1C .1-D .2-2.如图,直线,172a b ∠= ,则2∠的度数是 ( )A .118B .108C .98D .723. 计算()22ab的结果是( ) A .23ab B .6ab C. 35a b D .36a b4.下列说法正确的是 ( )A .“经过有交通信号的路口,遇到红灯,” 是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D .方差越大数据的波动越大,方差越小数据的波动越小5.如果n 边形每一个内角等于与它相邻外角的2倍,则n 的值是 ( )A .4B .5 C.6 D .76.一次函数(,y kx b k b =+是常数,0k ≠)的图象,如图所示,则不等式0kx b +>的解集是 ( )A .2x <B .0x <C .0x >D .2x >7.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是 ( )A .()0030305120x x-=+ B .003030520x x -=C.003030520x x += D .()0030305120x x-=+ 8. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .πB .2π C.4π D .5π9.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G点处,若矩形面积为60,2AFG GE BG ∠==,则折痕EF 的长为( )A .1 B2 D.10. 如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A...二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.计算012⎛⎫+= ⎪ ⎪⎝⎭ .12.如图,在菱形ABCD 中,60,2DAB AB ∠==,则菱形ABCD 的面积为 .13.一件衣服售价为200元,六折销售,仍可获利0020,则这件衣服的进价是 元.14.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .15.如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .三、解答题 (本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16. 解不等式组:()3242113x x x x -->⎧⎪⎨+>-⎪⎩ . 17. 先化简,再求值:22282242x x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =18.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19. 如图,四边形ABCD 是平行四边形,,E F 是对角线BD 上的两点,且BF ED =,求证:AF CF .20. 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:a b c d的值并补全频数分布直方图;(1)写出,,,(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21. 一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援≈≈≈,结果取整数)的艇的航行速度.(sin370.6,cos370.8,3 1.73222. 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y 与x 之间的函数关系式;(4)何时两车相距300千米.23.如图,AB 是O 的直径,CD 与O 相切于点C ,与AB 的延长线交于D .(1)求证:ADCCDB ∆∆; (2)若32,2AC AB CD ==,求O 半径. 24.如图,抛物线()20y ax bx c a =++≠与直线1y x =+相交于()()1,0,4,A B m -两点,且抛物线经过点()5,0C .(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .①当2PE ED =时,求P 点坐标;② 是否存在点P 使BEC ∆为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.。
2009年中考数学试题分类汇编之29 统计试题及答案
2009年中考试题专题之29-统计试题及答案一、选择题1、(2009年齐齐哈尔市)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,7【关键词】中位数、众数【答案】D2、(2009年吉林省)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差【关键词】中位数【答案】A3、(2009年深圳市)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为()A.1万件B.19万件C.15万件D.20万件【关键词】抽样调查估计总体【答案】B4、(2009年泸州)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是A.9.2 B.9.3 C.9.4 D.9.5【关键词】平均数的求法。
【答案】D5、(2009年四川省内江市)今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数B.方差C.平均数D.频数【关键词】方差和标准差是反映数据稳定程度的统计量【答案】B6、(2009仙桃)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、25.6 26B、26 25.5C、26 26D、25.5 25.5【关键词】众数和中位数.【答案】D7、(2009年杭州市)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生【关键词】全面调查与抽样调查【答案】D8、(2009年台州市)数据1,2,2,3,5的众数是()A.1 B.2 C.3 D.5【关键词】众数【答案】B9、(2009年宁波市)下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查【关键词】全面调查与抽样调查【答案】D10、(2009年义乌)下列调查适合作抽样调查的是A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【关键词】抽样调查【答案】A11、(2009柳州)某学习小组7个男同学的身高(单位:米)为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为()A.1.65 B.1.66 C.1.67 D.1.70【关键词】众数【答案】B12、(2009年娄底)我市统计局发布的统计公报显示,2004年到2008年,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%. 经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小. A.中位数B.平均数C.众数D.方差【关键词】方差【答案】D13、(2009烟台市)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【关键词】平均数、中位数【答案】A14、(2009年甘肃白银)有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【关键词】平均数;中位数;众数;方差【答案】B15、(2009年鄂州)有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ) A 、10B 、10C 、2D 、2【关键词】方差的计算【答案】C16、(2009年河南)下列调查适合普查的是 【 】 (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间 【关键词】普查 【答案】D17、(2009年孝感)某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有被遮盖的两个数据依次是A .3℃,2B .3℃,65 C .2℃,2 D .2℃,85【关键词】平均数与方差 【答案】A18、(2009泰安)某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分): 分组 一 二 三 四 五 六 七 104-145 145-150 150-155 155-160 160-165 165-170 170-175人数612 26 4根据以上信息可知,样本的中位数落在(A )第二组 (B )第三组 (C )第四组 (D )第五组 【关键词】中位数 【答案】C19则这个队队员年龄的众数和中位数分别是( ) A .1516, B .1515, C .1515.5, D .1615, 【关键词】众数和中位数 【答案】A20、(2009年烟台市)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【关键词】平均数、中位数、众数.【答案】A21、(2009年嘉兴市)已知数据:2,1 ,3,5,6,5,则这组数据的众数和极差分别是(▲)A.5和7 B.6和7 C.5和3 D.6和3【关键词】众数、极差.【答案】A22、(2009年新疆)要反映乌鲁木齐市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.频数分布直方图D.折线统计图【关键词】折线统计图【答案】D23、(2009年天津市)为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5 B.8.5,9 C.8.5,8.75 D.8.64,9【关键词】数据的代表(众数,中位数)【答案】A24、(2009年湘西自治州)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体C.样本容量D.总体的一个样本【关键词】总体、个体、样本容量【答案】:C25、(2009白银市)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个【关键词】频率的意义【答案】B26、(2009白银市)有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【关键词】平均数、中位数、众数、方差的意义【答案】B27、(2009年清远)小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是()A.28 B.31 C.32 D.33【关键词】众数【答案】C27、(2009年衢州)某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A.40分,40 分B.50分,40分C.50分,50 分D.40分,50分【关键词】中位数和众数【答案】B28、(2009年舟山)某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A.40分,40 分B.50分,40分C.50分,50 分D.40分,50分【关键词】中位数和众数【答案】B29、(2009年广州市如图是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是()(A)这一天中最高气温是24℃(B)这一天中最高气温与最低气温的差为16℃(C)这一天中2时至14时之间的气温在逐渐升高(D)这一天中只有14时至24时之间的气温在逐渐降低【关键词】统计图【答案】D30、(2009年益阳市)益阳市某年6月上旬日最高气温如下表所示:日 期 1 2 3 4 5 6 7 8 9 10 最高气温(℃) 30 28 30 32 34 32 26 30 33 35那么这10天的日最高气温的平均数和众数分别是 A.32,30 B.31,30 C.32,32 D.30,30 【关键词】平均数和众数 【答案】B31、(2009年重庆)下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况 C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查 【关键词】普查与抽样调查 【答案】D .32、(2009年宜宾)已知数据:23231-,,,,π.