(已修改)2013中考数学压轴题二次函数题型精选解析

合集下载

中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析

中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析

中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得: 17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==, ∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩, ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y =-x 2+4x ,∴抛物线的对称轴为直线x =2.又C ,B 关于对称轴对称,∴C (3,3).∴BC =2,∴S △ABC =12×2×3=3. (3)存在点P .作PQ ⊥BH 于点Q ,设P (m ,-m 2+4m ).∵S △ABP =2S △ABC ,S △ABC =3,∴S △ABP =6.∵S △ABP +S △BPQ =S △ABH +S 梯形AHQP ∴6+12×(m -1)×(3+m 2-4m )=12×3×3+12×(3+m -1)(m 2-4m ) 整理得m 2-5m =0,解得m 1=0(舍),m 2=5,∴点P 的坐标为(5,-5). (4)52或5. 提示:①当以M 为直角顶点,则S △CMN =52; ②当以N 为直角顶点,S △CMN =5; ③当以C 为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ).(1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式;(2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =- (3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤- 224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.6.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.7.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a ≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.8.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.9. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式; (3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物线向下平移9233-或2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN 323∴抛物线需要向下平移的距离=233923-. ②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA 2243-7,∴A ′F =47,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c)2=c2,∴c=16473-,∴P(4,16473-),∴直线OP解析式为y=47-x,∴N(2,827-),∴抛物线需要向下平移的距离=3﹣827 -=127+.综上所述:抛物线向下平移9233-或127+距离,其顶点落在OP上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.10.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12-,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t ,∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8. ∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .11.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4541+541-. 【解析】【分析】 ①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45)BP t ︒=-,于是21122)22)2222PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即22NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得15412m =,25412m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得15412m =(舍去),25412m =. 【详解】解:①∵点B 、C 在直线为y x n =+上,∴B (﹣n ,0)、C (0,n ),∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h为sin 45(4)2BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, 5m >,∴m =, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得1541m +=,2541m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴541m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5412+或5412-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.12.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 2 6abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.13.如图,顶点M 在y 轴上的抛物线与直线y=x+1相交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为2,连结AM 、BM . (1)求抛物线的函数关系式; (2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x 2﹣1;(2)△ABM 为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点. 【解析】试题分析:(1)分别写出A 、B 的坐标,利用待定系数法求出抛物线的解析式即可; 根据OA =OM =1,AC =BC =3,分别得到∠MAC =45°,∠BAC =45°,得到∠BAM =90°,进而得到△ABM 是直角三角形;(3)根据抛物线的平以后的顶点设其解析式为,∵抛物线的不动点是抛物线与直线的交点,∴,方程总有实数根,则≥0,得到m的取值范围即可试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)∵点B在直线上,且横坐标为2,∴B点为(2,3)∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:∴,解得:∴抛物线的解析式为.(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,∵∠AOM=90°∴∠MAC=45°;∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.(3)将抛物线的顶点平移至点(,),则其解析式为.∵抛物线的不动点是抛物线与直线的交点,∴化简得:∴==当时,方程总有实数根,即平移后的抛物线总有不动点∴.考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)14.如图,在平面直角坐标系中,已知抛物线y=12x2+32x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=122x--;(2)DE=3225;(3)存在点P(139,9881),使∠BAP=∠BCO﹣∠BAG,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【详解】(1)∵抛物线y=12x2+32x-2,∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,∵抛物线y=12x2+32x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,402k bb-+⎧⎨-⎩==,得122kb⎧-⎪⎨⎪-⎩==,即直线l的函数解析式为y=−12x−2;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°, ∴AC=25, ∴OD=45525=, ∵OD ⊥AC ,OA ⊥OC ,∠OAD=∠CAO , ∴△AOD ∽△ACO , ∴AD AOAO AC=, 即425AD =,得AD=85, ∵EF ⊥x 轴,∠ADC=90°, ∴EF ∥OC , ∴△ADF ∽△ACO , ∴AF DF AD AO OC AC==, 解得,AF=165,DF=85, ∴OF=4-165=45, ∴m=-45, 当m=-45时,y=12×(−45)2+32×(-45)-2=-7225,∴EF=7225, ∴DE=EF-FD=7225−85=3225; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,∵点A (-4,0),点B (1,0),点C (0,-2),∴OA=4,OB=1,OC=2,∴tan ∠OAC=2142OC OA ==,tan ∠OCB=12OB OC =,, ∴∠OAC=∠OCB ,∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG , ∴∠BAP=∠GAM ,∵点G (0,-1),OA=4, ∴OG=1,GC=1, ∴,••22AC GM CG OA =,即1422GM ⨯=, 解得,, ∴=,∴tan ∠GAM=29GM AM =, ∴tan ∠PAN=29, 设点P 的坐标为(n ,12n 2+32n-2), ∴AN=4+n ,PN=12n 2+32n-2, ∴2132222 49n n n +-+=, 解得,n 1=139,n 2=-4(舍去),当n=139时,12n 2+32n-2=9881,∴点P 的坐标为(139,9881),即存在点P (139,9881),使∠BAP=∠BCO-∠BAG .【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.15.已知抛物线27y x3x4=--的顶点为点D,并与x轴相交于A、B两点(点A在点B 的左侧),与y轴相交于点C.(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(34-,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.①点G是否在直线l上,请说明理由;②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1) D(32,﹣4)(2) P(0,74)或(0,17)(3)详见解析【解析】【分析】(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根据顶点坐标公式计算即可求出顶点D的坐标.(2)根据点A、C的坐标求出OA、OC的长,再分OA和OA是对应边,OA和OC是对应边两种情况,利用相似三角形对应边成比例列式求出OP的长,从而得解.(3)①设直线l的解析式为y=kx+b(k≠0),利用待定系数法求一次函数解析式求出直线l的解析式,再利用中点公式求出点G的坐标,然后根据直线上点的坐标特征验证即可.②设抛物线的对称轴与x轴交点为H,求出OE、OF、HD、HB的长,然后求出△OEF和△HDB相似,根据相似三角形对应角相等求出∠OFE=∠HBD,然后求出EG⊥BD,从而得到直线l是线段BD的垂直平分线,根据线段垂直平分线的性质点D关于直线l的对称点就是。

二次函数的综合题及应用(2013-2014中考数学复习专题)

二次函数的综合题及应用(2013-2014中考数学复习专题)

二次函数的综合题及应用【重点考点例析】考点一:确定二次函数关系式例1 (2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.思路分析:(1)利用待定系数法把A(1,0),C(0,-3)代入)二次函数y=x2+bx+c中,即可算出b、c 的值,进而得到函数解析式是y=x2+2x-3;(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP的面积为10可以计算出n 的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.点评:此题主要考查了待定系数法求二次函数解析式,以及求点的坐标,关键是掌握凡是函数图象经过的点必能满足解析式.对应训练1.(2013•湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.考点二:二次函数与x轴的交点问题例2 (2013•苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3思路分析:关于x的一元二次方程x2-3x+m=0的两实数根就是二次函数y=x2-3x+m(m为常数)的图象与x 轴的两个交点的横坐标.点评:本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2-3x+m=0的两实数根.对应训练2.(2013•株洲)二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.-8 B.8C.±8 D.6考点四:二次函数综合性题目例4 (2013•自贡)如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA= 12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.思路分析:(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式;(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值;(3)本题利用切线的性质、相似三角形与勾股定理求解.如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.点评:本题是中考压轴题,综合考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形、勾股定理、圆的切线性质、解直角三角形、图形面积计算等重要知识点,涉及考点众多,有一定的难度.第(2)问面积最大值的问题,利用二次函数的最值解决;第(3)问为存在型问题,首先假设对应训练4.(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D 在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.对应练习1.(2013•淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(2,2)B.(2,2)C.(2,2)D.(2,2)2.(2013)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).4.(2013)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.5.(2013)为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场,在Rt△ABC内修建矩形水池DEFG,使定点D,E在斜边AB上,F,G分别在直角边BC,AC上;又分别以AB,BC,AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设瓷砖,其中AB=243米,∠BAC=60°,设EF=x米,DE=y米.(1)求y与x之间的函数解析式;(2)当x为何值时,矩形DEFG的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积及等于两弯新月面积的136.(2013)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(-23,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M 作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.7.(2013•泰安)如图,抛物线y=12x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.8.(2013)如图,在平面直角坐标系中,直线y=12x+32与直线y=x交于点A,点B在直线y=12x+32上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.9.(2013)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,3)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.2(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k的值;(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.【备考真题过关】一、选择题1.(2013•大庆)已知函数y=x2+2x-3,当x=m时,y<0,则m的值可能是()A.-4 B.0 C.2 D.32.(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<03.(2013•湖州)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为32,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是()A.16 B.15 C.14 D.13二、填空题4.(2013•宿迁)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.5.(2013•贵港)如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=-n始终保持相切,则n= (用含a的代数式表示).6.(2013•锦州)二次函数y=23x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n-1B n A n C n都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠A n-1B n A n=60°,菱形A n-1B n A n C n的周长为.三、解答题7.(2013•鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?8.(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量9.(2013•达州)今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.(1)小华的问题解答:;(2)小明的问题解答:.10.(2013•黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=1590(02) 5130(26)x xx x+<≤⎧⎨-+<<⎩,若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为y2=100(02)5110(26)tt t<≤⎧⎨-+<<⎩。

