(全国通用)高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

合集下载

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域第三章 (对应学生用书(文)、(理)9~10页)1. (必修1P 27练习6改编)函数f(x)=x +1+12-x的定义域为________. 答案:{x|x≥-1且x≠2}2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是________.答案:{-1,0,3}解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.3. (必修1P 31习题3改编)函数f(x)=2x5x +1的值域为____________.答案:⎩⎨⎧⎭⎬⎫y|y≠25解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25,∴ 值域为⎩⎨⎧⎭⎬⎫y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ;② f(x)=x x,g(x)=x ;③ f(x)=x 2,g(x)=(x)4;④ f(x)=|x|,g(x)=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x<0.答案:④解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.答案:[2,4]解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].1. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤① 写出使函数式有意义的不等式(组). ② 解不等式组.③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }.⑥ 函数f(x)=x a的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b24a,+∞);当a<0时,值域为⎝ ⎛⎥⎤-∞,4ac -b 24a . ③ y =kx(k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);(2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]题型1 求函数的定义域例1 求下列函数的定义域: (1) y =12-|x|+lg(3x +1);(2) y =4-x2ln (x +1).解:(1)由⎩⎪⎨⎪⎧2-|x|≠0,3x +1>0 ⎩⎪⎨⎪⎧x≠-2且x≠2,x>-13,解得x>-13且x≠2,所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>-13且x≠2. (2) 由⎩⎪⎨⎪⎧ln (x +1)≠0,4-x 2≥0 ⎩⎪⎨⎪⎧x>-1且x≠0,-2≤x≤2, 解得-1<x<0或0<x≤2,所求函数的定义域为(-1,0)∪(0,2]. 变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 若函数y =f(x)的定义域是[0,2],求函数g(x)=f (2x )x -1的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0, 所以x<-1或-1<x<0,即定义域是(-∞,-1)∪(-1,0).(2) 由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).题型2 求函数的值域例2 求下列函数的值域: (1) y =x -3x -2;(2) y =x 2-2x -3,x ∈(-1,4]; (3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13⎝ ⎛⎭⎪⎫t -322-112,当t =32时,y 有最小值-112,故所求函数的值域为⎣⎢⎡⎭⎪⎫-112,+∞.(2) (配方法)配方,得y =(x -1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32.(解法2)由y =2x -1x +1,得x =1+y 2-y.因为x ∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t -2(t>0).因为t +2t≥2t·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域: (1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2=4+2()1-x ()x +3,即y 2=4+2-()x +12+4()-3≤x≤1.令t ()x =-()x +12+4()-3≤x≤1.∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2∈[]4,8,即y∈[]2,22,∴ 函数f ()x 的值域是[]2,22.(2) g ()x =x 2-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+7x -4()x≠3且x≠4. ∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞. (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1;当0<x<1时,log 3x<0,y =log 3x +log x 3-1 =-[(-log 3x)+(-log x 3)]≤-2-1=-3. 所以函数的值域是(-∞,-3]∪[1,+∞). 题型3 函数值域和最值的应用例3 已知函数f(x)=x 2+4ax +2a +6. (1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域. 解:(1) ∵ f(x)的值域是[0,+∞), 即f min (x)=0,∴ 4(2a +6)-(4a )24=0,∴ a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0, ∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32. 当-1≤a≤1,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4; 当1<a≤32,g(a)=-a 2+a +2=-⎝ ⎛⎭⎪⎫a -122+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2. ∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 备选变式(教师专享)已知函数f(x)=1-2a x -a 2x(a>1). (1) 求函数f(x)的值域;(2) 若x∈[-2,1]时,函数f(x)的最小值是-7,求a 的值及函数f(x)的最大值.解:(1) 由题意,知f(x)=2-(1+a x )2,因为a x>0,所以f(x)<2-1=1,所以函数f(x)的值域为(-∞,1).(2) 因为a>1,所以当x∈[-2,1]时,a -2≤a x ≤a ,于是f min (x)=2-(a +1)2=-7,所以a =2,此时,函数f(x)的最大值为2-(2-2+1)2=716.1. (2013·大纲)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12 解析:由-1<2x +1<0,得-1<x<-12,所以函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.2. (2013·山东)函数f(x)=1-2x+1x +3的定义域为________.答案:(-3,0]解析:由题意,⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x≤0,即定义域为(-3,0].3. (2013·北京)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.答案:(-∞,2)解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).4. (2013·徐州三模)已知函数f(x)=⎩⎪⎨⎪⎧x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则bf(a)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫54,3解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a<log 252,f(a)=f(b),得bf(a)=bf(b)=b(b +2)=(b +1)2-1在⎣⎢⎡⎭⎪⎫12,1上单调增,故bf(a)的取值范围是⎣⎢⎡⎭⎪⎫54,3.1. 设函数g(x)=x 2-2(x∈R ),f(x)=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:由题意f(x)=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知二次函数f(x)=ax 2-x +c(x∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.答案:10解析:由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.3. 已知函数f(x)=log 13(-|x|+3)的定义域是[a ,b](a 、b∈Z ),值域是[-1,0],则满足条件的整数对(a ,b)有________对.答案:5解析:由f(x)=log 13(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],∵ 定义域是[a ,b](a 、b∈Z ),∴ 符合条件的(a ,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.4. 已知二次函数f(x)=ax 2+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.解:(1) f(x)=-x 2+2x.(2) 由f(x)=-x 2+2x =-(x -1)2+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.故f(x)在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.请使用课时训练(A)第2课时(见活页).[备课札记]。

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第1课时 函数及其表示

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第1课时 函数及其表示

第二章 函数与导数第1课时 函数及其表示第三章 (对应学生用书(文)、(理)7~8页)考情分析考点新知① 本节是函数部分的起始部分,以考查函数概念、三要素及表示法为主,同时考查学生在实际问题中的建模能力.② 本节内容曾以多种题型出现在高考试题中,要求相对较低,但很重要,特别是函数的解析式仍会是2015年高考的重要题型.① 理解函数的概念,了解构成函数的要素. ② 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③ 了解简单的分段函数,并能简单应用1. (必修1P 24练习5改编)若f(x)=x -x 2,则f ⎝ ⎛⎭⎪⎫12=________,f(n +1)-f(n)=________.答案:14-2n2. (必修1P 29习题8改编)若函数f(x)和g(x)分别由下表给出:x 1 2 3 4 x 1 2 3 4 f(x)2341g(x)2143则f(g(1))=____________,满足g(f(x))=1的x 值是________. 答案:3 1解析:f(g(1))=f(2)=3;由g(f(x))=1,知f(x)=2,所以x =1.3. (必修1P 31练习4)下列图象表示函数关系y =f(x)的有________.(填序号)答案:①④解析:根据函数定义,定义域内任意的一个自变量x 的值都有唯一一个y 与之对应.4. (必修1P 31练习3改编)用长为30cm 的铁丝围成矩形,若将矩形面积S(cm 2)表示为矩形一边长x(cm)的函数,则函数解析式为____________,其函数定义域为______________.答案:S =x(15-x) x∈(0,15)解析:矩形的另一条边长为15-x ,且x>0,15-x>0.5. (必修1P 32习题7改编)已知函数f(x)=⎩⎪⎨⎪⎧1-12x ,x ≥0,1x,x<0,若f(a)=a ,则实数a =________.答案:23或-1解析:若a≥0,则1-12a =a ,得a =23;若a<0,则1a=a ,得a =-1.1. 函数的定义一般地,设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的一个元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .2. 函数的三要素函数的构成三要素为定义域、值域、对应法则.由于值域是由定义域和对应法则决定的,所以如果两个函数的定义域和对应法则完全一致,我们就称这两个函数是同一函数.3. 函数的表示方法表示函数的常用方法有列表法、解析法、图象法. 4. 分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.5. 映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个映射.[备课札记]题型1 函数的概念例1 判断下列对应是否是从集合A 到集合B 的函数.(1) A =B =N *,对应法则f :x→y=|x -3|,x ∈A ,y ∈B ;(2) A =[0,+∞),B =R ,对应法则f :x→y,这里y 2=x ,x ∈A ,y ∈B ;(3) A =[1,8],B =[1,3],对应法则f :x→y,这里y 3=x ,x ∈A ,y ∈B ;(4) A ={(x ,y)|x 、y∈R },B =R ,对应法则:对任意(x ,y )∈A,(x ,y )→z=x +3y ,z ∈B.解:(1) 对于A 中的元素3,在f 的作用下得到0,但0不属于B ,即3在B 中没有元素与之对应,所以不是函数.(2) 集合A 中的一个正数在集合B 中有两个元素与之对应,所以不是函数.(3) 由y 3=x ,即y =3x ,因为A =[1,8],B =[1,3],对应法则f :x→y,符合函数对应.(4) 由于集合A 不是数集,所以此对应法则不是函数. 备选变式(教师专享)下列说法正确的是______________.(填序号) ① 函数是其定义域到值域的映射;② 设A =B =R ,对应法则f :x→y=x -2+1-x ,x ∈A ,y ∈B ,满足条件的对应法则f 构成从集合A 到集合B 的函数;③ 函数y =f(x)的图象与直线x =1的交点有且只有1个;④ 映射f :{1,2,3}→{1,2,3,4}满足f(x)=x ,则这样的映射f 共有1个. 答案:①④ 解析:②中满足y =x -2+1-x 的x 值不存在,故对应法则f 不能构成从集合A 到集合B 的函数;③中函数y =f(x)的定义域中若不含x =1的值,则其图象与直线x =1没有交点.题型2 函数的解析式例2 求下列各题中的函数f(x)的解析式.(1) 已知f(x +2)=x +4x ,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫2x +1=lgx ,求f(x); (3) 已知函数y =f(x)满足2f(x)+f ⎝ ⎛⎭⎪⎫1x =2x ,x ∈R 且x≠0,求f(x); (4) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x). 解:(1) (解法1)设t =x +2,则x =t -2,即x =(t -2)2,∴ f(t)=(t -2)2+4(t -2)=t 2-4,∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4,∴ f(x)=x 2-4(x≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) 由2f(x)+f ⎝ ⎛⎭⎪⎫1x =2x ,① 将x 换成1x ,则1x 换成x ,得2f ⎝ ⎛⎭⎪⎫1x +f ()x =2x ,②①×2-②,得3f(x)=4x -2x ,得f(x)=43x -23x.(4) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0).由f(0)=1,得c =1. 由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=(ax 2+bx +1)+2x , 整理,得(2a -2)x +(a +b)=0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⎩⎪⎨⎪⎧a =1,b =-1, ∴ f(x)=x 2-x +1.变式训练求下列函数f(x)的解析式.(1) 已知f(1-x)=2x 2-x +1,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,求f(x);(3) 已知一次函数f(x)满足f(f(x))=4x -1,求f(x);(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求f(x). 解:(1) (换元法)设t =1-x ,则x =1-t ,∴ f(t)=2(1-t)2-(1-t)+1=2t 2-3t +2,∴ f(x)=2x 2-3x +2.(2) (配凑法)∵ f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴ f(x)=x 2+2.(3) (待定系数法)∵ f(x)是一次函数, ∴ 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a(ax +b)+b =a 2x +ab +b. ∵ f(f(x))=4x -1,∴ ⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1, ∴ f(x)=2x -13或f(x)=-2x +1.(4) (消去法)当x∈(-1,1)时,有 2f(x)-f(-x)=lg(x +1),①以-x 代替x 得2f(-x)-f(x)=lg(-x +1),② 由①②消去f(-x)得,f(x)=23lg(x +1)+13lg(1-x),x ∈(-1,1).题型3 分段函数例3 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.(1) 若a =-3,求f(10),f(f(10))的值;(2) 若f(1-a)=f(1+a),求a 的值.解:(1) 若a =-3,则f(x)=⎩⎪⎨⎪⎧2x -3,x<1,-x +6,x ≥1.所以f(10)=-4,f(f(10))=f(-4)=-11.(2) 当a>0时,1-a<1,1+a>1,所以2(1-a)+a =-(1+a)-2a ,解得a =-32,不合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a =2(1+a)+a ,解得a =-34,符合.综上可知,a =-34.备选变式(教师专享)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B(起点)向点A(终点)运动,设点P 运动的路程为x ,△ABP 的面积为y.(1) 求y 与x 之间的函数关系式; (2) 画出y =f(x)的图象.解:(1)y =⎩⎨⎧2x ()0≤x≤4,8()4<x ≤8,-2x +24()8<x≤12.(2)y =f ()x 的图象如图.1. (2013·扬州期末)若函数f(x)=⎩⎪⎨⎪⎧3x,x ≤0,log 2x ,x>0,则f(f(0))=________.答案:0解析:f(0)=30=1,f(f(0))=f(1)=log 21=0.2. (2013·南通一模)定义在R 上的函数f(x),对任意x∈R 都有f(x +2)=f(x),当x∈(-2,0)时,f(x)=4x,则f(2 013)=________.答案:14解析:由已知,f(x)是以2为周期的周期函数,故f(2 013)=f(-1)=4-1=14.3. (2013·连云港期末)已知函数f(x)=⎩⎪⎨⎪⎧2,x ∈[0,1],x ,x [0,1],则使f(f(x))=2成立的实数x 的集合为________.答案:{x|0≤x≤1或x =2}解析:当x∈[0,1]时,f(f(x))=f(2)=2成立;当x [0,1]时,f(f(x))=f(x)=x ,要使f(f(x))=2成立,只需x =2.综上,实数x 的集合为{x|0≤x≤1或x =2}.4. (2013·苏南四市一模)已知函数f(x)=x x +1+x +1x +2+x +2x +3+x +3x +4,则f ⎝ ⎛⎭⎪⎫-52+2+f ⎝ ⎛⎭⎪⎫-52-2=________.答案:8解析:因为f(x)=x x +1+x +1x +2+x +2x +3+x +3x +4=4-⎝ ⎛⎭⎪⎫1x +1+1x +2+1x +3+1x +4. 设g(x)=1x +1+1x +2+1x +3+1x +4,则g(-5-x)=-⎝⎛⎭⎪⎫1x +4+1x +3+1x +2+1x +1,所以g(x)+g(-5-x)=0,从而f(x)+f(-5-x)=8,故f ⎝ ⎛⎭⎪⎫-52+2+f ⎝ ⎛⎭⎪⎫-52-2=8.1. 已知函数f(x)=alog 2x -blog 3x +2,若f ⎝ ⎛⎭⎪⎫12 014=4,则f(2014)的值为________. 答案:0 解析:∵ f ⎝⎛⎭⎪⎫12 014=alog 212 014-blog 312 014+2=-(alog 22 014-blog 32 014)+2=4,∴ f(2 014)=alog 22 014-blog 32 014+2=(-2)+2=0.2. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,2x ,x ≤0,则满足不等式f(f(x))>1的x 的取值范围是________.答案:(4,+∞)解析:当x≤0时,2x ∈(0,1],f(f(x))=log 22x=x>1,不符合;当0<x≤1时,log 2x ≤0,f(f(x))=2log 2x =x>1,不符合;当x>1时,log 2x>0,f(f(x))=log 2(log 2x)>1,解得x>4.3. 集合M ={f(x)|存在实数t 使得函数f(x)满足f(t +1)=f(t)+f(1)},则下列函数(a 、b 、c 、k 都是常数):① y =kx +b(k≠0,b ≠0);② y=ax 2+bx +c(a≠0);③ y =a x(0<a<1);④ y=k x(k≠0);⑤ y=sinx.其中属于集合M 的函数是________.(填序号) 答案:②⑤解析:对于①,由k(t +1)+b =kt +b +k +b ,得b =0,矛盾,不符合;对于②,由a(t +1)2+b(t +1)+c =at 2+bt +c +a +b +c ,得t =c 2a,符合题意;对于③,由a t +1=a t +a 1,所以a t=a a -1,由于0<a<1,a t=a a -1<0,无解;对于④,由k t +1=k t+k ,无解;对于⑤,由sin(t +1)=sint +sin1,取t =2k π,k ∈Z ,符合题意.综上,属于集合M 的函数是②⑤.4. 已知f(x)为二次函数,不等式f(x)+2<0的解集是⎝ ⎛⎭⎪⎫-1,13,且对任意α、β∈R 恒有f (sinα)≤0,f(2+cosβ)≥0,求函数f(x)的解析式.解:设f(x)=a(x +1)⎝ ⎛⎭⎪⎫x -13-2(a >0),∵ 函数f(x)对任意α、β∈R 恒有f(sinα)≤0,f(2+cosβ)≥0,取sinα=1,cos β=-1,则f(1)≤0与f(1)≥0同时成立,∴ f(1)=0,∴ a =32,∴ f(x)=32x 2+x -52.1. 函数是特殊的映射,其特殊性在于集合A 与B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射;而映射不一定是函数从A 到B 的一个映射,A 、B 若不是数集,则这个映射不是函数.2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;② 根据给出的对应法则,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3. 函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).请使用课时训练(B)第1课时(见活页).[备课札记]。

高考数学一轮复习第二章函数导数及其应用第2讲函数的表示法课件理

高考数学一轮复习第二章函数导数及其应用第2讲函数的表示法课件理
①y= x-fx的定义域为23,2;
12/11/2021
第十九页,共二十七页。
②设 A={0,1,2},B={x|f3(x)=x,x∈A},则 A=B; ③f201689+f201789=193; ④若集合 M={x|f12(x)=x,x∈0,2},则 M 中至少含有 8 个元素.
A.1 个
B.2 个
12/11/2021
第五页,共二十七页。
x,x≠0, 解析(jiě xī):对于选项 A,右边=x|sgn x|= 0,x=0,
而左边(zuǒ b
x,x≥0, =|x|= -x,x<0, 显然(xiǎnrán)不正确;对于选项 B,右边=xsgn|x|
x,x≠0, = 0,x=0,
x,x≥0,
而左边=|x|= -x,x<0,
因此 f201689=89,f201789=29⇒f201689+f201789=f489+f189= 190;
④由上可知 0,1,2,89,29,194,59为 M 中元素,又 f23=23, 所以 M 中至少含有 8 个元素.综上共有 3 个正确说法,选 C.
答案(dá àn):C
12/11/2021
12/11/2021
第十二页,共二十七页。
2.已知 a,b 为常数(chángshù),若 f(x)=x2+4x+3,f(ax+b)=x2+10x
+24,则 5a-b=_____2__.
解析:因为(yīn wèi) f(x)=x2+4x+3,
所以 f(ax+b)=(ax+b)2 +4(ax+b)+3=a2x2 +(2ab+4a)x
12/11/2021
第八页,共二十七页。
(2)设函数(hánshù) f(x)=x3cos x+1.若 f(a)=11,则 f(-a)=________. 解析:f(a)=a3cos a+1=11,即 a3cos a=10,则 f(-a)= (-a)3cos(-a)+1=-a3cos a+1=-10+1=-9. 答案(dá àn):-9

年高考数学二轮复习 专题二 函数与导数 第2讲 函数的应用课件 理.pptx

年高考数学二轮复习 专题二 函数与导数 第2讲 函数的应用课件 理.pptx
fx -loga(x+2)有3个零点,则实数a的取值范围是_(_3_,5_)__. 思维升华 方程f(x)=g(x)根的个数即为函数y=f(x)和y=g(x)图象交点的 个数.
思维升华 解析 11 答案
(2)已知实数f(x)=ex,x≥0, 若关于x的方程f 2(x)+f(x)+t=0有三个 lg-x,x<0,
-k=0有唯一一个实数根,则实数k的取值范围是_______________.
解析 17 答案
(2)(2017·全国Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a 等于
A.-12
1 B.3
√C.12
D.1
解析 19 答案
热点三 函数的实际应用问题 解决函数模型的实际应用问题,首先考虑题目考查的函数模型,并要注 意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么, 求什么,从中提炼出相应的数学问题.(2)数学建模:弄清题目中的已知 条件和数量关系,建立函数关系式.(3)解函数模型:利用数学方法得出 函数模型的数学结果.(4)实际问题作答:将数学问题的结果转化成实际 问题作出解答.
解析 8 答案
(2)(2017届甘肃高台县一中检测)已知函数f(x)满足:①定义域为R;② ∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1,则12 方程f(x) = log2|x|在区间[-3,5]内解的个数是
√A.5
B.6
C.7
D.8
解析 画出函数图象如图所示,由图可知,共有5个解.
间(π,2π)内没有零点,则ω的取值范围是______________.
解析 9 答案
热点二 函数的零点与参数的范围 解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函 数方程思想或数形结合思想,构建关于参数的方程或不等式求解.