其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80%【关键词】无理数,频率 【答案】C.33、(2009年长春)在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6, 3,6,5,5,6,9.这组数据的中位数和众数分别是( ) A .5,5 B .6,5 C .6,6 D .5,6 【关键词】中位数、众数 【答案】C34、(2009年锦州)小亮练习射击,第一轮10枪打完后他的成绩如图5,他10次成绩的方差是___________.【关键词】折线统计图、方差 【答案】5.635、(2009年莆田)某班5位同学参加“改革开放30周年”系列活动的次数依次为12333、、、、,则这组数据的众数和中位数分别是( )【关键词】统计、平均数、众数、中位数 答案:DA .22、B . 2.43、C . 32、D .33、 36、(2009年包头)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( A ) A .0.1 B .0.17C .0.33D .0.4【关键词】统计、直方图37、(2009年长沙)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )答案:DA .甲B .乙C .丙D .丁 【关键词】方差、统计38、(2009年本溪)某男子排球队20名队员的身高如下表:身高(cm ) 180 186 188 192 208 人数(个) 4 6 5 3 2则此男子排球队20名队员的身高的众数和中位数分别是( )B A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm 【关键词】众数与中位数 【答案】B39、(2009宁夏)4.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..的是( ) A .众数是85 B .平均数是85 C .中位数是80 D .极差是15 【关键词】众数与中位数,平均数,极差 【答案】C40、(2009肇庆)如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( )DA .4B .8C .10D .12【关键词】平均数 【答案】D41、(2009年南充)已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ) A .2 B .2.5 C .3 D .5 【关键词】众数及中位数的概念 【答案】B42、(2009年湖州)某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种 糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙 种糖果30千克混合成的什锦糖果的单价应定为( ) A .11元/千克 B .11.5元/千克 C .12元/千克 D .12.5元/千克 【关键词】平均数的定义 【答案】B成绩43、(2009年温州)九年级(1)班共50名同学,右图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是( ) A .20% B .44%C .58%D .72%【关键词】直方图的应用 【答案】B44、(2009年温州)某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同.若知道某位选手的得分。
2009年九年级数学中考试题专题之6-一元一次方程和二元一次方程组试题及答案
2009年中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(2009年某某省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(2009年某某市、某某市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .33、(2009年某某市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(2009年某某市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种5、(2009年某某省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是()A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(2009年某某市)班长去文具店买毕业留言卡50X ,每X 标价2元,店老板说可以按标价九折优惠,则班长应付()A .45元B .90元C .10元D .100元7、(2009某某某某)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .38、(2009某某)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.9、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A.43-B.43C.34D.34-10、(2009年某某)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩11、(2009年某某)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .4cmB .5cmC .6cmD .13cm12、(2009年某某)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。
2009年中考数学试题分类汇编之26 相似试题及答案
2009年中考试题专题之26-相似试题及答案一、选择题1.(2009年滨州)如图所示,给出下列条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4【关键词】三角形相似的判定. 【答案】C2.(2009年上海市)如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF=【关键词】平行线分线段成比例 【答案】A3.(2009成都)已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:1 【关键词】 【答案】B4. (2009年安顺)如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有: A .0个 B .1个 C .2个 D .3个【关键词】等边三角形,三角形中位线,相似三角形 【答案】D5.(2009重庆綦江)若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4B .1∶2C .2∶1D 2【关键词】 【答案】B6.(2009年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个 【关键词】相似三角形有关的计算和证明 【答案】B7.2009年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形【关键词】位似 【答案】C8.(2009年江苏省)如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格【关键词】平移 【答案】DDBCA NM O9.(2009年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
[09数学汇编]_2009年全国中考数学试题汇编_二次函数1
09年中考-二次函数 习题版一、选择题 1、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。
若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? (A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。
2、(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y3、 (2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、(2009年桂林市、百色市)二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .236、(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,7、(2009年陕西省)根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴 【 】x … -1 0 1 2 …y … -147--2 47-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点 8、(2009威海)二次函数2365y x x =--+的图象的顶点坐标是( )A .(18)-,B .(18),C .(12)-,D .(14)-, 9、(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )解析:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C . 10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( ) A 、y=x 2-x-2 B 、y=121212++-xC 、y=121212+--x x D 、y=22++-x x11、(2009年齐齐哈尔市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()A .B .C .D .1111xo yyo x yo xxoyA .4个B .3个C .2个D .1个12、(2009年深圳市)二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( )A .21y y <B .21y y =C .21y y >D .不能确定12、(2009桂林百色)二次函数2(1)2y x =++的最小值是( ).A .2B .1C .-3D .23 13、(2009丽水市)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论: ①a >0.②该函数的图象关于直线1x =对称.