最新北师大版初中八年级数学上册2.6实数1公开课教学设计

合集下载

北师大版八年级数学上册:2.6实数优秀教学案例

北师大版八年级数学上册:2.6实数优秀教学案例
五、案例亮点
1.生活情境导入:通过利用生活实际情境引出实数的概念,让学生感受到实数与生活的紧密联系,增强了学生的学习兴趣,提高了学生的学习积极性。
2.问题导向:在教学过程中,教师提出引导性问题,鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维和问题解决能力。
3.小组合作:教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力和实践能力。
北师大版八年级数学上册:2.6实数优秀教学案例
一、案例背景
本案例背景以北师大版八年级数学上册第2章第6节“实数”为主题内容。实数作为数学中的基础概念,不仅涉及有理数、无理数等知识,更是学生进一步学习函数、几何等数学分支的基石。对于八年级的学生而言,他们已经具备了有理数的知识基础,但对无理数概念的理解仍较为模糊,特别是对无理数的实际意义和应用认识不足。
2.设计具有探究性的数学活动,如数学实验、数学探究等,让学生在实践中感受实数的形成过程。
3.教师关注学生在小组合作中的表现,及时给予指导和鼓励,提升学生的自信心。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,培养学生自我评价、自我调整的能力。
2.教师通过课堂提问、学生作业等方式,对学生的学习情况进行评价,及时了解学生的知识掌握情况。
1.教师提出引导性问题,引导学生从已知知识出发,逐步探究实数的定义和性质。
2.鼓励学生提出疑问,引导学生主动发现问题、解决问题,培养学生的批判性思维。
3.教师引导学生总结实数的运算规律,帮助学生建立实数知识的体系。
(三)小组合作
1.教师组织学生进行小组讨论,让学生在合作交流中共同探究实数问题,培养学生的团队合作能力。
3.鼓励学生互相评价、互相学习,培养学生的批判性思维和评价能力。

2.6实数教学设计2024-2025学年北师大版数学八年级上册

2.6实数教学设计2024-2025学年北师大版数学八年级上册
3.请描述数轴与实数的关系,并如何在数轴上表示不同类型的实数。
4.请举例说明实数在实际生活中的应用,如长度和面积的计算。
5.请解决以下问题:
a.计算:(-2)+(3/4)-(√2)-(-π)。
b.判断:-2的相反数是多少?
c.求解:数轴上的点A对应的实数是2,点B对应的实数是-3,点C对应的实数是√2,求点D对应的实数。
2.6实数教学设计2024-2025学年北师大版数学八年级上册
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
2.6实数教学设计2024-2025学年北师大版数学八年级上册
课程基本信息
1.课程名称:实数教学
2.教学年级和班级:北师大版数学八年级上册
-帮助学生深入理解实数的性质和运算规则,掌握数轴表示实数的方法。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
3.课后拓展应用
教师活动:
-布置作业:根据实数的性质和运算,布置适量的课后作业,巩固学习效果。
-提供拓展资源:提供与实数相关的拓展资源(如书籍、网站、视频等),供学生进一步学习。
3.随堂测试:通过随堂测试,评估学生对实数的概念、性质和运算规则的理解程度,以及学生的数学运算能力和解决问题的能力。
4.作业完成情况:通过检查学生的作业完成情况,评估学生对课堂所学知识点的掌握程度,以及学生的自主学习和解决问题的能力。
5.教师评价与反馈:针对学生在学习过程中的表现和成果,给予及时的评价和反馈,帮助学生发现自己的不足并提出改进建议,促进学生的自我提升。

北师大版数学八年级上册2.6《实数》教案

北师大版数学八年级上册2.6《实数》教案
5.培养学生的数据分析观念:让学生在实际问题中运用实数知识,学会分析数据,培养数据分析观念和解决实际问题的能力。
三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。

八年级数学上册2.6实数教案 新版北师大版

八年级数学上册2.6实数教案 新版北师大版

八年级数学上册2.6实数教案新版北师大版一. 教材分析《八年级数学上册2.6实数》这一节主要让学生了解实数的概念,掌握实数的性质,以及实数与数轴的关系。

教材通过引入实数的概念,让学生认识到实数是整数和分数的统称,包括有理数和无理数。

同时,教材介绍了实数的性质,如实数的大小比较、实数的加减乘除运算等。

最后,教材引导学生理解实数与数轴的关系,掌握数轴上的点与实数的一一对应关系。

二. 学情分析学生在学习这一节之前,已经掌握了有理数的概念和性质,对数轴也有了一定的了解。

但是,学生可能对无理数的概念和性质比较陌生,理解起来可能存在一定的困难。

因此,在教学过程中,需要加强对无理数的解释和引导,帮助学生建立起实数的整体概念。

三. 教学目标1.让学生理解实数的概念,掌握实数的性质。

2.让学生掌握实数与数轴的关系,能够利用数轴表示实数。

3.培养学生运用实数解决问题的能力。

四. 教学重难点1.实数的概念和性质。

2.实数与数轴的关系。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考和探索实数的性质;通过案例分析,让学生了解实数在实际中的应用;通过小组合作,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备与实数相关的案例材料。

