概率论与数理统计课件3-1

合集下载

概率论与数理统计课件第章节

概率论与数理统计课件第章节
4
五、二维连续型随机变量
设二维随机变量 (X,Y) 旳分布函数为 F(x,y),假如存在非负旳
函数
f
(x,y)
使对于任意
x,y
有:
F
(
x,
y)
y
x
f (u,v)dudv
则称(X,Y ) 是连续型旳二维随机变量。
称 f (x,y) 为随机变量 (X, Y ) 旳概率密度,或称为随机变量 X 和
2
0.010 0.005
求在X=1时Y旳条件分布律.
P{X=1}=0.045 P{Y=0⃒X=1}=0.030 ⁄ 0.045
0.004 0.001
P{Y 1|X 1} 0.010 / 0.045 P{Y 2|X 1} 0.005 / 0.045.
用表格形式表达为:
k
0
1
2
P{Y=k|X=1} 6/9 2/9 1/9
分布函数,也称为 X 和 Y 的联合分布函数.y
(x, y)
分布函数 F(x,y) 在 (x,y)处旳函数值就是: 随机
点 (X,Y ) 落在以点 (x,y) 为顶点且位于该点左下
x
方旳无穷矩形域内旳概率。如图所示.
2
下面利用分布函数来计 算 P{x1 X x2 , y1 Y y2 }
P{x1 X x2 , y1 Y y2 } F(x2 , y2 ) F(x1, y2 ) F ( x2 , y1 ) F ( x1 , y1 )
FX (x) P{ X x} P{ X x,Y } F(x, )
同理有: FY ( y) F (, y)
二、离散型 ( X ,Y ) 的边缘分布律
FX (x) F(x, )
pij, 又 FX ( x) P{ X xi }

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

概率论与数理统计第3章

概率论与数理统计第3章

试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②



f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x

概率论与数理统计课件(共199张PPT)

概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分

定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )

《概率论与数理统计》课件3-1二维随机变量及其联合分布

《概率论与数理统计》课件3-1二维随机变量及其联合分布
P{a X b} = F(b) − F(a) + P{X = a}
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,

P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.

海南大学《概率论与数理统计》课件-第一二三四章

海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总

n 有关。若
lim
n
npn
0

lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x

《概率论与数理统计》经典课件 概率论

《概率论与数理统计》经典课件 概率论

解: P( Ak )
C C k nk D ND
/ CNn ,
k
0,1,
,n
(注:当L>m或L<0时,记 CmL 0)
2021/8/30
17
❖ 例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒
的概率相同,且各盒可放的球数不限,
记A={ 恰有n个盒子各有一球 },求P(A).
解: ① ②……n
2021/8/30
2
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
S AB

A的逆事件记为A,
A
A S,
A A

A A
B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2
i 1
i 1
i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
An;
A B {甲、乙至少有一人来}
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1

《概率论与数理统计》课件

《概率论与数理统计》课件
② 力①= ____, AC1 =__________, AA =________. _______ _____ ③ A = ____. ④ 若AuB,则力UB =_____, AHB =______, A ____B. ____ _____ ⑤ A-B = AB = A-AB, A = (AB) , A[}B = B^A万二,U8麟

____
XXXX大学
1.2.1事件间的关系与运算
文氏图(Venn diagram )
随机事件的关系和运算 相似集合的关系和运算
XXXX大学
关系
包含
相等 互不相容 (互斥)
符号表示
AuB/BD A
A u B且A D B
AB=0
事件间的关 系
事件发生
/发生则8发生
样本点
X的样本点都 是gj勺样本

ABC U ABC U
A3:“恰有两人命中目标 '
A4 :"最多有一人命中目 标
A5 :“三人均命中目标' :
ABC
ABC U ABC U
ABC
BC U AC U AB
ABC A n B n
A6 :“三人均未命中目标
C
单选题1分
设凡B, C三个事件,则“至少有两个发生”可表示 )O

A. ABC^^ U ABC
3/10/2022
10
XXXX大学
1.2.2事件的运算性质
交换律A AB = BA
结合律 (A U B)U C
二」U (B U C)
(AB) C = A
3/10/2022
11
XXXX大学
1.2.2事件的运算律
分配律 An(^uc)=(^n^)u(^nc ) Ausnc)=(,ug)n(,u。