③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( )A .3B .2C .1D .014、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )15、(2009年甘肃庆阳)图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x=-B .22y x=C .212y x=-D .212y x=1-1O xyxyO1 yxO y xO B .C .yxO A .y xO D .O16、(2009年甘肃庆阳)将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-17、(2009年广西南宁)已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个18、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、519、(2009年孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为 A .1B .2C .3D .420、(2009泰安)抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)21、(2009年烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )22、(2009年嘉兴市)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ )1图4O xy3图6(1) 图6(2)1- 1 O x y y x Oy x O B . C . y x O A . y x O D . y yxy O1-1xyO1-123、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m =B .k n =C .k n >D .00h k >>,24、(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+-C .22y x x =-++D .22y x x =++25、(2009年南宁市)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个26、(2009年衢州)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 27、(2009年舟山)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 28、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-229、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个30、(2009年广西钦州)将抛物线y =2x 2向上平移3个单位得到的抛物线的解析式是( )1211O1xy (第12题)A .y =2x 2+3B .y =2x 2-3C .y =2(x +3)2D .y =2(x -3)231、(2009宁夏)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( )D A .0c > B .20a b += C .240b ac -> D .0a b c -+>32、(2009年南充)抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =33、(2009年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .9 34、(2009年兰州)在同一直角坐标系中,函数y m x m =+和函数222y m x x =-++(m 是常数,且0m ≠)的图象可能..是35、(2009年兰州)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++ 36、(2009年兰州)二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是A .a <0 B.abc >0C.c b a ++>0D.ac b 42->0 37、(2009年遂宁)把二次函数3412+--=x x y用配方法化成()kh x a y +-=2的形式A.()22412+--=x yB.()42412+-=x y111-O x y(8题图)C.()42412++-=x yD. 321212+⎪⎭⎫⎝⎛-=x y39、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-2【关键词】二次函数41、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
2009中考数学题及答案
2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。
中考数学试题专题练习 整式
中考试题专题 整式一、选择题1.(台湾)已知(19x -31)(13x -17)-(13x -17)(11x -23)可因式分解成(ax +b )(8x +c ),其中a 、b 、c 均为整数,则a +b +c =?A .-12B .-32C .38D .72 。
【关键词】分解因式 【答案】A2.(台湾)将一多项式[(17x 2-3x +4)-(ax 2+bx +c )],除以(5x +6)后,得商式为(2x +1),余式为0。
求a -b -c =?A .3B .23C .25D .29 【关键词】整式除法运算 【答案】D3.(重庆市江津区) 下列计算错误的是 ( )A .2m + 3n=5mnB .C .D .【关键词】幂的运算 【答案】A4.(重庆市江津区)把多项式分解因式,下列结果正确的是 ( )A. B. C. D. 【关键词】分解因式 【答案】A5.(北京市)把分解因式,结果正确的是 A.B. C D【关键词】分解因式 【答案】D6. (仙桃)下列计算正确的是( ).A 、B 、C 、D 、【关键词】整式运算性质. 【答案】C7. (四川省内江市) 在边长为的正方形中挖去一个边长为的小正方形(>)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .426a a a =÷632)(x x =32a a a =⋅a ax ax 22--)1)(2(+-x x a )1)(2(-+x x a 2)1(-x a )1)(2(+-ax ax 3222x x y xy -+()()x x y x y +-()222x x xy y-+()2x x y +()2x x y -235a a a +=623a a a ÷=()326aa =236a a a ⨯=ab a b 2222)(b ab a b a ++=+ aa abB .C .D .【关键词】用不同形式的代数式来表示同一部分的面积。
新疆乌鲁木齐市中考数学试卷及解析
新疆乌鲁木齐市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1、(2011•乌鲁木齐)下列实数中,是无理数的为()A、0B、C、3.14D、考点:无理数。
专题:存在型。
分析:根据无理数的定义对四个选项进行逐一分析即可.解答:解:A、0是整数,故是有理数,故本选项错误;B、是分数,故是有理数,故本选项错误;C、3.14是小数,故是有理数,故本选项错误;D、是开方开不尽的数,故是无理数,故本选项正确.故选D.点评:本题考查的是无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、(2011•乌鲁木齐)如图,在数轴上点A,B对应的实数分别为a,b,则有()A、a+b>0B、a﹣b>0C、ab>0D、>0考点:实数与数轴。
专题:探究型。
分析:根据数轴上两数的特点判断出a、b的符号及其绝对值的大小,再对各选项进行逐一分析即可.解答:解:∵由数轴上a、b两点的位置可知,a<0,b>0,|a|<b,∴A、a+b>0,故本选项正确;B、a﹣b<0,故本选项错误;C、ab<0,故本选项错误;D、<0,故本选项错误.故选A.点评:本题考查的是数轴的特点,能根据数轴的特点判断出a、b的符号及其绝对值的大小是解答此题的关键.3、(2011•乌鲁木齐)下列运算正确的是()A、4x6÷(2x2)=2x3B、2x﹣2=C、(﹣2a2)3=﹣8a6D、考点:负整数指数幂;幂的乘方与积的乘方;整式的除法;约分。
专题:计算题。
分析:根据单项式的除法、负整数指数幂、幂的乘方与积的乘方以及分式的约分化简得出.解答:解:A、4x6÷(2x2)=2x4,故本选项错误,B、2x﹣2=,故本选项错误,C、(﹣2a2)3=﹣8a6,故本选项正确,D、=a+b,故本选项错误.故选C.点评:本题主要考查单项式的除法、负整数指数幂、幂的乘方与积的乘方以及分式的约分化简,熟练掌握运算法则是解题的关键,难度适中.4、(2011•乌鲁木齐)甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A、B、C、D、考点:二元一次方程组的应用。
乌鲁木齐市2009年中考数学试卷
新疆乌鲁木齐市2009年高中招生考试数学试卷(问卷)注意事项:1.本卷共4页,满分150分.考试时间120分钟.考试时可使用科学计算器.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试卷指定的位置上.3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚.4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效.在草稿纸、本试卷上答题无效.5.作图可先用2B 铅笔绘出图,确定后必须用0.5毫米的黑色字迹的签字笔描黑. 6.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共7小题,每小题4分,共28分)每题的选项中只有一项符合题目要求. 1.2-的绝对值是( ) A .2-B .2C .12-D .122.下列运算中,正确的是( ) A .623x x x ÷= B .22(3)6x x -=C .3232x x x -=D .327()x x x =3.若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ) A .1B .2C .3D .44.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A .5B .6C .7D .85.下列几何体中,其主视图、左视图与俯视图均相同的是( ) A .正方体 B .三棱柱C .圆柱D .圆锥6.如图1,正比例函数y mx =与反比例函数ny x=(m n 、是非零常数)的图象交于A B 、两点.若点A 的坐标为(1,2), 则点B 的坐标是( ) A .(24)--, B .(21)--,C .(12)--,D .(42)--,7.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ) A .向左平移2个单位,再向下平移2个单位 B .向右平移2个单位,再向上平移2个单位 C .向左平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答题卡的相应位置处. 8.在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 9.如图2,在ABC △中,DE BC ∥,若123A D D E B D===,,,则BC = .10.化简:224442x x xx x ++-=-- . 11.