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时 函数模型及其应用

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时 函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用第三章 (对应学生用书(文)、(理)33~36页)考情分析考点新知函数模型应用问题的考查是江苏高考比较固定的考查题型,要非常重视,复习时应在准确把握各种函数的特征基础上,根据具体实际问题的情境,建立相关函数模型,利用函数知识分析解决问题.① 了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.② 了解函数模型(如二次函数、指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.,1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m.答案:1 900解析:(26-14.6)÷0.6×100=1 900.2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.答案:1 331解析:1 000×(1+10%)3=1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________.答案:(5,10)4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2000ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6-1解析:由2 000ln ⎝ ⎛⎭⎪⎫1+M m =12 000,得1+M m =e 6,所以M m =e 6-1.5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t<25,t ∈N ,-t +100,25≤t ≤30,t ∈N ,且该商品的日销售量Q 与时间t(天)的函数关系为Q =-t +40(0<t≤30,t ∈N ),则这种商品日销量金额最大的一天是30天中的第________天.答案:25解析:设日销量金额为W 元,则W =P·Q =⎩⎪⎨⎪⎧(t +20)(-t +40),0<t<25,t ∈N (-t +100)(-t +40),25≤t ≤30,t ∈N , 当0<t<25,t ∈N 时,W(t)<W(25);当25≤t≤30,t ∈N 时,W (t)≤W(25).1. 常用的函数模型有一次函数、二次函数、指数函数、对数函数、幂函数.2. 指数函数、对数函数、幂函数的增长速度的比较:一般地,在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n(n>0)都是增函数,但是它们的增长速度不同,而且不在同一个“档次上”.随着x 的增大,y =a x(a>1)的增长速度越快,会越过并远远大于y =x n(n>0)的增长速度;而y =log a x(a>1)的增长速度会越慢.因此,总会存在一个x 0,当x>x 0时,有ax 0>x n 0>log a x 0(比较ax 0,x n0,log a x 0的大小).3. 函数模型的应用实例的基本题型 (1) 给定函数模型解决实际问题. (2) 建立合适的函数模型解决问题. (3) 建立拟合函数模型解决实际问题.4. 函数建模的基本程序题型1 一次、二次函数模型例1 市场营销人员对过去几年某商品的价格及销售数量的关系作数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k 为正常数).目前该商品定价为每个a 元,统计其销售数量为b 个.(1) 当k =12时,该商品的价格上涨多少,才能使销售的总金额达到最大?(2) 在适当的涨价过程中,求使销售总金额不断增加时k 的取值范围. 解:由题意,价格上涨x%以后,销售总金额为y =a(1+x%)·b(1-kx%)=ab 10 000[-kx 2+100(1-k)x +10 000].(1) 当k=12时,y =ab 10 000(-12x 2+50x +10 000)=ab 20 000[22 500-(x -50)2],因此当x =50,即价格上涨50%时,y 取最大值98ab.(2) y =ab 10 000[-kx 2+100(1-k)x +10 000],此二次函数的图象开口向下,对称轴为x =50(1-k )k.在适当涨价的过程中,销售总金额不断增加,即要求此函数当自变量x 在{x|x>0}的一个子集内增大时,y 也增大,因此50(1-k )k>0,解得0<k<1.备选变式(教师专享) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k>0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解:(1) 令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x>0,k>0,故x =20k 1+k 2=20k +1k≤202=10.当且仅当k =1时取等号.所以炮的最大射程为10 km. (2) 因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka -120(1+k 2)a 2成立关于k 的方程a 2k 2-20ak +a 2+64=0有正根判别式Δ=(-20a)2-4a 2(a 2+64)≥0a ≤6.所以当a 不超过6(km)时,可击中目标.题型2 指数、对数函数模型例2 设在海拔xm 处的大气压强是yPa ,y 与x 之间的函数关系为y =ce kx,其中c 、k为常量.已知某天的海平面的大气压为1.01×105 Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强.(保留3位有效数字)解:将x =0时,y =1.01×105Pa 和x =1000时,y =0.90×105Pa 分别代入函数式y =ce kx,得⎩⎪⎨⎪⎧1.01×105=ce 0,0.90×105=ce 1 000k, ∴ c =1.01×105, ∴ e1 000k=0.90×1051.01×105=0.901.01, ∴ k =11000×ln 0.901.01,用计算器算得k≈-1.154×10-4,∴ y =1.01×105×e -1.154×10-4x ,将x =600代入上述函数式,得y≈9.42×104Pa ,即在600m 高空的大气压强约为9.42×104Pa.备选变式(教师专享)我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C ,动植物死亡后,停止了新陈代谢,14C 不再产生,且原有的14C 会自动衰变,经过5570年(叫做14C 的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C 的原始含量为a ,则经过t 年后的残余量a′(与a 之间满足a′=a·e -kt).现测得出土的古莲子中14C 残余量占原量的87.9%,试推算古莲子的生活年代.解:因a′=a·e-kt,即a′a=e -kt.两边取对数,得lg a′a=-ktlge.①又知14C 的半衰期是5570年,即t =5570时,a′a =12.故lg 12=-5570klge ,即klge =lg25570.代入①式,并整理,得t =-5570lga′alg2.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的a′a 是0.879,代入公式,得t =-5570lg0.879lg2≈1 036.即古莲子约是1 036年前的遗物.题型3 分段函数模型例3 已知美国苹果公司生产某款iPhone 手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone 手机x 万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x>40.(1) 写出年利润W(万美元)关于年产量x(万只)的函数解析式;(2) 当年产量为多少万只时,苹果公司在该款iPhone 手机的生产中所获得的利润最大?并求出最大利润.解:(1) 当0<x≤40,W =xR(x)-(16x +40)=-6x 2+384x -40;当x>40,W =xR(x)-(16x +40)=-40 000x -16x +7 360.所以,W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x>40.(2) ① 当0<x≤40,W =-6(x -32)2+6 104,所以W max =W(32)=6 104;② 当x>40时,W =-40 000x-16x +7 360,由于40 000x +16x≥240 000x×16x=1 600, 当且仅当40 000x=16x ,即x =50∈(40,+∞)时,W 取最大值为5 760.综合①②知,当x =32时,W 取最大值为6 104. 备选变式(教师专享)经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t +200(1≤t ≤50,t ∈N ),前30天价格为g(t)=12t +30(1≤t≤30,t ∈N ),后20天价格为g(t)=45(31≤t≤50,t ∈N ).(1) 写出该种商品的日销售额S 与时间t 的函数关系式; (2) 求日销售额S 的最大值. 解:(1)根据题意得S =⎩⎪⎨⎪⎧(-2t +200)⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N ,45(-2t +200),31≤t ≤50,t ∈N ,即S =⎩⎪⎨⎪⎧-t 2+40t +6000,1≤t ≤30,t ∈N ,-90t +9000,31≤t ≤50,t ∈N .(2)①当1≤t≤30,t ∈N 时,S =-(t -20)2+6400, 当t =20时,S 的最大值为6400;②当31≤t≤50,t ∈N 时,S =-90t +9000为减函数, 当t =31时,S 的最大值是6210,∵ 6210<6400,∴ 当t =20时,日销售额S 有最大值6400. 题型4 分式函数模型例4 如图,ABCD 是正方形空地,边长为30m ,电源在点P 处,点P 到边AD 、AB 距离分别为9m 、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF ,MN ∶NE =16∶9.线段MN 必须过点P ,端点M 、N 分别在边AD 、AB 上,设AN =x(m),液晶广告屏幕MNEF 的面积为S(m 2).(1) 用x 的代数式表示AM ;(2) 求S 关于x 的函数关系式及该函数的定义域;(3) 当x 取何值时,液晶广告屏幕MNEF 的面积S 最小?解:(1) AM =3xx -9(10≤x≤30).(2) MN 2=AN 2+AM 2=x 2+9x2(x -9)2.∵ MN ∶NE =16∶9,∴ NE =916MN. ∴ S =MN·NE=916MN 2=916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2,定义域为[10,30].(3) S′=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-9x 2(2x -18)(x -9)4 =98×x[(x -9)3-81](x -9)3, 令S′=0,得x =0(舍)或9+333.当10≤x<9+333时,S ′<0,S 关于x 为减函数;当9+333<x ≤30时,S ′>0,S 关于x 为增函数.∴ 当x =9+333时,S 取得最小值.故当AN 长为9+333 m 时,液晶广告屏幕MNEF 的面积S 最小. 备选变式(教师专享)如图,两个工厂A 、B 相距2km ,点O 为AB 的中点,要在以O 为圆心,2km 为半径的圆弧MN 上的某一点P 处建一幢办公楼,其中MA⊥AB,NB ⊥AB.据测算此办公楼受工厂A 的“噪音影响度”与距离AP 的平方成反比,比例系数为1;办公楼受工厂B 的“噪音影响度”与距离BP 的平方也成反比,比例系数为4,办公楼与A 、B 两厂的“总噪音影响度”y 是A 、B 两厂“噪音影响度”的和,设AP 为xkm.(1) 求“总噪音影响度”y 关于x 的函数关系式,并求出该函数的定义域; (2) 当AP 为多少时,“总噪音影响度”最小?解:(1) (解法1)如图,连结OP , 设∠AOP=α,则π3≤α≤2π3.在△AOP 中,由余弦定理得x 2=12+22-2×1×2cos α=5-4cos α, 在△BOP 中,由余弦定理得 BP 2=12+22-2×1×2cos(π-α)=5+4cos α,∴ BP 2=10-x 2, ∴ y =1AP 2+4BP 2=1x 2+410-x2 . ∵ π3≤α≤2π3,∴ 3≤x ≤ 7,∴ y =1x 2+410-x2(3≤x ≤7).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m ,n),则PA 2=(m +1)2+n 2,PB 2=(m -1)2+n 2.∵ m 2+n 2=4,PA =x ,∴ PB 2=10-x 2(后面解法过程同解法1).(2) (解法1)y =1x 2+410-x 2=110(1x 2+410-x 2)[x 2+(10-x 2)]=110(5+10-x 2x 2+4x 210-x 2)≥110(5+210-x 2x 2·4x 210-x 2)=910,当且仅当10-x2x2=4x 210-x 2,即x =303∈[3,7]时取等号. 故当AP =303km 时,“总噪音影响度”最小. (解法2)由y =1x 2+410-x 2,得y′=-2x 3+8x (10-x 2)2=6x 4+40x 2-200x 3(10-x 2)2=2(x 2+10)(3x 2-10)x 3(10-x 2)2. ∵ 3≤x ≤7 ,∴ 令y′=0,得x =303,且当x ∈⎣⎢⎡⎭⎪⎫3,303时,y ′<0;当x∈(303,7]时,y ′>0.∴ x =303时,y =1x 2+410-x 2取极小值,也即最小值.故当AP =303km 时,“总噪音影响度”最小.【示例】 (本题模拟高考评分标准,满分14分)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:① 报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;② 报销的医疗费用不得低于医疗总费用的50%;③ 报销的医疗费用不得超过8万元.(1) 请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2) 若该单位决定采用函数模型y =x -2lnx +a(a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)审题引导: 正确理解三个条件:① 要求模型函数在[2,10]上是增函数;② 要满足y≥x2恒成立;③ 要满足y 的最大值小于8.规范解答: 解:(1) 函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①,(2分)当x =10时,y 有最大值7.4万元,小于8万元,满足条件③.(4分)但当x =3时,y =2920<32,即y≥x2不恒成立,不满足条件②,故该函数模型不符合该单位报销方案.(6分)(2) 对于函数模型y =x -2lnx +a ,设f(x)=x -2lnx +a ,则f′(x)=1-2x =x -2x ≥0.∴ f(x)在[2,10]上是增函数,满足条件①.由条件②,得x -2lnx +a≥x2,即a≥2lnx-x 2在x∈[2,10]上恒成立,令g(x)=2lnx -x 2,则g′(x)=2x -12=4-x 2x ,由g′(x)>0得0<x<4,∴ g(x)在(0,4)上是增函数,在(4,10)上是减函数. ∴ a ≥g(4)=2ln4-2=4ln2-2.(10分)由条件③,得f(10)=10-2ln10+a≤8,解得a≤2ln10-2.另一方面,由x -2lnx +a≤x,得a≤2lnx 在x∈[2,10]上恒成立,∴ a ≤2ln2.(12分)综上所述,a 的取值范围为[4ln2-2,2ln2], ∴ 满足条件的整数a 的值为1.(14分)1. (2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).答案:20解析:设矩形花园的宽为y m ,则x 40=40-y40,所以y =40-x ,所以矩形花园的面积S=x(40-x)=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.2. (2013·通州模拟)将一个边长分别为a 、b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子.若这个长方体的外接球的体积存在最小值,则ba的取值范围是________. 答案:⎝ ⎛⎭⎪⎫1,54 解析:设减去的正方形边长为x ,其外接球直径的平方R 2=(a -2x)2+(b -2x)2+x 2,由R′=0,∴ x =29(a +b).∵ a<b ,∴ x ∈⎝ ⎛⎭⎪⎫0,a 2,∴ 0<29(a +b)<a 2, ∴ 1<b a <54.3. (2013·无锡期末)要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m 2),其中ABCD 是一个矩形,EFCD 是一个等腰梯形,梯形高h =12AB ,tan ∠FED =34,设AB =x m ,BC =y m.(1) 求y 关于x 的表达式;(2) 如何设计x 、y 的长度,才能使所用材料最少?解:(1) 如图,在等腰梯形CDEF 中,DH 是高.依题意:DH =12AB =12x ,EH =DH tan ∠FED =43×12x =23x ,∴ 392=xy +12⎝ ⎛⎭⎪⎫x +x +43x 12x =xy +56x 2,∴ y =392x -56x.∵ x >0,y >0,∴ 392x -56x >0,解之得0<x <3655.∴ 所求表达式为y =392x -56x ⎝ ⎛⎭⎪⎫0<x <3655.(2) 在Rt △DEH 中,∵ tan ∠FED =34,∴ sin ∠FED =35,∴ DE =DH sin ∠FED =12x ×53=56x ,∴ l =(2x +2y)+2×56x +⎝ ⎛⎭⎪⎫2×23x +x =2y +6x =39x -53x +6x =39x +133x ≥239x ×133x =26, 当且仅当39x =133x ,即x =3时取等号,此时y =392x -56x =4,∴ AB =3 m ,BC =4 m 时,能使整个框架所用材料最少.4. (2013·南通一模)某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4 m .这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB >AD)为长方形薄板,沿AC 折叠后AB′交DC 于点P.当△ADP 的面积最大时最节能,凹多边形ACB′PD 的面积最大时制冷效果最好.(1) 设AB =x m ,用x 表示图中DP 的长度,并写出x 的取值范围; (2) 若要求最节能,应怎样设计薄板的长和宽?(3) 若要求制冷效果最好,应怎样设计薄板的长和宽? 解:(1) 由题意,AB =x ,BC =2-x.因x >2-x ,故1<x <2.设DP =y ,则PC =x -y. 因△ADP≌△CB′P,故PA =PC =x -y.由PA 2=AD 2+DP 2,得(x -y)2=(2-x)2+y2y =2⎝ ⎛⎭⎪⎫1-1x ,1<x <2. (2) 记△ADP 的面积为S 1,则S 1=⎝ ⎛⎭⎪⎫1-1x (2-x)=3-⎝ ⎛⎭⎪⎫x +2x ≤3-22, 当且仅当x =2∈(1,2)时,S 1取得最大值.故当薄板长为2m ,宽为(2-2)m 时,节能效果最好. (3) 记多边形ACB′PD 的面积为S 2,则S 2=12x(2-x)+⎝ ⎛⎭⎪⎫1-1x (2-x) =3-12⎝ ⎛⎭⎪⎫x 2+4x ,1<x <2.于是S 2′=-12⎝ ⎛⎭⎪⎫2x -4x 2=-x 3+2x2=0x =32.关于x 的函数S 2在(1,32)上递增,在(32,2)上递减.所以当x =32时,S 2取得最大值.故当薄板长为32 m ,宽为(2-32)m 时,制冷效果最好.1. 某驾驶员喝了mL 酒后,血液中的酒精含量f(x)(mg/mL)随时间x(h)变化的规律近似满足表达式f(x)=⎩⎨⎧5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1.《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中酒精含量不得超过0.02mg/mL ,据此可知,此驾驶员至少要过________h 后才能开车.(精确到1h)答案:4解析:当0≤x≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝ ⎛⎭⎪⎫13x ≤0.02,得x≥4.2. 一辆列车沿直线轨道前进,从刹车开始到停车这段时间内,测得刹车后t s 内列车前进的距离为S =27t -0.45t 2 m ,则列车刹车后________s 车停下来,期间列车前进了________m.答案:30 405解析:S′(t)=27-0.9t ,由瞬时速度v(t)=S′(t)=0得t =30(s),期间列车前进了S(30)=27×30-0.45×302=405(m).3. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km 时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km 时,车流速度为60km/h ,研究表明:当20≤x≤200时,车流速度v 是车流密度x 的一次函数.(1) 当0≤x≤200时,求函数v(x)的表达式;(2) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时)解:(1) 由题意,当0≤x≤20时,v(x)=60;当20≤x≤200时,设v(x)=ax +b.再由已知,得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003. 故函数v(x)的表达式为v(x)=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200. (2) 依题意并由(1)可得f(x)=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200. 当0≤x≤20时,f(x)为增函数,故当x =20时,其最大值为60×20=1200;当20≤x≤200时,f(x)=13x(200-x)≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=100003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f(x)在区间[20,200]上取得最大值100003. 综上,当x =100时,f(x)在区间[0,200]上取得最大值100003≈3333, 即当车流密度为100辆/km 时,车流量可以达到最大,最大值约为3333辆/h.4. 某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax 2(a >0)的一部分,栏栅与矩形区域的边界交于点M 、N ,交曲线于点P ,设P(t ,f(t)).(1) 将△OMN(O 为坐标原点)的面积S 表示成t 的函数S(t);(2) 若在t =12处,S(t)取得最小值,求此时a 的值及S(t)的最小值.解:(1) y′=-2ax ,∴ 切线斜率是-2at ,∴ 切线方程为y -(1-at 2)=-2at(x -t).令y =0,得x =1+at 22at ,∴ M ⎝ ⎛⎭⎪⎫1+at 22at ,0, 令x =0,得y =1+at 2,∴ N(0,1+at 2),∴ △OMN 的面积S(t)=(1+at 2)24at. (2) S′(t)=3a 2t 4+2at 2-14at 2=(at 2+1)(3at 2-1)4at2, 由a >0,t >0,S ′(t)=0,得3at 2-1=0,即t =13a . 当3at 2-1>0,即t >13a 时,S ′(t)>0; 当3at 2-1<0,即0<t<13a 时,S ′(t)<0. ∴ 当t =13a时,S(t)有最小值. 已知在t =12处,S(t)取得最小值,故有13a =12, ∴ a =43. 故当a =43,t =12时,S(t)min =S ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1+43·1424·43·12=23.1. 与函数有关的应用型问题,函数模型可以是已知条件中给出其表达式,也可以是由已知条件建立函数模型,显然后者难度较大,在解题过程中不要忘记考虑函数的定义域.2. 解应用问题,首先,应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解.要能顺利解答一个应用问题重点要过三关:(1) 事理关:通过阅读,知道讲的是什么,培养学生独立获取知识的能力;(2) 文理关:需要把实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系;(3) 数理关:在构建数学模型的过程中,要求学生有对数学知识的检索能力,认定或构建相应的数学模型,完成由实际问题向数学问题的转化,构建了数学模型后,要正确解出数学问题的答案,需要扎实的基础知识和较强的数理能力. 请使用课时训练(B)第13课时(见活页).[备课札记]。

高考数学二轮复习 函数与导数 课时考点2 导数的概念及应用

高考数学二轮复习 函数与导数 课时考点2  导数的概念及应用

课时考点2 导数的概念及应用高考考纲透析:(理科)(1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

(2)熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则.会求某些简单函数的导数。

(3)理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

(文科)(1)了解导数概念的某些实际背景。

(2)理解导数的几何意义。

(3)掌握函数,y=c(c 为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数。

(4)理解极大值、极小值、最大值、最小值的概念.并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

(5)会利用导数求某些简单实际问题的最大值和最小值。

高考风向标:导数的概念及运算,利用导数研究函数的单调性和极值,函数的最大值和最小值,尤其是利用导数研究函数的单调性和极值,复现率较高。

高考试题选:1.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是( )2. 设曲线x e y x (-=≥0)在点M (t,e --t )处的切线l 与x 轴y 轴所围成的三角形面积为S (t ).(Ⅰ)求切线l 的方程;(Ⅱ)求S (t )的最大值.3. 已知a 为实数,))(4()(2a x x x f --=,(Ⅰ)求导数)(x f ';(Ⅱ)若0)1(=-'f ,求)(x f 在[--2,2] 上的最大值和最小值; (Ⅲ)若)(x f 在(—∞,—2)和[2,+∞]上都是递增的,求a 的取值范围.热点题型1: 函数的最值已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(I ) f ’(x )=-3x 2+6x +9.令f ‘(x )<0,解得x <-1或x >3,所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(II )因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ‘(x )>0,所以f (x )在[-1, 2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7,即函数f (x )在区间[-2,2]上的最小值为-7.变式新题型1:已知]2,1[,6)(3-∈+-=x b ax ax x f 的最大值为3,最小值为29-,求b a ,的值。

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数

第二章函数与导数第14课时函数的综合应用第三章(对应学生用书(文)、(理)37~39页)考点分析考点新知函数是高考的热点内容,主要是以基本初等函数为载体,考查函数的性质及有关问题,如单调性、奇偶性、值域和最值问题,同时考查函数思想与其他数学知识的综合运用.① 能利用函数的各种性质解决如求最值、不等式和方程有关的问题,提高对函数图象的识图、作图和用图的能力.②熟练利用函数的知识方法解决函数的综合问题,注意函数与其他知识的联系,灵活选择适当方法解决问题.1. (必修1P87习题13改编)已知集合A={x|33-x<6},B={x|lg(x-1)<1},则A∩B=________.答案:(2-log32,11)解析:由33-x<6,知3-x<log36,即x>3-log36,所以A=(2-log32,+∞).由lg(x-1)<1,知0<x-1<10,即1<x<11,所以B=(1,11),所以A∩B=(2-log32,11).2. 已知a、b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为________.答案:-32解析:因为a、b为正实数,所以函数f(x)是单调递增的.所以f(1)=a+b+2=4,即a+b=2.所以f(x)在[-1,0]上的最小值为f(-1)=-(a+b)+12=-32.3. (原创)若函数f(x)=13x3-12ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.答案:[5,7]解析:f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.4. (原创)已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1、x2∈[0,3],且x1≠x2时,都有f(x1)-f(x2)x1-x2>0,给出下列命题:① f(3)=0;② 直线x =-6是函数y =f(x)的图象的一条对称轴; ③ 函数y =f(x)在[-9,-6]上为单调增函数; ④ 函数y =f(x)在[-9,9]上有4个零点. 其中正确的命题是________.(填序号) 答案:①②④解析:令x =-3,得f(-3)=0,由y =f(x)是偶函数,所以f(3)=f(-3)=0,①正确;因为f(x +6)=f(x),所以y =f(x)是周期为6的函数,而偶函数图象关于y 轴对称,所以直线x =-6是函数y =f(x)的图象的一条对称轴,②正确;由题意知,y =f(x)在[0,3]上为单调增函数,所以在[-3,0]上为单调减函数,故y =f(x)在[-9,-6]上为单调减函数,③错误;由f(3)=f(-3)=0,知f(-9)=f(9)=0,所以函数y =f(x)在[-9,9]上有个零点,④正确.5. (2013·宿迁一模)已知函数f(x)=||x -1|-1|,若关于x 的方程f(x)=m(m∈R )恰有四个互不相等的实根x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是________.答案:(-3,0)解析:f(x)=||x -1|-1|=⎩⎪⎨⎪⎧|x -1|-1,x ≤0或x≥2,1-|x -1|,0<x<2,方程f(x)=m 的解就是y =f(x)的图象与直线y =m 交点的横坐标,由图可知,x 2=-x 1,x 3=2+x 1,x 4=2-x 1,且-1<x 1<0.设t =x 1x 2x 3x 4=(x 21-2)2-4,则t =(x 21-2)2-4,易得-3<t<0.[备课札记]题型1 已知函数解析式研究函数的性质例1 已知函数f(x)=lg(1-x)+lg(1+x)+x 4-2x 2. (1) 求函数f(x)的定义域; (2) 判断函数f(x)的奇偶性; (3) 求函数f(x)的值域.解:(1) 由⎩⎪⎨⎪⎧1-x>0,1+x>0,得-1<x<1,所以函数f(x)的定义域为(-1,1).(2) 由f(-x)=lg(1+x)+lg(1-x)+(-x)4-2(-x)2=lg(1-x)+lg(1+x)+x 4-2x 2=f(x),所以函数f(x)是偶函数.(3) f(x)=lg(1-x)+lg(1+x)+x 4-2x 2=lg(1-x 2)+x 4-2x 2,设t =1-x 2,由x∈(-1,1),得t∈(0,1].所以y =lg(1-x 2)+x 4-2x 2=lgt +(t 2-1),t ∈(0,1],设0<t 1<t 2≤1,则lgt 1<lgt 2,t 21<t 22,所以lgt 1+(t 21-1)<lgt 2+(t 22-1),所以函数y =lgt +(t 2-1)在t∈(0,1]上为增函数, 所以函数f(x)的值域为(-∞,0]. 备选变式(教师专享)关于函数f(x)=lg x 2+1|x|(x>0,x ∈R ),下列命题正确的是________.(填序号)① 函数y =f(x)的图象关于y 轴对称;② 在区间(-∞,0)上,函数y =f(x)是减函数; ③ 函数y =f(x)的最小值为lg2;④ 在区间(1,+∞)上,函数y =f(x)是增函数. 答案:①③④解析:由f(-x)=lg (-x )2+1|-x|=lg x 2+1|x|=f(x),知函数f(x)为偶函数,故①正确;由f(-2)=lg 52=f ⎝ ⎛⎭⎪⎫-12,知②错误;由x 2+1|x|=|x|+1|x|≥2,知f(x)=lg x 2+1|x|≥lg2,故③正确;因为函数g(x)=x +1x 在(1,+∞)上为增函数,所以y =f(x)在(1,+∞)上也是增函数,故④正确.综上所述,①③④均正确.题型2 函数图象与函数性质的联系例2 已知函数f(x)=ax 2-|x|+2a -1(a 为实常数). (1) 若a =1,作函数f(x)的图象;(2) 设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3) 设h(x)=f (x )x ,若函数h(x)在区间[1,2]上是增函数,求实数a 的取值范围.解:(1) 当a =1时,f(x)=x 2-|x|+1=⎩⎪⎨⎪⎧x 2+x +1,x<0,x 2-x +1,x ≥0.作图如下.(2) 当x∈[1,2]时,f(x)=ax 2-x +2a -1.若a =0,则f(x)=-x -1在区间[1,2]上是减函数,g(a)=f(2)=-3. 若a≠0,则f(x)=a ⎝ ⎛⎭⎪⎫x -12a 2+2a -14a -1,f(x)图象的对称轴是直线x =12a .当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a -3.当0<12a <1,即a>12时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a -2.当1≤12a ≤2,即14≤a ≤12时,g(a)=f ⎝ ⎛⎭⎪⎫12a =2a -14a -1. 当12a >2,即0<a<14时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a -3. 综上可得g(a)=⎩⎪⎨⎪⎧6a -3,a<14,2a -14a -1,14≤a ≤12,3a -2,a>12.(3) 当x∈[1,2]时,h(x)=ax +2a -1x -1,在区间[1,2]上任取x 1、x 2,且x 1<x 2,则h(x 2)-h(x 1)=⎝ ⎛⎭⎪⎫ax 2+2a -1x 2-1-⎝ ⎛⎭⎪⎫ax 1+2a -1x 1-1 =(x 2-x 1)⎝ ⎛⎭⎪⎫a -2a -1x 1x 2=(x 2-x 1)·ax 1x 2-(2a -1)x 1x 2.因为h(x)在区间[1,2]上是增函数,所以h(x 2)-h(x 1)>0.因为x 2-x 1>0,x 1x 2>0,所以ax 1x 2-(2a -1)>0, 即ax 1x 2>2a -1.当a =0时,上面的不等式变为0>-1,即a =0时结论成立. 当a>0时,x 1x 2>2a -1a ,由1<x 1x 2<4,得2a -1a≤1,解得0<a≤1.当a<0时,x 1x 2<2a -1a ,由1<x 1x 2<4,得2a -1a ≥4,解得-12≤a <0.所以实数a 的取值范围为⎣⎢⎡⎦⎥⎤-12,1.备选变式(教师专享)设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x>0,其中b>0,c ∈R .当且仅当x =-2时,函数f(x)取得最小值-2.(1) 求函数f(x)的表达式;(2) 若方程f(x)=x +a(a∈R )至少有两个不相同的实数根,求a 取值的集合. 解:(1) ∵ 当且仅当x =-2时,函数f(x)取得最小值-2.∴ 二次函数y =x 2+bx +c 的对称轴是x =-b 2=-2.且有f(-2)=(-2)2-2b +c =-2,即2b -c =6. ∴ b =4,c =2.∴ f(x)=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x>0.(2) 记方程①:2=x +a(x>0), 方程②:x 2+4x +2=x +a(x≤0). 分别研究方程①和方程②的根的情况:(ⅰ) 方程①有且仅有一个实数根a<2,方程①没有实数根a ≥2.(ⅱ) 方程②有且仅有两个不相同的实数根,即方程x 2+3x +2-a =0有两个不相同的非正实数根.∴ ⎩⎪⎨⎪⎧Δ=9-4(2-a )>02-a≥0⎩⎪⎨⎪⎧a>-14a≤2-14<a ≤2;方程②有且仅有一个实数根,即方程x 2+3x +2-a =0有且仅有一个非正实数根.∴ 2-a<0或Δ=0,即a>2或a =-14.综上可知,当方程f(x)=x +a(a∈R )有三个不相同的实数根时,-14<a<2;当方程f(x)=x +a(a∈R )有且仅有两个不相同的实数根时,a =-14或a =2.∴ 符合题意的实数a 取值的集合为⎣⎢⎡⎦⎥⎤-14,2. 题型3 函数的最值与不等式恒成立问题例3 已知f(x)=xlnx ,g(x)=-x 2+ax -3.(1) 求函数f(x)在[t ,t +2](t>0)上的最小值;(2) 对一切x∈(0,+∞),2f (x)≥g(x)恒成立,求实数a 的取值范围; (3) 证明对一切x∈(0,+∞),都有lnx>1e x -2ex成立.(1) 解:f′(x)=lnx +1,当x∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x)<0,f(x)单调递减;当x∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x)>0,f(x)单调递增.① 当0<t<t +2<1e 时,t 无解;② 当0<t<1e <t +2,即0<t<1e 时,f(x)min =f ⎝ ⎛⎭⎪⎫1e =-1e ;③ 当1e ≤t<t +2,即t≥1e时,f(x)在[t ,t +2]上单调递增,f(x)min =f(t)=tlnt ,所以f(x)min=⎩⎪⎨⎪⎧-1e ,0<t<1e ,tlnt ,t ≥1e .(2) 解:由题意,要使2xlnx ≥-x 2+ax -3在x∈(0,+∞)恒成立,即要使a≤2lnx +x +3x恒成立.设h(x)=2lnx +x +3x (x>0),则h′(x)=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 当x∈(0,1)时,h ′(x)<0,h(x)单调递减;当x∈(1,+∞)时,h ′(x)>0,h(x)单调递增. 所以x =1时,h(x)取得极小值,也就是最小值, 即[h(x)]min =h(1)=4,所以a≤4.(3) 证明:问题等价于证明xlnx>x e x -2e ,x ∈(0,+∞).由(1)知,f(x)=xlnx 在(0,+∞)上最小值是-1e ,当且仅当x =1e时取得.设m(x)=x e x -2e ,x ∈(0,+∞),则m′(x)=1-xex ,易得[m(x)]max =m(1)=-1e ,当且仅当x =1时取得,从而对一切x∈(0,+∞),都有lnx>1e x -2ex成立.变式训练定义在D 上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界.已知函数f(x)=1+a·⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x.(1) 当a =1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;(2) 若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.解:(1) 当a =1时,f(x)=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x. 因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M 成立,所以函数f(x)在(-∞,0)上不是有界函数.(2) 由题意知,|f (x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-⎝ ⎛⎭⎪⎫14x ≤a ·⎝ ⎛⎭⎪⎫12x ≤2-⎝ ⎛⎭⎪⎫14x ,所以-4·2x -⎝ ⎛⎭⎪⎫12x ≤a ≤2·2x-⎝ ⎛⎭⎪⎫12x在[0,+∞)上恒成立.所以⎣⎢⎡⎦⎥⎤-4·2x -⎝ ⎛⎭⎪⎫12x max ≤a ≤⎣⎢⎡⎦⎥⎤2·2x-⎝ ⎛⎭⎪⎫12x min ,设2x=t ,h(t)=-4t -1t ,p(t)=2t -1t ,由x∈[0,+∞)得t≥1,设1≤t 1<t 2,h(t 1)-h(t 2)=(t 2-t 1)(4t 1t 2-1)t 1t 2>0,p(t 1)-p(t 2)=(t 1-t 2)(2t 1t 2+1)t 1t 2<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a 的取值范围为[-5,1].【示例】 (本题模拟高考评分标准,满分16分)已知函数f(x)=a x +x 2-xlna(a>0,a ≠1).(1) 当a>1时,求证:函数f(x)在(0,+∞)上单调递增; (2) 若函数y =|f(x)-t|-1有三个零点,求t 的值;(3) 若存在x 1、x 2∈[-1,1],使得|f(x 1)-f(x 2)|≥e -1,试求a 的取值范围. 审题引导: 本题考查函数与导数的综合性质,函数模型并不复杂,(1)(2)两问是很常规的,考查利用导数证明单调性,考查函数与方程的零点问题.第(3)问要将“若存在x 1、x 2∈[-1,1],使得|f(x 1)-f(x 2)|≥e -1”转化成|f(x)max -f(x)min |=f(x)max -f(x)min ≥e -1成立,最后仍然是求值域问题,但在求值域过程中,问题设计比较巧妙,因为在过程中还要构造函数研究单调性来确定导函数的正负.规范解答: (1) 证明:f′(x)=a x lna +2x -lna =2x +(a x-1)·lna.(2分)由于a>1,故当x∈(0,+∞)时,lna>0,a x-1>0,所以f ′(x)>0. 故函数f(x)在(0,+∞)上单调递增.(4分)(2) 解:当a>0,a ≠1时,因为f′(0)=0,且f′(x)在R 上单调递增,故f′(x)=0有唯一解x =0.(6分)所以x 、f′(x)、f(x)的变化情况如下表所示:x(-∞,0) 0 (0,+∞)f′(x) - 0 + f(x)极小值又函数y =|f(x)-t|-1有三个零点,所以方程f(x)=t ±1有三个根,而t +1>t -1,所以t -1=f(x)min =f(0)=1,解得t =2.(10分)(3) 解:因为存在x 1、x 2∈[-1,1],使得|f(x 1)-f(x 2)|≥e -1,所以当x∈[-1,1]时,|f(x)max -f(x)min |=f(x)max -f(x)min ≥e -1.(12分)由(2)知,f(x)在[-1,0]上递减,在[0,1]上递增,所以当x ∈[-1,1]时,f(x)min=f(0)=1,f(x)max =max{f(-1),f(1)}.而f(1)-f(-1)=(a +1-lna)-⎝ ⎛⎭⎪⎫1a +1+lna =a -1a -2lna , 记g(t)=t -1t -2lnt(t>0),因为g′(t)=1+1t 2-2t =⎝ ⎛⎭⎪⎫1t -12≥0(当且仅当t =1时取等号),所以g(t)=t -1t -2lnt 在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(-1);当0<a<1时,f(1)<f(-1).(14分) ① 当a>1时,由f(1)-f(0)≥e -1a -lna ≥e -1a ≥e , ② 当0<a<1时,由f(-1)-f(0)≥e -11a+lna ≥e -10<a≤1e,综上知,所求a 的取值范围为⎝ ⎛⎦⎥⎤0,1e ∪[e ,+∞).(16分)1. (2013·南京期初)已知函数f(x)=2x 2+m 的图象与函数g(x)=ln|x|的图象有四个交点,则实数m 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-∞,-12-ln2 解析:由于f(x)与g(x)都是偶函数,因此只需考虑当x>0时,函数f(x)与g(x)的图象有两个交点即可.当x>0时,g(x)=lnx ,令h(x)=f(x)-g(x)=2x 2-lnx +m ,则h′(x)=4x -1x ,由h′(x)=0,得x =12.易知当x =12时,h(x)有极小值为12+ln2+m ,要使函数f(x)与g(x)的图象在(0,+∞)内有两个交点,则h ⎝ ⎛⎭⎪⎫12<0,即12+ln2+m<0,所以m<-12-ln2.2. (2013·江苏)在平面直角坐标系xOy 中,设定点A(a ,a),P 是函数y =1x (x>0)图象上一动点.若点P 、A 之间的最短距离为22,则满足条件的实数a 的所有值为________.答案:-1,10解析:设P ⎝ ⎛⎭⎪⎫x ,1x ,x>0,则 PA 2=(x -a)2+⎝ ⎛⎭⎪⎫1x -a 2=x 2+1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2=⎝ ⎛⎭⎪⎫x +1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2-2. 令t =x +1x,则由x>0,得t≥2,所以PA 2=t 2-2at +2a 2-2=(t -a)2+a 2-2.由PA 取得最小值,得⎩⎨⎧a≤2,22-4a +2a 2-2=(22)2, 或⎩⎨⎧a>2,a 2-2=(22)2,解得a =-1或a =10. 3. (2013·四川)设函数f(x)=e x+x -a (a∈R ,e 为自然对数的底数).若存在b∈[0,1]使f(f(b))=b 成立,则a 的取值范围是________.答案:[1,e]解析:若存在b∈[0,1]使f(f(b))=b 成立,则A(b ,f(b)),A′(f(b),b)都在y =f(x)的图象上.又f(x)=e x+x -a 在[0,1]上单调递增, 所以(x A ′-x A )(y A ′-y A )≥0,即(f(b)-b)(b -f(b))≥0,所以(f(b)-b)2≤0, 所以f(b)=b ,从而f(x)=x 在[0,1]上有解, 即e x+x -a =x 在[0,1]上有解,所以a =e x +x -x 2,x ∈[0,1],令φ(x)=e x +x -x 2,x ∈[0,1],则φ′(x)=e x-2x +1≥0,所以φ(x)在[0,1]上单调递增. 又φ(0)=1,φ(1)=e ,所以φ(x)∈[1,e],即a∈[1,e].4. (2013·南京期末)已知函数f(x)=⎩⎨⎧1-(x -1)2,0≤x <2,f (x -2),x ≥2.若关于x 的方程f(x)=kx(k >0)有且仅有四个根,其最大根为t ,则函数g(t)=2524t 2-6t +7的值域为________.答案:⎣⎢⎡⎭⎪⎫-4125,-1 解析:在直角坐标系中分别画出函数f(x)在区间[0,2],[2,4],[4,6]上的三个半圆的图象,最大根t 一定在区间(3,4)内,g(t)=2524t 2-6t +7是二次函数,对称轴方程为4>t =7225>3,g(t)的最小值为g ⎝ ⎛⎭⎪⎫7225=-4125,直线y =kx(k >0)与区间[2,4]上半圆相交,与区间[4,6]上半圆相离,故124<k 2<18,而k 2=124时,直线与半圆相切,由⎩⎨⎧y =kx ,y =1-(x -3)2,得(1+k 2)x 2-6x +8=0,取k 2=124,得2524x 2-6x +7=-1,t<x ,所以g(t)=2524t 2-6t +7<-1.1. 若奇函数f(x)与偶函数g(x)满足f(x)+g(x)=2x,则函数g(x)的最小值是________.答案:1解析:由f(x)+g(x)=2x ,得f(-x)+g(-x)=2-x, 由f(x)是奇函数,g(x)是偶函数,∴ -f(x)+g(x)=2-x,∴ g(x)=12(2x +2-x),∴ g (x)≥1.2. 设函数f(x)=ax 2+bx +c(a<0)的定义域为D ,若所有点(s ,f(t))(s 、t∈D )构成一个正方形区域,则a 的值为________.答案:-4解析:|x 1-x 2|=f max (x),b 2-4aca2=4ac -b24a,|a|=2-a ,∴ a =-4. 3. 对于实数a 和b ,定义运算“”:a b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a>b.设f(x)=(2x -1)(x-1),且关于x 的方程为f(x)=m(m∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1、x 2、x 3的取值范围是________.答案:⎝⎛⎭⎪⎫1-316,0解析:由新定义得f(x)=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x>0.作出函数f(x)的图象,由图可知,当0<m<14时,f(x)=m(m∈R )恰有三个互不相等的实数根x 1、x 2、x 3,不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1,∴ x 2x 3<14.令⎩⎪⎨⎪⎧(2x -1)x =14,x<0,解得x =1-34或x =1+34(舍去), ∴ 1-34<x 1<0,∴ 1-316<x 1x 2x 3<0.4. 已知函数f(x)=lnx -ax 2+(2-a)x. (1) 讨论f(x)的单调性;(2) 设a>0,证明:当0<x<1a 时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ; (3) 若函数y =f(x)的图象与x 轴交于A 、B 两点,线段AB 中点的横坐标为x 0,证明:f′(x 0)<0.(1) 解:f(x)的定义域为(0,+∞),f ′(x)=1x -2ax +(2-a)=-(2x +1)(ax -1)x . ① 若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上是增函数.② 若a>0,则由f′(x)=0得x =1a ,且当x∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x)>0,当x>1a 时,f ′(x)<0.所以f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数. (2) 解:设函数g(x)=f ⎝ ⎛⎭⎪⎫1a +x -f ⎝ ⎛⎭⎪⎫1a -x , 则g(x)=ln(1+ax)-ln(1-ax)-2ax ,g ′(x)=a 1+ax +a 1-ax -2a =2a 3x 21-a 2x2. 当0<x<1a时,g ′(x)>0,而g(0)=0,所以g(x)>0. 故当0<x<1a 时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x . (3) 证明:由(1)可得,当a≤0时,函数y =f(x)的图象与x 轴至多有一个交点, 故a>0,从而f(x)的最大值为f ⎝ ⎛⎭⎪⎫1a ,且f ⎝ ⎛⎭⎪⎫1a >0. 不妨设A(x 1,0),B(x 2,0),0<x 1<x 2,则0<x 1<1a<x 2. 由(2)得f ⎝ ⎛⎭⎪⎫2a -x 1=f ⎝ ⎛⎭⎪⎫1a +1a -x 1>f(x 1)=0. 从而x 2>2a -x 1,于是x 0=x 1+x 22>1a. 由(1)知,f ′(x 0)<0.1. 恒成立问题的处理方法:第一步,分清参数和自变量;第二步,确定是否要分离;第三步,构造新函数求最值;第四步,解不等式.2. 有双重量词出现的不等式恒成立问题,先把其中一个自变量当成已知的参数,解决一个量词,然后再解决另一个量词.3. 证明与函数有关的不等式主要是利函数的最值和单调性来判断.4. 方程的根的个数问题往往考查函数与方程思想和函数零点问题,需注意等价转化.请使用课时训练(A)第14课时(见活页).[备课札记]。