高等数学概率论与数理统计课件PPT大全

高等数学概率论与数理统计课件PPT大全
(AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC),
(AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B, AB A B
可推广 Ak Ak , Ak Ak .
k
k
k
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C
定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中 出现的频率,记为fn(A). 即 fn(A)= nA/n.
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon
K. Pearson K. Pearson
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所
组成的集合称为样本空间,记为={e};
2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集 称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
P( AB) P( AC) P(BC) P( ABC )
30% 3 10% 0 0 0 80%
例1.3.2.在110这10个自然数中任取一数,求
(1)取到的数能被2或3整除的概率,
(2)取到的数即不能被2也不能被3整除的概率,
(3)取到的数能被2整除而不能被3整除的概率。
解:设A—取到的数能被2整除; P(A) 1 P(B) 3
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。

仅研究身高H 的分布或仅研究体重W 的分布是不够的。

需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。

问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。

每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。

一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。

S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。

{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。

东华大学《概率论与数理统计》课件-第3章概率论基础

东华大学《概率论与数理统计》课件-第3章概率论基础
重复排列:从n个不同元素中取r个(可重复),考 虑先后顺序共有nr=n n …. n种不同结果。
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

《概率论与数理统计》课件

《概率论与数理统计》课件
n
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 0 0 1 / 12 1 / 16
4 0 0 0 1 / 16
例3.1.3 二维随机变量(X,Y)的联合概率分布为:
X Y 0 0.05 0.1 a 1 0.1 0.2 0.2 2 求:(1)常数a的取值; 0.1 0.1 0.05 (2)P(X≥0,Y≤1); (3) P(X≤1,Y≤1)
结 合 下 页 概 率 分 布 图

0
e dy 2e
y y

2 x
1 dx 3
O
G
x

作业:
P100: T1, T3, T5

2 x
0

0
Ae -(2 x y ) dx dy
A e
dx
0
A e dy 2
-y
所以 A 2 。
(2) F ( x, y)

x
y

f ( x, y)dx dy
x y2e ( 2 x y ) dxdy, x 0, y 0 0 0 0 , 其它
(2) 0 F ( x, y ) 1 ,而且
F (, y) F ( x,) F (,) 0, F (,) 1 。
(3) F ( x , y ) 分别关于 x 和 y 右连续,即
F ( x, y ) F ( x 0, y ) F ( x, y 0 ) 。
+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1) =0.75
二维联合概率分布区域图:
X Y -1
0
1
2
0.05
0.1 a
0.1
0.2 0.2
0.1
0.1 0.05
Y
0 1
2
1
P(X≤1,Y≤1} P{X≥0,Y≤1}
-1
0
1
X
4、二维连续型随机变量
(1) 定义: 若存在非负可积函数 f ( x , y ) , 使对任意的 x, y , 二维随机变量 ( X , Y ) 的分布函数都可表示为:
F ( x, y) =
y


x
f (u, v )dudv ,
则称 ( X , Y ) 是连续型的,而 f ( x , y ) 称为 ( X , Y ) 的概率密度, 或称为 X 与 Y 的联合概率密度。
(2)性质:
(1) f(x,y)≥0 ,(x,y)∈R2