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .12.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是 .13.如图3,点C D 、在以AB 为直径的O ⊙上,且CD 平分ACB ∠,若215AB CBA =∠=,°,则CD 的长为 .三、解答题(本大题Ⅰ-Ⅴ题,共10小题,共98分)解答时应在答题卡的相应位置处写出文字说明、证明过程或演算过程.Ⅰ.(本题满分12分,第14题6分,第15题6分)AD E CB图2A图314.计算:⎛÷ ⎝15.解方程33122x x x-+=--. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.如图4,将ABCD 的对角线BD 向两个方向延长至点E 和点F ,使B E D F =,求证四边形AECF 是平行四边形.17.某超市为“开业三周年”举行了店庆活动.对A 、B两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买50件A 商品和50件B商品仅需960元,这比不打折少花多少钱?18.如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N . (1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.Ⅲ.(本题满分34分,第19题12分,第20题10分,第2119.某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).(1(2(3 (4 4 000名学生中约有多少名获奖? 20A 处到笔直的南岸的距离进行测量.他们采取了以下AFCEBD 图4 图5 图6/分方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?21.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器: (1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?Ⅳ.(本题满分10分)22.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图8所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当0.5x ≥时,求储气罐中的储气量y (立方米)与时间x (小时)的函数解析式; (3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.Ⅴ.(本题满分14分)23.如图9,在矩形OABC 中,已知A 、C 两点的坐标分别为OA 的中点.设点P 是AOC 平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 总与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;)图8(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.新疆乌鲁木齐市2009一、选择题(本大题共7小题,每小题4分,共28分) 1.B 2.D 3.B 4.D 5.A 6.C 7.D 二、填空题(本大题共6小题,每小题4分,共24分) 8.2x > 9.8 10.22x - 11.500.31200x +≤ 12.1313三、解答题(本大题共10小题,共98分)Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式⎛=÷ ⎝············································································ 3分 143==.·························································································· 6分 15.解:方程两边同乘以2x -,得3(3)2x x --=-,即28x =,解得4x =. ·········· 4分 检验:4x =时,20x -≠,∴原方程的解是4x =. ·················································································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.证明:连接A C 、,设AC 与BD 交于点O .∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,, ·················································· 5分 又∵BE DF =,∴OE OF =. ···································································································· 6分 ∴四边形AECF 是平行四边形. ··································································································· 7分 17.解:设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意有58463108x y x y +=⎧⎨+=⎩解之,得164x y =⎧⎨=⎩································································································ 8分 打折前购买50件A 商品和50件B 商品共需16504501000⨯+⨯=元.图9∴打折后少花(1000960)40-=元.答:打折后少花40元. ··············································································································· 10分 18.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线. ························ 5分 (2)连接AM .∵AB 为直径,点M 在O ⊙上,∴90AMB ∠=°. ∵120AB AC BAC =∠=,°,∴30B C ∠=∠=°,∴60AOM ∠=°. 又∵在Rt AMC △中,MN AC ⊥于点N ,∴30AMN ∠=°.1sin sin 30sin 302AN AM AMN AC =∠==°°,3cos sin 30cos302MN AM AMN AC =∠==°°, ························································· 8分 ∴()3328ANMOAN OM MN S +==梯形,260π1π3606OAM S ==扇形, ∴S =阴影 ···················································································································· 11分 Ⅲ.(本题满分34分,第19题12分,第20题10分,第21题12分) 19.解:(1)(每空1分) ········································· 6分 8分 10分 12分 A 处到南岸的距离. D ,AD 的长即为所求.在Rt ADC △中,∵9045ADC DAC ∠=∠=°,°,∴DC AD =在Rt BDC △中,∵9030BDC DBC ∠=∠=°,°,∴BD = ·································· 7分由题意得:10AB BD AD AD ==-=-,解得13.7AD =答:该公园的湖心亭A 处到南岸的距离约是13.7米. ························································· 10色21.解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买; ······································ 3分(2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意,当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去. ·················· 10分②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台. ························································· 12分 Ⅳ.(本题满分10分)22.解:(1)由图可知,星期天当日注入了1000020008000-=立方米的天然气; 2分 (2)当0.5x ≥时,设储气罐中的储气量y (立方米)与时间x (小时)的函数解析式为:y kx b =+(k b ,为常数,且0k ≠),∵它的图象过点(0.510000),,(10.58000),,∴0.51000010.58000k b k b +=⎧⎨+=⎩ 解得20010100k b =-⎧⎨=⎩故所求函数解析式为:20010100y x =-+. ··········································································· 6分 (3)可以.∵给18辆车加气需1820360⨯=(立方米),储气量为100003609640-=(立方米),于是有:964020010100x =-+,解得: 2.3x =, 而从8:00到10:30相差2.5小时,显然有:2.3 2.5<,故第18辆车在当天10:30之前可以加完气. ······································································ 10分 Ⅴ.(本题满分14分)23.解:(1)∵点D 是OA 的中点,∴2OD =,∴OD OC =. 又∵OP 是COD ∠的角平分线,∴45POC POD ∠=∠=°,∴POC POD △≌△,∴PC PD =. ························································································ 3分 (2)过点B 作AOC ∠的平分线的垂线,垂足为P ,点P 即为所求. 易知点F 的坐标为(2,2),故2BF =,作PM BF ⊥, ∵PBF △是等腰直角三角形,∴112PM BF ==, ∴点P 的坐标为(3,3). ∵抛物线经过原点,∴设抛物线的解析式为2y ax bx =+. 又∵抛物线经过点(33)P ,和点(20)D ,,∴有933420a b a b +=⎧⎨+=⎩ 解得12a b =⎧⎨=-⎩∴抛物线的解析式为22y x x =-. ······························································································· 7分 (3)由等腰直角三角形的对称性知D 点关于AOC ∠的平分线的对称点即为C 点.连接EC ,它与AOC ∠的平分线的交点即为所求的P 点(因为PE PD EC +=,而两点之间线段最短),此时PED △的周长最小.∵抛物线22y x x =-的顶点E 的坐标(11)-,,C 点的坐标(02),, 设CE 所在直线的解析式为y kx b =+,则有12k b b +=-⎧⎨=⎩,解得32k b =-⎧⎨=⎩.∴CE 所在直线的解析式为32y x =-+.点P 满足32y x y x =-+⎧⎨=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,故点P 的坐标为1122⎛⎫ ⎪⎝⎭,.PED △的周长即是CE DE +=+(4)存在点P ,使90CPN ∠=°.其坐标是1122⎛⎫⎪⎝⎭,或(22),.······································· 14分登鹳雀楼 唐代:王之涣白日依山尽,黄河入海流。