高考数学新课标全国二轮复习课件2.函数与导数2

高考数学新课标全国二轮复习课件2.函数与导数2
第二讲
导数
导数及其应用 (1)导数概念及其几何意义
①了解导数概念的实际背景. ②理解导数的几何意义.
(2)导数的运算
①能根据导数定义求函数y=C(C为常数),
y=x,y=x2,y=x3,y=������ ,y= ������的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单
������ ������
过点 P(2,-5),且该曲线在点 P 处的切线与直线 7x+2y+3=0 平行,则 a+b 的值是 . 解析:由曲线 y=ax2+������ 过点 P(2,-5), 得 4a+2 =-5. 又 y'=2ax-������ 2 ,
������ ������ ������

调区间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、
极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值
(其中多项式函数一般不超过三次). (4)生活中的优化问题 会利用导数解决某些实际问题.
1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f'(x0)等于曲线y=f(x)在点(x0,f(x0))处的切线的斜率, 即k= f'(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f'(x0)(x-x0). (3)导数的物理意义:s'(t)=v(t),v'(t)=a(t).
在点
π 2
,2 处的切线与直线 x+ay+1=0 垂直,则
(2-cos ������ )'sin ������ -(2-cos ������ )(sin ������ )' 1-2cos ������ si n 2 ������ π 2

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数

高考数学总复习(考点引领+技巧点拨)第二章 函数与导数

第二章函数与导数第6课时二次函数第三章(对应学生用书(文)、(理)18~19页)考情分析考点新知① 由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导函数是二次函数,因此对二次函数的考查一直是高考的热点问题.②以二次函数为背景的应用题也是高考的常考题型,同时借助二次函数模型考查代数推理问题是一个难点.①掌握二次函数的概念、图象特征.②掌握二次函数的对称性和单调性,会求二次函数在给定区间上的最值.③掌握二次函数、一元二次方程及一元二次不等式这“三个二次”之间的关系,提高解综合问题的能力.,1. (必修1P54测试7)函数f(x)=x2+2x-3,x∈[0,2]的值域为________.答案:[-3,5]解析:由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].2. 二次函数y=-x2+2mx-m2+3的图象的对称轴为x+2=0,则m=________,顶点坐标为________,递增区间为________,递减区间为________.答案:-2 (-2,3) (-∞,-2] [-2,+∞)3. (必修1P45习题8改编)函数f(x)=(x+1)(x-a)是偶函数,则f(2)=________.答案:3解析:由f(-x)=f(x),得a=1,∴ f(2)=3.4. (必修1P44习题3)函数f(x)=⎩⎪⎨⎪⎧x2+2x-1,x∈[0,+∞),-x2+2x-1,x∈(-∞,0)的单调增区间是________.答案:R解析:画出函数f(x)的图象可知.5. 设abc>0,二次函数f(x)=ax2+bx+c的图象可能是________.(填序号)答案:④解析:若a>0,则b 、c 同号,③④两图中c<0,则b<0,所以-b2a >0,④正确;若a<0,则b 、c 异号,①中c<0,则b>0,-b 2a >0,不符合,②中c>0,则b<0,-b2a<0,不符合.1. 二次函数的解析式的三种形式(1) 一般式:f(x)=ax 2+bx +c(a≠0).(2) 顶点式:若二次函数的顶点坐标为(h ,k),则其解析式f(x)=a(x -h)2+k(a≠0). (3) 零点式(两根式):若二次函数的图象与x 轴的交点为(x 1,0),(x 2,0),则其解析式f(x)=a(x -x 1)(x -x 2)(a≠0).2. 二次函数的图象及性质二次函数f(x)=ax 2+bx +c(a≠0)的图象是一条抛物线,对称轴方程为x =-b 2a,顶点坐标是⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a . (1) 当a>0,函数图象开口向上,函数在区间(-∞,-b 2a ]上是单调减函数,在[-b2a ,+∞)上是单调增函数,当x =-b 2a 时,y 有最小值,y min =4ac -b24a.(2) 当a<0,函数图象开口向下,函数在区间[-b2a ,+∞)上是单调减函数,在(-∞,-b 2a ]上是单调增函数,当x =-b 2a 时,y 有最大值,y max =4ac -b 24a. 3. 二次函数f(x)=ax 2+bx +c(a≠0),当Δ=b 2-4ac>0时,图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0),则M 1M 2=Δ|a|.题型1 求二次函数解析式例1已知二次函数f(x)满足f(2)=-1, f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.解:(解法1:利用一般式)设f(x)=ax 2+bx +c(a≠0),⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7,∴ 所求二次函数为f(x)=-4x 2+4x +7.(解法2:利用顶点式)设f(x)=a(x -m)2+n ,∵ f(2)=f(-1),∴ 抛物线对称轴为x =2+(-1)2=12,即m =12;又根据题意,函数最大值y max =8,∴ n =8,∴ f(x)=a ⎝ ⎛⎭⎪⎫x -122+8.∵ f(2)=-1,∴ a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4.∴ f(x)=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.(解法3:利用两根式)由题意知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x -2)(x +1),即f(x)=ax 2-ax -2a -1.又函数有最大值y max =8,即 4a (-2a -1)-a 24a =8,解得a =-4或a =0(舍),∴ 所求函数的解析式为f(x)=-4x 2-(-4)x -2×(-4)-1=-4x 2+4x +7.备选变式(教师专享)已知二次函数f(x)=ax 2+bx +c 图象的顶点为(-1,10),且方程ax 2+bx +c =0的两根的平方和为12,求二次函数f(x)的表达式.解:由题意可设f(x)=a(x +1)2+10,即f(x)=ax 2+2ax +a +10;∴ b=2a ,c =a +10,设方程ax 2+bx +c =0的两根为x 1、x 2,则x 21 +x 22 =12,即(x 1+x 2)2-2x 1x 2=12,∴⎝ ⎛⎭⎪⎫-b a 2-2×c a =12. 又b =2a ,c =a +10,∴⎝ ⎛⎭⎪⎫-2a a 2-2×a +10a =12,解得a =-2, ∴f(x)=-2x 2-4x +8.题型2 含参变量二次函数的最值例2 函数f(x)=2x 2-2ax +3在区间[-1,1]上最小值记为g(a). (1) 求g(a)的函数表达式; (2) 求g(a)的最大值.解:(1) ①当a<-2时,函数f(x)的对称轴x =a2<-1,则g(a)=f(-1)=2a +5;②当-2≤a≤2时,函数f(x)的对称轴x =a 2∈[-1,1],则g(a)=f ⎝ ⎛⎭⎪⎫a 2=3-a 22;③当a>2时,函数f(x)的对称轴x =a2>1,则g(a)=f(1) =5-2a.综上所述,g(a)=⎩⎪⎨⎪⎧2a +5(a<-2),3-a22(-2≤a≤2),5-2a (a>2).(2) ①当a<-2时,g(a)<1;②当-2≤a≤2时,g(a)∈[1,3];③当a>2时,g(a)<1. 由①②③可得g(a)max =3. 备选变式(教师专享)求二次函数f(x) = x 2-4x - 1在区间[t ,t +2]上的最小值g(t),其中t∈R .解:函数f(x) = (x -2)2-5的图象的对称轴方程为x =2,开口向上. 当2∈[t,t +2],即t≤2≤t+2,也就是0≤t≤2时,g(t)=f(2)=-5;当2[t ,t +2]时,①当t >2时,f(x)在[t ,t +2]上为增函数,故g(t)=f(t)=t 2-4t -1.②当t +2<2,即t <0时,f(x)在[t ,t +2]上为减函数,故g(t)=f(t +2)=(t+2)2-4(t +2)-1=t 2-5.故g(t)的解析式为g(t)=⎩⎪⎨⎪⎧t 2-4t -1,t >2,-5,0≤t ≤2,t 2-5,t <0.题型3 二次函数的综合应用 例3 已知函数g(x)=ax 2-2ax +1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=g (x )x.(1) 求a 、b 的值及函数f(x)的解析式;(2) 若不等式f(2x )-k·2x≥0在x∈[-1,1]时有解,求实数k 的取值范围.解:(1) g(x)=ax 2-2ax +1+b ,由题意得 ① ⎩⎪⎨⎪⎧a>0,g (2)=1+b =1,g (3)=3a +b +1=4,得⎩⎪⎨⎪⎧a =1,b =0,② ⎩⎪⎨⎪⎧a<0,g (2)=1+b =4,g (3)=3a +b +1=1,得⎩⎪⎨⎪⎧a =-1,b =3>1(舍).∴ a =1,b =0,g(x)=x 2-2x +1,f(x)=x +1x -2.(2) 不等式f(2x )-k·2x ≥0,即2x +12x -2≥k·2x,∴ k ≤⎝ ⎛⎭⎪⎫12x 2-2·⎝ ⎛⎭⎪⎫12x +1. 设t =12x ,则k≤t 2-2t +1,∵ x ∈[-1,1],故t∈⎣⎢⎡⎦⎥⎤12,2. 记h(t)=t 2-2t +1,∵ t ∈⎣⎢⎡⎦⎥⎤12,2,∴ h(t)max =1,故所求k 的取值范围是(-∞,1]. 变式训练已知函数f(x)=x 2+mx +n 的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y =g(x)与y =f(x)的图象关于原点对称.(1) 求f(x)与g(x)的解析式;(2) 若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围. 解:(1) 因为函数f(x)满足f(-1+x)=f(-1-x)对任意实数都成立,所以图象关于x =-1对称,即-m2=-1,即m =2.又f(1)=1+m +n =3,所以n =0,所以f(x)=x 2+2x. 又y =g(x)与y =f(x)的图象关于原点对称,所以-g(x)=(-x)2+2(-x),所以g(x)=-x 2+2x.(2) 由(1)知,F(x)=(-x 2+2x)-λ(x 2+2x)=-(λ+1)x 2+(2-2λ)x. 当λ+1≠0时,F(x)的对称轴为x =2-2λ2(λ+1)=1-λλ+1,因为F(x)在(-1,1]上是增函数,所以⎩⎪⎨⎪⎧1+λ<0,1-λλ+1≤-1或⎩⎪⎨⎪⎧1+λ>0,1-λλ+1≥1,所以λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F(x)=4x 显然成立. 综上所述,实数λ的取值范围是(-∞,0].1. 若函数f(x)=ax 2-3x +4在区间(-∞,6)上单调递减,则实数a 的取值范围是________.答案:0≤a≤14解析:当a =0时,f(x)=-3x +4,符合;当a≠0时,则⎩⎪⎨⎪⎧a>0,32a ≥6,解得0<a≤14.综上,实数a 的取值范围是0≤a ≤14.2. 已知函数f(x)=x 2-3x +m ,g(x)=2x 2-4x ,若f(x)≥g(x)恰在x∈[-1,2]上成立,则实数m 的值为________.答案:2解析:由题意,x 2-3x +m≥2x 2-4x ,即x 2-x -m≤0的解集是[-1,2],所以m =2.3. (2013·南通三模)已知函数f(x)=⎩⎪⎨⎪⎧ax 2-2x -1,x ≥0,x 2+bx +c ,x <0是偶函数,直线y =t 与函数y =f(x)的图象自左向右依次交于四个不同点A 、B 、C 、D.若AB =BC ,则实数t 的值为________.答案:-74解析:根据偶函数的定义得a =1,b =2,c =-1,f(x)=⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,⎩⎪⎨⎪⎧x D =3x C ,x C +x D =2,所以x C =12,则t =⎝ ⎛⎭⎪⎫122-2×12-1=-74. 4. (2013·新课标)若函数f(x)=(1-x 2)(x 2+ax +b)的图象关于直线x =-2对称,则f(x)的最大值为________.答案:16解析:因为点(1,0),(-1,0)在f(x)的图象上,且图象关于直线x =-2对称,所以点(-5,0),(-3,0)必在f(x)的图象上,所以f(-5)=(1-25)(25-5a +b)=0,f(-3)=(1-9)(9-3a +b)=0,联立,解得a =8,b =15,所以f(x)=(1-x 2)(x 2+8x +15),即f(x)=-(x +1)(x -1)(x +3)(x +5)=-(x 2+4x +3)(x 2+4x -5).令t =x 2+4x =(x +2)2-4≥-4,则f(x)=-(t +3)(t -5)=-(t -1)2+16,当t =1时,f(x)max =16.1. 已知函数f(x)=e x-1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为________.答案:(2-2,2+2)解析:易知,f(a)=e a -1>-1,由f(a)=g(b),得g(b)=-b 2+4b -3>-1,解得2-2<b<2+ 2.2. 已知函数f(x)=x 2+ax +b(a 、b∈R )的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +6),则实数c 的值为________.答案:9解析:根据函数f(x)=x 2+ax +b 的值域为[0,+∞),得到a 2-4b =0.又关于x 的不等式f(x)<c ,可化为x 2+ax +b -c<0,它的解集为(m ,m +6),设函数f(x)=x 2+ax +b -c的图象与x 轴的交点的横坐标分别为x 1、x 2,则|x 2-x 1|=m +6-m =6,从而(x 2-x 1)2=36,即(x 1+x 2)2-4x 1x 2=36.又x 1x 2=b -c ,x 1+x 2=-a ,代入得到 c =9.3. 设函数f(x)=x 2-1,对任意x∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x)≤f(x-1)+4f(m)恒成立,则实数m 的取值范围是________.答案:⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 解析:由题意知x 2m 2-1-4m 2(x 2-1)≤(x-1)2-1+4(m 2-1)在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,1m 2-4m 2≤-3x 2-2x +1在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m≤-32或m≥32.4. 已知函数f(x)=mx +3,g(x)=x 2+2x +m. (1) 求证:函数f(x)-g(x)必有零点;(2) 设函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,求实数m 的取值范围.(1) 证明:f(x)-g(x)=(mx +3)-(x 2+2x +m)=-x 2+(m -2)x +(3-m).由Δ1=(m -2)2+4(3-m)=m 2-8m +16=(m -4)2≥0,知函数f(x)-g(x)必有零点.(2) 解:|G(x)|=|-x 2+(m -2)x +(2-m)|=|x 2-(m -2)x +(m -2)|,Δ2=(m -2)2-4(m -2)=(m -2)(m -6), ① 当Δ2≤0,即2≤m≤6时,|G(x)|=x 2-(m -2)x +(m -2),若|G(x)|在[-1,0]上是减函数,则m -22≥0,即m≥2,所以2≤m≤6时,符合条件.② 当Δ2>0,即m <2或m >6时,若m <2,则m -22<0,要使|G(x)|在[-1,0]上是减函数,则m -22≤-1且G(0)≤0,所以m≤0;若m >6,则m -22>2,要使|G(x)|在[-1,0]上是减函数,则G(0)≥0,所以m >6.综上,m ≤0或m≥2.1. 二次函数有三种形式的解析式,要根据具体情况选用:如和对称轴、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.2. 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,需要按照“三点一轴”来分类讨论(三点即区间的端点和中点,一轴即对称轴),此类问题是考查的重点.3. 二次函数、一元二次方程与一元二次不等式统称为“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.请使用课时训练(A )第6课时(见活页).[备课札记]。

高考数学(全国通用)一轮总复习(文理科)配套课件:第二章 函数、导数及其应用 2.1

高考数学(全国通用)一轮总复习(文理科)配套课件:第二章 函数、导数及其应用 2.1

第二章
第一节 函数及其表示
主干知识回顾 主干知识回顾 名师考点精讲 教师备课资料
-8-
3.分段函数
在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系, 这样的函数叫做分段函数,分段函数是一个函数而不是几个函数.
4.常用的数学方法与思想
换元法、配凑法、数形结合思想、分类讨论思想.
第二章
������2 -5������+6 ������-3
> 0,

-4 ≤ ������ ≤ 4,
即函数的定义域为(2,3)∪(3,4],故选项 C 正确. ������ > 2 且������ ≠ 3,
【参考答案】 C
第二章
第一节 函数及其表示
主干知识回顾 名师考点精讲 教师备课资料
-13-
1.基本初等函数的定义域 (1)整式函数的定义域为 R. (2)分式函数中分母不等于 0. (3)偶次根式函数被开方式大于或等于 0. (4)一次函数、二次函数的定义域均为 R. (5)函数 f(x)=x0 的定义域为{x|x≠0}. (6)指数函数的定义域为 R,对数函数的定义域为(0,+∞). 2.复合函数的定义域 若已知函数 y=f(x)的定义域为[a,b],则 y=f(g(x))的定义域由 a≤g(x)≤b 解出;若已知函数 y=f(g(x))的定义域为 [a,b],则函数 y=f(x)的定义域即为函数 g(x)的值域.
【参考答案】 x2-1(x≥1)
第二章
第一节 函数及其表示
主干知识回顾 名师考点精讲 教师备课资料
-16-
(2)设f(x)是一次函数,且满足f[f(x)]=4x+3,则f(x)= . 【解题思路】设f(x)=ax+b(a≠0),利用待定系数法求解.设f(x)=ax+b(a≠0),所以有