y1
X
x1
x2
3、二维离散型随机向量
(1)定义:如果二维随机向量(X,Y)的全部取值(数对)为有限 个或至多可列个,则称随机向量(X,Y)为离散型的。
易见,二维随机向量(X,Y)为离散型的等价于它的每个分量 X与 Y
分别都是一维离散型的。
(2)联合概率分布及其性质
称pij=P(X=xi,Y=yj),(i,j=1,2,...,)为(X,Y)的概率分布, 其中
1 (6 2 x ) 3 0
2
2x+3y=6
dx
6 e ( 2 x 3 y )dy 0 1 3 (6 2 x ) 1 3 y 2 x 6 e ( e ) 3 dx 0 3 0
0
3
X
2 (e
0
3
2 x
e )dx 1 7 e
6
6
例 3.1.5 设二维随机变量的概率密度
( x i , y j )D
p
ij
例3.1.1.将一枚均匀的硬币抛掷4次,X表示正面向上的 次数,Y表示反面朝上次数,求(X,Y)的联合概率分布. 解:X的所有可能取值为0,1,2,3,4, Y的所有可能取值为0,1,2,3,4,
因为X+Y=4, 所以, (X,Y) 概率非零的数值对为:
P(X=0,Y=4)= 0.54=1/16
Y 的联合分布函数。
二维联合分布函数区域演示图: Y
y
(x , y)
{ X≤x ,
Y≤y }
x
X
2、分布函数 F ( x , y ) 的基本性质:
(1) F ( x , y ) 分别是 x 与 y 的单调不减函数,即 当 x1 x 2 时, F ( x1 , y ) F ( x2 , y ) ; 当 y1 y 2 时, F ( x , y1 ) F ( x , y2 ) 。
1 P(X=1,Y=3)= C 4 0.5 0.5 3 =1/4
2 P(X=2,Y=2)= C 4 0.5 2 0.5 2 =6/16 3 P(X=3,Y=1)=C 4 0.5 3 0.5 1 =1/4
联合概率分布表为: Y 0 1 X 0 0 0 0 0 1 0 0 2 0 1/4 3 1/16 0 4 2 3 4
E={(xi,yj),i,j=1,2,...}为(X,Y)的取值集合, 表格形式如下:
X x1 x2 … xi …
Y
y1
y2
… yj …
联合概率分布性质:
p11 p21 … pi1 …
p12 p22 … pi2 …
… … … … …
p1j p2j … p ij …
… ① p ≥0 ;i,j=1,2,… ij … … ②∑∑pij = 1; … … ③P{(X,Y)∈D } =
pij = P { X= i,Y= j } = P{Y= j | X= i }P{ X= i }
1 1 1 = i 4 4i (1 j i 4)
其表格形式为
表 3.1.2
Y X
1 2 3 4
1
1/ 4 1/ 8 1 / 12 1 / 16
2 0 1/ 8 1 / 12 1 / 16
(4)当 x1 x2 , y1 y2 时,有
0 P { x 1 X x 2 ; y1 Y y 2 } F ( x 2 , y 2 ) F ( x 2 , y1 ) F ( x 1 , y 2 ) F ( x 1 , y1 )
Y
y2
(x2,y2)
(x1,y1)
( 2 x 3 y )
{x<2, y<1} 0
2
X
6 e
0
2
2 x
dx e 3 y dy
0
1
1 2 x 2 1 3 y 1 4 3 6 ( e ) ( e ) (1 e )( 1 e ) 2 0 3 0
(3)
P{X x, Y y}

x
P(X=4,Y=0)= 0.54=1/16
0 0 1/16 0 1/4 0 6/16 0 0 0 0 0 0 0 0
二维离散型随机变量联合概率分布确定方法:
1.找出随机变量X和Y的所有取值结果,得到(X,Y)的所
有取值数对;
2.利用古典概型或概率的性质计算每个数值对的概率;
3.列出联合概率分布表.
Ae
2 x 3 y
e
dxdy A e
0

dx e 3 y dy
0

所以, A=6
(2) P{(X, Y) D}
f(x, y)dxdy
D
{x 2,y 1}
Y
1
所以, P{ X<2, Y<1} f(x, y)dxdy Nhomakorabeady
dx 6 e
0 0
2
1
Ae ( 2 x y ) , x 0, y 0; f ( x, y) 其它. 0,
试求 (1) 常数 A 的值; 分布函数 F ( x, y) ; (2) (3)P{Y X } 。
1
解 (1)由于

0


f ( x, y)dx dy
以下主要研究二维离散型及连续型随机向量的情形。
§3.1 二维随机变量
1、联合分布函数:
定义: 设 ( X, Y ) 是二维随机变量,二元实函数
F ( x , y ) P{( X x ) (Y y )} P{ X x , Y y}
称为二维随机变量 ( X , Y ) 的分布函数,或称为随机变量 X 与
f ( x , y )dxdy 1
(3) P{( X,Y ) D} f(x,y)dxdy
(4)在 f ( x,y ) 的连续点处,有
D
2 F ( x, y) f ( x, y) , xy
注意:
满足上述性质(1)(2)的二元函数为某随机向量 的联合 概率密度.
Ae ( 2 x 3 y ) , x 0 , y 0 例3.1.4.若(X,Y)~ f ( x , y ) 0, 其它 试求:(1) 常数 A ; (2)P{ X<2, Y<1};
Y
y

y
f ( s, t ) dtds
所以, 当x≥0,y≥0时,
0
x
X

0
x
y
0
6e ( 2 s 3 t ) dtds
y 3t 0
6 e
0
x
2 s
ds e
1 2 s x 1 3 t y (1 e 2 x )(1 e 3 y ) dt 6 ( e ) ( e ) 2 0 3 0
-1
0 1
解:(1)由∑pij=1得: a=0.1; (2)由P{(X,Y)∈D } =
( x i , y j )D
p
ij
,得 P(X≥0,Y≤1)=
P(X=0,Y=0)+
P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=0.1+0.2+0.1+0.2 =0.6 (3)P(X≤1,Y≤1) =P(X=-1,Y=0)+P(X=-1,Y=1)+P(X=0,Y=0)
相关文档
最新文档