数学中考分类试题(含答案)
1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
2009年中考数学试题分类汇编之04 分式试题及答案
2009年中考试题专题之4-分式试题及答案一、填空题1.(2009年滨州)化简:2222444m mn nm n-+-= .2. (2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.。
3.(2009年成都)化简:22221369x y x yx yx xy y+--÷--+=_______4.(2009年成都)分式方程2131x x =+的解是_________5(2009年安顺)已知分式11x x +-的值为0,那么x 的值为______________。
6.(2009重庆綦江)在函数13y x =-中,自变量x 的取值范围是 .7.(2009年黔东南州)当x______时,11+x 有意义.【关键词】分式有无意义 【答案】1-≠ 8 .(2009年义乌)化简22a a a+的结果是样【关键词】化简分式 【答案】2a +9.(2009丽水市)当x ▲ 时,分式x1没有意义.【关键词】分式的概念 【答案】x =010.(2009烟台市)设0a b >>,2260a b ab +-=,则a b b a+-的值等于 .【关键词】分式计算【答案】11.(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 .【关键词】分式的值为0 【答案】212.(2009年衢州)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】113.(2009年舟山)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】114.(2009年清远)当x = 时,分式12x -无意义.【关键词】分式 【答案】215.(2009年温州)某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。
实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含口的代数式表示). 【关键词】分式 【答案】a40162009年漳州)若分式12x -无意义,则实数x 的值是____________.【关键词】分式的概念 【答案】217.(2009年潍坊)方程3123xx =+的解是 .【关键词】分式方程的运算 【答案】9x =-18(09湖北宜昌)当x = 时,分式23x -没有意义.【关键词】分式 【答案】319(2009年)13.若实数x y 、满足0xy ≠,则y x m xy=+的最大值是 .【关键词】分式化简 【答案】20.(2009年新疆乌鲁木齐市)化简:224442x x x x x ++-=-- .【关键词】约分与通分,分式运算 【答案】22x -21(2009年枣庄市)15.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 【关键词】分式的比较大小 【答案】=22.(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 二、选择题1(2009年常德市)要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >【关键词】有意义 【答案】B2(2009年陕西省)8.化简ba a aba -⋅-)(2的结果是 【 】A .ba- B .ba+ C .ba -1D .ba +1【关键词】分式运算【答案】B3(2009年黄冈市)4.化简a a a a a a2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A .-4B .4C .2aD .-2a【关键词】分式运算 【答案】A 4(2009威海)化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .y x- B . x y-C .x yD .y x【关键词】分式的运算 【答案】D5(2009年湖南长沙)分式111(1)a a a +++的计算结果是( )A .11a + B .1a a + C .1aD .1a a+【答案】C【解析】本题考查了分式的加减运算。
2009年中考数学试题分类汇编之02 无理数及二次根式
一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 【答案】B2.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C3.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 4.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B5.(2009贺州)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10【答案】C 6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B7.(2009年淄博市) D )A .B -CD .8.(2009年湖北省荆门市)2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【答案】B10.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】B【解析】a 的范围是0a ≥;∴y =x 的范围由20x +≥得2x ≥-。
11.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )A. 0a b +>B. 0a b ->C. 0a b >D .0ab>【答案】 A12.(2009的绝对值是( ) A .3B .3-C .13D .13-【答案】A13.(2009年安顺)下列计算正确的是: A =B 1= C =D .=【答案】A 14.(2009年武汉)的值是( )A .3-B .3或3-C .9D .3【答案】D15.(2009年武汉)函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤【答案】B16.(2009年眉山)2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间【答案】C 17.(2009年常德市)28-的结果是( )A .6B .22C .2D .2【答案】C18.(2009年肇庆市)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 【答案】A 19.(2009 黑龙江大兴安岭)下列运算正确的是( )A .623a a a =⋅ B .1)14.3(0=-πC .2)21(1-=- D .39±=【答案】B20.(2009年黄石市)下列根式中,不是..最简二次根式的是( ) ABCD 【答案】C21.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 22.(2009年广东省)4的算术平方根是( ) A .2± B .2C .D 【答案】B23.(2009 ( )【答案】B 24.(2009年湖北十堰市)下列运算正确的是( ). A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 【答案】B 25.(2009年茂名市)下列四个数中,其中最小..的数是( )A .0B .4-C .π-D 【答案】26.(2009 ) A .0 B .2 C .4 D .5 【答案】B27.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0C .x >0D .x <0【答案】A28.(2009年株洲市)...,则x 的取值范围是 A . 2x ≥B .2x >C .2x <D .2x ≤【答案】A 29.(2009年台湾)若a =1.071⨯106,则a 是下列哪一数的倍数? (A) 48 (B) 64 (C) 72 (D) 81。
2009年新疆乌鲁木齐市中考数学试题及答案
新疆乌鲁木齐市2009年中考卷一、选择题(本大题共7小题,每小题4分,共28分)每题的选项中只有一项符合题目要求. 1.2-的绝对值是( ) A .2-B .2C .12-D .122.下列运算中,正确的是( )A .623x x x ÷= B .22(3)6x x -= C .3232x x x -= D .327()x x x = 3.若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ) A .1 B .2 C .3 D .44.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A .5 B .6 C .7 D .85.下列几何体中,其主视图、左视图与俯视图均相同的是( ) A .正方体 B .三棱柱 C .圆柱 D .圆锥 6.如图1,正比例函数y mx =与反比例函数ny x=(m n 、是 非零常数)的图象交于A B 、两点.若点A 的坐标为(1,2), 则点B 的坐标是( )A .(24)--,B .(21)--,C .(12)--,D .(42)--,7.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( )A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答题卡的相应位置处.8.在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 9.如图2,在ABC △中,DE BC ∥,若123AD DE B D ===,,,则BC = .10.化简:224442x x xx x ++-=-- . 11.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .12.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是 .13.如图3,点C D 、在以AB 为直径的O ⊙上,且CD 平分ACB ∠,若215A B C B A =∠=,°,则CD 的长为 .三、解答题(本大题Ⅰ-Ⅴ题,共10小题,共98分)解答时应在答题卡的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.计算:⎛÷ ⎝15.解方程33122x x x-+=--.Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.