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第3课时 函数的单调性

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第3课时 函数的单调性

第二章 函数与导数第3课时 函数的单调性第三章 (对应学生用书(文)、(理)11~12页)1. (必修1P 54测试4)已知函数y =f(x)的图象如图所示,那么该函数的单调减区间是________.答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号)① y =1-3x ;② y=-1x;③ y=x 2+1;④ y=|x +1|.答案:②③④3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)<f(2a),则实数a 的取值范围是________.答案:[-1,1)解析:由条件⎩⎪⎨⎪⎧-2≤a+1≤2,-2≤2a≤2,a +1>2a ,解得-1≤a<1.4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =(x -3)|x|=⎩⎪⎨⎪⎧-x (x -3),x<0,x (x -3),x ≥0,画图可知单调递减区间是⎣⎢⎡⎦⎥⎤0,32.5. (必修1P 54测试6改编)已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须⎩⎪⎨⎪⎧m<0,-12m ≥2,解得-14≤m<0.综上,实数m 的取值范围是-14≤m ≤0.1. 增函数和减函数一般地,设函数f(x)的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是单调增函数.(如图(1)所示)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是单调减函数.(如图(2)所示)2. 单调性与单调区间如果一个函数在某个区间M 上是单调增函数或是单调减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).3. 判断函数单调性的方法(1) 定义法:利用定义严格判断. (2) 利用函数的运算性质.如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数,若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.[备课札记]题型1 函数单调性的判断例1 判断函数f(x)=e x+1e x 在区间(0,+∞)上的单调性.解:(解法1)设0<x 1<x 2,则 f(x 1)-f(x 2)=⎝⎛⎭⎪⎫ex 1+1ex 1-⎝ ⎛⎭⎪⎫ex 2+1ex 2 =()ex 1-ex 2+ex 2-ex 1ex 1·ex 2=()ex 1-ex 2⎝ ⎛⎭⎪⎫1-1ex 1+x 2 =()ex 1-x 2-1·ex 1+x 2-1ex 1.∵ 0<x 1<x 2,∴ x 1-x 2<0,x 1+x 2>0,∴ ex 1-x 2<1,ex 1+x 2>1,ex 1>0, ∴ f(x 1)<f(x 2).∴ f(x)在(0,+∞)上是增函数. (解法2)对f(x)=e x+1e x 求导,得f′(x)=e x-1e x =1e x (e 2x -1),当x >0时,e x>0,e 2x>1, ∴ f ′(x)>0,∴ f(x)在(0,+∞)上为增函数. 备选变式(教师专享)证明函数f(x)=x1+x 在区间[1,+∞)上是减函数.证明:设x 1、x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ f(x)=x1+x 2在[1,+∞)上为减函数.题型2 已知函数的单调性求参数的值或范围 例2 已知函数f(x)=lg kx -1x -1(k∈R ,且k>0).(1) 求函数f(x)的定义域;(2) 若函数f(x)在[10,+∞)上单调递增,求k 的取值范围.解:(1) 由kx -1x -1>0,k>0,得x -1k x -1>0,当0<k<1时,得x<1或x>1k ;当k =1时,得x∈R且x ≠1;当k>1时,得x<1k或x>1.综上,当0<k<1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1.(2) 由函数f(x)在[10,+∞)上单调递增,知10k -110-1>0,∴ k>110.又f(x)=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f(x 1)<f(x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, 得k -1x 1-1<k -1x 2-1 (k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k<1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. 变式训练已知函数f(x)=2x -ax,x ∈(0,1].(1) 当a =-1时,求函数y =f(x)的值域;(2) 若函数y =f(x)在x∈(0,1]上是减函数,求实数a 的取值范围. 解:(1) 当a =-1时,f(x)=2x +1x ,因为0<x≤1,所以f(x)=2x +1x≥22x·1x =22,当且仅当x =22时,等号成立,所以函数y =f(x)的值域是[22,+∞).(2) (解法1)设0<x 1<x 2≤1,由f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫2x 1-a x 1-⎝ ⎛⎭⎪⎫2x 2-a x 2=2(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 2-a x 1=(x 1-x 2)(2x 1x 2+a )x 1x 2,因为函数y =f(x)在x∈(0,1]上是减函数,所以f(x 1)-f(x 2)>0恒成立,所以2x 1x 2+a<0,即a<-2x 1x 2在x∈(0,1]上恒成立, 所以a≤-2,即实数a 的取值范围是(-∞,-2]. (解法2)由f(x)=2x -a x ,知f′(x)=2+ax 2,因为函数y =f(x)在x∈(0,1]上是减函数, 所以f ′(x)=2+ax 2≤0在x∈(0,1]上恒成立,即a≤-2x 2在x∈(0,1]上恒成立,所以a≤-2,即实数a 的取值范围是(-∞,-2].题型3 函数的单调性与最值例3 已知函数f(x)=x 2+2x +ax ,x ∈[1,+∞).(1) 当a =12时,求f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,求实数a 的取值范围. 解:(1) 当a =12时,f(x)=x +12x +2.设x 1>x 2≥1,则f(x 1)-f(x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.∵ x 1>x 2≥1, ∴ f(x 1)>f(x 2),∴ f(x)在[1,+∞)上为增函数. ∴ f (x)≥f(1)=72,即f(x)的最小值为72.(2) ∵ f(x)>0在x∈[1,+∞)上恒成立,即x 2+2x +a >0在[1,+∞)上恒成立,∴ a >[-(x 2+2x)]max .∵ t(x)=-(x 2+2x)在[1,+∞)上为减函数, ∴ t(x)max =t(1)=-3, ∴ a >-3. 备选变式(教师专享)已知a∈R 且a≠1,求函数f(x)=ax +1x +1在[1,4]上的最值.解:由f(x)=ax +1x +1=a +1-ax +1.若1-a>0,即a<1时,f(x)在[1,4]上为减函数, ∴ f max (x)=f(1)=a +12,f min (x)=f(4)=4a +15;若1-a<0,即a>1时,f(x)在[1,4]上为增函数, ∴ f max (x)=f(4)=4a +15,f min (x)=f(1)=a +12.1. (2013·南京期初)已知函数f(x)=⎩⎪⎨⎪⎧e x-2k ,x ≤0(1-k )x ,x>0是R 上的增函数,则实数k 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫12,1 解析:由题意得⎩⎪⎨⎪⎧e 0-2k≤0,1-k>0,解得12≤k<1.2. 若函数f(x)=a x(a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[0,+∞)上是增函数,则a =________.答案:14解析:若a>1,有a 2=4,a -1=m ,所以a =2,m =12,此时g(x)=-x 是[0,+∞)上的减函数,不符合;当0<a<1,有a -1=4,a 2=m ,所以a =14,m =116,此时g(x)=3x 4,符合.3. (2013·安徽)“a≤0”是“函数f(x)=|(ax -1)x|在区间是(0,+∞)内单调递增”的________条件.答案:充要解析:① 当a =0时,f(x)=|x|在区间(0,+∞)内单调递增;② 当a<0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)内单调递增;③当a>0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)上先增后减再增,不符合.所以“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.4. 已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x >0,都有f(f(x)-lnx)=1+e ,则f(1)=________.答案:e解析:f(x)-lnx 必为常数函数,否则存在两个不同数,其对应值均为1+e ,与单调函数矛盾.所以可设f(x)-lnx =c ,则f(x)=lnx +c.将c 代入,得f(c)=1+e ,即lnc +c =1+e.∵ y =lnx +x 是单调增函数,当c =e 时,lnc +c =1+e 成立, ∴ f(x)=lnx +e.则f(1)=e.1. 给定函数:①y=x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数是____________.(填序号)答案:②③解析:①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.2. 设a>0且a≠1,则“函数f(x)=a x 在R 上是减函数 ”是“函数g(x)=(2-a)x 3在R 上是增函数”的__________条件.答案:充分不必要解析:函数f(x)=a x 在R 上是减函数等价于0<a<1,函数g(x)=(2-a)x 3在R 上是增函数等价于0<a<1或1<a<2,所以“函数f(x)=a x在R 上是减函数 ”,是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件.3. 函数f(x)=⎩⎪⎨⎪⎧ax 2+1,x ≥0,(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案:(-∞,-2]∪(1,2]解析:若a>0,则f(x)=ax 2+1在[0,+∞)上单调增,∴ f(x)=(a 2-1)e ax在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0,a 2-1≤1,∴ 1<a ≤ 2.同理,当a<0时,可求得a≤-2,故a∈(-∞,-2]∪(1,2].4. 是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,说明a 可取哪些值;如果不存在,请说明理由.解:显然a>0且a≠1.当a>1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫0,12,只需t(2)=4a -2>0,即a>12,所以a >1均成立; 当0<a <1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫12,+∞,需要⎩⎪⎨⎪⎧12a≥4,t (4)=16a -4>0无解. 所以,存在实数a >1,满足条件.1. 求函数的单调区间,首先应注意函数的定义域,函数的单调区间都是定义域的子集,常用方法有:定义法、图象法、导数法、复合函数法等.2. 函数单调性的应用 (1) 比较函数值的大小; (2) 解不等式;(3) 求函数的值域或最值等.注意利用定义都是充要性命题,即若函数f(x)在区间D 上递增(减)且f(x 1)<f(x 2) x 1<x 2(x 1>x 2)(x 1、x 2∈D).请使用课时训练(B )第3课时(见活页).[备课札记]。

高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

第2讲导数的简单应用1.(2018·全国Ⅰ卷,文6)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( D )(A)y=-2x (B)y=-x (C)y=2x (D)y=x解析:法一因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f'(x)=3x2+1,f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二因为f(x)=x3+(a-1)x2+ax为奇函数,所以f'(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f'(x)=3x2+1,所以f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.2.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:因为f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g'(x)=4x-e x.又g'(0)<0,g'(2)>0,所以g(x)在(0,2)内至少存在一个极值点,所以g(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.3.(2018·全国Ⅱ卷,文13)曲线y=2ln x在点(1,0)处的切线方程为.解析:因为y'=,y'x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-24.(2017·全国Ⅰ卷,文14)曲线y=x2+在点(1,2)处的切线方程为.解析:f(x)=x2+,f(1)=2.f'(x)=2x-,f'(1)=1.所以y=x2+在(1,2)处的切线方程为y-f(1)=f'(1)(x-1),y-2=x-1,即x-y+1=0.答案:x-y+1=05.(2015·全国Ⅱ卷,文16)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .解析:法一因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1.又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0,由得ax2+ax+2=0,因为Δ=a2-8a=0,所以a=8.法二因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1,又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0.因为y'=2ax+(a+2),所以令2ax+a+2=2,得x=-,代入y=2x-1,得y=-2,所以点-,-2在y=ax2+(a+2)x+1的图象上,故-2=a×-2+(a+2)×-+1,所以a=8.答案:86.(2017·全国Ⅲ卷,文21)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.(1)解:f(x)的定义域为(0,+∞),f'(x)=+2ax+2a+1=.若a≥0,因为x∈(0,+∞)时,f'(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,因为x∈0,-时,f'(x)>0,当x∈-,+∞时,f'(x)<0,故f(x)在0,-上单调递增,在-,+∞上单调递减.(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f-=ln--1-, 所以f(x)≤--2等价于ln--1-≤--2,即ln-++1≤0,设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0,所以当x>0时,g(x)≤0,从而当a<0时,ln-++1≤0,即f(x)≤--2.7.(2015·全国Ⅱ卷,文21)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解:(1)f(x)的定义域为(0,+∞),f'(x)=-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈0,时,f'(x)>0;当x∈,+∞时,f'(x)<0.所以f(x)在0,上单调递增,在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln +a1-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).1.考查角度(1)考查导数的几何意义的应用,包括求曲线的切线方程、根据切线方程求参数值等;(2)考查导数在研究函数性质中的应用,包括利用导数研究函数性质判断函数图象、利用导数求函数的极值和最值、利用导数研究不等式与方程等.2.题型及难易度选择题、填空题、解答题均有,其中导数几何意义的应用为中等难度偏下,其他问题均属于较难的试题.(对应学生用书第11~13页)导数的几何意义【例1】(1)(2018·山东日照校际联考)已知f(x)=e x(e为自然对数的底数),g(x)=ln x+2,直线l是f(x)与 g(x) 的公切线,则直线l的方程为( )(A)y=x或y=x-1(B)y=-ex或y=-x-1(C)y=ex或y=x+1(D)y=-x或y=-x+1(2)(2018·河南南阳一中三模)经过原点(0,0)作函数f(x)=x3+3x2图象的切线,则切线方程为;(3)(2018·黑龙江省哈尔滨九中二模)设函数f(x)=(x-a)2+(ln x2-2a)2.其中x>0,a∈R,存在x0使得f(x0)≤成立,则实数a的值为.解析:(1)设切点分别为(x1,),(x2,ln x2+2),因为f'(x)=e x,g'(x)=,所以==,所以=,所以(x2-1)(ln x2+1)=0,所以x2=1或x2=,因此直线l的方程为y-2=1·(x-1)或y-1=e·x-,即y=ex或y=x+1.故选C.(2)因为f'(x)=3x2+6x.设切点为P(x0,y0),切线斜率为k,则把①,③代入②得切线方程为y-(+3)=(3+6x0)(x-x0),④又切线过(0,0),所以-(+3)=-x0(3+6x0),解得,x0=0或x0=-.代入④式得切线方程为y=0或9x+4y=0.(3)由题意,问题等价于f(x)min≤.而函数f(x)可看作是动点M(x,ln x2)与N(a,2a)之间距离的平方,动点M在函数y=2ln x的图象上,N在直线y=2x的图象上,问题转化为直线与曲线的最小距离.如图,由y=2ln x得y'==2,得x=1,所以曲线上点M(1,0)到直线y=2x的距离最小,为d=,所以f(x)≥.又由题意,要使f(x0)≤,则f(x0)=,此时N恰好为垂足,由k MN===-,解得a=.答案:(1)C (2)y=0或9x+4y=0 (3)(1)求切线方程的关键是求切点的横坐标,使用切点的横坐标表达切线方程,再根据其他已知求解;(2)两曲线的公切线的切点未必是同一个点,可以分别设出切点横坐标,使用其表达切线方程,得出的两方程表示同一条直线,由此得出方程解决公切线问题;(3)从曲线外一点P(m,n)引曲线的切线方程,可设切点坐标为(x0,f(x0)),利用方程=f'(x0)求得x0后得出切线方程;(4)一些距离类最值,可以转化为求一条直线上的点到一条曲线上的点的最小值,此时与已知直线平行的曲线的切线到已知直线的距离即为其最小值.热点训练1:(1)(2018·辽宁省辽南协作校一模)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )(A)y=-2x+3 (B)y=x(C)y=3x-2 (D)y=2x-1(2)(2018·安徽皖南八校4月联考)若x,a,b均为任意实数,且(a+2)2+(b-3)2=1,则(x-a)2+(ln x-b)2的最小值为( )(A)3(B)18(C)3-1 (D)19-6(3)(2018·天津部分区质量调查二)曲线y=ae x+2的切线方程为2x-y+6=0,则实数a的值为.解析:(1)由f(x)=2f(2-x)-x2+8x-8,可得f(2-x)=2f(x)-(2-x)2+8-8x,即f(2-x)=2f(x)-x2-4x+4,将其代入f(x)=2f(2-x)-x2+8x-8,可得f(x)=4f(x)+8-8x-2x2-x2+8x-8,即f(x)=x2,故f'(x)=2x,因为f(1)=1,所以切线方程为y-1=2(x-1),即y=2x-1.故选D.(2)由题意可得,其结果应为曲线y=ln x上的点与以C(-2,3)为圆心,以1为半径的圆上的点的距离的平方的最小值,可以求曲线y=ln x上的点与圆心C(-2,3)的距离的最小值,在曲线y=ln x上取一点M(m,ln m),曲线y=ln x在点M处的切线的斜率为k'=,从而有k CM·k'=-1,即·=-1,整理得ln m+m2+2m-3=0,解得m=1,所以点(1,0)满足条件,其到圆心C(-2,3)的距离为d==3,故其结果为(3-1)2=19-6,故选D.(3)根据题意,设曲线y=ae x+2与2x-y+6=0的切点的坐标为(m,ae m+2),其导数y'=ae x+2,则切线的斜率k=ae m+2,又由切线方程为2x-y+6=0,即y=2x+6,则k=ae m+2=2,则切线的方程为y-ae m+2=ae m+2(x-m),又由ae m+2=2,则切线方程为y-2=2(x-m),即y=2x-2m+2,则有-2m+2=6,可解得m=-2,则切点的坐标为(-2,2),则有2=a×e(-2)+2,所以a=2.答案:(1)D (2)D (3)2导数研究函数的单调性考向1 确定函数的单调性【例2】(2018·河南洛阳第三次统一考试)已知函数f(x)=(x-1)e x-x2,其中t∈R.(1)函数f(x)的图象能否与x轴相切?若能,求出实数t,若不能,请说明理由;(2)讨论函数f(x)的单调性.解:(1)由于f'(x)=xe x-tx=x(e x-t).假设函数f(x)的图象与x轴相切于点(x0,0),则有即显然x0≠0,将t=>0代入方程(x0-1)-=0中,得-2x0+2=0.显然此方程无实数解.故无论t取何值,函数f(x)的图象都不能与x轴相切.(2)由于f'(x)=xe x-tx=x(e x-t),当t≤0时,e x-t>0,当x>0时,f'(x)>0,f(x)单调递增,当x<0时,f'(x)<0,f(x)单调递减;当t>0时,由f'(x)=0得x=0或x=ln t,①当0<t<1时,ln t<0,当x>0时,f'(x)>0,f(x)单调递增,当ln t<x<0时,f'(x)<0,f(x)单调递减,当x<ln t,f'(x)>0,f(x)单调递增;②当t=1时,f'(x)≥0,f(x)单调递增;③当t>1时,ln t>0,当x>ln t时,f'(x)>0,f(x)单调递增,当0<x<ln t时,f'(x)<0,f(x)单调递减,当x<0时,f'(x)>0,f(x)单调递增.综上,当t≤0时,f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;当0<t<1时,f(x)在(-∞,ln t),(0,+∞)上是增函数,在(ln t,0)上是减函数;当t=1时,f(x)在(-∞,+∞)上是增函数;当t>1时,f(x)在(-∞,0),(ln t,+∞)上是增函数,在(0,ln t)上是减函数.确定函数单调性就是确定函数导数为正值、为负值的区间,基本类型有如下几种:(1)导数的零点是确定的数值,只要根据导数的零点划分定义域区间,确定在各个区间上的符号即可得出其单调区间;(2)导数零点能够求出,但含有字母参数时,则需要根据参数的不同取值划分定义域区间,再确定导数在各个区间上的符号;(3)导数存在零点,但该零点无法具体求出,此时一般是根据导数的性质、函数零点的存在定理确定导数零点的大致位置,再据此零点划分定义域区间,确定导数在各个区间上的符号.考向2 根据单调性求参数范围【例3】(1)(2018·吉林大学附中四模)已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是( )(A)0,(B),(C),+∞(D)0,(2)(2018·云南昆明5月适应考)已知函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是( )(A)-e (B)e (C)-(D)4e2(3)(2018·安徽合肥三模)若函数f(x)=x+-aln x在区间[1,2]上是非单调函数,则实数a 的取值范围是( )(A),(B),+∞(C),+∞(D),解析:(1)因为f(x)=(x2-2ax)e x,所以f'(x)=(2x-2a)e x+(x2-2ax)e x=e x(x2+2x-2ax-2a).因为f(x)在[-1,1]上是单调减函数,所以f'(x)=e x(x2+2x-2ax-2a)≤0.即x2+2x-2ax-2a≤0.法一设g(x)=x2+2x-2ax-2a,根据二次函数的图象可知,只要即可,解得a≥,所以实数a的取值范围是,+∞.故选C.法二由x2+2x-2ax-2a≤0,得x2+2x≤2a(x+1).当x=-1时,-1≤0恒成立,当(-1,1]时,a≥,a≥,a≥(x+1)-,令h(x)=(x+1)-,可知h(x)=(x+1)-在(-1,1]上为增函数,所以h(x)max=h(1)=,即a≥,所以实数a的取值范围是,+∞.故选C.(2)因为函数f(x)=(x2-2x)e x-aln x(a∈R),所以f'(x)=e x(x2-2x)+e x(2x-2)-=e x(x2-2)-.因为函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,所以f'(x)=e x(x2-2)-≥0在区间(0,+∞)上恒成立,即≤e x(x2-2),亦即a≤e x(x3-2x)在区间(0,+∞)上恒成立,令h(x)=e x(x3-2x),所以h'(x)=e x(x3-2x)+e x(3x2-2)=e x(x3-2x+3x2-2)=e x(x-1)(x2+4x+2), 因为x∈(0,+∞),所以x2+4x+2>0.因为e x>0.所以令h'(x)>0,可得x>1.所以函数h(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h(x)min=h(1)=e1(1-2)=-e.所以a≤-e,则a的最大值为-e.故选A.(3)因为f(x)=x+-aln x,所以f'(x)=1--=,因为f(x)在区间[1,2]上是非单调函数,所以f'(x)=0在[1,2]上有解,即x2-ax-a=0在[1,2]上有解,所以x2=a(x+1)在[1,2]上有解,令g(x)=x2,x∈[1,2],h(x)=a(x+1),x∈[1,2],由图象易知,两函数图象在[1,2]上有交点时,≤a≤,即≤a≤.故选D.函数f(x)在区间D上单调递增(减),等价于在区间D上f'(x)≥0(≤0)恒成立;函数f(x)在区间D上不单调,等价于在区间D上f'(x)存在变号零点.考向3 函数单调性的简单应用【例4】(1)(2018·东北三省三校二模)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f(x)+1,则下列正确的是( )(A)f(2 018)-ef(2 017)>e-1(B)f(2 018)-ef(2 017)<e-1(C)f(2 018)-ef(2 017)>e+1(D)f(2 018)-ef(2 017)<e+1(2)(2018·辽宁省大连八中模拟)设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+<4x.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )(A)-,+∞ (B)-,+∞(C)[-1,+∞) (D)[-2,+∞)(3)(2018·湖南永州市一模)已知定义在R上的可导函数f(x)的导函数为f'(x),若对于任意实数x有f'(x)+f(x)>0,且f(0)=1,则不等式e x f(x)>1的解集为( )(A)(-∞,0)(B)(0,+∞)(C)(-∞,e)(D)(e,+∞)解析:(1)法一设g(x)=,则g'(x)=.因为f'(x)>f(x)+1,所以f'(x)-f(x)-1>0,所以g'(x)>0在R上恒成立,所以g(x)=在R上单调递增.所以g(2 018)>g(2 017),所以>,所以f(2 018)+1>ef(2 017)+e,所以f(2 018)-ef(2 017)>e-1.故选A.法二构造特殊函数f(x)=e x-2,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-2)-e(e2 017-2)=2e-2,结合2e-2>e-1可知f(2 018)-ef(2 017)>e-1,排除B选项,结合2e-2<e+1可知f(2 018)-ef(2 017)<e+1,排除C选项,构造特殊函数f(x)=e x-100,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-100)-e(e2 017-100)=100e-100,结合100e-100>e+1可知f(2 018)-ef(2 017)>e+1,排除D选项,故选A.(2)令F(x)=f(x)-2x2,则F(-x)=f(-x)-2x2,所以F(x)+F(-x)=f(x)-[4x2-f(-x)]=0,故F(x)为奇函数.当x<0时,F'(x)=f'(x)-4x<-<0,所以F(x)在(-∞,0)上是减函数,而f(0)=0-f(-0),所以f(0)=0.故F(x)为减函数.因为f(m+1)=F(m+1)+2(m+1)2,f(-m)=F(-m)+2m2,所以F(m+1)+2(m+1)2≤F(-m)+2m2+4m+2,所以F(m+1)≤F(-m),所以m+1≥-m,所以m≥-.故选A.(3)令g(x)=e x f(x),故g'(x)=e x[f(x)+f'(x)],由f'(x)+f(x)>0可得,g'(x)>0,所以函数g(x)在R上单调递增,又f(0)=1,所以g(0)=1,所以不等式e x f(x)>1的解集为(0,+∞).故选B.函数单调性的简单应用主要有两个方面:(1)根据函数的单调性,比较函数值的大小;(2)根据函数的单调性解函数不等式.解题的基本思路是根据已知条件和求解目标,构造函数,通过构造的函数的单调性得出结论.常见的构造函数类型为乘积型h(x)g(x)和商形,具体的如xf(x),e x f(x),,tan x·f(x)等,视具体情况而定.热点训练2:(1)(2018·安徽江南十校二模)y=f(x)的导函数满足:当x≠2时,(x-2)[f(x)+2f'(x)-xf'(x)]>0,则( )(A)f(4)>(2+4)f()>2f(3)(B)f(4)>2f(3)>(2+4)f()(C)(2+4)f()>2f(3)>f(4)(D)2f(3)>f(4)>(2+4)f()(2)(2018·河北石家庄二模)定义在(0,+∞)上的函数f(x)满足xf'(x)ln x+f(x)>0(其中f'(x)为f(x)的导函数),若a>1>b>0,则下列各式成立的是( )(A)a f(a)>b f(b)>1 (B)a f(a)<b f(b)<1(C)a f(a)<1<b f(b)(D)a f(a)>1>b f(b)(3)(2018·黑龙江哈师大附中三模)若函数f(x)=2x+sin x·cos x+acos x在(-∞,+∞)上单调递增,则a的取值范围是( )(A)[-1,1] (B)[-1,3](C)[-3,3] (D)[-3,-1](4)(2018·天津河北区二模)已知函数f(x)=x2-ax+(a-1)ln x,其中a>2.①讨论函数f(x)的单调性;②若对于任意的x1,x2∈(0,+∞),x1≠x2,恒有>-1,求a的取值范围.(1)解析:令g(x)=,则g'(x)=,因为当x≠2时,(x-2)[f(x)-(x-2)f'(x)]>0,所以当x>2时,g'(x)<0,即函数g(x)在(2,+∞)上单调递减,则g()>g(3)>g(4),即>>,即2(+2)f()>2f(3)>f(4).故选C.(2)解析:构造函数g(x)=x f(x),x∈(0,+∞),两边取自然对数得ln g(x)=f(x)ln x,求导得g'(x)=f'(x)ln x+,得g'(x)=[xf'(x)ln x+f(x)].因为x>0,所以x f(x)>0,即g(x)>0,所以g'(x)>0.即g(x)在(0,+∞)上单调递增.又因为a>1>b>0,所以g(a)>g(1)>g(b),所以a f(a)>1>b f(b).故选D.(3)解析:因为f(x)=2x+sin x·cos x+acos x,所以f'(x)=2+cos 2x-asin x=-2sin2x-asin x+3,设sin x=t,-1≤t≤1,令g(t)=-2t2-at+3,因为f(x)在(-∞,+∞)上递增,所以g(t)≥0在[-1,1]上恒成立,因为二次函数图象开口向下,所以⇒-1≤a≤1,a的取值范围是[-1,1].故选A.(4)解:①由题意得函数f(x)的定义域为(0,+∞),因为f(x)=x2-ax+(a-1)ln x,所以f'(x)=x-a+=,令f'(x)=0,得x=1或x=a-1,因为a>2,所以a-1>1.由f'(x)>0,解得0<x<1或x>a-1,由f'(x)<0,解得1<x<a-1.所以函数f(x)的单调递增区间为(0,1),(a-1,+∞),单调递减区间为(1,a-1).②设x1>x2,则不等式>-1等价于f(x1)-f(x2)>x2-x1.即f(x1)+x1>f(x2)+x2,令g(x)=f(x)+x=x2-(a-1)x+(a-1)ln x,则函数g(x)在x∈(0,+∞)上为增函数.所以g'(x)=x-(a-1)+≥0在(0,+∞)上恒成立,而x+≥2,当且仅当x=,即x=时等号成立.所以2≥a-1,因为a>2,所以4(a-1)≥(a-1)2,即a2-6a+5≤0,所以1≤a≤5,而a>2,所以2<a≤5.所以实数a的取值范围是(2,5].导数研究函数的极值、最值考向1 导数研究函数极值【例5】(1)(2018·河南中原名校质检二)已知函数f(x)=2f'(1)ln x-x,则f(x)的极大值为( )(A)2 (B)2ln 2-2 (C)e (D)2-e(2)(2018·黑龙江哈三中一模)设函数f(x)=ln x+ax2+bx,若x=1是函数f(x)的极大值点,则实数a的取值范围是( )(A)-∞,(B)(-∞,1)(C)[1,+∞)(D),+∞(3)(2018·河南高三最后一模)若函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为( )(A)(-e2,-e) (B)-∞,-(C)-∞,- (D)(-∞,-e)解析:(1)f(x)=2f'(1)ln x-x,则f'(x)=2f'(1)-1,令x=1得f'(1)=2f'(1)-1,所以f'(1)=1,则f(x)=2ln x-x,f'(x)=-1=,所以函数在(0,2)上单调递增,在(2,+∞)上单调递减,则f(x)的极大值为f(2)=2ln 2-2,故选B.(2)f'(x)=+2ax+b=(x>0),因为x=1是函数f(x)的极大值点,所以f'(1)=0即b=-(2a+1),所以f'(x)==,当a≤0时,因为2ax-1<0,所以若0<x<1,则f'(x)>0,若x>1时,则f'(x)<0,所以x=1是函数f(x)的极大值点,符合题意; 当a>0时,若x=1是函数f(x)的极大值点,则需1<,即0<a<,综上a<.故选A.(3)因为f(x)=e x-aln x+2ax-1,所以f'(x)=e x-+2a,令e x-+2a=0,得a=,再令g(x)=(x>0),因为函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,所以g(x)=a有两个零点,又g'(x)=-(x>0),令g'(x)>0,得0<x<1,且x≠;令g'(x)<0,得x>1,所以函数g(x)在0,,,1上单调递增,在(1,+∞)上单调递减,由于g(1)=-e,因为y=g(x)与y=a有两个交点,根据数形结合法可得,a<-e,即a∈(-∞,-e).故选D.(1)可导函数的极值点是其导数的变号零点,在零点处“左负右正”的为极小值点、“左正右负”的为极大值点;(2)根据极值点的个数确定参数范围的问题可以转化为其导数零点个数的问题讨论.考向2 导数研究函数最值【例6】(1)(2018·陕西榆林四模)设实数m>0,若对任意的x≥e,不等式x2ln x-m≥0恒成立,则m的最大值是( )(A)(B)(C)2e (D)e(2)(2018·河北武邑中学质检二)已知函数f(x)=ax-cos x+b的图象在点,f处的切线方程为y=x+.①求a,b的值;②求函数f(x)在-,上的最大值.(1)解析:不等式x2ln x-m≥0⇔x2ln x≥m⇔xln x≥⇔ln xe ln x≥,设f(x)=xe x(x>0),则f'(x)=(x+1)e x>0,所以f(x)在(0,+∞)上是增函数,因为>0,ln x>0,所以≤ln x,即m≤xln x对任意的x≥e恒成立,此时只需m≤(xln x)min,设g(x)=xln x(x≥e),g'(x)=ln x+1>0(x≥e),所以g(x)在[e,+∞)上为增函数,所以g(x)min=g(e)=e,所以m≤e,m的最大值为e.故选D.(2)解:①因为f(x)=ax-cos x+b,所以f'(x)=a+sin x.又f'=a+1=,f=a+b=×+,解得a=,b=3.②由①知f(x)=x-cos x+.因为f'(x)=+sin x,由f'(x)=+sin x>0,得-<x≤,由f'(x)=+sin x<0得,-≤x<-,所以函数f(x)在-,-上单调递减,在-,上单调递增.因为f-=,f=π,所以f(x)max=f=π.(1)闭区间[a,b]上图象连续的函数其最值在极值和端点值的比较中找到;(2)在区间D上如果f(x)有唯一的极大(小)值点,该点也是函数的最大(小)值点.热点训练3:(1)(2018·福建南平5月质检)若函数g(x)=mx+在区间(0,2π)上有一个极大值和一个极小值,则实数m的取值范围是( )(A)(-e-2π,) (B)(-e-π,e-2π)(C)(-eπ,) (D)(-e-3π,eπ)(2)(2018·黔东南州一模)若函数f(x)=xln x-a有两个零点,则实数a的取值范围为( )(A)-,1(B),1(C)-,0(D)-,+∞(3)(2018·河北唐山三模)已知a>0,f(x)=,若f(x)的最小值为-1,则a等于( )(A)(B)(C)e (D)e2解析:(1)函数g(x)=mx+,求导得g'(x)=m+.令f(x)=m+,f'(x)=.易知,在0,上,f'(x)<0,f(x)单调递减;在,上,f'(x)>0,f(x)单调递增;在,2π上,f'(x)<0,f(x)单调递减.且f(0)=m+1,f=m-,f=m+,f(2π)=m+e-2π.有f<f(2π),f(0)>f.根据题意可得解得-e-2π<m<.故选A.(2)函数定义域为(0,+∞),由f(x)=xln x-a=0得xln x=a,令g(x)=xln x,则g'(x)=ln x+1,由g'(x)>0得x>,由g'(x)<0得,0<x<,所以函数g(x)在0,上单调递减,在,+∞上单调递增,所以当x=时,g(x)取得极小值即最小值,g=-,又当x→0时,g(x)→0,作出g(x)的图象如图,所以要使f(x)=xln x-a有两个零点,即方程xln x=a有两个不同的根,即函数g(x)和y=a有两个交点,所以-<a<0,选C.(3)由f(x)=,得f'(x)==,令g(x)=e x+ax+a,则g'(x)=e x+a>0,则g(x)在(-∞,+∞)上为增函数,又g(-1)=>0,所以存在x0<-1,使g(x0)=0,即f'(x0)=0,所以+ax0+a=0,①函数f(x)在(-∞,x0)上为减函数,在(x0,+∞)上为增函数,则f(x)的最小值为f(x0)==-1,即x0=--a,②联立①②可得x0=-2,把x0=-2代入①,可得a=.故选A.【例1】(1)(2018·河南高三最后一模)已知函数f(x)=4x2的图象在点(x0,4)处的切线为l,若l也与函数g(x)=ln x(0<x<1)的图象相切,则x0必满足( )(A)<x0<(B)0<x0<(C)<x0<1 (D)1<x0<(2)(2018·广西三市第二次调研)若曲线C1:y=x2与曲线C2:y=(a>0)存在公共切线,则a的取值范围为( )(A)(0,1) (B)1,(C),2(D),+∞(3)(2018·重庆綦江区5月调研)设函数f(x)=|e x-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围为( )(A)-,(B),1(C)-3,-(D)(-3,1)解析:(1)由于f'(x)=8x,f'(x0)=8x0,所以直线l的方程为y=8x0(x-x0)+4=8x0x-4.因为l也与函数g(x)=ln x(0<x<1)的图象相切,令切点为(m,ln m),g'(x)=,所以l的方程为y=x+ln m-1,因此有又因为0<m<1,所以1-4<0,x0>,4=1+ln x0+ln 8,令h(x)=4x2-ln x-ln 8-1x>,h'(x)=8x-=>0,所以h(x)=4x2-ln x-ln 8-1是,+∞上的增函数. 因为h=1-ln 4<0,h(1)=3(1-ln 2)>0,所以x0∈,1.故选C.(2)C1在点(x1,y1)处的切线为y-=2x1(x-x1),即y=2x1x-,①C2在点(x2,y2)处的切线为y=x+(1-x2),②设①②是同一条切线,则④÷③,得=1-x2,所以x1=2(x2-1),代入③得a=,因为a>0,所以x2>1,以下求函数u(x2)=的值域:u'(x2)==, 令u'(x2)=0得x2=2,在x2∈(1,2)内,u'(x2)<0,u(x2)单调递减, 在x2∈(2,+∞)内,u'(x2)>0,u(x2)单调递增,所以u(x2)min=u(2)=,当x2→+∞时,u(x2)→+∞,所以u(x2)的值域为,+∞,所以a≥.故选D.(3)f(x)=|e x-e2a|=f'(x)=若存在x1<x2,使得f'(x1)f'(x2)=-1,则必有-1<x1<2a<x2<3-a,由-1<2a<3-a得-<a<1,由-1<x1<2a<x2<3-a得2a-1<x1+x2<a+3,由f'(x1)f'(x2)=-1得x1+x2=0,所以2a-1<0<a+3,得-3<a<,综上可得-<a<.故选A.【例2】(1)(2018·江西重点中学协作体二联)已知定义在[e,+∞)上的函数f(x)满足f(x)+xln xf'(x)<0且f(2 018)=0,其中f'(x)是函数f(x)的导函数,e是自然对数的底数,则不等式f(x)>0的解集为( )(A)[e,2 018) (B)[2 018,+∞)(C)(e,+∞)(D)[e,e+1)(2)(2018·江西六校联考)已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f'(x)<2f(x),则f(1)∶f(2)的取值范围为( )(A)(e,2e) (B),(C)(e,e3) (D),(3)(2018·陕西咸阳二模)已知定义在R上的函数 f(x) 的导函数为f'(x),且f(x)+f'(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为( )(A)a<b (B)a>b(C)a=b (D)无法确定解析:(1)设g(x)=ln x·f(x),当x∈[e,+∞)时,g'(x)=+ln xf'(x)=<0,所以g(x)在[e,+∞)上是减函数,又g(2 018)=ln 2 018f(2 018)=0,所以g(x)>0的解集为[e,2 018),又此时ln x≥1,所以f(x)>0,即f(x)>0的解集为[e,2 018).故选A.(2)令g(x)=,h(x)=,则g'(x)=>0,h'(x)=<0,所以g(1)<g(2),h(1)>h(2),所以<,>,所以<<.选D.(3)令g(x)=e x f(x)-e x,则g'(x)=e x[f(x)+f'(x)]-e x=e x[f(x)+f'(x)-1]>0.即g(x)在R上为增函数.所以g(3)>g(2),即e3f(3)-e3>e2f(2)-e2,整理得e[f(3)-1]>f(2)-1,即a<b.故选A.【例3】(2018·华大新高考联盟4月质检)设函数f(x)=x-,a∈R且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)-f(x2)>恒成立,求实数m的取值范围. 解:(1)y=1-,y'==-,->0⇔<0.①当a>0时,<0⇒<0⇒0<x<2;②当a<0时,<0⇒>0⇒x<0或x>2.综上,①当a>0时,函数y=的增区间为(0,2),减区间为(-∞,0),(2,+∞);②当a<0时,函数y=的增区间为(-∞,0),(2,+∞),减区间为(0,2).(2)当0<x1<x2时,f(x1)-f(x2)>⇔f(x1)-f(x2)>-⇔f(x1)->f(x2)-,即函数g(x)=f(x)-=x-·-在(0,+∞)上为减函数,g'(x)=1-+=≤0,em≤(x-1)e x-ex2,令h(x)=(x-1)e x-ex2,h'(x)=e x+(x-1)e x-2ex=xe x-2ex=x(e x-2e)=0⇒e x=2e⇒x=ln 2e.当x∈(0,ln 2e)时,h'(x)<0,h(x)为减函数;当x∈(ln 2e,+∞)时,h'(x)>0,h(x)为增函数.h(x)的最小值为h(ln 2e)=(ln 2e-1)·e ln 2e-eln22e=2eln 2-e(ln 2+1)2=-eln22-e.所以em≤-eln22-e⇒m≤-1-ln22,所以m的取值范围是(-∞,-1-ln22].【例4】(2018·陕西西工大附中六模)若存在两个正实数x,y,使得等式3x+a(2y-4ex)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )(A)(-∞,0)(B)0,(C),+∞(D)(-∞,0)∪,+∞解析:因为3x+a(2y-4ex)(ln y-ln x)=0,所以3x+a(2y-4ex)ln =0,所以3+2a-2e ln =0,令t=,则t>0,所以3+2a(t-2e)ln t=0,所以(t-2e)ln t=-,设g(t)=(t-2e)ln t,则g'(t)=ln t+1-,而[g'(t)]'=+.故g'(t)为增函数,因为g'(e)=0,所以当t=e时,g(t)min=g(e)=-e,所以-≥-e,即≤e.当a<0时,不等式成立;当a>0时,得a≥;当a=0时,由原等式易知不符合题意.所以a<0或a≥.故选D.(对应学生用书第13页)【典例】(2018·全国卷Ⅲ,文21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.评分细则:(1)解:f'(x)=,2分f'(0)=2.3分因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.5分(2)证明:当a≥1时,f(x)+e≥(x2+x-1+e x+1)e-x.6分令g(x)=x2+x-1+e x+1,7分则g'(x)=2x+1+e x+1.9分当x<-1时,g'(x)<0,g(x)单调递减;当x>-1时,g'(x)>0,g(x)单调递增.11分所以g(x)≥g(-1)=0.因此f(x)+e≥0.12分【答题启示】(1)导数解答题的基础是正确求出函数的导数,这是解题的起始,一定要细心处理,不要“输在起跑线上”.(2)导数证明不等式基本技巧是构造函数、利用函数的单调性、最值得出所证不等式.。