一道2013年中考二次函数压轴题的解法展示

一道2013年中考二次函数压轴题的解法展示
5 2 l l 2 i 黼s H u x u E T I A o Y u

道2 0 1 3年中考二次函数压轴题的解法展示
一福建省莆田市城厢区南门学校 郑铁洪
( 3 ) 探究: ① 当k = 0时 , 直线 y = k x与 轴 重合 , 求 出此时 + 的值 ; +

②试说 明无论 取何值 ,
的值 都 等 于 同一 个 常 数 .
二、 试 题 赏 析
综合题难度大 、 综合性强 、 内涵丰富 、 涉及
的知 识 面 广 , 要 解 决 好 此 类 题 目需 要 有 扎 实 的基 础 知 识 , 较 强 的分 析 、 演算、 理 解 能 力 ,因 此 它 主 要 以压 轴 题 的形 式 出 现 . 例



A O=AM :
内涵丰富 , 在代 数 与几何 的核 2 0 1 3年 广 西 南 宁 市 中考 第 2 6题 进 行 解 条件 简洁 、
法 赏析 并 得 到 一 些 结 论 .
( 3) 解: ① 当k = 0时 , 直线 y = k x与
轴重合 , 点 A、 B在 轴 上 , 则 AM= B N = O 一
交 于 踊 联 立 i : _ l 1
消 掉 Y得 , 一 4 k x 一 4 = 0 ,由 根 与 系 数
的关系得 , l + 2 = 4 k , 1 ・ X 2 = - 4 .
等主要数学思想方法的考查.此类题 目技
问主 要 是 应 用解 析 法 求 解 , 即利 用代 数 的
法 一如 图 , 十 丁l _+


4 ( , + ; ' + 8 )

的计 算概括 归纳得 到第 - j J  ̄ 题 的答案 并

2013中考压轴题解析

2013中考压轴题解析

2013中考压轴题解析解析:二次函数压轴题必有求解析式的一问,而且第二问大部分都是各种存在性的问题,如果出现了第三问,那么很可能就是拓展内容,当然也可能不是3个小题,但是只要没有拓展类的问题,就不能算是难题了。

(1)抛物线解析式中有两个参数b、c,但是只给了一个坐标点D,所以我们还需要一个点才能解出两个参数,刚好直线CD的解析式给出了,那么可得到点C的坐标(0,2),那么可直接获取c=2,将点D坐标代入抛物线解析式-9+3b+2=7/2b=7/2所以解析式y=-x²+7/2x+2(2)O、C、P、F围成平行四边形,那么已知OC//PF,那么只要令OC=PF即可,根据第一问可知OC=2,所以PF=2,而我们则需要表示出PF的长度,P的坐标可知(m,-m²+7/2m+2),而F的坐标则需要借助CD所在的直线,直线CD:y=1/2x+2则可知F(m,1/2m+2)那么PF的长度怎么表示呢?是P在F上面,还是F在P上面呢?(这一点必须考虑到)题中只说了P是y轴右侧的,所以势必会存在两种情况,因此我们用坐标表示的时候加个绝对值,即PF=|-m²+3m|=2这样得到两个方程m²-3m+2=0和m²-3m-2=0;第二个方程解出的m有一个负值,舍去;那么最终可得到3个m的值;(3)第三小题这种直线夹角问题,初中阶段势必要借助相似,而这一题又是让直接写出结果,所以过程不用说,一定不会少;直接借助题上的图形,假设P就在这个位置上(P在CD上方,当然还可能出现在CD下方);那么∠PCD=45°,有45°角,根据我们平时学的知识,唯有等腰直角三角形最适合,所以我们过P向CD做垂线,来构造等腰直角;如图,可知PG=CG,但是没啥用,因为条件太少,所以仍然不知道如何去解决P的位置,那么观察图形,我们做了PG⊥CD,同时构造了一个Rt△PFG,而这里还出现了个对顶角,∠PFG=∠CFE,如果过C向PE做垂线,垂线长度不仅=m,构造的三角形还能与△PFG相似,如图,利用对应角相等可得△CHF∽△PGF那么CH:PG=FH:FG其中CH=m,FH=m/2,FG=CG-CF=PG-CF而CF在Rt△CHF中,可知CF=m√5/2所以全部代入比例式中,可解出PG长度,而根据相似,或者勾股定理在△PGF中可得PF长度,那么PE=PF+FH+EH,即P的纵坐标可得,将P的横纵坐标代入抛物线解析式可解出m;第二种情况,P在CD下方的时候,如图,根据45°角可知绿色的CP线和第一种情况红色的CP关于CD对称,所以我们可以利用对称性找出绿色CP线的解析式,而不用非得再来一次相似,延长红色PG交绿色CP于K,如图,可知上方的P和绿色的K关于G对称,根据刚才的P的坐标,可以解出G的坐标(在△PGF中,过G向PF做垂线,得到G到x轴和y轴距离可得G坐标)利用中点坐标公式可求出K的坐标结合C和K的坐标获取直线CK的解析式联合抛物线解析式可得绿色P的坐标;(由于分号太多了,所以不提供计算过程)。

2013年中考数学二次函数压轴题(详细答案)

2013年中考数学二次函数压轴题(详细答案)

26. (2010彬州市)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.26. (1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)…………………..2分(2)当b =0时,直线为y x =,由24y x y x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩ 所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S =⨯⨯= ,14242ACE S =⨯⨯=所以ABE ACE S S = (利用同底等高说明面积相等亦可) …………………..4分 当4b >-时,仍有ABE ACE S S = 成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得1144x b y b b ⎧=+⎪⎨=++⎪⎩,2244x b y b b⎧=-+⎪⎨=-++⎪⎩ 所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ), 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则4BF CG b ==+,y xCBAOE y xCBAOE 第26题图(1) 图(2)GFyBCQO R而ABE 和ACE 是同底的两个三角形,所以ABE ACE S S = . …………………..6分 (3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒ 所以BEF CEG ≅所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC 为直角三角形 …………………..8分 因为44GE b b b b GC =++-=+= 所以 24CE b =⋅+,而OE b = 所以24b b ⋅+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形. ………………….10分 25.(常德)如图9,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点. (1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当CEF 的面积是BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.25.解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.ABOC 图9yx故所求二次函数的解析式为213222y x x =+-. ………………3分 (2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =………………4分∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,∴△BEF ~△BAC ,………………5分 ∴1,3BE BF BA BC ==得5,3BE = ………………6分 故E 点的坐标为(23-,0).………………7分(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.………………8分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有: 2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)………10分 解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC的面积取大值时即可.………………8分设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+- 梯形 =111()222AD PD PD OC OD OA OC ⋅++⋅-⋅ =()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+--- ⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)25.(长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.25.解:(1)∵一次函数过原点∴设一次函数的解析式为y =kx∵一次函数过(1,-b ) ∴y =-bx ……………………………3分 (2)∵y =ax 2+bx -2过(1,0)即a +b =2 …………………………4分 由2(2)2y bxy b x bx =-⎧⎨=-+-⎩得 ……………………………………5分22(2)20ax a x +--=① ∵△=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根∴方程组有两组不同的解∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x 1、x 2分别是方程①的解 ∴122(2)24a a x x a a--+== 122x x a -= ∴2121212()4x x x x x x -=+-=22248164(1)3a a a a-+=-+ 或由求根公式得出 ………………………………………………………8分∵a >b >0,a +b =2 ∴2>a >1令函数24(1)3y a=-+ ∵在1<a <2时y 随a 增大而减小.∴244(1)312a<-+< ……………………………………………9分∴242(1)323a<-+< ∴12223x x <-< ………………10分26.(长春)如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S . (1)求OA 所在直线的解析式. (2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.25.(滨州市)(本题满分l0分)如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线c bx ax y ++=2恰好经过x 轴上A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)求过A 、B 、C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?25.(本题满分l0分)解:①由抛物线的对称性可知AM=BM 在Rt △AOD 和Rt △BMC 中, ∵OD=MC ,AD=BC , ∴△AOD ≌△BMC .∴OA=MB=MA .………………………………………l 分 设菱形的边长为2m , 在Rt △AOD 中,OOA ABB CCP DEQP DN MR Eyyxx 图①图②222)2()3(m m =+解得m=1.∴DC=2,OA=1,OB=3.∴A 、B 、C 三点的坐标分别为(1,0)、(3,0)、(2,3)………………… 4分 ②设抛物线的解析式为y=a (x —2)2+3 代入A 点坐标可得a =—3抛物线的解析式为y=—3(x —2)2+3……………………………………7分 ③设抛物线的解析式为y =—3(x 一2)2+k 代入D (0,3)可得k=53所以平移后的抛物线的解析式为y =—3(x 一2)2+53…………………………9分 平移了53一3=43个单位.…………………………………………………l0 26. (本溪市)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,53OA OC ==,.(1)在AB 边上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求点D ,E 的坐标;(2)若过点D E ,的抛物线与x 轴相交于点(50)F -,,求抛物线的解析式和对称轴方程; (3)若(2)中的抛物线与y 轴交于点H ,在抛物线上是否存在点P ,使PFH △的内心在坐标轴...上?若存在,求出点P 的坐标,若不存在,请说明理由. (4)若(2)中的抛物线与y 轴相交于点H ,点Q 在线段OD 上移动,作直线HQ ,当点Q 移动到什么位置时,O D ,两点到直线HQ 的距离之和最大?请直接写出此时点Q 的坐标及直线HQ 的解析式.BCEy3(第26题)28.(甘肃)(12分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.28.本小题满分12分解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分 把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分 理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分 在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分 ∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD ,求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).。