如图4,将ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE DF =,求证四边形AECF 是平行四边形.A D ECB图2A FC E BD 图4 图317.某超市为“开业三周年”举行了店庆活动.对A 、B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买50件A 商品和50件B 商品仅需960元,这比不打折少花多少钱?18.如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.Ⅲ.(本题满分34分,第19题12分,第20题10分,第21题12分)19.某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)上述学生成绩的中位数落在哪一组范围内?(4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?20.九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?21.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:图5D C图7/分(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?Ⅳ.(本题满分10分)22.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图8所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当0.5x≥时,求储气罐中的储气量y(立方米)与时间x(小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.Ⅴ.(本题满分14分)23.如图9,在矩形OABC中,已知A、C两点的坐标分别为(40)(02)A C,、,,D为OA的中点.设点P是AOC∠平分线上的一个动点(不与点O重合).(1)试证明:无论点P运动到何处,PC总与PD相等;(2)当点P运动到与点B的距离最小时,试确定过O P D、、三点的抛物线的解析式;(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,PDE△的周长最小?求出此时点P的坐标和PDE△的周长;(4)设点N是矩形OABC的对称中心,是否存在点P,使90CPN∠=°?若存在,请直接写出点P的坐标.)图9新疆乌鲁木齐市2009年高中招生考试数学试卷参考答案及评分标准一、选择题(本大题共7小题,每小题4分,共28分) 1.B 2.D 3.B 4.D 5.A 6.C 7.D 二、填空题(本大题共6小题,每小题4分,共24分) 8.2x > 9.8 10.22x - 11.500.31200x +≤ 12.1313三、解答题(本大题共10小题,共98分)Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式⎛=÷ ⎝······················································· 3分143==. ································································· 6分 15.解:方程两边同乘以2x -,得3(3)2x x --=-,即28x =,解得4x =. ········ 4分 检验:4x =时,20x -≠,∴原方程的解是4x =. ·················································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.证明:连接A C 、,设AC 与BD 交于点O .∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,, ··································· 5分 又∵BE DF =,∴OE OF =. ······································································· 6分 ∴四边形AECF 是平行四边形. ······································································· 7分 17.解:设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意有58463108x y x y +=⎧⎨+=⎩解之,得164x y =⎧⎨=⎩ ······································································ 8分 打折前购买50件A 商品和50件B 商品共需16504501000⨯+⨯=元. ∴打折后少花(1000960)40-=元.答:打折后少花40元. ·················································································· 10分 18.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线. ················ 5分 (2)连接AM .∵AB 为直径,点M 在O ⊙上,∴90AMB ∠=°.∵120AB AC BAC =∠=,°,∴30B C ∠=∠=°,∴60AOM ∠=°. 又∵在Rt AMC △中,MN AC ⊥于点N ,∴30AMN ∠=°.1sin sin 30sin 302AN AM AMN AC =∠==°°, 3cos sin 30cos30MN AM AMN AC =∠==°°, ·········································· 8分 ∴()332ANMOAN OM MN S +==梯形260π1π3606OAM S ==扇形, ∴4π24S =阴影. ··················································································· 11分 Ⅲ.(本题满分34分,第19题12分,第20题10分,第21题12分) 19.解:(1)(每空1分) ······························ 6分 (2)略; ····································································································· 8分 (3)80.5~90.5; ·························································································· 10分 (4)1480人. ···························································································· 12分 20.解:此方案能够测得该公园的湖心亭A 处到南岸的距离. 过点A 作南岸所在直线的垂线,垂足是点D ,AD 的长即为所求.在Rt ADC △中,∵9045ADC DAC ∠=∠=°,°,∴DC AD = 在Rt BDC △中,∵9030BDC DBC ∠=∠=°,°,∴BD = ························ 7分由题意得:10AB BD AD AD ==-=-,解得13.7AD =答:该公园的湖心亭A 处到南岸的距离约是13.7米. ·········································· 10色 21.解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买; ·················· 3分 (2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意,当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去.·············· 10分②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台. ·········································· 12分 Ⅳ.(本题满分10分) 22.解:(1)由图可知,星期天当日注入了1000020008000-=立方米的天然气; · 2分 (2)当0.5x ≥时,设储气罐中的储气量y (立方米)与时间x (小时)的函数解析式为:y kx b =+(k b ,为常数,且0k ≠),∵它的图象过点(0.510000),,(10.58000),, ∴0.51000010.58000k b k b +=⎧⎨+=⎩ 解得20010100k b =-⎧⎨=⎩故所求函数解析式为:20010100y x =-+. ······················································ 6分 (3)可以.∵给18辆车加气需1820360⨯=(立方米),储气量为100003609640-=(立方米), 于是有:964020010100x =-+,解得: 2.3x =,而从8:00到10:30相差2.5小时,显然有:2.3 2.5<, 故第18辆车在当天10:30之前可以加完气. ····················································· 10分 Ⅴ.(本题满分14分) 23.解:(1)∵点D 是OA 的中点,∴2OD =,∴OD OC =. 又∵OP 是COD ∠的角平分线,∴45POC POD ∠=∠=°, ∴POC POD △≌△,∴PC PD =. ······························································ 3分 (2)过点B 作AOC ∠的平分线的垂线,垂足为P ,点P 即为所求. 易知点F 的坐标为(2,2),故2BF =,作PM BF ⊥, ∵PBF △是等腰直角三角形,∴112PM BF ==, ∴点P 的坐标为(3,3). ∵抛物线经过原点,∴设抛物线的解析式为2y ax bx =+.又∵抛物线经过点(33)P ,和点(20)D ,,∴有933420a b a b +=⎧⎨+=⎩ 解得12a b =⎧⎨=-⎩∴抛物线的解析式为22y x x =-. ···································································· 7分(3)由等腰直角三角形的对称性知D 点关于AOC ∠的平分线的对称点即为C 点.连接EC ,它与AOC ∠的平分线的交点即为所求的P 点(因为PE PD EC +=,而两点之间线段最短),此时PED △的周长最小.∵抛物线22y x x =-的顶点E 的坐标(11)-,,C 点的坐标(02),, 设CE 所在直线的解析式为y kx b =+,则有12k b b +=-⎧⎨=⎩,解得32k b =-⎧⎨=⎩.∴CE 所在直线的解析式为32y x =-+.点P 满足32y x y x =-+⎧⎨=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,故点P 的坐标为1122⎛⎫ ⎪⎝⎭,.PED △的周长即是CE DE +=(4)存在点P ,使90CPN ∠=°.其坐标是1122⎛⎫ ⎪⎝⎭,或(22),. ···························· 14分。