(全国通用)高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第7课时 指数函数、对数函数及幂函数

(全国通用)高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第7课时 指数函数、对数函数及幂函数

第二章 函数与导数第7课时 指数函数、对数函数及幂函数(1)第三章 (对应学生用书(文)、(理)20~21页),1. (必修1P 63习题2改编)用分数指数幂表示下列各式(a>0,b>0): (1) 3a 2=________;(2) a a a =________;(3) ⎝⎛⎭⎫3a 2·ab 3=________.答案:(1) a 23 (2) a 78 (3) a 76b 322. (必修1P 80习题6改编)计算:(lg5)2+lg2×lg50=________. 答案:1解析:原式=(lg5)2+lg2×(1+lg5)=lg5(lg2+lg5)+lg2=1.3. (必修1P 80习题12改编)已知lg6=a ,lg12=b ,则用a 、b 表示lg24=________. 答案:2b -a解析:lg24=lg 1446=2lg12-lg6=2b -a.4. (必修1P 63习题6改编)若a +a -1=3,则a 32-a -32=______.答案:±4解析:a 32-a -32=(a 12-a -12)(a +a -1+1).∵ (a 12-a -12)2=a +a -1-2=1,∴ (a 12-a -12)=±1,∴ 原式=(±1)×(3+1)=±4. 5. 已知实数a 、b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:① 0<b <a ;② a<b <0;③ 0<a <b ;④ b<a <0;⑤ a=b. 其中所有不可能成立的关系式为________.(填序号) 答案:③④解析:条件中的等式⇔2a =3b⇔a lg2=b lg3.若a ≠0,则lg2lg3b a =∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.1. 根式(1) 根式的概念① n a n=⎩⎪⎨⎪⎧a (n 为奇数),|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0)(n 为偶数); ② (n a)n =a(注意a 必须使na 有意义). 2. 有理指数幂(1) 分数指数幂的表示① 正数的正分数指数幂是a mn ,m 、n∈N *,n>1); ② 正数的负分数指数幂是a -m n =1a m n=1(a>0,m 、n∈N *,n>1);③ 0的正分数指数幂是0,0的负分数指数幂无意义.(2) 有理指数幂的运算性质① a s a t =a s +t(a>0,t 、s∈Q );② (a s )t =a st(a>0,t 、s∈Q );③ (ab)t =a t b t(a>0,b >0,t∈Q ). 3. 对数的概念 (1) 对数的定义如果a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.(2) 几种常见对数4. 对数的性质与运算法则 (1) 对数的性质① alog a N =N ;② log a a N=N(a>0且a≠1). (2) 对数的重要公式① 换底公式:log b N =log a N log a b (a 、b 均大于零且不等于1);② log a b =1log b a .(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么 ① log a (MN)=log a M +log a N ; ② log a MN =log a M -log a N ;③ log a M n=nlog a M (n∈R ); ④ log am M n=n m log a M.[备课札记]题型1 指数幂的运算例1 化简下列各式(其中各字母均为正数): (1) 1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42+(32×3)6-⎝ ⎛⎭⎪⎫2323; (2) (a 23·b -1)-12·a -12·b 136a ·b 5;(3) a 43-8a 13b 4b 23+23ab +a 23÷⎝ ⎛⎭⎪⎫1-23b a ×3a.解:(1) 原式=⎝ ⎛⎭⎪⎫2313+234×214+22×33-⎝ ⎛⎭⎪⎫2313=2+108=110.(2) 原式=a -13·b 12·a -12·b 13a 16·b 56=a -13-12-16·b 12+13-56=1a.(3) 原式=a 13(a -8b )(2b 13)2+2b 13a 13+(a 13)2×a 13a 13-2b 13×a 13=a 13(a -8b )a -8b×a 13×a 13=a.备选变式(教师专享) 化简下列各式:(1) 12523+⎝ ⎛⎭⎪⎫12-2+34313-⎝ ⎛⎭⎪⎫127-13;(2) 56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12.解:(1)33;(2)-5ab 4ab 2.题型2 对数的运算例2 求下列各式的值.(1) log 535+2log 12 2-log 5150-log 514;(2) log 2125×log 318×log 519.解:(1) 原式=log 535×5014+2log 12212=log 553-1=2.(2) 原式=lg 125lg2×lg 18lg3×lg 19lg5=-2lg5lg2×-3lg2lg3×-2lg3lg5=-12.变式训练(1) 计算:lg 12-lg 58+lg12.5-log 89·log 278;(2) 已知log 189=a ,18b=5,用a 、b 表示log 3645.解:(1) 原式=lg ⎝ ⎛⎭⎪⎫1258×12.5-lg9lg8·lg8lg27=1-2lg33lg3=13. (2) 由题意,得b =log 185,故log 3645=log 1845log 1836=log 189+log 185log 18324-log 189=a +b2-a.题型3 指数与对数的混合运算例3 已知实数x 、y 、z 满足3x =4y =6z>1. (1) 求证:2x +1y =2z;(2) 试比较3x 、4y 、6z 的大小.(1) 证明:令k =3x =4y =6z>1,则x =log 3k ,y =log 4k ,z =log 6k ,于是1x =log k 3,1y =log k 4,1z =log k 6,从而2x +1y =2log k 3+log k 4=log k 32+log k 4=log k 36=2log k 6,等式成立.(2) 解:由于k >1,故x 、y 、z >0.3x 4y =3log 3k 4log 4k =3lgklg34lgk lg4=3lg44lg3=lg43lg34=lg64lg81<1; 4y 6z =2log 4k 3log 6k =2lgklg43lgk lg6=2lg63lg4=lg62lg43=lg36lg64<1, 故3x <4y <6z.备选变式(教师专享)若xlog 34=1,求23x-2-3x2x +2-x 的值.解:由xlog 34=1,知4x=3, ∴23x-2-3x2x +2-x =()2x -2-x ()22x +2-2x +12x+2-x=(22x -1)(22x +2-2x+1)22x+1=(3-1)⎝ ⎛⎭⎪⎫3+13+13+1=136.1. (2013·四川)计算:lg 5+lg 20=________. 答案:1解析:lg 5+lg 20=lg(5×20)=lg10=1.2. (2013·长春调研)已知函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x,x ≥4,f (x +1),则f(2+log 23)=________.答案:124解析:由3<2+log 23<4,得3+log 23>4,所以f(2+log 23)=f(3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫12log 224=124. 3. (2013·新课标)已知a =log 36,b =log 510,c =log 714,则a 、b 、c 的大小关系为________.答案:a>b>c解析:a =log 36=1+log 32,b =1+log 52,c =1+log 72,由于log 32>log 52>log 72,所以a>b>c.4. (2013·温州二模)已知2a =3b =6c,若a +b c ∈(k ,k +1),则整数k 的值是________.答案:4解析:设2a =3b =6c=t ,则a =log 2t ,b =log 3t ,c =log 6t ,所以a +b c =log 2t log 6t +log 3t log 6t =log t 6log t 2+log t 6log t 3=log 26+log 36=2+log 23+log 32.因为2<log 23+log 32<3,所以4<a +bc <5,即整数k 的值是4.1. 设a =lge ,b =(lge)2,c =lg e ,则a 、b 、c 的大小关系是________.答案:a >c >b解析:本题考查对数函数的增减性,由1>lge>0,知a>b.又c =lge ,作商比较知c>b ,故a>c>b.2. 已知三数x +log 272,x +log 92,x +log 32成等比数列,则公比为________. 答案:3解析:∵ 三数x +log 272,x +log 92,x +log 32成等比数列,∴ (x +log 92)2=(x +log 272)(x +log 32),即⎝ ⎛⎭⎪⎫x +12log 322=⎝ ⎛⎭⎪⎫x +13log 32(x +log 32),解得x =-14log 32,∴ 公比q =x +log 32x +12log 32=3.3. 设a >1,若对任意的x∈[a,2a],都有y∈[a,a 2]满足方程log a x +log a y =3,则a 的取值范围是________.答案:a≥2解析:∵ a>1,x ∈[a ,2a], ∴ log a x ∈[1,1+log a 2].又由y∈[a,a 2],得 log a y∈[1,2], ∵ log a y =3-log a x ,∴ 3-log a x ∈[1,2], ∴ log a x ∈[1,2],∴ 1+log a 2≤2,log a 2≤1,即a≥2.4. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a ⎝ ⎛⎭⎪⎫1+1m +log a ⎝ ⎛⎭⎪⎫1+1m +1+…+log a ⎝ ⎛⎭⎪⎫1+1m +n -1=log a m +log a n ,求m 、n 的值.解:左边=log a m +log a ⎝ ⎛⎭⎪⎫m +1m +log a ⎝ ⎛⎭⎪⎫m +2m +1+…+log a ⎝ ⎛⎭⎪⎫m +n m +n -1=log a ⎝ ⎛⎭⎪⎫m·m +1m ·m +2m +1·…·m +n m +n -1=log a (m +n),∴ 已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1.∵ m 、n 为正整数,∴ ⎩⎪⎨⎪⎧m -1=1,n -1=1,解得⎩⎪⎨⎪⎧m =2,n =2.1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 对数运算法则是在化同底的情况下进行的,在对含有字母的对数式化简时必须保证恒等变形.3. 在解决指数、对数问题时,指数式与对数式的互化起着重要作用.请使用课时训练(B )第7课时(见活页).[备课札记]。

高考数学(全国通用)一轮总复习(文理科)配套课件:第二章 函数、导数及其应用 2.2

高考数学(全国通用)一轮总复习(文理科)配套课件:第二章 函数、导数及其应用 2.2

∴函数 f(x)在区间(-∞,-2)上单调递增.
(2)由 f(x)=
������ 得������′(������) ������-������
=
1· (������-������)-������· 1 -������ = . 2 (������-������) (������-������)2
∵当 a>0 时,有 f'(x)=
-������ <0(x≠a)恒成立, (������-������)2
要使 f(x)在(1,+∞)上单调递减,只有 0<a≤1. 图象法:(1)当 a=-2 时,f(x)=
2 ������ ������ ������+2
=
������+2-2 ������+2
=1−
2 (x≠-2), ������+2 2 ������
1 ������-1 1 ������ 2
第二节 函数的单调性与最值
主干知识回顾 主干知识回顾 名师考点精讲 教师备课资料
-8-
2.下列函数中在区间(0,+∞)上单调递增的是 B.y=x2 D.y=ln(x-1)
(
)
2.B 【解析】作出各个函数的图象,易知选项 B 正确. 3.如果关于 x 的二次函数 f(x)=3x2+2(m+1)x+n 在区间[1,+∞)上是增函数,则 m 的取值范围是 A.(-∞,-4] B.[-4,+∞) C. - 2 , + ∞
第二章
第二节 函数的单调性与最值
主干知识回顾 名师考点精讲 教师备课资料
-14-
命题角度3:导数法求单调区间 典例4 函数f(x)=x-ln x的单调递增区间为