中考数学压轴题专题二次函数的经典综合题及答案解析

中考数学压轴题专题二次函数的经典综合题及答案解析
(3)设 P1,t ,又 B3,0 , C 0,3 ,
∴ BC2 18 , PB2 1 32 t2 4 t2 , PC2 12 t 32 t2 6t 10 ,
①若点 B 为直角顶点,则 BC2 PB2 PC2 ,即:18 4 t2 t2 6t 10 解得: t 2 , ②若点 C 为直角顶点,则 BC2 PC2 PB2 ,即:18 t2 6t 10 4 t2 解得: t 4, ③若点 P 为直角顶点,则 PB2 PC2 BC2 ,即: 4 t2 t2 6t 10 18 解得:
坐标.
【答案】(1)抛物线的解析式为 y x2 2x 3 ,直线的解析式为 y x 3 .(2)
M (1, 2) ;(3) P 的坐标为 (1, 2) 或 (1, 4) 或 (1, 3 17 ) 或 (1, 3 17 ) .
2
2
【解析】
分析:(1)先把点 A,C 的坐标分别代入抛物线解析式得到 a 和 b,c 的关系式,再根据
【答案】(1)(2,4);(2)( , );(3) ;(4)( , ). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点 P 的坐标; (2)联立两解析式,可求出交点 A 的坐标; (3)作 PQ⊥x 轴于点 Q,AB⊥x 轴于点 B.根据 S△ POA=S△ POQ+S△ 梯形 PQBA﹣S△ BOA,代入数值 计算即可求解; (4)过 P 作 OA 的平行线,交抛物线于点 M,连结 OM、AM,由于两平行线之间的距离 相等,根据同底等高的两个三角形面积相等,可得△ MOA 的面积等于△ POA 的面积.设直
线段 FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.

二次函数中考压轴题(三角形与存在性问题)解析精选

二次函数中考压轴题(三角形与存在性问题)解析精选

二次函数中考压轴题(三角形与存在性问题)解析精选【例1】. 已知:如图一,抛物线c bx ax y 2++=与x 轴正半轴交于A 、B 两点,与y 轴交于点C ,直线2x y -=经过A 、C 两点,且AB=2. (1)求抛物线的解析式;(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线 段BC 于点E 、D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P 运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒 ;设OPED OPED s ⋅+=,当t 为何值时,s 有最小值,并求出最小值。

(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与△ABC 相似;若存在,求t 的值;若不存在,请说明理由。

【答案】解:(1)在y x 2=-中,由x=0得y=-2,∴C (0,-2)。

由 y=0得 x=2,∴A (2,0)。

∵AB=2,∴B (4,0)。

∴可设抛物线的解析式为()()y a x 2x 4=--,代入点C (0,-2)得1a 4=-。

∴抛物线的解析式为()()2113y x 2x 4x x 2442=---=-+-。

(2)由题意:CE=t ,PB=2t ,OP=4-2t 。

∵ED ∥BA ,∴△CED ∽△COB 。

∴ED CE OB CO =,即ED t42=。

∴ED=2t 。

∴()()()222t+42t ED OP 41s ===ED OP 2t 42t 4t +8t t 1+1-+=⋅⋅----。

∴当t=1时,()2t 1+1--有最大值1。

∴当t=1时,ED OPs ED OP+=⋅的值最小,最小值是1。

(3)存在。

设BC 所在直线的解析式为y=kx+b ,由B (4,0),C (0,-2)得4k+b=0b=2⎧⎨-⎩,解得1k=2b=2⎧⎪⎨⎪-⎩,∴C 所在直线的解析式为1y=x 22-。

2013年全国中考数学试题分类解析汇编专题21二次函数的图象和性质

2013年全国中考数学试题分类解析汇编专题21二次函数的图象和性质

2013年全国中考数学试题分类解析汇编专题21:二次函数的图象和性质一、选择题1。

(2012重庆市4分)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。

下列结论中,正确的是【 】A .0abc >B .0a b +=C .20b c >+D .42a c b +<【答案】D.【考点】二次函数图象与系数的关系.【分析】A 、∵二次函数的图象开口向上,∴a >0.∵二次函数的图象与y 轴交于负半轴,∴c <0。

∵二次函数的图象对称轴在y 轴左侧,∴﹣2b a<0。

∴b >0。

∴0abc <。

故本选项错误。

B 、∵二次函数的图象对称轴:122b x a =-=-,∴a b =,0a b >+。

故本选项错误。

C 、从图象可知,当0x =时,20y a b c b c <=++=+。

故本选项错误。

D 、∵二次函数的图象对称轴为12x =-,与x 轴的一个交点的取值范围为x 1>1, ∴二次函数的图象与x 轴的另一个交点的取值范围为x 2<﹣2.∴当2x =-时,420y a b c <=-+,即42a c <b +.故本选项正确。

故选D 。

2. (2012浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1【答案】A 。

【考点】二次函数图象上点的坐标特征。

【分析】根据x 1、x 2、x 3与对称轴的大小关系,判断y 1、y 2、y 3的大小关系: ∵二次函数2115y x 7x 22=--+,∴此函数的对称轴为:b 7x===712a 22----⎛⎫⨯- ⎪⎝⎭。