乌鲁木齐中考数学试题及答案
乌鲁木齐中考数学试题及答案第一部分选择题(共15小题,每小题2分,共30分)1. 已知正方形的边长为2 cm,则其对角线长为多少?A. 2 cmB. 2√2 cmC. 4 cmD. 2√3 cm答案:B. 2√2 cm2. 设集合A = {x | x 是正整数, 1 ≤ x ≤ 10},B = {x | x 是奇数, 1 ≤ x ≤ 10},则A ∩ B = ?A. {1, 3, 5, 7, 9}B. {2, 4, 6, 8, 10}C. {1, 2, 3, 4, 5}D. {6, 7, 8, 9, 10}答案:A. {1, 3, 5, 7, 9}3. 若 3x - 4 = 5x + 2,则 x = ?A. -3B. -2D. 3答案:A. -34. 下列计算式中,结果为负数的是:A. 5 + 8B. 6 - 9C. 7 × 4D. 10 ÷ 2答案:B. 6 - 95. 已知 a:b = 2:3,其中 a + b = 50,则 b 的值是多少?A. 15B. 20C. 25D. 30答案:C. 256. 若 x - 3 = 2,则 x² - 6x + 9 = ?A. -5B. 0D. 9答案:D. 97. 如图,ABCD 是一个长方体,若 AD = 3 cm,AB = 4 cm,AC = 5 cm,则体积 V 为多少?A. 12 cm³B. 20 cm³C. 24 cm³D. 60 cm³答案:A. 12 cm³8. 整数 n 是一个五位数,百位数为2,个位数为6,若将 n 除以 9 得到的商为 360,则 n 是多少?A. 20060B. 20260C. 20460D. 20660答案:B. 202609. 若 3x - 2y = 10,4x + y = 5,则 x 的值为多少?A. 2C. 4D. 5答案:A. 210. 在ΔABC中,∠A = 90°,AC = 8 cm,BC = 6 cm,则 AB = ?A. 7 cmB. √32 cmC. √52 cmD. √64 cm答案:C. √52 cm11. 甲、乙两人同时从相距300 km的地点出发,甲每小时以60 km 的速度向前,乙每小时以80 km的速度向后,若两人均不停歇,当两人相遇时,甲已走了多少小时?A. 1B. 2C. 3D. 4答案:A. 112. 一般情况下,一个锥形的顶点在底面的什么位置上?A. 中点B. 对边中点C. 三角形外D. 无法确定答案:D. 无法确定13. 若 log₃(x²) = 4,则 x 的值为多少?A. 1/81B. 1/9C. 1/3D. 81答案:D. 8114. 若 2x + y = 8,3x - y = 6,则 x 的值为多少?A. 1B. 2C. 3D. 4答案:B. 215. 现有一长方形甲,宽度比长度小6 cm,若两个长方形的周长相等,其中乙的长度是甲的2倍,则乙的周长是多少?A. 20 cmB. 32 cmC. 48 cmD. 64 cm答案:C. 48 cm第二部分解答题(共5小题,共70分)16. 小明和小王共同参加一次数学竞赛,小明的得分是小王的3倍减10分,已知小王的得分为x,写出小明的得分与x的关系式,并求小明的得分。
乌市中考数学试题及答案
乌市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的等式?A. \( \sqrt{4} = 2 \)B. \( \sqrt{9} = 3 \)C. \( \sqrt{16} = 4 \)D. \( \sqrt{25} = 5 \)答案:A2. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 计算下列表达式的值:\[ \frac{2}{3} \times \frac{3}{4} \]A. \( \frac{1}{2} \)B. \( \frac{1}{4} \)C. \( \frac{3}{8} \)D. \( \frac{1}{8} \)答案:C4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C6. 一个圆的半径是2,那么它的面积是多少?A. \( \pi \)B. \( 4\pi \)C. \( 2\pi \)D. \( 8\pi \)答案:B7. 下列哪个选项是不等式?A. \( 3x + 2 > 5 \)B. \( 4x - 3 = 1 \)C. \( 2x + 5 \leq 7 \)D. \( 6x - 8 < 0 \)答案:A8. 一个数的平方是9,那么这个数是多少?A. 3B. -3C. 3或-3D. 0答案:C9. 计算下列表达式的值:\[ (-2)^3 \]A. -8B. 8C. -6D. 6答案:A10. 下列哪个选项是正确的因式分解?A. \( x^2 - 4 = (x - 2)^2 \)B. \( x^2 - 4 = (x + 2)(x - 2) \)C. \( x^2 + 4 = (x + 2)(x - 2) \)D. \( x^2 + 4 = (x + 2)^2 \)答案:B二、填空题(每题2分,共20分)11. 一个数的立方是-8,那么这个数是 _______ 。
2009-2022年新疆中考数学平面几何题真题汇集
(2022)18. 在ABC 中,点D ,F 分别为边AC ,AB 的中点.延长DF 到点E ,使DF EF =,连接BE .(1)求证:ADF BEF ≌△△;(2)求证:四边形BCDE 是平行四边形.22. 如图,⊙O 是ABC 的外接圆,AB 是⊙O 的直径,点D 在⊙O 上,AC CD =,连接AD ,延长DB 交过点C 的切线于点E .(1)求证:ABC CAD ∠=∠;(2)求证:BE CE ⊥;(3)若43AC BC ==,,求DB 的长.(2021)18.(10分)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌△DCF;(2)四边形AEFD是平行四边形.22.(11分)如图,AC是⊙O的直径,BC,BD是⊙O的弦,M为BC的中点,OM与BD交于点F,过点D作DE⊥BC,交BC的延长线于点E,且CD平分∠ACE.(1)求证:DE是⊙O的切线;(2)求证:∠CDE=∠DBE;(3)若DE=6,tan∠CDE=,求BF的长.(2020)18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.(2019)19.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,CE⊥AB于点E.(1)求证:∠BCE=∠BCD;(2)若AD=10,CE=2BE,求⊙O的半径.(2018)19.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.22.(12分)如图,P A与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sin E的值.(2017)18.(8分)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.22.(12分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.21.(10分)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.22.(10分)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD =,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.22.(11分)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.(1)如图①:求证∠AFD=∠EBC;(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)20.(10分)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.21.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.20.(8分)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.23.(12分)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.18.(7分)如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.猜想:BF=_________.22.(8分)(2012•新疆)如图,圆内接四边形ABCD,AB是⊥O的直径,OD⊥BC于E.(1)请你写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE.21.(8分)请判断下列命题是否正确?如果正确,请给出证明;如果不正确,请举出反例.(1)一组对边平行且相等的四边形是平行四边形;(2)一组对角相等,一条对角线被另一条对角线平分的四边形是平行四边形.22.(8分)如图,在Rt△ABC中,AB=3,BC=4,圆心O在AC上,⊙O与BC相切于点D,求⊙O的半径.21.(8分)圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.23.(8分)如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC 的面积.24.(6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆乌鲁木齐市2009年高中招生考试数学试卷(问卷)注意事项:1.本卷共4页,满分150分.考试时间120分钟.考试时可使用科学计算器.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试卷指定的位置上.3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚.4.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效.在草稿纸、本试卷上答题无效.5.作图可先用2B 铅笔绘出图,确定后必须用0.5毫米的黑色字迹的签字笔描黑. 6.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共7分)每题的选项中只有一项符合题目要求.1.2-的绝对值是( )A .2-B .2 2A .623x x x ÷=C .3232x x x -=x x =3.若相交两圆的半径分别为,则此两圆的圆心距可能是( ) A .1 B .2 C .3 D .44.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A .5 B .6 C .7 D .85.下列几何体中,其主视图、左视图与俯视图均相同的是( ) A .正方体 B .三棱柱 C .圆柱 D .圆锥 6.如图1,正比例函数y mx =与反比例函数ny x=(m n 、是 非零常数)的图象交于A B 、两点.若点A 的坐标为(1,2), 则点B 的坐标是( )A .(24)--,B .(21)--,C .(12)--,D .(42)--,7.要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ) A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答题卡的相应位置处.8.在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 9.