高考数学总复习(考点引领+技巧点拨)第二章函数与导数

高考数学总复习(考点引领+技巧点拨)第二章函数与导数

第二章函数与导数第9课时指数函数、对数函数及幂函数(3) 第三章(对应学生用书(文)、(理)24~25页)1. (必修1P 112测试8改编)已知函数f(x)=log a x(a>0,a ≠1),若f(2)>f(3),则实数a 的取值范围是________.答案:(0,1)解析:因为f(2)>f(3),所以f(x)=log a x 单调递减,则a ∈(0,1).2. (必修1P 89练习3改编)若幂函数y =f(x)的图象经过点⎝⎛⎭⎫9,13,则f(25)=________. 答案:15解析:设f(x)=x α,则13=9α,∴ α=-12,即f(x)=x -12,f(25)=15.3. (必修1P 111习题15改编)函数f(x)=ln 1-x1+x 是________(填“奇”或“偶”)函数.答案:奇解析:因为f(-x)=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫1-x 1+x -1=-ln1-x1+x =-f(x),所以f(x)是奇函数. 4. (必修1P 87习题13改编)不等式lg(x -1)<1的解集为________. 答案:(1,11)解析:由0<x -1<10,∴ 1<x<11.5. (必修1P 87习题14改编)对于任意的x 1、x 2∈(0,+∞),若函数f(x)=lgx ,则f (x 1)+f (x 2)2与f ⎝⎛⎭⎫x 1+x 22的大小关系是______________________.答案:f (x 1)+f (x 2)2≤f ⎝ ⎛⎭⎪⎫x 1+x 22 解析:(解法1)作差运算;(解法2)寻找f (x 1)+f (x 2)2与f ⎝ ⎛⎭⎪⎫x 1+x 22的几何意义,通过函数f(x)=lgx 图象可得.1. 对数函数的定义一般地,我们把函数y =log a x(a>0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2. 对数函数的图象与性质3. 幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.4. 幂函数的图象5. 幂函数的性质[备课札记]题型1 对数函数的概念与性质例1 (1) 设a>1,函数f(x)=log a x 在区间[a ,2a]上的最大值与最小值之差是12,则a =________;(2) 若a =log 0.40.3,b =log 54,c =log 20.8,用小于号“<”将a 、b 、c 连结起来________;(3) 设f(x)=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是________;(4) 已知函数f(x)=|log 2x|,正实数m 、n 满足m<n 且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则m 、n 的值分别为________.答案:(1) 4 (2) c <b <a (3) -1<x <0 (4) 12,2解析:(1) ∵ a>1,∴ 函数f(x)=log a x 在区间[a ,2a]上是增函数,∴ log a 2a -log a a =12,∴ a =4. (2) 由于a>1,0<b<1,c<0,所以c<b<a.(3) 由f(-x)+f(x)=0,得a =-1,则由lg 1+x1-x<0,得⎩⎪⎨⎪⎧1+x1-x>0,1+x1-x<1,解得-1<x<0.(4) 结合函数f(x)=|log 2x|的图象,易知0<m<1,n>1,且mn =1,所以f(m 2)=|log 2m 2|=2,解得m =12,所以n =2. 变式训练(1) 设log a 23<1,则实数a 的取值范围是________;(2) 已知函数f(x)=lg(x 2+t)的值域为R ,则实数t 的取值范围是________; (3) 若函数f(x)=log a |x +1|在(-1,0)上有f(x)>0,则函数f(x)的单调减区间是________; (4) 若函数f(x)=log 12(x 2-2ax +3)在(-∞,1]内为增函数,则实数a 的取值范围是________.答案:(1) 0<a <23或a >1 (2) a ≤0 (3) (-1,+∞) (4) [1,2)解析:(1) 分a >1与a <1两种情形进行讨论. (2) 值域为R 等价于x 2+a 可以取一切正实数.(3) 函数f(x)的图象是由y =log a |x|的图象向左平移1个单位得到,∴ 0<a<1.(4) 令g(x)=x 2-2ax +3,则⎩⎪⎨⎪⎧a ≥1,g (1)>0,解得1≤a<2. 题型2 幂函数的概念与性质例2 已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数.(1) 求m 的值;(2) 求满足不等式(a +1)-m 3<(3-2a)-m3的实数a 的取值范围.解:(1) 因为函数y =x 3m -9在(0,+∞)上是减函数,所以3m -9<0,所以m<3. 因为m ∈N *,所以m =1或2.又函数图象关于y 轴对称,所以3m -9是偶数,所以m =1. (2) 不等式(a +1)-m 3<(3-2a)-m 3即为(a +1)-13<(3-2a)-13.结合函数y =x -13的图象和性质知:a +1>3-2a>0或0>a +1>3-2a 或a +1<0<3-2a. 解得a<-1或23<a<32,即实数a 的取值范围是a<-1或23<a<32.备选变式(教师专享)已知幂函数y =f(x)经过点⎝⎛⎭⎫2,18. (1) 试求函数解析式;(2) 判断函数的奇偶性并写出函数的单调区间. 解:(1)由题意,得f(2)=2a =18a =-3,故函数解析式为f(x)=x -3.(2)定义域为()-∞,0∪()0,+∞,关于原点对称, 因为f(-x)=(-x)-3=-x -3=-f(x),故该幂函数为奇函数. 其单调减区间为()-∞,0,()0,+∞. 题型3 指数函数、对数函数的综合问题例3 已知函数f(x)=log 4(4x +1)+kx(k ∈R )是偶函数. (1) 求k 的值;(2) 设g(x)=log 4⎝⎛⎭⎫a·2x -43a ,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.解:(1) 由函数f(x)是偶函数,可知f(x)=f(-x), ∴ log 4(4x +1)+kx =log 4(4-x +1)-kx.log 44x +14-x +1=-2kx ,即x =-2kx 对一切x ∈R 恒成立,∴ k =-12.(2) 函数f(x)与g(x)的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 4⎝⎛⎭⎫a·2x -43a 有且只有一个实根,化简得方程2x +12x =a·2x -43a 有且只有一个实根.令t =2x >0,则方程(a-1)t 2-43at -1=0有且只有一个正根.①a =1t =-34,不合题意;②a ≠1时,Δ=0a =34或-3.若a =34t =-2,不合题意,若a =-3t =12;③a ≠1时,Δ>0,一个正根与一个负根,即-1a -1<0a>1.综上,实数a 的取值范围是{-3}∪(1,+∞).备选变式(教师专享)已知函数f(x)=lg(a x -b x )(a>1>b>0). (1) 求函数y =f(x)的定义域;(2) 在函数y =f(x)的图象上是否存在不同的两点,使过此两点的直线平行于x 轴; (3) 当a 、b 满足什么关系时,f(x)在区间()1,+∞上恒取正值.解:(1) 由a x -b x >0,得⎝⎛⎭⎫a b x >1,因为a>1>b>0,所以ab >1,所以x>0,即函数f(x)的定义域为(0,+∞).(2) 设x 1>x 2>0,因为a>1>b>0,所以ax 1>ax 2,bx 1<bx 2,则-bx 1>-bx 2,所以ax 1-bx 1>ax 2-bx 2>0,于是lg(ax 1-bx 1)>lg(ax 2-bx 2),即f(x 1)>f(x 2),因此函数f(x)在区间(0,+∞)上是增函数.假设函数y =f(x)的图象上存在不同的两点A(x 1,y 1)、B(x 2,y 2),使得直线AB 平行于x 轴,即x 1≠x 2,y 1=y 2,这与f(x)是增函数矛盾.故函数y =f(x)的图象上不存在不同的两点,使过此两点的直线平行于x 轴.(3) 由(2)知,f(x)在区间(1,+∞)上是增函数,所以当x ∈(1,+∞)时,f(x)>f(1),故只需f(1)≥0,即lg(a -b)≥0,即a -b ≥1,所以当a ≥b +1时,f(x)在区间(1,+∞)上恒取正值.1. (2013·南师大模拟)已知函数f(x)=log 2x -2log 2(x +c),其中c>0,若对任意x ∈(0,+∞),都有f(x)≤1,则c 的取值范围是________.答案:c ≥18解析:由题意,⎩⎨⎧c>0,x (x +c )2≤2在x ∈(0,+∞)上恒成立,所以c ≥18. 2. (2013·辽宁)已知函数f(x)=ln ()1+9x 2-3x +1,则f(lg2)+f ⎝⎛⎭⎫lg 12=________. 答案:2解析:f(x)+f(-x)=ln(1+9x 2-3x)+ln(1+9x 2+3x)+2=ln(1+9x 2-9x 2)+2=2,所以f(lg2)+f ⎝⎛⎭⎫lg 12=f(lg2)+f(-lg2)=2. 3. (2013·江西检测)已知x 13+(log 130.5)-y<(-y)13+(log 130.5)x ,则实数x 、y 的关系为________.答案:x +y<0解析:由x 13+(log 130.5)-y <(-y)13+(log 130.5)x ,得x 13-(log 130.5)x <(-y)13-(log 130.5)-y .设f(x)=x 13-(log 130.5)x ,则f(x)<f(-y),由于0<log 130.5<1,所以函数f(x)是R 上的增函数,所以x<-y ,即x +y<0.4. (2013·南通密卷)已知f(x)=⎩⎪⎨⎪⎧22-x ,x<2,log 3(x +1),x ≥2,若对任意的x ∈R ,af 2(x)≥f(x)-1成立,则实数a 的最小值为________.答案:14解析:易得x ∈R ,f(x)>0,由af 2(x)≥f(x)-1,得a ≥f (x )-1f 2(x )=1f (x )-1f 2(x )=14-⎣⎢⎡⎦⎥⎤1f (x )-122≤14(当且仅当f(x)=2时等号成立),所以实数a 的最小值为14.1. 若函数f(x)=log 2|ax -1|(a >0),当x ≠12时,有f(x)=f(1-x),则a =________.答案:2解析:由f(x)=f(1-x),知函数f(x)的图象关于x =12对称,而f(x)=log 2⎪⎪⎪⎪x -1a +log 2|a|,从而1a =12,所以a =2. 2. 已知函数f(x)=x 23,x ∈[-1,8],函数g(x)=ax +2,x ∈[-1,8],若存在x ∈[-1,8],使f(x)=g(x)成立,则实数a 的取值范围是________.答案:⎝⎛⎦⎤-∞,14∪[1,+∞) 解析:分别作出函数f(x)=x 23,x ∈[-1,8]与函数g(x)=ax +2,x ∈[-1,8]的图象.当直线经过点(-1,1)时,a =1;当直线经过点(8,4)时,a =14.结合图象有a ≤14或a ≥1.3. 已知函数f(x)=|lgx|,若0<a<b ,且f(a)=f(b),则a +2b 的取值范围是________.答案:(3,+∞)解析:因为f(a)=f(b),即|lga|=|lgb|,所以a =b(舍去)或b =1a ,得a +2b =a +2a.又0<a<b ,所以0<a<1<b.令f(a)=a +2a ,则f′(a)=1-2a 2<0,所以f(a)在a ∈(0,1)上为减函数,得f(a)>f(1) =1+2=3,即a +2b 的取值范围是(3,+∞).4. 已知两条直线l 1:y =m 和l 2:y =82m +1()m>0,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x轴上的投影长度分别为a 、b.当m 变化时,求b a的最小值. 解:由题意得x A =⎝⎛⎭⎫12m ,x B =2m ,x C =⎝⎛⎭⎫1282m +1,x D =282m +1,所以a =|x A -x C |=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫12m -⎝⎛⎭⎫1282m +1,b =|x B -x D |=⎪⎪⎪⎪⎪⎪2m-282m +1,即b a =⎪⎪⎪⎪⎪⎪⎪⎪2m -282m +12-m -2-82m +1=282m +1·2m=282m +1+m. 因为82m +1+m =12(2m +1)+82m +1-12≥212(2m +1)×82m +1-12=72,当且仅当12(2m +1)= 82m +1,即m =32时取等号.所以,b a 的最小值为272=8 2.1. 指数函数的底数、对数函数的底数、真数应满足的条件,是求解有关指数、对数问题时必须予以重视的,如果底数含有参数,一般需分类讨论.2. 与对数函数有关的复合函数的单调性的求解步骤(1) 确定定义域;(2) 把复合函数分解为几个初等函数;(3) 确定各个基本初等函数的单调区间;(4) 根据“同增异减”判断复合函数的单调性.请使用课时训练(B)第9课时(见活页).。

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第2课时 参 数 方 程

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第2课时 参 数 方 程

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-4 坐标系与参数方程第2课时 参 数 方 程1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),求直线的斜率.解:k =y -2x -1=-3t 2t =-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程. 解:转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.解:y +1x -3=4a ,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4t 2,y =t (t 为参数),若点P(m ,2)在曲线C 上,求m 的值.解:点P(m ,2)在曲线C 上,则⎩⎪⎨⎪⎧m =4t22=t ,所以m =16.5. (选修44P 57习题第6题改编)已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A(1,2),求|AB|.解:将⎩⎪⎨⎪⎧x =1+3t ,y =2-4t 代入2x -4y =5得t =12,则B ⎝ ⎛⎭⎪⎫52,0,而A(1,2),得|AB|=52.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcos α,y =y 0+lsin α(l 为参数).l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).(3) 椭圆方程x 2a 2+y2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数).(4) 双曲线方程x 2a 2-y2b 2=1(a>0,b>0)的参数方程是⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围.[备课札记]题型1 参数方程与普通方程的互化例1 将参数方程⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t (t 为参数)化为普通方程.解:(解法1)因为⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4,所以⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y264=1.备选变式(教师专享)将参数方程⎩⎪⎨⎪⎧y =cos2θ,x =sin θ 化为普通方程,并说明它表示的图形.解:由⎩⎪⎨⎪⎧y =cos2θ,x =sin θ,可得⎩⎪⎨⎪⎧y +12=cos 2θ,x 2=sin 2θ,即y +12+x 2=1,化简得y =1-2x 2.又-1≤x2=sin 2θ≤1,则-1≤x≤1,则普通方程为y =1-2x 2,在[]-1,1时此函数图象为抛物线的一部分.题型2 求参数方程例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 解:(1) 直线的参数方程为⎩⎪⎨⎪⎧x =1+tcos π6,y =1+tsin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t (t 为参数). (2) 把直线⎩⎪⎨⎪⎧x =1+32t ,y =1+12t代入x 2+y 2=4,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫1+12t 2=4,t 2+(3+1)t -2=0,t 1t 2=-2,则点P 到A 、B 两点的距离之积为2.变式训练 过点P ⎝⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+2y 2=1交于点M 、N ,求|PM|·|PN|的最小值及相应的α的值.解:设直线为⎩⎪⎨⎪⎧x =102+tcos α,y =tsin α(t 为参数),代入曲线并整理得(1+sin 2α)t 2+(10cos α)t +32=0,则|PM|·|PN|=|t 1t 2|=321+sin 2α. 所以当sin 2α=1时,|PM|·|PN|的最小值为34,此时α=π2.题型3 参数方程的应用例3 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.解:(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ,2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1,∴ -5+1≤2x+y≤5+1.(2) x +y +a =cos θ+sin θ+1+a≥0,∴ a ≥-(cos θ+sin θ)-1=-2sin ⎝⎛⎭⎪⎫θ+π4-1, ∴ a ≥2-1.备选变式(教师专享)在椭圆x 216+y212=1上找一点,使这一点到直线x -2y -12=0的距离最小.解:设椭圆的参数方程为⎩⎨⎧x =4cos θy =23sin θ,d=|4cos θ-43sin θ-12|5=455||cos θ-3sin θ-3=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫θ+π3-3,当cos ⎝⎛⎭⎪⎫θ+π3=1时,d min =455,此时所求点为(2,-3).1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t(t 为参数),求曲线C 1和C 2的交点坐标. 解:曲线C 1的方程为x 2+y 2=5(0≤x≤5),曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1 x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1). 2. (2013·湖南)在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 解:直线的普通方程为y =x -a.椭圆的标准方程为x 29+y24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A 、B 两点,求|AB|.解:极坐标方程为ρcos θ=4的直线的普通方程为x =4.曲线的参数方程化为普通方程为y 2=x 3,当x =4时,解得y =±8,即A(4,8),B(4,-8), 所以|AB|=8-(-8)=16.4. (2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.解:∵ 直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t ,∴ 消去参数t 后得直线的普通方程为2x -y -2=0,①同理得曲线C 的普通方程为y 2=2x ,②①②联立方程组解得它们公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.1. 在极坐标系中,圆C 的方程为ρ=22sin ⎝⎛⎭⎪⎫θ+π4,以极点为坐标原点、极轴为x 轴正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),判断直线l 和圆C 的位置关系.解:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsinθ+ρcos θ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2.消去参数t ,得直线l 的直角坐标方程为y =2x +1.圆心C 到直线l 的距离d =|2-1+1|22+12=255.因为d =255<2,所以直线l 和圆C 相交.2. 已知极坐标方程为ρcos θ+ρsin θ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)交于点A 、B ,求PA ·PB 的值. 解:直线过点P(1,0),参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数).代入椭圆方程x 24+y 2=1,整理得52t 2+2t -3=0,则PA·PB=|t 1t 2|=65.3. 已知曲线C 的极坐标方程为ρ=6sin θ,以极点为原点、极轴为x 轴非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段的长度.解:将曲线C 的极坐标方程化为直角坐标方程x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心、以3为半径的圆,直线l 的普通方程为y =3x +1,圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.解: (1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2) C 1的普通方程为xsin α-ycos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝ ⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝ ⎛⎭⎪⎫14,0,半径为14的圆.直线的参数方程:经过点M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎪⎫α≠π2的直线l 的普通方程是y -y 0=tan α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).特别说明:直线参数方程中参数的几何意义:过定点M 0(x 0,y 0),倾斜角为α的直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数),其中t 表示直线l 上以定点M 0为起点,任一点M(x ,y)为终点的有向线段M 0M →的数量,当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0.我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.请使用课时训练(B )第2课时(见活页).选修4-5 不等式选讲第1课时 绝对值不等式(对应学生用书(理)198~199页)1. 解不等式:|x +1|>3.解:由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).2. 解不等式:3≤|5-2x|<9.解:⎩⎪⎨⎪⎧|2x -5|<9|2x -5|≥3Þ ⎩⎪⎨⎪⎧-9<2x -5<92x -5≥3或2x -5≤-3Þ⎩⎪⎨⎪⎧-2<x<7,x ≥4或x≤1,得解集为(-2,1]∪[4,7).3. 已知|x -a|<b(a 、b∈R )的解集为{x|2<x<4}, 求a -b 的值.解:由|x -a|<b ,得a -b<x<a +b.又|x -a|<b(a 、b∈R )的解集为{x|2<x<4},所以a -b =2.4. 解不等式:|2x -1|-|x -2|<0. 解:原不等式等价于不等式组①⎩⎪⎨⎪⎧x≥2,2x -1-(x -2)<0,无解;②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0,解得12<x<1;③⎩⎪⎨⎪⎧x≤12,-(2x -1)+(x -2)<0,解得-1<x≤12.综上得-1<x <1,所以原不等式的解集为{x|-1<x <1}. 5. 求函数y =|x -4|+|x -6|的最小值.解:y =|x -4|+|x -6|≥|x-4+6-x|=2.所以函数的最小值为2.1. 不等式的基本性质①a>b Û b<a ;②a>b,b>c Þa>c ; ③a>b Þa +c>b +c ;④a>b ,c>0Þac>bc ;a>b ,c<0Þac<bc ;⑤a>b>0Þa n >b n(n∈N ,且n>1); ⑥a>b>0Þna>nb (n∈N ,且n>1).2. 含有绝对值的不等式的解法①|f(x)|>a(a>0) Û f(x)>a 或f(x)<-a ; ②|f(x)|<a(a>0) Û-a<f(x)<a. 3. 含有绝对值的不等式的性质①|a|+|b|≥|a+b|;②|a|-|b|≤|a+b|; ③|a|-|b|≤|a±b|≤|a|+|b|. [备课札记]题型1 含绝对值不等式的解法例1 解不等式:|x +3|-|2x -1|<x2+1.解: ① 当x<-3时,原不等式化为-(x +3)-(1-2x)<x2+1,解得x<10,∴ x<-3.② 当-3≤x<12时,原不等式化为(x +3)-(1-2x)<x 2+1,解得x<-25,∴ -3≤x<-25.③ 当x≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x>2,∴ x>2.综上可知,原不等式的解集为{x|x<-25或x>2}.备选变式(教师专享)(2011·南京一模)解不等式|2x -4|<4-|x|.解:原不等式等价于①⎩⎪⎨⎪⎧x<0,4-2x<4+x或②⎩⎪⎨⎪⎧0≤x≤2,4-2x<4-x 或③⎩⎪⎨⎪⎧x>2,2x -4<4-x , 不等式组①无解.由②0<x≤2,③2<x<83,得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<83.题型2 含绝对值不等式性质的运用例2 已知函数f(x)=|x -1|+|x -2|. 若不等式|a +b|+|a -b|≥|a|f(x)(a≠0,a 、b∈R )恒成立,求实数x 的取值范围.解:由题知,|x -1|+|x -2|≤|a -b|+|a +b||a|恒成立,故|x -1|+|x -2|不大于|a -b|+|a +b||a|的最小值.∵ |a +b|+|a -b|≥|a +b +a -b|=2|a|,当且仅当(a +b)·(a-b)≥0时取等号, ∴ |a -b|+|a +b||a|的最小值等于2.∴ x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得12≤x ≤52.变式训练已知函数f(x)=|x -a|.(1) 若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a 的值; (2) 在(1)的条件下,若f(x)+f(x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:(1) 由f(x)≤3得|x -a|≤3,解得a -3≤x ≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2) 当a =2时,f(x)=|x -2|,设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|≥|(2-x)+(x +3)|=5,当且仅当(2-x)(x +3)≥0即当-3≤x ≤2时等号成立.所以实数m 的取值范围是{m|m≤5}.题型3 含绝对值不等式综合运用例3 设函数f(x)=|x -a|+3x ,其中a >0.(1) 当a =1时,求不等式f(x)≥3x+2的解集;(2) 若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.解:(1) 当a =1时,f (x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1,故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2) 由f(x)≤0得|x -a|+3x≤0,此不等式化为不等式组⎩⎪⎨⎪⎧x≥a,x -a +3x≤0或⎩⎪⎨⎪⎧x≤a a -x +3x≤0,即⎩⎪⎨⎪⎧x≥a,x ≤a 4或⎩⎪⎨⎪⎧x≤a,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x|x≤-a 2. 由题设可得-a 2=-1,故a =2. 变式训练已知关于x 的不等式|ax -1|+|ax -a|≥2(a>0).(1) 当a =1时,求此不等式的解集;(2) 若此不等式的解集为R ,求实数a 的取值范围.解:(1) 当a =1时,不等式为|x -1|≥1,∴ x ≥2或x≤0,∴ 不等式解集为{x|x≤0或x≥2}.(2) 不等式的解集为R ,即|ax -1|+|ax -a|≥2(a>0)恒成立.∵ |ax -1|+|ax -a|=a ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -1a +|x -1|≥a ⎪⎪⎪⎪⎪⎪1-1a , ∴ a ⎪⎪⎪⎪⎪⎪1-1a =|a -1|≥2.∵ a>0,∴ a≥3, ∴ 实数a 的取值范围为[3,+∞).1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,求实数a 的取值范围. 解:因为不等式|x -5|+|x +3|的最小值为8,所以要使不等式|x -5|+|x +3|<a 无解,则a≤8,即实数a 的取值范围是(-∞,8].2. (2013·江西)在实数范围内,求不等式||x -2|-1|≤1的解集.解:由||x -2|-1|≤1得-1≤|x -2|-1≤1,即0≤|x-2|≤2,即-2≤x-2≤2,解得0≤x≤4,所以原不等式的解集为[0,4].3. 已知实数x 、y 满足:|x +y|<13,|2x -y|<16.求证:|y|<518. 证明:∵ 3|y|=|3y|=|2(x +y)-(2x -y)|≤2|x +y|+|2x -y|,由题设|x +y|<13,|2x -y|<16, ∴ 3|y|<23+16=56.∴ |y|<518. 4. (2013·福建理)设不等式|x -2|<a(a∈N *)的解集为A ,且32∈A ,12A. (1) 求a 的值;(2) 求函数f(x)=|x +a|+|x -2|的最小值.解:(1) 因为32∈A ,且12 A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a , 解得12<a ≤32.因为a∈N *,所以a =1. (2) 因为|x +1|+|x -2|≥|(x+1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x≤2时取等号,所以f(x)的最小值为3.1. 解不等式:|x -1|>2x. 解:当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x -1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.2. 若不等式|3x -b|<4的解集中整数有且只有1,2,3,求实数b 的取值范围.解:由|3x -b|<4,得-4<3x -b <4,即b -43<x <b +43. 因为解集中整数有且只有1,2,3,所以⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得⎩⎪⎨⎪⎧4≤b<7,5<b≤8,所以5<b <7. 3. 已知函数f(x)=|x +a|+|x -2|.(1) 当a =-3时,求不等式f(x)≥3的解集;(2) 若f(x)≤|x-4|的解集包含[1,2],求a 的取值范围.解:(1) 当a =-3时,f (x)≥3 |x -3|+|x -2|≥3 ⎩⎪⎨⎪⎧x≤23-x +2-x≥3或 ⎩⎪⎨⎪⎧2<x<33-x +x -2≥3或 ⎩⎪⎨⎪⎧x≥3x -3+x -2≥3 x ≤1或x≥4. (2) 原命题 f (x)≤|x-4|在[1,2]上恒成立 |x +a|+2-x≤4-x 在[1,2]上恒成立 -2-x≤a≤2-x 在[1,2]上恒成立 -3≤a≤0.4. 已知f(x)=|ax +1|(a∈R ),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1) 求a 的值,(2) 若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围. 解:(1) 由|ax +1|≤3得-4≤ax≤2,又f(x)≤3的解集为{x|-2≤x≤1},所以,当a≤0时,不合题意当a>0时,-4a ≤x ≤2a,得a =2. (2) 记h(x)=f(x)-2f ⎝ ⎛⎭⎪⎫x 2, 则h(x)=⎩⎪⎨⎪⎧1,x ≤-1-4x -3,-1<x<-12-1,x ≥-12, 所以|h(x)|≤1,因此k≥1.1. |ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法(1) |ax +b|≤c -c≤ax+b≤c;(2) |ax +b|≥c ax +b≥c 或ax +b≤-c.2. |x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.请使用课时训练(A )第1课时(见活页).[备课札记]。