∵7-<0<x 1<x 2<x 3,三点都在对称轴右侧,a <0,∴对称轴右侧y 随x 的增大而减小。

2013年中考数学压轴题真题分类汇编二次函数

2013年中考数学压轴题真题分类汇编二次函数

2013年中考数学压轴题真题分类汇编:二次函数四、二次函数1.(北京)已知二次函数y =(t +1)x 2+2( t +2)x +32在x =0和x =2时的函数值相等. (1)求二次函数的解析式;(2)若一次函数y =kx +6的图象与二次函数的图象都经过点A (-3,m ),求m 和k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象在点B ,C 间的部分(含点B 和点C )向左平移n (n >0)个单位后得到的图象记为G ,同时将(2)中得到的直线y =kx +6向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围.2.(北京模拟)已知抛物线y =-x2+(m -2)x +3(m +1). (1)求证:无论m 为任何实数,抛物线与x 轴总有交点;(2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,求m 的取值范围;(3)在(2)的条件下,P 是抛物线的顶点,当△P AO 的面积与△ABC 的面积相等时,求该抛物线的解析式.3.(上海模拟)如图,在平面直角坐标系xO y 中,二次函数y =-13x 2+bx +c 的图象经过点A (-1,1)和点B (2,2),该函数图象的对称轴与直线OA 、OB 分别交于点C 和点D . (1)求这个二次函数的解析式和它的对称轴; (2)求证:∠ABO =∠CBO ;(3)如果点P 在直线AB 上,且△POB 与△BCD 相似,求点P4.(安徽)如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h =2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围); (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h 的取值范围.5.(安徽某校自主招生)已知二次函数y =x2-2mx +1.记当x =c 时,相应的函数值为y c ,那么,是否存在实数m ,使得对于满足0≤x≤1的任意实数a 、b ,总有y a +y b≥1.如果存在,求出实数m 的取值范围;如果不存在,请说明理由.6.(浙江模拟)已知二次函数y =x2+ax +a -2.(1)证明:不论a 取何值,抛物线y =x2+ax +a -2的顶点P 总在x 轴的下方;(2)设抛物线y =x2+ax +a -2与y 轴交于点C ,如果过点C 且平行于x 轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D ,问:△QCD 能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)的条件下,设抛物线与x 轴的交点之一为点A ,则能使△ACD 的面积等于14的抛物线有几条?请证明你的结论.7.(江苏镇江)对于二次函数y =x2-3x +2和一次函数y =-2x +4,把y =t (x2-3x +2)+( 1-t )( -2x +4)称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E . 现有点A (2,0)和抛物线E 上的点B (-1,n ),请完成下列任务: 【尝试】(1)当t =2时,抛物线y =t (x2-3x +2)+( 1-t )( -2x +4)的顶点坐标为____________; (2)判断点A 是否在抛物线E 上; (3)求n 的值;【发现】通过(2)和(3)的演算可知,对于t 取任何不为零的实数,抛物线E 总过定点,坐标为____________.【应用1】二次函数y =-3x2+5x +2是二次函数y =x2-3x +2和一次函数y =-2x +4的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由;【应用2】以AB 为边作矩形ABCD ,使得其中一个顶点落在y 轴上,若抛物线E 经过A 、B 、C 、D 其中的三点,求出所有符合条件的t 的值.8.(江苏模拟)如图,建立平面直角坐标系xO y ,1千米.某炮位于坐标原点,把发射后的炮弹看成点,其飞行的高度y y =kx -120(1+k2)x2(k >0),其中k 与发射方向有关,炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.9.(江苏模拟)已知一次函数y =kx +b 与二次函数y =2ax2+2mx +c (m 为整数)的图象交于A (2-22,3-22)、B (2+22,3+22)两点,二次函数y =2ax2+2mx +c 和y =ax2+mx +c -1的最小值的差为l .(1)若一次函数y =kx +b 与二次函数y =ax2+mx +c -1的图象交于C 、D 两点,求|CD |值.(2)问是否存在点P ,从点P 作一射线分别交两个二次函数的图象于M ,N ,使得PMPN为常数?若存在,求出点P 的坐标和该常数;若不存在,请说明理由. 10.(四川某校自主招生)一开口向上抛物线与x 轴交于A (m -2,0)、B (m +2,0)两点,顶点为C ,AC 且⊥BC . (1)若m 为常数,求抛物线解析式;(2)点Q 在直线y =kx +1上移动,O 为原点,当m =4时,直线上只存在一个点Q 使得∠OQB =90°,求此时直线解析式.11.(湖南娄底)已知二次函数y =x2-(m2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1 x 2=1 2. (1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.12.(湖北荆州、荆门)已知:y 关于x 的函数y =(k -1)x2-2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2.①求k 的值;②当k ≤x≤k +2时,请结合函数图象确定y 的最大值与最大值. 13.(湖北随州)在-次数学活动课上,老师出了-道题:(1)解方程x2-2x -3=0.巡视后,老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法). 接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于x 的方程mx2+(m -3)x -3=0(m 为常数,且m ≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:(3)已知关于x 的函数y =mx2+(m -3)x -3(m 为常数).①求证:不论m 为何值,此函数的图象恒过x 轴、y 轴上的两个定点(设x 轴上的定点为A ,y 轴上的定点为C );②若m ≠0时,设此函数的图象与x 轴的另一个交点为B ,当△ABC 为锐角三角形时,求m 的取值范围;当△ABC 为钝角三角形时,观察图象,直接写出m 的取值范围.请你也用自己熟悉的方法解上述三道题..14.(广东肇庆)已知二次函数y =mx2+nx +p 图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1<0<x 2,与y 轴交于点C ,O 为坐标原点,tan ∠CAO -tan ∠CBO =1. (1)求证:n +4m =0; (2)求m 、n 的值;(3)当p >0且二次函数图象与直线y =x +3仅有一个交点时,求二次函数的最大值. 15.(福建模拟)在平面直角坐标系中,已知函数y 1=2x 和函数y 2=-x +6,不论x 取何值,y 0都取y 1与y 2二者之中的较小值. (1)求y 0关于x 的函数关系式;(2)现有二次函数y =x2-8x +c ,若函数y 0和y 都随着x 的增大而减小,求自变量x 的取值范围; (3)在(2)的结论下,若函数y 0和y 的图象有且只有一个公共点,求c 的取值范围.Ox y。

中考必考题之二次函数压轴题(解析版)

中考必考题之二次函数压轴题(解析版)

中考必考题--------二次函数压轴题分析考点概况:二次函数,中考必考题型之一,通常设置3问,第一问主要考察二次函数的解析式三种表达形式的特点,通常以顶点式和坐标式为切入点,基础较薄弱的考生可以先从解析式入手,求解二次函数的解析式几乎是第一问的必考题,也是本题的送分题,需要拿到。

基础较好的考生务必要细心,第一问避免粗心出错,否则全题出错。

第二问通常会将二次函数与相似、勾股定理、三角函数、一次函数等知识点进行综合,该题的解题思路肯定是转换到几何角度思考,多想想几何的性质,平时注意该题型的解答方法的总结。

第三问,通常难度较大,解答该问需要自己先画出符合题意的草图,然后利用第二问的结论往下思考。

1. (2019·江阴澄要片一模)抛物线222m mx x y --=(m >0)与x 轴相交于A 、B 两点(A 在B 的左侧),M 是抛物线第四象限上一动点,C 是OM 上一点,且OC =2CM ,连接BC 并延长交AM 于点D 。

(1)求MAMD; (2)若M 、A 到y 轴的距离之比为3∶2,S △MCD =125,求抛物线的解析式。

【答案】(1)41(2)y =x 2-2x -8 【解析】(1)由抛物线222m mx x y --=,可十字相乘化简得y =(x -2m )(x +m ) ∴A (-m ,0);B (2m ,0) 如图所示作图,过点M 作x 轴平行线交BC 的延长线于点H易得:△BOC ∽△HMC12==CM OC HM OB ∴HM =m △ABD ∽△MHD133===m m HM AB DM AD ∴41=MA MD (2)连接OD ,∵OC ∶CM =2∶1 ∴S △OCD =2S △MCD ∴S △MOD =3S △MCDxyOABCD HM∵AD ∶DM =3∶1 ∴S △AOD =3S △MOD ∴S △MOA =9S △MOD ∴S △MOA =12S △MCD =12×125=5 ∵M 、A 到y 轴的距离之比为3∶2; ∴M (23m ,2415m -),S △MOA =385m ∴m =2822--=x x y思路点拨:本题是二次函数与相似相结合,难点是需要添加辅助线2. (2019·江阴一中一模)在平面直角坐标系xOy 中,抛物线3442+++=a ax ax y (a <0)的顶点为A ,它的对称轴与x 轴交点为B 。

中考数学—二次函数的综合压轴题专题复习及答案解析

中考数学—二次函数的综合压轴题专题复习及答案解析

中考数学—二次函数的综合压轴题专题复习及答案解析一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

二次函数压轴题题型总结(有答案)

二次函数压轴题题型总结(有答案)