如图2,在ABC △中,DE BC ∥,若123AD DE B D ===,,,则BC = .10.化简:224442x x xx x ++-=-- . 11.某公司打算至多用1200元印制广告单.已知制版费500.3元的印刷费,则该公司可印制的广告单数量x 式为 .12.瑞瑞有一个小正方体,6形、菱形、等边三角形和直角梯形这6个图形.向上一面的图形既是形的是 .13.如图3,点C D 、在以ACB ∠,若2AB CBA =∠=,三、解答题(本大题Ⅰ-Ⅰ.(本题满分12分,第14.计算:⎛ ⎝1.A D EB图316.如图4,将ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE DF =,求证四边形AECF 是平行四边形.17.某超市为“开业三周年”举行了店庆活动.对A 、B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买50件A 商品和50件B 商品仅需960元,这比不打折少花多少钱?18.如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.A FC E BD 图4图519.某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题:(1)补全频数分布表; (2)补全频数分布直方图;(3)上述学生成绩的中位数落在哪一组范围内?(4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?20.九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?D C图7图/分21.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?Ⅳ.(本题满分10分)22.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图8所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?x≥时,求储气罐中的储气量y(立方米)与时间x(小时)的函数解析式;(2)当0.5(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.)Ⅴ.(本题满分14分)23.如图9,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合). (1)试证明:无论点P 运动到何处,PC 总与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式; (3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.图9新疆乌鲁木齐市2009年高中招生考试数学试卷参考答案及评分标准一、选择题(本大题共7小题,每小题4分,共28分) 1.B 2.D 3.B 4.D 5.A 6.C 7.D 二、填空题(本大题共6小题,每小题4分,共24分)8.2x > 9.8 10.22x - 11.500.31200x +≤ 12.13 13三、解答题(本大题共10小题,共98分)Ⅰ.(本题满分12分,第14题6分,第15题6分)14.解:原式⎛=÷ ⎝······································································· 3分143==. ··················································································· 6分 15.解:方程两边同乘以2x -,得3(3)2x x --=-,即28x =,解得4x =. ··········· 4分 检验:4x =时,20x -≠,∴原方程的解是4x =. ········································································································ 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分) 16.证明:连接A C 、,设AC 与BD 交于点O .∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,, ············································· 5分 又∵BE DF =,∴OE OF =. ·························································································· 6分 ∴四边形AECF 是平行四边形. ·························································································· 7分 17.解:设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意有58463108x y x y +=⎧⎨+=⎩解之,得164x y =⎧⎨=⎩ ························································································· 8分 打折前购买50件A 商品和50件B 商品共需16504501000⨯+⨯=元. ∴打折后少花(1000960)40-=元.答:打折后少花40元. ······································································································· 10分 18.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线. ····················· 5分 (2)连接AM .∵AB 为直径,点M 在O ⊙上,∴90AMB ∠=°. ∵120AB AC BAC =∠=,°,∴30B C ∠=∠=°,∴60AOM ∠=°. 又∵在Rt AMC △中,MN AC ⊥于点N ,∴30AMN ∠=°.1sin sin 30sin 302AN AM AMN AC =∠==°°,3cos sin 30cos302MN AM AMN AC =∠==°°, ····················································· 8分 ∴()3328ANMOAN OM MN S +==梯形,260π1π3606OAM S ==扇形, ∴S =阴影. ·········································································································· 11分 Ⅲ.(本题满分34分,第19题12分,第20题10分,第21题12分) 19.解:(1)分) ······································ 6分 ··········································· 8分 ········································· 10分 ········································· 12分AD ······························ 7分13.7········································· 10色 6)4080⨯=(元);在乙公 ··············· 3分 (2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意,当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去. ················· 10分 ②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台. ····················································· 12分 Ⅳ.(本题满分10分) 22.解:(1)由图可知,星期天当日注入了1000020008000-=立方米的天然气; ··· 2分 (2)当0.5x ≥时,设储气罐中的储气量y (立方米)与时间x (小时)的函数解析式为:y kx b =+(k b ,为常数,且0k ≠),∵它的图象过点(0.510000),,(10.58000),, ∴0.51000010.58000k b k b +=⎧⎨+=⎩ 解得20010100k b =-⎧⎨=⎩故所求函数解析式为:20010100y x =-+. ····································································· 6分 (3)可以.∵给18辆车加气需1820360⨯=(立方米),储气量为100003609640-=(立方米), 于是有:964020010100x =-+,解得: 2.3x =,而从8:00到10:30相差2.5小时,显然有:2.3 2.5<, 故第18辆车在当天10:30之前可以加完气. ··································································· 10分 Ⅴ.(本题满分14分) 23.解:(1)∵点D 是OA 的中点,∴2OD =,∴OD OC =. 又∵OP 是COD ∠的角平分线,∴45POC POD ∠=∠=°, ∴POC POD △≌△,∴PC PD =. ··············································································· 3分 (2)过点B 作AOC ∠的平分线的垂线,垂足为P ,点P 即为所求. 易知点F 的坐标为(2,2),故2BF =,作PM BF ⊥, ∵PBF △是等腰直角三角形,∴112PM BF ==, ∴点P 的坐标为(3,3). ∵抛物线经过原点,∴设抛物线的解析式为2y ax bx =+.又∵抛物线经过点(33)P ,和点(20)D ,, ∴有933420a b a b +=⎧⎨+=⎩ 解得12a b =⎧⎨=-⎩∴抛物线的解析式为22y x x =-. ······················································································ 7分 (3)由等腰直角三角形的对称性知D 点关于AOC ∠的平分线的对称点即为C 点.连接EC ,它与AOC ∠的平分线的交点即为所求的P 点(因为PE PD EC +=,而两点之间线段最短),此时PED △的周长最小.∵抛物线22y x x =-的顶点E 的坐标(11)-,,C 点的坐标(02),,设CE 所在直线的解析式为y kx b =+,则有12k b b +=-⎧⎨=⎩,解得32k b =-⎧⎨=⎩.∴CE 所在直线的解析式为32y x =-+.点P 满足32y x y x =-+⎧⎨=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,故点P 的坐标为1122⎛⎫ ⎪⎝⎭,.PED △的周长即是CE DE +=(4)存在点P ,使90CPN ∠=°.其坐标是1122⎛⎫ ⎪⎝⎭,或(22),. ···································· 14分。