高考数学总复习(考点引领+技巧点拨)第二章函数与导数

高考数学总复习(考点引领+技巧点拨)第二章函数与导数

第二章函数与导数第11课时导数的概念与运算第三章(对应学生用书(文)、(理)28~29页)考情分析考点新知①了解导数概念的实际背景,理解导数的几何意义.②能根据基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1. (选修22P7例4改编)已知函数f(x)=1+1x,则f(x)在区间[1,2],⎣⎡⎦⎤12,1上的平均变化率分别为________.答案:-12,-2解析:f(2)-f(1)2-1=-12;f(1)-f(12)1-12=-2.2. (选修22P12练习2改编)一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3 s末的瞬时速度是_______m/s.答案:5解析:s′(t)=2t-1,s′(3)=2×3-1=5.3. (选修22P26习题5)曲线y=12x-cosx在x=π6处的切线方程为________.答案:x-y-π12-32=0解析:设f(x)=12x -cosx ,则f′⎝ ⎛⎭⎪⎫π6=12+sin π6=1,故切线方程为y -⎝ ⎛⎭⎪⎫π12-32=x -π6,化简可得x -y -π12-32=0.4. (选修22P 26习题8)已知函数f(x)=(x -2)2x +1,则f(x)的导函数f′(x)=________.答案:x 2+2x -8(x +1)2解析:由f(x)=x 2-4x +4x +1,得f ′(x)=(2x -4)×(x +1)-(x 2-4x +4)×1(x +1)2=x 2+2x -8(x +1)2.5. (选修22P 20练习7)若直线y =12x +b 是曲线y =lnx(x>0)的一条切线,则实数b =________.答案:ln2-1解析:设切点(x 0,lnx 0),则切线斜率k =1x 0=12,所以x 0=2.又切点(2,ln2)在切线y =12x +b 上,所以b =ln2-1.1. 平均变化率一般地,函数f(x)在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2. 函数f(x)在x =x 0处的导数设函数f(x)在区间(a ,b)上有定义,x 0∈(a ,b),当Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx __,无限趋近于一个常数A ,则称f(x)在点x =x 0处可导,并称该常数A 为函数f(x)在点x =x 0处的导数,记作f′(x 0).3. 导数的几何意义导数f′(x 0)的几何意义就是曲线f(x)在点(x 0,f(x 0))的切线的斜率.4. 导函数(导数)若f(x)对于区间(a ,b)内任一点都可导,则f(x)在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f(x)的导函数,记作f′(x).5. 基本初等函数的导数公式 (1) C′=0 (C 为常数);(2) (x n )′=nx n -1; (3) (sinx)′=cosx ; (4) (cosx)′=-sinx ;(5) (a x )′=a x lna(a>0且a ≠1); (6) (e x )′=e x ;(7) (log a x)′=1x log a e =1xlna __(a>0,且a ≠1);(8) (lnx)′=1x.6. 导数的四则运算法则若u(x),v(x)的导数都存在,则 (1) (u±v)′=u′±v′; (2) (uv)′=u′v +uv′; (3) ⎝⎛⎭⎫u v ′=u′v -uv′v 2; (4) (mu)′=mu′ (m 为常数). [备课札记]题型1 平均变化率与瞬时变化率例1 某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=23x 3+x 2+2x.(1) 求在第1s 内的平均速度; (2) 求在1s 末的瞬时速度;(3) 经过多少时间该物体的运动速度达到14m/s ?解:(1) 物体在第1 s 内的平均变化率(即平均速度)为f (1) -f (0)1-0=113 m/s.(2) Δy Δx =f (1+Δx )-f (1)Δx=23(1+Δx )3+(1+Δx )2+2(1+Δx )-113Δx=6+3Δx +23(Δx)2.当Δx →0时,Δy Δx→6,所以物体在1 s 末的瞬时速度为6m/s.(3) Δy Δx =f (x +Δx )-f (x )Δx=23(x +Δx )3+(x +Δx )2+2(x +Δx )-⎝⎛⎭⎫23x 3+x 2+2x Δx=2x 2+2x +2+23(Δx)2+2x·Δx +Δx.当Δx →0时,ΔyΔx →2x 2+2x +2,令2x 2+2x +2=14,解得x =2 s ,即经过2 s 该物体的运动速度达到14 m/s.备选变式(教师专享)在F1赛车中,赛车位移与比赛时间t 存在函数关系s =10t +5t 2(s 的单位为m ,t 的单位为s).求:(1) t =20s ,Δt =0.1s 时的Δs 与ΔsΔt ;(2) t =20s 时的瞬时速度.解:(1) Δs =s(20+Δt)-s(20)=10(20+0.1)+5(20+0.1)2-10×20-5×202=21.05 m. Δs Δt =21.050.1=210.5 m/s. (2) 由导数的定义,知在t =20s 的瞬时速度为v(t)=Δs Δt =10(t +Δt )+5(t +Δt )2-10t -5t 2Δt=5Δt 2+10t·Δt +10Δt Δt=5Δt +10t +10.当Δt →0,t =20 s 时,v =10×20+10=210 m/s.答:t =20s ,Δt =0.1 s 时的Δs 为21.05 m ,ΔsΔt 为210.5 m/s ,即在t =20s 时瞬时速度为210 m/s. 题型2 利用导数公式、求导法则求导 例2 求下列函数的导数.(1) y =1x +x 3;(2) y =e x lnx ; (3) y =tanx ; (4) y =x ⎝⎛⎭⎫x 2+1x +1x 3;(理)(5) y =ln (2+3x )x. 解:(1) y′=-12x -32+3x 2.(2) y′=e x ⎝⎛⎭⎫lnx +1x .(3) y′=1cos 2x . (4) y′=3x 2-2x 3.(5) y′=2x (2+3x )-ln (2+3x )x 2. 备选变式(教师专享)求下列函数的导数. (1) y =(2x 2+3)(3x -2); (2) y =lnx x; (3) y =11-x +11+x; (4) y =x -sin x 2cos x2;(理)(5) y =2x +ln(1-5x).解:(1) y′=18x 2-8x +9;(2) y′=1-lnxx2;(3) y′=2(1-x )2;(4) y′=1-12cosx ;(5) y′=2x lnx +55x -1.题型3 利用导数的几何意义解题 例3 已知函数f(x)=axx 2+b ,且f(x)的图象在x =1处与直线y =2相切.(1) 求函数f(x)的解析式;(2) 若P(x 0,y 0)为f(x)图象上的任意一点,直线l 与f(x)的图象切于P 点,求直线l 的斜率k 的取值范围.解:(1) 对函数f(x)求导,得f′(x)=a (x 2+b )-ax (2x )(x 2+b )2=ab -ax 2(x 2+b )2.∵ f(x)的图象在x =1处与直线y =2相切,∴ ⎩⎪⎨⎪⎧f′(1)=0,f (1)=2,即⎩⎨⎧ab -a =0,1+b ≠0,a 1+b=2,∴ a=4,b =1,∴ f(x)=4xx 2+1.(2) ∵ f′(x)=4-4x 2(x 2+1)2,∴ 直线l 的斜率k =f ′(x 0)=4-4x 20(x 20+1)2=4⎣⎢⎡⎦⎥⎤2(x 20+1)2-1x 20+1, 令t =1x 20+1,t ∈(0,1],则k =4(2t 2-t)=8⎝⎛⎭⎫t -142-12, ∴ k ∈⎣⎡⎦⎤-12,4. 变式训练(1) 已知曲线y =13x 3+43,求曲线过点P(2,4)的切线方程;(2) 求抛物线y =x 2上点到直线x -y -2=0的最短距离.解:(1) 设曲线y =13x 3+43与过点P(2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43, 则切线的斜率k =x 20,切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43. 因为点P(2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(2) 由题意得,与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0距离最短,设切点为(x 0,x 20),则切线的斜率为2x 0=1,所以x 0=12,切点为⎝⎛⎭⎫12,14,切点到直线x -y -2=0的距离为d =⎪⎪⎪⎪12-14-22=728.1. (2013·大纲)已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =________.答案:-6解析:y′=4x 3+2ax ,由题意,k =y′|x =-1=-4-2a =8,所以a =-6. 2. (2013·南通一模)曲线f(x)=f′(1)e e x -f(0)x +12x 2在点(1,f(1))处的切线方程为________.答案:y =ex -12解析:由已知得f(0)=f′(1)e ,∴ f(x)=f′(1)e e x -f′(1)e x +12x 2,∴ f ′(x)=f′(1)e e x -f′(1)e+x ,∴ f ′(1)=f′(1)e e -f′(1)e+1,即f′(1)=e ,从而f(x)=e x -x +12x 2,f ′(x)=e x -1+x ,∴ f(1)=e -12,f ′(1)=e ,故切线方程为y -⎝⎛⎭⎫e -12=e(x -1),即y =ex -12. 3. (2013·南京三模)记定义在R 上的函数y =f(x)的导函数为f′(x ).如果存在x 0∈[a ,b],使得f(b)-f(a)=f ′(x 0)(b -a)成立,则称x 0为函数f(x)在区间[a ,b]上的“中值点”,那么函数f(x)=x 3-3x 在区间[-2,2]上“中值点”的个数为________.答案:2解析:f(2)=2,f(-2)=-2,f (b )-f (a )b -a =1,f ′(x)=3x 2-3=1,得x =±233∈[-2,2],故有2个.4. (2013·盐城二模)若实数a 、b 、c 、d 满足a 2-2lna b =3c -4d =1,则(a -c)2+(b -d)2的最小值为________.答案:25(1-ln2)2解析:∵ a 2-2lna b =3c -4d=1,∴ b =a 2-2lna ,d =3c -4,∴ 点(a ,b)在曲线y =x 2-2lnx 上,点(c ,d)在曲线y =3x -4上,(a -c)2+(b -d)2的几何意义就是曲线y =x 2-2lnx 到曲线y =3x -4上点的距离最小值的平方.考查曲线y =x 2-2lnx(x>0)平行于直线y =3x -4的切线,∵ y ′=2x -2x ,令y′=2x -2x =3,解得x =2,∴ 切点为(2,4-2ln2),该切点到直线y =3x -4的距离d =|3×2-4+2ln2-4|32+(-1)2=2-2ln210就是所要求的两曲线间的最小距离,故(a -c)2+(b -d)2的最小值为d 2=25(1-ln2)2.1. 已知函数f(x)=e x -f(0)x +12x 2,则f′(1)=____.答案:e解析:由条件,f(0)=e 0-f(0)×0+12×02=1,则f(x)=e x -x +12x 2,所以f′(x)=e x -1+x ,所以f′(1)=e 1-1+1=e.2. 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,则直线l 的方程是____________.答案:y =0或y =4x -4解析:设两个切点的坐标依次为(x 1,x 21),(x 2,-(x 2-2)2),由条件,得⎩⎪⎨⎪⎧2x 1=-2x 2+4,x 21+[]-(x 2-2)2x 1-x 2=2x 1,解得⎩⎪⎨⎪⎧x 1=0,x 2=2或⎩⎪⎨⎪⎧x 1=2,x 2=0,从而可求直线方程为y =0或y =4x -4.3. 已知函数f(x)=xlnx ,过点A ⎝⎛⎭⎫-1e 2,0作函数y =f(x)图象的切线,则切线的方程为________.答案:x +y +1e2=0解析:设切点T(x 0,y 0),则k AT =f′(x 0),∴x 0lnx 0x 0+1e2=lnx 0+1,即e 2x 0+lnx 0+1=0,设h(x)=e 2x +lnx +1,当x>0时h ′(x)>0,∴ h(x)是单调递增函数,∴ h(x)=0最多只有一个根.又h ⎝⎛⎭⎫1e 2=e 2×1e 2+ln 1e 2+1=0,∴ x 0=1e 2.由f ′(x 0)=-1得切线方程是x +y +1e 2=0.4. 已知函数f(x)=lnx ,g(x)=12ax 2+bx(a ≠0),设函数f(x)的图象C 1与函数g(x)的图象C 2交于两点P 、Q ,过线段PQ 的中点R 作x 轴垂线分别交C 1、C 2于点M 、N ,问是否存在点R ,使C 1在点M 处的切线与C 2在点N 处的切线互相平行?若存在,求出点R 的横坐标;若不存在,请说明理由.解:设点P 、Q 的坐标分别为(x 1,y 1)、(x 2,y 2),且0<x 2<x 1,则点M 、N 的横坐标均为x 1+x 22.∴ C 1在点M 处的切线斜率为k 1=1x |x =x 1+x 22=2x 1+x 2,C 2在点N 处的切线斜率为k 2=ax +b|x =x 1+x 22=a (x 1+x 2)2+b , 假设C 1在点M 处的切线与C 2在点N 处的切线互相平行, 则k 1=k 2,即2x 1+x 2=a (x 1+x 2)2+b.∵ P 、Q 是曲线C 1、C 2的交点,∴ ⎩⎨⎧lnx 1=12ax 21+bx 1,lnx 2=12ax 22+bx 2,两式相减,得lnx 1-lnx 2=⎣⎡⎦⎤12ax 21+bx 1-⎣⎡⎦⎤12ax 22+bx 2, 即lnx 1-lnx 2=(x 1-x 2)⎣⎢⎡⎦⎥⎤a (x 1+x 2)2+b , ∴ lnx 1-lnx 2=2(x 1-x 2)x 1+x 2,即ln ⎝⎛⎭⎫x 1x 2=2⎝⎛⎭⎫x 1x 2-1⎝⎛⎭⎫x 1x 2+1. 设u =x 1x 2>1,则lnu =2(u -1)(u +1),u >1(*).令r(u)=lnu -2(u -1)(u +1),u >1,则r′(u)=1u -4(u +1)2=(u -1)2u (u +1)2.∵ u >1,∴ r ′(u)>0,∴ r(u)在(1,+∞)上单调递增, 故r(u)>r(1)=0,则lnu >2(u -1)(u +1),这与上面(*)相矛盾,所以,故假设不成立.故C1在点M处的切线与C2在点N处的切线不平行.1. 求函数的导数有两种方法,一是利用导数定义,这种方法虽然比较复杂,但需要了解;二是利用导数公式和运算法则求导数,这是求函数导数的主要方法,其关键是记住公式和法则,并适当进行简便运算.2. 利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1) 函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2) 切点既在曲线上,又在切线上,切线有可能和曲线还有其他的公共点.(3) 与导数几何意义有关的综合性问题,涉及到三角函数求值、方程和不等式的解,关键是要善于进行等价转化.请使用课时训练(B)第11课时(见活页).[备课札记]。