二次函数压轴题解题思路一、基本知识1会求解析式以及一些关键点的坐标(如函数图像与坐标轴的交点、两函数图像的交点等)。

2.会利用函数性质和图像3.相关知识:如一次函数、反比例函数、点的坐标、方程。

图形中的三角形、四边形、圆及平行线、垂直。

一些方法:如相似、三角函数、解方程。

一些转换:如轴对称、平移、旋转。

二、典型例题:(一)、求解析式可参考一下部分试题的第一问。

(二)、二次函数的相关应用第一类:面积问题例题. (2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.)(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;练习:1. (2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.第二类:.构造问题(1)构造线段(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.(2)构造相似三角形(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.(3)构造平行四边形(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D 两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.造等腰三角形(2013•泰安)如图,抛物线y=12x2+bx+c与y轴交于点C(0,-4),(4)构与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(5)构造直角三角形(2014•四川内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.(6)构造角相等(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.(7)构造菱形(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.(8)构造对称点(11莱芜)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.AOByx(9)构造平行线:(2014•山东烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,△ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED△AC的理由.(10)构造垂直:(2014宜宾市)如图,已知抛物线y= x2+bx+c的顶点坐标为M(0,–1),与x轴交于A、B两点. (1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连结MC、MD,试判断MC、MD是否垂直,并说明理由.(11)构造圆(2014年淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使△APB=30°的点P有个;(2)若点P在y轴上,且△APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,△APB是否有最大值?若有,求点P的坐标,并说明此时△APB最大的理由;若没有,也请说明理由.参考答案:(一)、求解析式(二)、二次函数的相关应用第一类:面积问题(2012•莱芜)解:(1)y=(x﹣2)2﹣1=x2﹣4x+3.yxOMDCBA第24题图(2)S△ACD=AD•CD=××2=2.(3)(2+,1﹣)、(2﹣,1+)、(1,2)或(4,﹣1).(2014兰州)解(1)y=﹣x2+x+2;(2)y=﹣(x﹣)2+,P1(,4),P2(,),P3(,﹣);(3)S四边形CDBF=S△BCD+S△CEF+S△BEF=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1)9.第二类:.构造问题(1)构造线段(2014枣庄)(1)△OBC为等腰直角三角形∠OBC=45°.(2)P(2,﹣3).(3)线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),当x P=时,线段PF长度最大为.(2)构造相似三角形(2013•莱芜)(1)y=.(2)DF的最大值为.此时D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3NM,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MN上,∴只能PN=3NM,P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,此时点P的坐标为(2,﹣).若PN=3NA,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).(3)构造平行四边形(2014•莱芜)解:(1)y=﹣x2+x.(2)存在.或或.(3)△S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+当t=1时,S有最大值为.△S的最大值为.(4)构造等腰三角形PBE ABCS S=PBE S 12==-13x 2-232(5)构造直角三角形(2014•四川内江) (1)y=﹣x 2+x+4.(2)当t=1时,PQ 取到最大值,最大值为. (3)①当∠BAM=90°时,MH=11.M (,﹣11). ②当∠ABM=90°时,M (,9).综上所述:符合要求的点M 的坐标为(,9)和(,﹣11).(6)构造角相等(2014•娄底)解(1)依题意:x 1+x 2=﹣m ,x 1x 2=m ﹣1,∵x 1+x 2+x 1x 2=7,∴(x 1+x 2)2﹣x 1x 2=7,∴(﹣m )2﹣(m ﹣1)=7,即m 2﹣m ﹣6=0,解得m 1=﹣2,m 2=3,∵c=m ﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x 2﹣2x ﹣3; (2)能如图,设p是抛物线上的一点,连接PO ,PC ,过点P 作y 轴的垂线,垂足为D .若∠POC=∠PCO 则PD 应是线段OC 的垂直平分线∵C 的坐标为(0,﹣3)∴D 的坐标为(0,﹣)∴P 的纵坐标应是﹣令x 2﹣2x ﹣3=,解得,x 1=,x 2=因此所求点P 的坐标是(,﹣),(,﹣)(7)构造菱形(2013•枣庄) 解:(1).(2)此时P 点的坐标为(,). (3) S 四边形ABPC =++==.易知,当x=时,四边形ABPC 的面积最大.此时P 点坐标为(,),四边形ABPC 的最大面积为.(8)构造对称点(11莱芜)(1)212y x x =-+。

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形的存在性问题)解析精选

二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。

∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。

当x=0时,y=3。

∴C 点的坐标为(0,3)。

设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。

∴直线AC 的解析式为y=3x+3。

∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。

(2)抛物线上有三个这样的点Q 。

如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。

综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。

(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。

过点B′作B′E ⊥x 轴于点E 。

中考数学压轴题专题二次函数的经典综合题及答案解析

中考数学压轴题专题二次函数的经典综合题及答案解析

b 2a
a b c
1 0
,解得:
a b
1 2

c3
c 3
∴ 抛物线的解析式为 y x2 2x 3 .
∵ 对称轴为 x 1,且抛物线经过 A1, 0,
∴ 把 B3,0 、 C 0,3 分别代入直线 y mx n ,

3m n
n3
0
,解之得:
m 1 n 3

∴ 直线 y mx n 的解析式为 y x 3 .
A、B、C 三点的坐标即可用待定系数法求出抛物线的解析式.
【详解】
(1)∵ 抛物线的对称轴为直线 x=1,
∴ − b = b =1 2a 21
∴ b=-2
∵ 抛物线与 y 轴交于点 C(0,-3), ∴ c=-3, ∴ 抛物线的函数表达式为 y=x2-2x-3; (2)∵ 抛物线与 x 轴交于 A、B 两点, 当 y=0 时,x2-2x-3=0. ∴ x1=-1,x2=3. ∵ A 点在 B 点左侧, ∴ A(-1,0),B(3,0) 设过点 B(3,0)、C(0,-3)的直线的函数表达式为 y=kx+m,
y=x+3 得 y 的值,即可求出点 M 坐标;
(3)设 P(-1,t),又因为 B(-3,0),C(0,3),所以可得 BC2=18,PB2=(-1+3)
2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意 t 值即可求
出点 P 的坐标.
详解:(1)依题意得:
∴ P(− 1 ,− 7 ) 24
∴ F(0,− 7 ), 4
∴ FC=3-OF=3- 7 = 5 44

(word完整版)二次函数中考压轴题题型汇总讲义

(word完整版)二次函数中考压轴题题型汇总讲义

二次函数压轴题命题规律总结:二次函数压轴题是近10年必考题型,考查题位均在第23题,分值均为11分:其中7次是二次函数与一次函数、几何图形的综合题,3次是二次函数单独与几何图形的综合题,且涉及的图形多为三角形和特殊四边形,未涉及到圆;考查类型有:线段问题、面积问题,等腰三角形问题,直角三角形问题,平行四边形问题,三角形相似问题和角度问题,除2017、2012、2011和2009年是两问,且第二问里有两小问,其他年份均为3问;第一小问多以待定系数法求二次函数解析式;线段问题包括线段的数量关系,线段长的关系式及最值和周长的关系式及最值;面积问题包括三角形面积的关系式及最值;此类题题目多涉及数形结合和分类讨论思想。

类型一 线 段 问 题●典例精析◇例题1◇.如图,抛物线y=21x 2-bx +c 与直线l :y=43x -1交与A (4, 2)、B (0,-1)。

(1)求抛物线的解析式;(2)点D 为直线l 下方的抛物线上的动点,过点D 作DE ∥y 轴交l于点E,作DF⊥l于点F,设点D的横坐标为t。

①用含t的代数式表示DE的长②求DE的最大值,DF的最大值③设RT△DEF的周长为p,求p与t的函数关系式,并求出p的最大值及此时点D的坐标。

总结:1.用点坐标表示线段长度:先在图中找到对应线段,分清已知点和未知点,再联系二次函数和一次函数,设出未知点坐标,使其只含有一个未知数;继而表示出线段长度,如果该线段与坐标轴平行则利用横纵坐标相加减确定,如果与坐标轴不平行的话,先转化到有边与坐标轴平行的三角形中,再利用勾股定理、锐角三角函数或者三角形相似确定。

2.一条线段的最值问题,根据前面所得的点坐标表示线段长度,通过运用配方法或运用二次函数的性质求最值,从而得到线段的最值。

3.线段数量关系问题:根据前面所得的用点坐标表示线段长度,结合题干列出满足线段数量关系的方程,解方程即可。

4.两条线段和的最小值问题:解决这类问题最基本的定理就是“两点之间线段最短”,最常见的图形就是“将军饮马模型”。

2013年南宁市中考数学必考题型解码——二次函数

2013年南宁市中考数学必考题型解码——二次函数

2013年南宁市中考数学必考题型解码——二次函数云帆中考命题研究中心编制第二步,看图象与y 轴交点,判断c ; 第三步,根据图象画对称轴草图,判断b ,当a >0,对称轴在右边,则b <0,当a >0,对称轴在左边,b <0; 第四步,分别将x =1,x =-1带入函数解析式,得a 、b 、c 关系; 第五步,根据韦达定理,a b x x -=+21,acx x -=⋅21,以及图象与x 轴交点进一步判断a 、b 、c 之间的等式是否成立。

【例1】(2011黑龙江)已知二次函数)的图象如图所示,现有下列结论:①2-4>0 ②>0 ③>0 ④>0 ⑤9+3+<0,则其中结论正确的个数是()A. B.3个 C.4个 D.5个 【答案】B 【例2】(2012年潜江)已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( )A.3个B.2个C.1个D.0个 【例3】(2010湖北孝感)如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是() A. 1 B. 2C. 3D. 4【答案】C【例4】(2011钦州市)函数与在同一平面直角坐标系中的图象可能是【答案】A【例5】(2012年玉林、防城港市)二次函数(≠0)的图像如图所示,其对称轴为=1,有如下结论:①<1 ②2+=0 ③<4④若方程的两个根为,,则+=2.则结论正确的是()A. ①②B. ①③C. ②④D. ③④【例6】(2012年南宁市)已知二次函数y =ax 2+bx +1,一次函数y =k (x -1)-42k ,若它们的图象对于任意的非零实数k 都只有一个公共点,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2 【答案】B()20y ax bx c a =++≠b a c a b c a b c 1,12⎛⎫ ⎪⎝⎭20y ax a =-≠0y ax a =≠c bx ax y ++=2a x c ab 2ba c 02=++c bx ax 1x 2x 1x 2x【例12时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2;②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在;④使得M=1的x 值是2221或-. 其中正确的是( )A .①②B .①④C .②③D .③④ 【例8】(2011江苏宿迁)已知二次函数的图象如图,则下列结论中正确的是A .>0B .当随的增大>1时,随的增大而增大C .<0D .3是方程的一个根 【答案】D 【例9】(2012贵州贵阳)已知二次函数y =ax 2+bx +c (a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是()A.有最小值-5、最大值0B. 有最小值-3、最大值6C.有最小值0、最大值6 D . 有最小值2、最大值6◆ 一、 根据题意列式子,导出解析式 二、 不等式或最值探讨(配方法)【例10】(2011年南宁市)24.南宁市五象新区有长24000m 的新建道路要铺上沥青.(1)写出铺路所需时间t (天)与铺路速度v (m /天)的函数关系式.(2)负责铺路的工程公司现有的铺路机每天最多能铺路400m ,预计最快多少天可以完成铺路任务?(3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机.现有甲、乙两种机器可供选择,其中每种机器的价格和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成任务.问有哪几种方案?请你通过计算【例11】(2008林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y与投资量x 成正比例关系,如图12-①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式; (2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?()20y ax bx c a ++≠=a y x x y x c 20ax bx c ++=【例12】(2012年北海市)24.大润发超市进了一批成本为8元/个的文具盒。

二次函数压轴题(解析版)

二次函数压轴题(解析版)