【最高考系列】(教师用书)高考数学一轮总复习 第二章 函数与导数课堂过关 理

【最高考系列】(教师用书)高考数学一轮总复习 第二章 函数与导数课堂过关 理

第二章 函数与导数第1课时 函数及其表示(对应学生用书(文)、(理)7~8页)1. (必修1P 24练习5改编)若f(x)=x -x 2,则f ⎝ ⎛⎭⎪⎫12=________,f(n +1)-f(n)=________.答案:14-2n2. (必修1P 31练习4)下列图象表示函数关系y =f(x)的有________.(填序号)答案:①④解析:根据函数定义,定义域内任意的一个自变量x 的值都有唯一一个y 与之对应.3. (必修1P 31练习3改编)用长为30cm 的铁丝围成矩形,若将矩形面积S(cm 2)表示为矩形一边长x(cm)的函数,则函数解析式为____________,其函数定义域为__________.答案:S =x(15-x) x∈(0,15)解析:矩形的另一条边长为15-x ,且x>0,15-x>0.4. (必修1P 32习题7改编)已知函数f(x)=⎩⎪⎨⎪⎧1-12x ,x ≥0,1x,x<0,若f(a)=a ,则实数a =________.答案:23或-1解析:若a≥0,则1-12a =a ,得a =23;若a<0,则1a=a ,得a =-1.5. 已知集合A =[0,8],集合B =[0,4],则下列对应法则中,不能看作从A 到B 的映射的是________.(填序号)① f :x→y=18x ;② f :x→y=14x ;③ f:x→y=12x ;④ f :x →y =x.答案:④解析:①中A =[0,8],得到y∈[0,1]B =[0,4];②中A =[0,8],得到y∈[0,2]B =[0,4];③中A =[0,8],得到y∈[0,4]B =[0,4];④中A =[0,8],得到y∈[0,8]B =[0,4].1. 函数的概念(1) 函数的定义一般地,设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的一个元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .(2) 函数的定义域、值域在函数y =f(x),x ∈A 中,所有的输入值x 组成的集合A 叫做函数y =f(x)的定义域;若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.(3) 函数的三要素:定义域、值域和对应法则.(4) 相等函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相等,这是判断两函数相等的依据.2. 函数的表示方法表示函数的常用方法有列表法、解析法、图象法. 3. 分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.4. 映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个映射.[备课札记]题型1 函数的概念例1判断下列对应是否是从集合A 到集合B 的函数.(1) A =B =N *,对应法则f :x→y=|x -3|,x ∈A ,y ∈B ;(2) A =[0,+∞),B =R ,对应法则f :x→y,这里y 2=x ,x ∈A ,y ∈B ;(3) A =[1,8],B =[1,3],对应法则f :x→y,这里y 3=x ,x ∈A ,y ∈B ;(4) A ={(x ,y)|x 、y∈R },B =R ,对应法则:对任意(x ,y )∈A,(x ,y )→z=x +3y ,z ∈B.解:(1) 对于A 中的元素3,在f 的作用下得到0,但0不属于B ,即3在B 中没有元素与之对应,所以不是函数.(2) 集合A 中的一个正数在集合B 中有两个元素与之对应,所以不是函数. (3) 由y 3=x ,即y =3x ,因为A =[1,8],B =[1,3],对应法则f :x→y,符合函数对应.(4) 由于集合A 不是数集,所以此对应不是函数. 备选变式(教师专享)下列说法正确的是______________.(填序号) ① 函数是其定义域到值域的映射;② 设A =B =R ,对应法则f :x→y=x -2+1-x ,x ∈A ,y ∈B ,满足条件的对应法则f 构成从集合A 到集合B 的函数;③ 函数y =f(x)的图象与直线x =1的交点有且只有1个;④ 映射f :{1,2,3}→{1,2,3,4}满足f(x)=x ,则这样的映射f 共有1个. 答案:①④解析:②中满足y =x -2+1-x 的x 值不存在,故对应法则f 不能构成从集合A 到集合B 的函数;③中函数y =f(x)的定义域中若不含x =1的值,则其图象与直线x =1没有交点.题型2 函数的解析式例2 求下列各题中的函数f(x)的解析式. (1) 已知f(x +2)=x +4x ,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫2x +1=lgx ,求f(x); (3) 已知函数y =f(x)满足2f(x)+f ⎝ ⎛⎭⎪⎫1x =2x ,x ∈R 且x≠0,求f(x); (4) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x).解:(1) (解法1)设t =x +2,则x =t -2,即x =(t -2)2,∴ f(t)=(t -2)2+4(t -2)=t 2-4,∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4,∴ f(x)=x 2-4(x≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) 由2f(x)+f ⎝ ⎛⎭⎪⎫1x =2x ,① 将x 换成1x ,则1x 换成x ,得2f ⎝ ⎛⎭⎪⎫1x +f ()x =2x ,② ①×2-②,得3f(x)=4x -2x ,得f(x)=43x -23x.(4) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a ≠0).由f(0)=1,得c =1. 由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=(ax 2+bx +1)+2x , 整理,得(2a -2)x +(a +b)=0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⎩⎪⎨⎪⎧a =1,b =-1, ∴ f(x)=x 2-x +1. 变式训练求下列函数f(x)的解析式.(1) 已知f(1-x)=2x 2-x +1,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,求f(x);(3) 已知一次函数f(x)满足f(f(x))=4x -1,求f(x);(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求f(x). 解:(1) (换元法)设t =1-x ,则x =1-t ,∴ f(t)=2(1-t)2-(1-t)+1=2t 2-3t +2,∴ f(x)=2x 2-3x +2.(2) (配凑法)∵ f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴ f(x)=x 2+2.(3) (待定系数法)∵ f(x)是一次函数, ∴ 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a(ax +b)+b =a 2x +ab +b. ∵ f(f(x))=4x -1,∴ ⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1, ∴ f(x)=2x -13或f(x)=-2x +1.(4) (消去法)当x ∈(-1,1)时,有 2f(x)-f(-x)=lg(x +1),①以-x 代替x 得2f(-x)-f(x)=lg(-x +1),② 由①②消去f(-x),得f(x)=23lg(x +1)+13lg(1-x),x ∈(-1,1).题型3 分段函数例3 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.(1) 若a =-3,求f(10),f(f(10))的值;(2) 若f(1-a)=f(1+a),求a 的值.解:(1) 若a =-3,则f(x)=⎩⎪⎨⎪⎧2x -3,x<1,-x +6,x ≥1.所以f(10)=-4,f(f(10))=f(-4)=-11.(2) 当a>0时,1-a<1,1+a>1,所以2(1-a)+a =-(1+a)-2a ,解得a =-32,不合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a =2(1+a)+a ,解得a =-34,符合.综上可知,a =-34.备选变式(教师专享)已知f(x)的图象如图,则f(x)的解析式为____________.答案:f(x)=⎩⎪⎨⎪⎧32x ,0≤x ≤1,3-32x ,1≤x ≤2解析:由图象知每段为线段.设f(x)=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入,解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.1. 若函数f(x)=⎩⎪⎨⎪⎧3x,x ≤0,log 2x ,x>0,则f(f(0))=________.答案:0解析:f(0)=30=1,f(f(0))=f(1)=log 21=0. 2. 定义在R 上的函数f(x),对任意x∈R 都有f(x +2)=f(x),当x∈(-2,0)时,f(x)=4x,则f(2 015)=________.答案:14解析:由已知,f(x)是以2为周期的周期函数,故f(2 015)=f(-1)=4-1=14.3. (2014·浙江)设函数f(x)=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x>0.若f(f(a))=2,则a =________. 答案: 2解析:令t =f(a),若f(t)=2,则t 2+2t +2=2 满足条件,此时t =0或t =-2,所以f(a)=0或f(a)=-2,只有-a 2=-2满足条件,故a = 2.4. 已知函数f(x)=⎩⎪⎨⎪⎧21-x ,x ≤1,2-log 2x ,x>1,则满足f(x)≥1的x 的取值范围是________.答案:(-∞,2]解析:由⎩⎪⎨⎪⎧x≤1,21-x ≥1,得x≤1;由⎩⎪⎨⎪⎧x>1,2-log 2x ≥1,得1<x ≤2.综上x∈(-∞,2].1. 已知函数f(x)=alog 2x -blog 3x +2,若f ⎝ ⎛⎭⎪⎫12 014=4,则f(2014)的值为________. 答案:0 解析:∵ f ⎝⎛⎭⎪⎫12 014=alog 212 014-blog 312 014+2=-(alog 22 014-blog 32 014)+2=4,∴ f(2 014)=alog 22 014-blog 32 014+2=(-2)+2=0.2. 具有性质:f ⎝ ⎛⎭⎪⎫1x =-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数: ① y =x -1x ;② y=x +1x ;③ y=⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.其中满足“倒负”变换的函数是________.(填序号)答案:①③解析:对于①,f(x)=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f(x),满足“倒负”变换;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f(x),不满足“倒负”变换; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x>1,0,x =1,-x ,0<x<1,故f ⎝ ⎛⎭⎪⎫1x ,=-f(x),满足“倒负”变换. 综上可知,满足“倒负”变换的函数是①③.3. 若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y ≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.4. 已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1) 若f(2)=3,求f(1);又若f(0)=a,求f(a);(2) 设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1) 因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2.又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2) 因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.1. 函数是特殊的映射,其特殊性在于集合A与B只能是非空数集,即函数是非空数集A到非空数集B的映射;而映射不一定是函数从A到B的一个映射,A、B若不是数集,则这个映射不是函数.2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;②根据给出的对应法则,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3. 函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).请使用课时训练(B)第1课时(见活页).[备课札记]第2课时 函数的定义域和值域(对应学生用书(文)、(理)9~10页)1. (必修1P 27练习6改编)函数f(x)=x +1+12-x的定义域为________. 答案:{x|x≥-1且x≠2}2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是________.答案:{-1,0,3}解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.3. (必修1P 31习题3改编)函数f(x)=2x5x +1的值域为________.答案:⎩⎨⎧⎭⎬⎫y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25,∴ 值域为⎩⎨⎧⎭⎬⎫y|y≠25.4. 若x 有意义,则函数y =x 2+3x -5的值域是________. 答案:[-5,+∞)解析:∵ x 有意义,∴ x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,∴ 当x =0时,y min=-5.5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.答案:[2,4]解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].1. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤① 写出使函数式有意义的不等式(组). ② 解不等式组.③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sinx ,y =cosx ,定义域均为R .⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }.⑥ 函数f(x)=x a的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a,+∞);当a<0时,值域为(-∞,4ac -b24a ].③ y =kx (k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);(2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值.题型1 求函数的定义域例1 求下列函数的定义域:(1) y =12-|x|+lg(3x +1);(2) 已知函数f(2x)的定义域是[-1,1],求f(x)的定义域.解:(1)由⎩⎪⎨⎪⎧2-|x|≠0,3x +1>0⎩⎪⎨⎪⎧x≠-2且x≠2,x>-13,解得x>-13且x≠2,故所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>-13且x≠2.(2) ∵ f(2x)的定义域为[-1,1],即-1≤x≤1,∴ 12≤2x≤2,故f(x)的定义域为⎣⎢⎡⎦⎥⎤12,2. 变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 函数f(x)的定义域是[-1,1],求f(log 2x)的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0,∴ x<-1或-1<x<0,即定义域是(-∞,-1)∪(-1,0). (2) ∵ 函数f(x)的定义域是[-1,1],∴ -1≤log 2x ≤1, ∴ 12≤x ≤2.故f(log 2x)的定义域为⎣⎢⎡⎦⎥⎤12,2. 题型2 求函数的值域 例2 求下列函数的值域: (1) y =x -3x -2;(2) y =x 2-2x -3,x ∈(-1,4];(3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13⎝ ⎛⎭⎪⎫t -322-112,当t =32时,y 有最小值-112,故所求函数的值域为⎣⎢⎡⎭⎪⎫-112,+∞. (2) (配方法)配方,得y =(x -1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (解法2)由y =2x -1x +1,得x =1+y2-y.因为x∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t-2(t>0).因为t +2t≥2t·2t=22,当且仅当t =2,即x =2+1时,等号成立,故所求函数的值域为[22-2,+∞).备选变式(教师专享) 求下列函数的值域:(1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2=4+2()1-x ()x +3,即y 2=4+2-()x +12+4()-3≤x≤1.令t ()x =-()x +12+4()-3≤x≤1.∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2∈[]4,8,即y∈[]2,22,∴ 函数f ()x 的值域是[]2,22.(2) g ()x =x 2-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+7x -4()x≠3且x≠4.∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞.(3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1 ≥2log 3x ·log x 3-1=1;当0<x<1时,log 3x<0,y =log 3x +log x 3-1 =-[(-log 3x)+(-log x 3)]≤-2-1=-3. 所以函数的值域是(-∞,-3]∪[1,+∞). 题型3 函数值域和最值的应用例3 已知函数f(x)=x 2+4ax +2a +6.(1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.解:(1) ∵ f(x)的值域是[0,+∞),即f min (x)=0,∴ 4(2a +6)-(4a )24=0,∴a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0,∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32.当-1≤a≤1,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4;当1<a≤32,g(a)=-a 2+a +2=-⎝ ⎛⎭⎪⎫a -122+94,∴g (a)∈⎣⎢⎡⎭⎪⎫54,2.∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 备选变式(教师专享)已知函数y =mx 2-6mx +m +8的定义域为R . (1) 求实数m 的取值范围;(2) 当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.解:(1) 当m =0时,x ∈R ;当m≠0时,m >0且Δ≤0,解得0<m ≤1,故实数m 的取值范围为0≤m≤1.(2) 当m =0时,f(0)=22;当0<m≤1时,因为y =m (x -3)2+8-8m ,故f(m)=8-8m(0<m≤1).于是,f(m) =8-8m (0≤m≤1),其值域为[0,22].1. (2014·盐城一模)函数f(x)=3-2x -x 2的定义域为________. 答案:[-3,1]解析:由3-2x -x 2≥0,解得-3≤x ≤1.2. (2014·山东)函数f(x)=1log 2x -1的定义域为________.答案:(2,+∞)解析: 若函数f(x)有意义,则log 2x -1>0,∴ log 2x >1,∴ x >2.3. 函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.答案:(-∞,2)解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).4. 已知函数f(x)=⎩⎪⎨⎪⎧x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则bf(a)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫54,3 解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a<log 252,f(a)=f(b),得bf(a)=bf(b)=b(b +2)=(b +1)2-1在⎣⎢⎡⎭⎪⎫12,1上单调增,故bf(a)的取值范围是⎣⎢⎡⎭⎪⎫54,3.1. 设函数g(x)=x 2-2(x∈R ),f(x)= ⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞) 解析:由题意f(x)=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知函数y =mx 2+43x +nx 2+1的最大值为7,最小值为-1,则m +n 的值为________. 答案:6解析:函数式可变形为(y -m)x 2-43x +(y -n)=0,x ∈R ,由已知得y -m≠0,所以Δ=(-43)2-4(y -m)·(y-n)≥0,即y 2-(m +n)y +(mn -12)≤0.①由题意,知不等式①的解集为[-1,7],则-1,7是方程y 2-(m +n)y +(mn -12)=0的两根,代入得⎩⎪⎨⎪⎧1+m +n +mn -12=0,49-7(m +n )+mn -12=0,解得⎩⎪⎨⎪⎧m =5,n =1,或⎩⎪⎨⎪⎧m =1,n =5. 所以m +n =6.3. 已知函数f(x)=4|x|+2-1的定义域是[a ,b](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b)共有________个.答案:5解析:由0≤4|x|+2-1≤1,即1≤4|x|+2≤2得0≤|x|≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.4. 已知二次函数f(x)=ax 2+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.解:(1) f(x)=-x 2+2x.(2) 由f(x)=-x 2+2x =-(x -1)2+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.故f(x)在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.请使用课时训练(A )第2课时(见活页).第3课时 函数的单调性(对应学生用书(文)、(理)11~12页)1. (必修1P 54测试4)已知函数y =f(x)的图象如图所示,那么该函数的单调减区间是________.答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号)① y =1-3x ;② y=-1x;③ y=x 2+1;④ y=|x +1|.答案:②③④3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)<f(2a),则实数a 的取值范围是________.答案:[-1,1)解析:由条件⎩⎪⎨⎪⎧-2≤a+1≤2,-2≤2a≤2,a +1>2a ,解得-1≤a<1.4. 函数f(x)=11-x (1-x )的最大值是________.答案:43解析:∵ 1-x(1-x)=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴ 0<11-x (1-x )≤43.5. 已知函数y =log 2(ax -1)在(1,2)上单调递增,则a 的取值范围为________. 答案:[1,+∞) 解析:令m =ax -1,则函数y =log 2(ax -1)在(1,2)上单调递增等价于m =ax -1在(1,2)上单调递增,且ax -1>0在(1,2)上恒成立,所以⎩⎪⎨⎪⎧a>0,a -1≥0,即a≥1.1. 增函数和减函数一般地,设函数f(x)的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是单调增函数.(如图1所示)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是单调减函数.(如图2所示)2. 单调性与单调区间如果一个函数在某个区间M 上是单调增函数或是单调减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).3. 判断函数单调性的方法(1) 定义法:利用定义严格判断. (2) 利用函数的运算性质.如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数,若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.题型1 函数单调性的判断例1 判断函数f(x)=e x+1ex 在区间(0,+∞)上的单调性.解:(解法1)设0<x 1<x 2,则f(x 1)-f(x 2)=⎝⎛⎭⎪⎫ex 1+1ex 1-⎝ ⎛⎭⎪⎫ex 2+1ex 2 =()ex 1-ex 2+ex 2-ex 1ex 1·ex 2=()ex 1-ex 2⎝ ⎛⎭⎪⎫1-1ex 1+x 2=()ex 1-x 2-1·ex 1+x 2-1ex 1.∵ 0<x 1<x 2,∴ x 1-x 2<0,x 1+x 2>0,∴ ex 1-x 2<1,ex 1+x 2>1,ex 1>0,∴ f(x 1)<f(x 2). ∴ f(x)在(0,+∞)上是增函数.(解法2)对f(x)=e x+1e x 求导,得f′(x)=e x-1e x =1e x (e 2x -1),当x >0时,e x >0,e 2x>1,∴ f ′(x)>0, ∴ f(x)在(0,+∞)上为增函数. 备选变式(教师专享)证明函数f(x)=x1+x2在区间[1,+∞)上是减函数.证明:设x 1、x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1、x 2∈[1,+∞),且x 1<x 2, ∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴ f(x)=x1+x2在[1,+∞)上为减函数.题型2 求函数的单调区间例2 设函数y =f(x)在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x)=⎩⎪⎨⎪⎧f (x ),f (x )≤k,k ,f (x )>k ,取函数f(x)=2-|x|.当k =12时,函数f k (x)的单调递增区间为________.答案:(-∞,-1)解析:由f(x)>12,得-1<x<1;由f(x)≤12,得x≤-1或x≥1.所以f 12(x)=⎩⎪⎨⎪⎧2-x,x ≥1,12,-1<x <1,2x,x ≤-1,故f 12(x)的单调递增区间为(-∞,-1).备选变式(教师专享)若本例中f(x)=2-|x|变为f(x)=log 2|x|,其他条件不变,则f k (x)的单调增区间为________.答案:(0, 2 ]解析:函数f(x)=log 2|x|,k =12时,函数f k (x)的图象如图所示,由图示可得函数f k (x)的单调递增区间为(0,2].题型3 已知函数的单调性求参数的值或范围例3 已知函数f(x)=lg kx -1x -1(k∈R ,且k>0).(1) 求函数f(x)的定义域;(2) 若函数f(x)在[10,+∞)上单调递增,求k 的取值范围.解:(1) 由kx -1x -1>0,k>0,得x -1k x -1>0,当0<k<1时,得x<1或x>1k;当k =1时,得x∈R且x ≠1;当k>1时,得x<1k或x>1.综上,当0<k<1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1.(2) 由函数f(x)在[10,+∞)上单调递增,知10k -110-1>0,∴ k>110.又f(x)=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f(x 1)<f(x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1,得k -1x 1-1<k -1x 2-1(k -1)(1x 1-1-1x 2-1)<0.∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k<1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. 变式训练已知函数f ()x =2x -ax,x ∈(0,1].(1) 当a =-1时,求函数y =f(x)的值域;(2) 若函数y =f(x)在x∈(0,1]上是减函数,求实数a 的取值范围.解:(1) 当a =-1时,f(x)=2x +1x ,因为0<x≤1,所以f(x)=2x +1x≥22x·1x =22,当且仅当x =22时,等号成立,所以函数y =f(x)的值域是[22,+∞).(2) (解法1)设0<x 1<x 2≤1,由f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫2x 1-a x 1-⎝ ⎛⎭⎪⎫2x 2-a x 2=2(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 2-a x 1=(x 1-x 2)(2x 1x 2+a )x 1x 2, 因为函数y =f(x)在x∈(0,1]上是减函数, 所以f(x 1)-f(x 2)>0恒成立,所以2x 1x 2+a<0,即a<-2x 1x 2在x∈(0,1]上恒成立, 所以a<-2,即实数a 的取值范围是(-∞,-2).(解法2)由f(x)=2x -a x ,知f′(x)=2+ax2,因为函数y =f(x)在x∈(0,1]上是减函数,所以f ′(x)=2+ax2<0在x∈(0,1]上恒成立,即a<-2x 2在x∈(0,1]上恒成立,所以a<-2,即实数a 的取值范围是(-∞,-2).题型4 函数的单调性与最值例4 已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =12时,求f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,求实数a 的取值范围.解:(1) 当a =12时,f(x)=x +12x+2.设x 1>x 2≥1,则f(x 1)-f(x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.∵ x 1>x 2≥1, ∴ f(x 1)>f(x 2),∴ f(x)在[1,+∞)上为增函数.∴ f (x)≥f(1)=72,即f(x)的最小值为72.(2) ∵ f(x)>0在x∈[1,+∞)上恒成立,即x 2+2x +a >0在[1,+∞)上恒成立,∴ a >[-(x 2+2x)]max .∵ t(x)=-(x 2+2x)在[1,+∞)上为减函数, ∴ t(x)max =t(1)=-3, ∴ a >-3.备选变式(教师专享)已知a∈R 且a≠1,求函数f(x)=ax +1x +1在[1,4]上的最值.解:由f(x)=ax +1x +1=a +1-ax +1.若1-a>0,即a<1时,f(x)在[1,4]上为减函数,∴ f max (x)=f(1)=a +12,f min (x)=f(4)=4a +15;若1-a<0,即a>1时,f(x)在[1,4]上为增函数,∴ f max (x)=f(4)=4a +15,f min (x)=f(1)=a +12.1. 已知函数f(x)=⎩⎪⎨⎪⎧e x-2k ,x ≤0(1-k )x ,x>0是R 上的增函数,则实数k 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫12,1 解析:由题意得⎩⎪⎨⎪⎧e 0-2k≤0,1-k>0,解得12≤k<1.2. 若函数f(x)=|2x +a|的单调递增区间是[3,+∞),则a =________.答案:-6解析:由f(x)=⎩⎪⎨⎪⎧-2x -a ,x<-a2,2x +a ,x ≥-a2,可得函数f(x)的单调递增区间为⎣⎢⎡⎭⎪⎫-a 2,+∞,故3=-a2,解得a =-6.3. “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的________条件.答案:充要解析:① 当a =0时,f(x)=|x|在区间(0,+∞)内单调递增;② 当a<0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)内单调递增;③当a>0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)上先增后减再增,不符合.所以“a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.4. 已知函数f(x)=1a -1x (a>0,x>0),若f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________.答案:25解析:由反比例函数的性质知函数f(x)=1a -1x (a>0,x>0)在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2, 解得a =25.1. 给定函数:①y=x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数是____________.(填序号)答案:②③解析:①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.2. (2014·天津)函数f(x)=lgx 2的单调递减区间是________. 答案:(-∞,0)解析: 函数f(x)=lgx 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x∈(-∞,0).3. 已知函数f(x)=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x<2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为________.答案:⎝⎛⎦⎥⎤-∞,138 解析:函数f(x)是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1, 由此解得a≤138,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,138. 4. 是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,说明a 可取哪些值;如果不存在,请说明理由.解:显然a>0且a≠1.当a>1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫0,12,只需t(2)=4a -2>0,即a>12,所以a >1均成立; 当0<a <1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫12,+∞,需要⎩⎪⎨⎪⎧12a≥4,t (4)=16a -4>0无解. 所以,存在实数a >1,满足条件.1. 求函数的单调区间,首先应注意函数的定义域,函数的单调区间都是定义域的子集,常用方法有:定义法、图象法、导数法、复合函数法等.2. 函数单调性的应用 (1) 比较函数值的大小; (2) 解不等式;(3) 求函数的值域或最值等.注意利用定义都是充要性命题,即若函数f(x)在区间D 上递增(减)且f(x 1)<f(x 2)x 1<x 2(x 1>x 2)(x 1、x 2∈D).[备课札记]第4课时 函数的奇偶性及周期性(对应学生用书(文)、(理)13~14页)1. (必修1P 45习题8改编)函数f(x)=mx 2+(2m -1)x +1是偶函数,则实数m =________.答案:12解析:由f(-x)=f(x),知m =12.2. (必修1P 43练习5改编)函数f(x)=x 3-x 的图象关于________对称. 答案:原点解析:由f(-x)=(-x)3-(-x)=-x 3+x =-f(x),知f(x)是奇函数,则其图象关于原点对称.3. 已知定义在R 上的奇函数f(x),满足f(x +4)=f(x),则f(8)的值为________. 答案:0解析:∵ f(x)为奇函数且f(x +4)=f(x),∴ f(0)=0,T =4,∴ f(8)=f(0)=0. 4. (必修1P 43练习4)对于定义在R 上的函数f(x),给出下列说法: ① 若f(x)是偶函数,则f(-2)=f(2); ② 若f(-2)=f(2),则函数f(x)是偶函数; ③ 若f(-2)≠f(2),则函数f(x)不是偶函数; ④ 若f(-2)=f(2),则函数f(x)不是奇函数. 其中,正确的说法是________.(填序号) 答案:①③解析:根据偶函数的定义,①正确,而③与①互为逆否命题,故③也正确,若举例奇函数f(x)=⎩⎪⎨⎪⎧x -2,x>0,x +2,x<0,由于f(-2)=f(2),所以②④都错误.5. 已知定义在R 上的奇函数满足f(x)=x 2+2x(x≥0),若f(3-a 2)>f(2a),则实数a的取值范围是________.答案:(-3,1)解析:因为f(x)=x 2+2x 在[0,+∞)上是增函数,又f(x)是R 上的奇函数,所以函数f(x)是R 上的增函数,要使f(3-a 2)>f(2a),只需3-a 2>2a ,解得-3<a<1.1. 奇函数、偶函数的概念 一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.2. 判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1) 考查定义域是否关于原点对称.(2) 根据定义域考查表达式f(-x)是否等于f(x)或-f(x). 若f(-x)=-f(x),则f(x)为奇函数. 若f(-x)=f(x),则f(x)为偶函数.若f(-x)=f(x)且f(-x)=-f(x),则f(x)既是奇函数又是偶函数.若存在x 使f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数.3. 函数的图象与性质奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 4. 函数奇偶性和单调性的相关关系(1) 注意函数y =f(x)与y =kf(x)的单调性与k(k≠0)有关.(2) 注意函数y =f(x)与y =1f (x )的单调性之间的关系.(3) 奇函数在[a ,b]和[-b ,-a]上有相同的单调性. (4) 偶函数在[a ,b]和[-b ,-a]上有相反的单调性. 5. 函数的周期性设函数y =f(x),x ∈D ,如果存在非零常数T ,使得对任意x∈D,都有f(x +T)=f(x),则称函数f(x)为周期函数,T 为函数f(x)的一个周期.(D 为定义域)题型1 判断函数的奇偶性例1 判断下列函数的奇偶性:(1) f(x)=x 3-1x ;(2) f(x)=1-x2|x +2|-2;(3) f(x)=(x -1)1+x1-x; (4) f(x)=3-x 2+x 2-3.解:(1) 定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2) 去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎪⎨⎪⎧-1≤x≤1,x ≠0且x≠-4. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=1-x 2x +2-2=1-x2x,这时有f(-x)=1-(-x )2-x =-1-x2x=-f(x),故f(x)为奇函数.(3) 因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4) 因为f(x)定义域为{-3,3},所以f(x)=0,则f(x)既是奇函数也是偶函数. 备选变式(教师专享) 判断下列函数的奇偶性:(1) f(x)=x 4+x ;(2) f(x)=⎩⎪⎨⎪⎧x 2+x (x<0),-x 2+x (x>0); (3) f(x)=lg(x +x 2+1).解:(1) 定义域为R ,f(-1)=0,f(1)=2,由于f(-1)≠f(1),f(-1)≠-f(1),所以f(x)既不是奇函数也不是偶函数.(2) 因为函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x <0时,-x >0,所以f(-x)=-(-x)2+(-x)=-(x 2+x)=-f(x)(x <0).当x >0时,-x <0,所以f(-x)=(-x)2+(-x)=-(-x 2+x)=-f(x)(x >0).故函数f(x)为奇函数.(3) 由x +x 2+1>0,得x∈R ,由f(-x)+f(x)=lg(-x +x 2+1)+lg(x +x 2+1)=lg1=0,所以f(-x)=-f(x),所以f(x)为奇函数.题型2 函数奇偶性的应用例2 (1) 设a∈R ,f(x)=a·2x+a -22x+1(x∈R ),试确定a 的值,使f(x)为奇函数; (2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a -2)-f(4-a 2)<0,求实数a 的取值范围.解:(1) 要使f(x)为奇函数,∵ x ∈R ,∴ 需f(x)+f(-x)=0.∵ f(x)=a -22x +1,∴ f(-x)=a -22-x +1=a -2x +12x +1.由⎝ ⎛⎭⎪⎫a -22+1+⎝ ⎛⎭⎪⎫a -2x +12+1=0,得2a -2(2x+1)2x+1=0, ∴ a =1.(2) 由f(x)的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a< 5. 由f(a -2)-f(4-a 2)<0,得f(a -2)<f(4-a 2).因为函数f(x)是偶函数,所以f(|a -2|)<f(|4-a 2|).由于f(x)在(0,1)上是增函数,所以|a -2|<|4-a 2|,解得a<-3或a>-1且a≠2. 综上,实数a 的取值范围是3<a<5且a≠2. 变式训练(1) 已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m 2)<0,求实数m 的取值范围.解:(1) 当x>0时,-x<0,由题意得f(-x)=-f(x),所以x 2-x =-ax 2-bx. 从而a =-1,b =1,所以a +b =0. (2) 由f(x)的定义域是[-2,2], 知⎩⎪⎨⎪⎧-2≤1-m≤2,-2≤1-m 2≤2,解得-1≤m≤ 3. 因为函数f(x)是奇函数,所以f(1-m)<-f(1-m 2),即f(1-m)<f(m 2-1).由奇函数f(x)在区间[-2,0]内递减, 所以在[-2,2]上是递减函数,所以1-m>m 2-1,解得-2<m<1.综上,实数m 的取值范围是-1≤m<1. 题型3 函数奇偶性与周期性的综合应用例3 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x∈[2,4]时,求f(x)的解析式;(3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值. (1) 证明:因为f(x +2)=-f(x), 所以f(x +4)=-f(x +2)=f(x), 所以f(x)是周期为4的周期函数.(2) 解:因为x∈[2,4],所以-x∈[-4,-2],4-x∈[0,2],所以f(4-x)=2(4-x)-(4-x)2=-x 2+6x -8.又f(4-x)=f(-x)=-f(x),所以-f(x)=-x 2+6x -8,即f(x)=x 2-6x +8,x ∈[2,4].(3) 解:因为f(0)=0,f(1)=1,f(2)=0,f(3)=-1,又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=0, 所以f(0)+f(1)+f(2)+…+f(2 014)=f(0)+f(1)+f(2)=1. 备选变式(教师专享)设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x).当x∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x∈[2,4]时,求f(x)的解析式. (1) 证明:∵ f(x+2)=-f(x), ∴ f(x +4)=-f(x +2)=f(x). ∴ f(x)是周期为4的周期函数.(2) 解:∵ x∈[2,4],∴ -x∈[-4,-2],∴ 4-x∈[0,2],∴ f(4-x)=2(4-x)-(4-x)2=-x 2+6x -8. ∵ f(4-x)=f(-x)=-f(x),∴ -f(x)=-x 2+6x -8,即f(x)=x 2-6x +8,x ∈[2,4].1. 已知f(x)是定义在R 上的奇函数,且f(x +4)=f(x).当x∈(0,2)时,f(x)=-x +4,则f(7)=________.答案:-3解析:f(7)=f(3+4)=f(3)=f(3-4)=f(-1)=-f(1)=-3. 2. (2014·镇江期末)已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________.答案:[-1,1]解析:∵ f(x)≥x 2,而f(x)示意图如下:令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1].3. (2014·南师附中冲刺)设函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg2x)的x 的取值范围是____________.答案:⎝ ⎛⎭⎪⎫0,120∪(5,+∞)解析:由题意知f(1)<f(|lg(2x)|),所以|lg(2x)|>1,即lg(2x)>1或lg(2x)<-1,即2x >10或0<2x <110,解得x >5或0<x <120.4. 设函数y =f(x)满足对任意的x∈R ,f(x)≥0且f 2(x +1)+f 2(x)=9.已知当x∈[0,1)时,有f(x)=2-|4x -2|,则f ⎝ ⎛⎭⎪⎫2 0136=________.答案: 5解析:由题知f ⎝ ⎛⎭⎪⎫12=2,因为f(x)≥0且f 2(x +1)+f 2(x)=9,故f ⎝ ⎛⎭⎪⎫32=5,f ⎝ ⎛⎭⎪⎫52=2,f ⎝ ⎛⎭⎪⎫72=5,如此循环得f ⎝ ⎛⎭⎪⎫6712=f ⎝ ⎛⎭⎪⎫4×168-12=5,即f ⎝ ⎛⎭⎪⎫2 0136= 5.1. (2014·安徽)若函数f(x)(x∈R )是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.答案:516解析:由题易知f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516. 2. 已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x 3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点个数为________.答案:7解析:由条件,当0≤x<2时,f(x)=x(x +1)(x -1),即当0≤x <2时,f(x)=0有两个根0,1,又由周期性,当2≤x<4时,f(x)=0有两个根2,3,当4≤x<6时,f(x)=0有两个根4,5,而6也是f(x)=0的根,故y =f(x)的图象在区间[0,6]上与x 轴的交点个数为7.3. 已知定义在R 上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x +a)≤1对x∈[-1,1]恒成立,则实数a 的取值范围是________.答案:[-1,1]解析:由题意,知|x +a|≤2, ∴ -a -2≤x≤-a +2.又f(x +a)≤1对x∈[-1,1]恒成立, ∴ [-1,1][-a -2,-a +2], ∴ ⎩⎪⎨⎪⎧-a -2≤-1,-a +2≥1⎩⎪⎨⎪⎧a≥-1,a ≤1,故-1≤a≤1. 4. 已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax +1)≤f(x-2)在x∈⎣⎢⎡⎦⎥⎤12,1上恒成立,求实数a 的取值范围. 解:由于f(x)为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f(ax +1)≤f(x-2),则|ax +1|≤|x-2|.又x∈⎣⎢⎡⎦⎥⎤12,1,故|x -2|=2-x , 即x -2≤ax+1≤2-x ,即x -3≤ax≤1-x ,即1-3x ≤a ≤1x -1,在⎣⎢⎡⎦⎥⎤12,1上恒成立. 由于⎝ ⎛⎭⎪⎫1x -1min =0,⎝ ⎛⎭⎪⎫1-3x max =-2,故-2≤a≤0.1. 函数奇偶性的判断,本质是判断f(x)与f(-x)是否具有等量关系,前提是定义域关于原点对称,运算中,也可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0或f(x)-f(-x)=0)是否成立.2. 若f(x)是偶函数,则f(-x)=f(x)=f(|x|).3. 奇偶函数的不等式求解时,要注意到:奇函数在对称的区间上有相同的单调性,偶函数在对称的区间上有相反的单调性.请使用课时训练(A)第4课时(见活页).[备课札记]第5课时函数的图象(对应学生用书(文)、(理)15~17页)① 图象是函数刻画变量之间的函数关系的一个重要途径,是研究函数性质的一种常用方法,是数形结合的基础和依据,预测在今后的高考中还将加大对函数图象考查的力度.②主要考查形式有:知图选式、知式选图、图象变换以及自觉地运用图象解题,因此要注意识图读图能力的提高以及数形结合思想的灵活运用.① 掌握基本函数图象的特征,能熟练运用基本函数的图象解决问题.②掌握图象的作法:描点法和图象变换法.1. (必修1P53复习14)函数y=f(x)与y=f(-x)的图象关于________对称.答案:y轴2. (必修1P64练习6)函数y=2-x的图象是________.(填序号)答案:①3. (必修1P30练习3改编)函数y=f(x)的图象如图所示,则(1) f(0)=________,f(-1)=________,f(4)=________.(2) 若-1<x1≤x2<2,则f(x1)与f(x2)的大小关系是________________.答案:(1) 4 5 6 (2) f(x1)≥f(x2)4. 为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向________平移________个单位长度.答案:右 35. 若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是____________.答案:(0,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数与导数第2课时 函数的定义域和值域第三章 (对应学生用书(文)、(理)9~10页)1. (必修1P 27练习6改编)函数f(x)=x +1+12-x的定义域为________. 答案:{x|x≥-1且x≠2}2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是________.答案:{-1,0,3}解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.3. (必修1P 31习题3改编)函数f(x)=2x5x +1的值域为____________.答案:⎩⎨⎧⎭⎬⎫y|y≠25解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25,∴ 值域为⎩⎨⎧⎭⎬⎫y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ;② f(x)=x x,g(x)=x ;③ f(x)=x 2,g(x)=(x)4;④ f(x)=|x|,g(x)=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x<0.答案:④解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.答案:[2,4]解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].1. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤① 写出使函数式有意义的不等式(组). ② 解不等式组.③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }.⑥ 函数f(x)=x a的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b24a,+∞);当a<0时,值域为⎝ ⎛⎥⎤-∞,4ac -b 24a . ③ y =kx(k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a ≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);(2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]题型1 求函数的定义域例1 求下列函数的定义域: (1) y =12-|x|+lg(3x +1);(2) y =4-x2ln (x +1).解:(1)由⎩⎪⎨⎪⎧2-|x|≠0,3x +1>0⎩⎪⎨⎪⎧x≠-2且x≠2,x>-13, 解得x>-13且x≠2,所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>-13且x≠2. (2) 由⎩⎪⎨⎪⎧ln (x +1)≠0,4-x 2≥0⎩⎪⎨⎪⎧x>-1且x≠0,-2≤x≤2, 解得-1<x<0或0<x≤2,所求函数的定义域为(-1,0)∪(0,2]. 变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 若函数y =f(x)的定义域是[0,2],求函数g(x)=f (2x )x -1的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0, 所以x<-1或-1<x<0,即定义域是(-∞,-1)∪(-1,0).(2) 由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).题型2 求函数的值域例2 求下列函数的值域: (1) y =x -3x -2;(2) y =x 2-2x -3,x ∈(-1,4]; (3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13⎝ ⎛⎭⎪⎫t -322-112,当t =32时,y 有最小值-112,故所求函数的值域为⎣⎢⎡⎭⎪⎫-112,+∞.(2) (配方法)配方,得y =(x -1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32.(解法2)由y =2x -1x +1,得x =1+y 2-y.因为x ∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t -2(t>0).因为t +2t≥2t·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域: (1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2=4+2()1-x ()x +3,即y 2=4+2-()x +12+4()-3≤x≤1.令t ()x =-()x +12+4()-3≤x≤1.∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2∈[]4,8,即y∈[]2,22,∴ 函数f ()x 的值域是[]2,22.(2) g ()x =x 2-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+7x -4()x≠3且x≠4. ∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞. (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1;当0<x<1时,log 3x<0,y =log 3x +log x 3-1 =-[(-log 3x)+(-log x 3)]≤-2-1=-3. 所以函数的值域是(-∞,-3]∪[1,+∞). 题型3 函数值域和最值的应用例3 已知函数f(x)=x 2+4ax +2a +6. (1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域. 解:(1) ∵ f(x)的值域是[0,+∞), 即f min (x)=0,∴ 4(2a +6)-(4a )24=0,∴ a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0, ∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32. 当-1≤a≤1,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4; 当1<a≤32,g(a)=-a 2+a +2=-⎝ ⎛⎭⎪⎫a -122+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2. ∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 备选变式(教师专享)已知函数f(x)=1-2a x -a 2x(a>1). (1) 求函数f(x)的值域;(2) 若x∈[-2,1]时,函数f(x)的最小值是-7,求a 的值及函数f(x)的最大值.解:(1) 由题意,知f(x)=2-(1+a x )2,因为a x>0,所以f(x)<2-1=1,所以函数f(x)的值域为(-∞,1).(2) 因为a>1,所以当x∈[-2,1]时,a -2≤a x ≤a ,于是f min (x)=2-(a +1)2=-7,所以a =2,此时,函数f(x)的最大值为2-(2-2+1)2=716.1. (2013·大纲)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12 解析:由-1<2x +1<0,得-1<x<-12,所以函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.2. (2013·山东)函数f(x)=1-2x+1x +3的定义域为________.答案:(-3,0]解析:由题意,⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x≤0,即定义域为(-3,0].3. (2013·北京)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.答案:(-∞,2)解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).4. (2013·徐州三模)已知函数f(x)=⎩⎪⎨⎪⎧x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则bf(a)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫54,3解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a<log 252,f(a)=f(b),得bf(a)=bf(b)=b(b +2)=(b +1)2-1在⎣⎢⎡⎭⎪⎫12,1上单调增,故bf(a)的取值范围是⎣⎢⎡⎭⎪⎫54,3.1. 设函数g(x)=x 2-2(x∈R ),f(x)=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:由题意f(x)=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知二次函数f(x)=ax 2-x +c(x∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.答案:10解析:由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.3. 已知函数f(x)=log 13(-|x|+3)的定义域是[a ,b](a 、b∈Z ),值域是[-1,0],则满足条件的整数对(a ,b)有________对.答案:5解析:由f(x)=log 13(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],∵ 定义域是[a ,b](a 、b∈Z ),∴ 符合条件的(a ,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.4. 已知二次函数f(x)=ax 2+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.解:(1) f(x)=-x 2+2x.(2) 由f(x)=-x 2+2x =-(x -1)2+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.故f(x)在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.请使用课时训练(A)第2课时(见活页).[备课札记]。

相关文档
最新文档