二次函数压轴题解析版1.在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(4,0),C(0,2)三点,直线y=kx+t经过B、C两点,点D是抛物线上一个动点,过点D作y 轴的平行线,与直线BC相交于点E.(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D的坐标;(3)点D在运动过程中,若使O、C、D、E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及平行四边形的判定与性质等知识点.2.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD 的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2.【分析】(1)由y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x2+2x+3=0,求得点B的坐标,然后设直线BC的解析式为y=kx+b′,由待定系数法即可求得直线BC的解析式,再设P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的长,由S△BDC =S△PDC+S△PDB,即可得S△BDC=﹣(a﹣)2+,利用二次函数的性质,即可求得当△BDC的面积最大时,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣)2﹣,然后根据n的取值得到最小值.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴,解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4=[(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,=﹣,n=4时,m=5,当n=上,m最小值综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.3.(11分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y 轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.3.【分析】(1)把A点坐标代入可得到关于a的方程,可求得a的值;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使=,可证得△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2化为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时有最小值,则可求得答案.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴==,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.4.如图,已知抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,且AO=2BO.(1)求此抛物线的解析式;(2)若点Q是抛物线上的一动点,连接CQ交AB于点P,过点P作PE∥AC,交BC 于点E,①求△PCE面积的最大值及此时点P的坐标;②是否存在Q,使∠PEC=∠APC?若存在,求出点Q的坐标;若不存在,请说明理由.4.【分析】(1)根据A,B,C三点的坐标,用待定系数法求出抛物线的解析式;(2)①本题要通过求△CPE的面积与P点横坐标的函数关系式而后根据函数的性质来求△CPE的面积的最大值以及对应的P的坐标.△CPE的面积无法直接表示出,可用△CPB和△BEP的面积差来求,设出P点的坐标,即可表示出BP的长,可通过相似三角形△BEP和△BAC求出,然后根据二次函数最值即可求出所求的值;②根据题意易得△BAC∽△BCP,然后根据相似比例求出BP的值,进而求出P的坐标和PQ解析式,再与二次函数解析式联立求出Q的坐标.【解答】解:(1)∵B(2,0),AO=2BO,∴AO=4,A(﹣4,0),将A(﹣4,0)、B(2,0)代入y=ax2+bx﹣4,解这个方程组,得,∴此抛物线的解析式:;=12(2)①设P(m,0),则BP=2﹣m,AB=6,S△ABC∵PE∥AC,∴△BPE∽BAC,∴,∴,∵,∴S△PCE =S△BPC﹣S△BPE==∴当m=﹣1时,△PCE面积的最大值为3,此时P(﹣1,0);②存在,Q(﹣8,20).理由如下:∵PE∥AC,∴∠EPC=∠ACP,∵∠PEC=∠APC,∴∠PAC=∠PCB,∴△BAC∽△BCP,∴,B(2,0),A(﹣4,0),C(0,﹣4),∴,∴,∴,,∴CQ解析式为y=﹣3x﹣4,联立解得x1=0(不合题意,舍去),x2=﹣8,∴y=20,∴Q(﹣8,20).5.(10分)已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.5.【分析】(1)利用直线与y轴交于A,求得点A的坐标,再利用B点的坐标利用待定系数法求得抛物线的解析式即可;(2)求出点C关于直线AE的对称点F的坐标,然后求出直线BF的解析式后求与直线AE的交点坐标即可;(3)设出P点的坐标,然后表示出AP、EP的长,求出AE的长,利用勾股定理得到有关P点的横坐标的方程,求得其横坐标即可;(4)设出M点的坐标,利用C点的距离与到直线AD的距离恰好相等,得到有关M点的纵坐标的方程解得M点的纵坐标即可.【解答】解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),∵B点坐标为(1,0).∴∴;(2)作出C关于直线AE的对称点F,由B和F确定出直线BF,与直线AE交于P点,利用△DFC面积得出F点纵坐标为:,∴利用勾股定理得出,∴F(,),∴直线BF的解析式为:y=﹣32x+32,,可得:P();(3)根据题意得:x+2=x2﹣x+2,解得:x=0或x=6,∴A(0,2),E(6,5),∴AE=3,设Q(x,0),①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时x无解;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x==,此时求得Q(,0);∴Q(1,0)或(,0)(4)假设存在,设M坐标为(0,m),则OM=|m|,此时MD⊥AD,∵OC=4,AO=2,OD=4,∴在直角三角形AOD中,根据勾股定理得:AD=2,且AM=2﹣m,CM=,∵MD=MC,∴根据勾股定理得:=,即(2﹣m)2﹣(2)2=m2+16,解得m=﹣8,则M(0,﹣8).6.如图,在平面直角坐标系中,直线y=kx﹣4k+4与抛物线y=x2﹣x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;(2)点P在抛物线上,当k=﹣时,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.6.【分析】(1)变形为不定方程k(x﹣4)=y﹣4,然后根据k为任意不为0的实数得到x﹣4=0,y﹣4=0,然后求出x、y即可得到定点的坐标;(2)通过解方程组得A(6,3)、B(﹣4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ=(﹣x+6)﹣(x2﹣x),利用三角形面积公式得到S=﹣(x﹣1)2+△PAB=20,然后解方程求出x即可得到点P的坐标;②设P(x,x2﹣x),如图2,利用勾股定理的逆定理证明∠AOB=90°,根据三角形相似的判定,由于∠AOB=∠PCO,则当=时,△CPO∽△OAB,即=;当=时,△CPO∽△OBA,即=,然后分别解关于x 的绝对值方程即可得到对应的点P的坐标.【解答】解:(1)∵y=kx﹣4k+4=k(x﹣4)+4,即k(x﹣4)=y﹣4,而k为任意不为0的实数,∴x﹣4=0,y﹣4=0,解得x=4,y=4,∴直线过定点(4,4);(2)当k=﹣时,直线解析式为y=﹣x+6,解方程组得或,则A(6,3)、B(﹣4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),∴PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,=(6+4)×PQ=﹣(x﹣1)2+=20,∴S△PAB解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=,整理得4|x2﹣x|=3|x|,解方程4(x2﹣x)=3x得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x得x1=0(舍去),x2=,此时P点坐标为(,);解方程3(x2﹣x)=﹣4x得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,)综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).7.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.7.【分析】(1)抛物线的顶点D的横坐标是2,则x=﹣=2,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解;(2)分AB=AC、AB=BC、AC=BC,三种情况求解即可;=•PH•x B,即可求解.(3)由S△PAB【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S=•PH•x B=(﹣m2+12m),△PAB当m=2.5时,S取得最大值为:,△PAB答:△PAB的面积最大值为.8.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.8.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB =S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).9.在平面直角坐标系中,点0为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于点B,C,与y轴交于点A,点A的坐标为(0,),点D为抛物线的顶点.(1)如图1,求拋物线的顶点D的坐标;(2)如图2,点P是第一象限内对称轴右侧拋物线上一点,连接PB,过点D作DQ⊥BP于点H,交x轴于点Q,设点P的横坐标为m,点Q的横坐标为n,求n与m的函数关系式;(3)如图3,在(2)的条件下,过点C作CE∥y轴交BP的延长线于点E,点F为CE 的中点,连接FQ,若∠DQC+∠CQF=135°,求点P的坐标.9.【分析】(1)将点A代入抛物线解析式可求出a,抛物线解析式和顶点D可求.(2)分别过点D、P作x轴的垂线,可得到三角形相似,用点坐标转换线段长度,列比例关系就可以得到m和n的函数关系.(3)用点坐标转换为线段长度,可以得到相关线段的长度相等,从而得到全等三角形及相似三角形,列比例关系就可以得到点P的坐标.【解答】解:(1)将点A(0,)代入抛物线中,﹣3a=,解得a=﹣,∴抛物线的解析式为y=﹣x2+x+,∵﹣=1,解得y=2,∴D(1,2).(2)如图1所示,过点D作DH垂直于x轴于点H,过点P作PN垂直于x轴于点N,∴DH=2,QH=n﹣1,PN=﹣m2+m+,BN=m+1,∵△BPN∽△DHQ,∴,即,解得n=4﹣m.(3)如图2所示,∵D(1,2),Q(4﹣m,0),C(3,0)B(﹣1,0),∴BN=2,DN=2,NQ=3﹣m,∵∠BNG=∠DNQ,∠NDQ=∠GBN,∴△BGN≌△DNQ(ASA),∴GN=NQ=3﹣m,连接GQ,∴∠GQN=45°,∵∠DQC+∠FQC=135°,∴∠GQD=∠FQC,∵DG=m﹣1,过点P作y轴的平行线PM,过点D作x轴的平行线交MP于点M,连接MG,∴MD=m﹣1,∴MD=DG,∴∠DGM=45°,∵∠NGQ=45°,∴∠MGQ=90°,∴∠MGP=∠GQD=∠FQC,连接GF,GF∥BC,∴∠GFQ=∠FQC=∠MGP,∠FGQ=∠GMP=45°,∴△GMP∽△GQF,∴,∵MP=2﹣(﹣m2+m+)=m2﹣m+,MG=(m﹣1),FG=2,GQ=(3﹣m),解得m1=1(舍),m2=,∴m=,∴P(,).10.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.10.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+ t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),∵直线GH平分矩形的面积,∴点P是GH和BD的中点,∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.11.如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M,QA交y轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结论.11.【分析】(1)用待定系数法即能求出抛物线的解析式.(2)△TAD 与△TBD 有公共底边TD ,面积相等即点A 、点B 到直线TD 距离相等.根据T 的位置关系分类讨论:在点A 左侧时,根据“平行线间距离处处相等”可得AB ∥TD ,易得点T 的纵坐标,代入解析式即求出横坐标;在点A 右侧时,分别过A 、B 作TD 的垂线段,构造全等三角形,证得TD 与x 轴交点为AB 中点,求出TD 解析式,再与抛物线解析式联立方程组求出T .(3)联立直线y =kx ﹣k +2与抛物线解析式,整理得关于x 的一元二次方程,根据韦达定理得到P 、Q 横坐标和和与积的式子(用k 表示).设M (0,m )、N (0,n ),求出直线AP 、AQ 的解析式(分别用m 、n 表示).分别联立直线AP 、AQ 与抛物线方程,求得P 、Q 的横坐标(分别用m 、n 表示),即得到关于m 、n 、k 关系的式子,整理得mn =﹣1,即OM •ON =1,易证△BOM ∽△NOB ,进而求出∠MBN =90°【解答】解:(1)∵抛物线y =ax 2+bx ﹣2a 经过点B (1,0)、C (0,) ∴ 解得:∴抛物线的解析式为:y =x 2+x ﹣(2)当x =2时,n =×22+×2﹣=∴D (2,)①当点T 在点A 左侧时,如图1,∵S △TAD =S △TBD ,且△TAD 与△TBD 有公共底边为TD∴AB ∥TD ,即TD ∥x 轴∴y T =y D =x 2+x ﹣= 解得:x 1=﹣3,x 2=2(即点D 横坐标,舍去)∴T (﹣3,)②当点T 在点A 右侧时,如图2,设DT 与x 轴交点为P ,过A 作AE ⊥DT 于E ,过B 作BF ⊥DT 于F∵S △TAD =S △TBD ,且△TAD 与△TBD 有公共底边为TD∴AE =BF在△AEP 与△BFP 中,∴△AEP ≌△BFP (AAS )∴AP =BP 即P 为AB 中点由x 2+x ﹣=0 解得:x 1=﹣2,x 2=1∴A (﹣2,0)∴P (,0)设直线DP :y =kx +c解得:∴直线DT :y =解得:(即点D ,舍去)∴T(,)综上所述,满足条件的点T的坐标为(﹣3,)与(,)(3)△BMN是直角三角形,证明如下:设x1为点P横坐标,x2为点Q的横坐标整理得:x2+(1﹣8k)x+8k﹣18=0∴x1+x2=8k﹣1,x1x2=8k﹣18设M(0,m),N(0,n)则OM=m,ON=﹣n∴直线AM解析式:y=,直线AN解析式:y=解得:∴P(1+4m,3m+)同理可得:Q(1+4n,3n+)∴整理得:mn=﹣1∴m•|n|=1 即OM•ON=1又OB=1,即OM•ON=OB2∴∴△BOM∽△NOB∴∠OBM=∠ONB∴∠MBN=∠OBM+∠OBN=∠ONB+∠OBN=90°∴△BMN是直角三角形12.抛物线y=ax2+bx﹣经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A 和抛物线的另一个交点为C.(1)求抛物线的解析式.(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s 与t的函数关系式.(不写t的取值范围)(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.12.【分析】(1)利用点A、B坐标,用待定系数法即求得解析式.(2)根据题意画出PQ,易得以AQ为底来求△APQ面积较容易,故过点P作x轴的垂线PH.利用相似△对应边的比相等,用t表示PH,则写出s与t的关系式.(3)由DE⊥DF且DF=DE联想到构造相似三角形,故过点D作MN⊥x轴于点N,过点E作EM⊥MN于点M构造△NDF∽△MED,相似比为.设D(d,),F(f,0),再有E的坐标可用t表示,则两相似三角形的边都能用d、t、f表示,且根据相似比为列得两个方程.又由P、Q坐标求得直线PQ的解析式(含t),点D在直线PQ上又满足解析式,列得第三个方程.解三元方程组,即求得f.【解答】解:(1)∵抛物线经过点A(﹣1,0)和B(2,0),∴解得:∴抛物线的解析式为y=(2)设AC与y轴交点为G,过点P作PH⊥x轴于点H,依题意得:AP=4t,AQ=3t∵直线AC:y=x+m经过点A(﹣1,0)∴+m=0,得m=∴直线AC解析式为:y=x+∴G(0,),OG=∴AG=∵GO∥PH∴△AGO∽△APH∴∴PH=∴s=AQ•PH=(3)过点D作MN⊥x轴于点N,过点E作EM⊥MN于点M,作ER⊥x轴于点R ∴四边形EMNR是矩形,△AGO∽△AER∴=∵AE=AQ=3t,AG=2,GO=,AO=1∴MN=ER=,AR=∴E(﹣1+,)设点D(d,),F(f,0)∴EM=d﹣(﹣1+)=d+1﹣,MD=,DN=,FN=d﹣f∵DE⊥DF∴∠EMD=∠EDF=∠DNF=90°∴∠MED+∠MDE=∠MDE+∠NDF=90°∴∠NDF=∠MED∴△NDF∽△MED∴∴DN=EM,FN=MD∴①d﹣f=②∵P(﹣1+2t,2t),Q(﹣1+3t,0)∴直线PQ解析式为:y=﹣2x+6t﹣2∵点D为PQ与抛物线交点∴③把①③联立方程组解得:(舍去)∴由②得:f==1∴点F坐标为(1,0)13.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.13.【分析】(1)直接将点代入函数解析式,待定系数即可求解函数解析式;(2)点(2,0)代入一次函数解析式,得到n=﹣2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>0,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=﹣,将得到的三个关系联立即可得到,再由题中已知﹣1<h<1,利用h的范围求出m的范围.【解答】解:(1)将点(2,0),(3,1),代入一次函数y=mx+n中,,解得,∴一次函数的解析式是y=x﹣2,再将点(2,0),(3,1),代入二次函数y=mx2+nx+1,,解得,∴二次函数的解析式是y═x2++1.(2)∵一次函数y=mx+n经过点(2,0),∴n=﹣2m,∵二次函数y=mx2+nx+1的对称轴是x=﹣,∴对称轴为x=1,又∵一次函数y=mx+n图象经过第一、三象限,∴m>0,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的顶点坐标为A(h,k),∴k =mh 2+nh +1,且h =﹣,又∵二次函数y =x 2+x +1也经过A 点,∴k =h 2+h +1,∴mh 2+nh +1=h 2+h +1,∴,又∵﹣1<h <1,∴m <﹣2或m >0.14.已知抛物线y=ax 2+bx+2与x 轴交点分别是A(-4,0)和点B(1,0),与y 轴相交于点C.(1)求该抛物线的函数表达式.(2)如图1,将直线AC 沿y 轴向下平移,得直线BD ,BD 与抛物线交于另一点于D ,连结CD ,CD 与x 轴相交于E 点,试判断△ADE 与△ABD 是否相似,并说明理由.(3)如图2,在(2)条件下,设点M 是△ABD 的外心,点Q 是线段AE 上的动点(不与点A ,E 重合).①直接写出M 点的坐标:_________.②设直线MQ 的函数表达式为y=kx+b ,在射线MQ 绕点M 从MA 旋转到ME 的过程中,是否存在点Q ,使得k 为整数.若存在,求Q 点的坐标;若不存在,请说明理由.14.(1)y=- 12x 2-32x+2(2)△ADE ∽△ABD,设l bd :y=kx+b,而k=k AC =2−00−(−4)=12,即y=12x+b 把B(1,0)代入y=12x+b 中得,b=-12∴y=12x-12由{y=-12x 2-32x+2y=12x -12,得{x 1=1y 1=0或{x 2=-5y 2=-3 ∴D(-5,-3)设l CD :y=k CD x+b 1,把C(0,2)、D(-5,-3)代入得 {b 1=2 -5k CD +b 1=-3 得{k CD =1b 1=2∴y=x+2,令y=0,得x=-2 ∴E(-2,0)DE=√[−2(−5)]2+[0−(−3)]2=3√2 AD=√[−5(−4)]2+[−3−0]2=√10 过点A 作AF ⊥DE 于点FS △ADE =S △ADE ,即12AE ∙|y D |=12DE ∙AF,得AF=√2 DF=√AD 2−AF 2=√(√10)2−(√2)2=2√2tan ∠ADE=AF DF =√22√2=12,即tan ∠CAB=BC AB =24=12∴∠ADE=∠CAB∴AC//BD∴∠CAB=∠ABD综上,∠EAD=∠DAB ,∠ADE=∠ABD ∴△ADE ∽△ABD(3)①(-32,-52)②设Q(q,0),而M(=-32,-52)k=−52−0−32−q =53+2q (-4<q<-2) ∵-4<q<-2 ∴-8<2q<-4 -5<3+2q<-1 -5<53+2q <-1即-5<k<-1∵k 为整数∴k=-2,-3,-4 当k=-2时,q=- 114,得Q 1(- 114,0)当k=-3时,q=- 73,得Q 1(- 73,0)当k=-4时,q=- 178,得Q 1(-178,0)41。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考数学压轴题二次函数题型精选解析
1.如图,二次函数c x y +-
=221的图象经过点D ⎪⎭⎫ ⎝

-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;
⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;
⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
【答案】⑴ ∵抛物线经过点D (2
9
,
3-) ∴2
9)3(212=+-⨯-
c ∴c=6.
⑵过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M ,
∵AC 将四边形ABCD 的面积二等分,即:S △ABC =S △ADC ∴DE =BF
又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM
∴DM =BM 即AC 平分BD
∵c =6. ∵抛物线为62
12
+-=x y
∴A (0,32-)、B (0,32)
∵M 是BD 的中点 ∴M (
4
9
,23) 设AC 的解析式为y =kx +b ,经过A 、M 点
∴⎪⎩⎪⎨⎧=+=+-49
23032b k b k 解得⎪⎪⎩
⎪⎪⎨⎧==59
1033b k ∴直线AC 的解析式为5
91033+=
x y . ⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN
=,于是以A 点为圆心,AB
=为半径作圆与抛
物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分
线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .
2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF
BC

(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;
(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.
【答案】解:(1)∵ 四边形EFPQ 是矩形,∴ EF ∥QP .
∴ △AEF ∽△ABC .
又∵ AD ⊥BC , ∴ AH ⊥EF . ∴ AH AD =EF
BC
(2)由(1)得AH 8=x 10. AH =4
5x .
∴ EQ =HD =AD -AH =8-4
5
x ,
∴ S 矩形EFPQ =EF ²EQ =x (8-45x ) =-45x 2+8 x =-4
5(x -5)2+20.
∵ -4
5
<0, ∴ 当x =5时,S 矩形EFPQ 有最大值,最大值为20.
(3)如图1,由(2)得EF =5,EQ =4.
∴ ∠C =45°, ∴ △FPC 是等腰直角三角形. ∴ PC =FP =EQ =4,QC =QP +PC =9.
分三种情况讨论:
① 如图2.当0≤t <4时,
设EF 、PF 分别交AC 于点M 、N ,则△MFN 是等腰直角三角形.∴ FN =MF =t .
∴S =S 矩形EFPQ -S Rt △MF N =20-12t 2=-1
2t 2+20;
②如图3,当4≤t <5时,则ME =5-t ,QC =9-t . ∴ S =S 梯形EMCQ =1
2
[(5-t )+(9-t )]³4=-4t +28;
③如图4,当5≤t ≤9时,设EQ 交AC 于点K ,则KQ =QC =9-t . ∴ S =S △K QC =12 (9-t )2=1
2( t -9)2.
综上所述:S 与t 的函数关系式为:
S =2
21204)24285)1
(9)9)2
t t t t t t ⎧-+<⎪⎪
--<⎨⎪⎪-<⎩ (
0, (4, (5.≤≤≤
3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.

图3

4

1
(第2
抛物线y =1
6
x 2+bx +c 过O 、A 两点.
(1)求该抛物线的解析式;
(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由
3.【答案】解:(1)把O (0,0)、A (5,0)分别代入y =1
6
x 2+bx +c ,
得02550.6c b c =⎧⎪⎨++=⎪⎩,解得5,60.
b c ⎧=-⎪
⎨⎪=⎩
∴ 该抛物线的解析式为y =16x 2-5
6
x .
(2)点C 在该抛物线上.
理由:过点C 作CD ⊥x 轴于点D ,连结OC ,设AC 交OB 于点E . ∵ 点B 在直线y =2x 上, ∴ B (5,10) ∵ 点A 、C 关于直线y =2x 对称,
∴ OB ⊥AC ,CE =AE ,BC ⊥OC ,OC =OA =5,BC =BA =10. 又∵ A B ⊥x 轴,由勾股定理得OB =55.
∵ S Rt △OAB =12AE ²OB =1
2
OA ·AB ,
∴ AE =25, ∴ AC =45.
∵ ∠OBA 十∠CAB =90°,∠CAD +∠CAB =90°, ∴ ∠CAD =∠OBA . 又∵ ∠CDA =∠OAB =90°, ∴ △CDA ∽△OAB . ∴
CD OA =AD AB =AC
OB
∴ CD =4,AD =8 ∴ C (-3,4) 当x =-3时,y =16³9-5
6
³(-3)=4.
∴ 点C 在抛物线y =16x 2-5
6
x 上.
(3)抛物线上存在点Q ,使得以PQ 为直径的圆与⊙O 1相切.
过点P 作P F ⊥x 轴于点F ,连结O 1P ,过点O 1作O 1H ⊥x 轴于点H . ∴ CD ∥O 1H ∥BA . ∵ C (-3,4),B (5,10),
∴ O 1是BC 的中点. ∴ 由平行线分线段成比例定理得AH =DH =1
2AD =4,
∴ OH =OA -AH =1.同理可得O 1H =7. ∴ 点O 1的坐标为(1,7). ∵ BC ⊥OC , ∴ OC 为⊙O 1的切线.
又∵OP 为⊙O 1的切线, ∴ OC =OP =O 1C =O 1P =5.
(图1) (图
2)
∴ 四边形OPO 1C 为正方形. ∴ ∠COP =900. ∴ ∠POF =∠OCD . 又∵∠PFD =∠ODC =90°, ∴ △POF ≌△OCD .
∴ OF =CD ,PF =OD . ∴ P (4,3). 设直线O 1P 的解析式为y =kx+B (k ≠0). 把O 1(1,7)、P (4,3)分别代人y =kx+B ,
得743k b k b +=⎧⎨+=⎩,. 解得43
253k b ⎧=-⎪⎪⎨⎪=⎪⎩
,.
∴ 直线O 1P 的解析式为y =-43x +25
3

若以PQ 为直径的圆与⊙O 1相切,则点Q 为直线O 1P 与抛物线的交点,可设点Q 的坐标为(m ,n ),则有n =-43m +253,n =16m 2-5
6
M
∴ -43m +253=16m 2-5
6M .整理得m 2+3m -50=0,
解得m =-3±2092
∴ 点Q 的横坐标为-3+2092或-3-209
2.
第3题图。

相关文档
最新文档