2.准备数轴的教具。

3.准备实数的性质和运算的练习题。

七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生思考实数的定义和性质。

例如:“实数是什么?实数有哪些性质?”让学生回顾已有知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍实数的概念,包括有理数和无理数。

通过案例教学法,呈现一些与实数相关的实际问题,让学生了解实数的应用。

如:“小明买了一本书,价格是3.14元,这本书的价格可以用实数表示吗?为什么?”3.操练(10分钟)让学生进行实数的性质和运算的练习。

例如:“判断以下两个实数的大小:2和3/4。

”通过练习,让学生掌握实数的性质和运算方法。

北师大版八年级数学上册2.6实数公开课优质教案(6)

北师大版八年级数学上册2.6实数公开课优质教案(6)

2.6实数教学设计一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。

这节内容教材安排了3个课时,本节课为第一课时。

主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。

在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

本节课的教学目标是:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。

2. 学会实数的运算方法,包括加、减、乘、除、乘方等。

3. 能够运用实数解决实际问题,提高学生的数学应用能力。

二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。

2. 实数的性质:实数的加减法、乘除法、乘方运算。

3. 实数的应用:解决实际问题,如长度、面积、体积等计算。

三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。

2. 难点:实数运算的灵活应用,解决实际问题。

四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。

2. 运用案例分析法,分析实际问题,引导学生运用实数解决。

3. 开展小组讨论,让学生互动交流,巩固所学知识。

五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。

2. 讲解实数的分类:有理数、无理数、实数。

3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。

4. 运用案例分析,让学生体会实数在实际问题中的应用。

5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。

6. 总结本节课内容,布置课后作业。

六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。

2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。

3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。

七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。

2. 探讨实数与生活中的实际问题,提高学生的数学素养。

八、教学资源:1. 教材:八年级数学上册,北师大版。

2. 教案:实数教案。

3. PPT:实数相关内容。

4. 练习题:实数运算练习题。

九、教学时间安排:1. 第一课时:实数的定义与分类。

2. 第二课时:实数的性质与运算。

3. 第三课时:实数的应用与拓展。

十、课后作业:1. 复习实数的定义、性质及运算方法。

2. 完成练习题,巩固所学知识。

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。

通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。

同时,实数的分类和性质也需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。

2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。

3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。

四. 教学重难点1.实数的概念和分类。

2.实数的性质。

五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。

通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。

六. 教学准备3.练习题。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。

呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。

2.引导学生通过观察和思考,总结实数的性质。

操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。

2.每组选一名代表进行汇报,其他组进行评价和补充。

巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。

2.教师选取部分学生的作业进行点评,指出错误并进行讲解。

拓展(10分钟)1.让学生思考:实数和数轴之间的关系。

2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。

小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。

2.学生分享学习收获和感受。

家庭作业(5分钟)1.完成课后练习题。

八年级数学上册2.6实数教学设计 (新版北师大版)

八年级数学上册2.6实数教学设计 (新版北师大版)

八年级数学上册2.6实数教学设计(新版北师大版)一. 教材分析本节课的主题是实数,是北师大版八年级数学上册第2.6节的内容。

实数是数学中的基础概念,包括有理数和无理数。

学生在学习实数之前已经掌握了有理数的相关知识,本节课主要是让学生了解无理数的概念,以及实数的分类。

教材内容由浅入深,从实数的定义到实数的分类,再到实数的运算,有助于学生系统地掌握实数的相关知识。

二. 学情分析八年级的学生已经掌握了有理数的相关知识,对数学概念有一定的理解能力。

但是,对于无理数的概念和性质,学生可能比较难理解,需要通过实例和生活中的实际问题来进行解释。

此外,学生可能对实数的分类和运算有一定的困惑,需要通过大量的练习来进行巩固。

三. 教学目标1.了解无理数的概念,知道无理数和有理数的区别。

2.掌握实数的分类,能够正确判断一个数是实数还是非实数。

3.掌握实数的运算规则,能够进行实数的加减乘除运算。

四. 教学重难点1.无理数的概念和性质。

2.实数的分类。

3.实数的运算规则。

五. 教学方法采用讲授法、案例分析法、练习法、小组合作法等教学方法。

通过讲解实数的定义和性质,让学生了解无理数和有理数的区别;通过案例分析,让学生理解实数的分类;通过大量练习,让学生掌握实数的运算规则。

六. 教学准备1.教材、PPT、黑板、粉笔等教学用具。

2.相关的案例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实际问题来引入本节课的主题——实数。

例如:“小明家距离学校2.5公里,他每分钟走50米,问小明需要多少分钟才能到学校?”让学生思考,引出实数的概念。

2.呈现(10分钟)讲解实数的定义和性质,让学生了解实数包括有理数和无理数。

通过PPT展示实数的分类,让学生掌握实数的分类。

3.操练(10分钟)让学生进行实数的运算练习,例如:2+3√2、5-√3等。

让学生在练习中掌握实数的运算规则。

4.巩固(10分钟)通过小组合作,让学生讨论实数的运算规则,以及实数的分类。

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。

本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。

教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。

二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。

但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。

同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。

三. 教学目标1.理解实数的概念,掌握实数的分类。

2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。

2.实数的运算:加法、减法、乘法、除法、乘方等。

五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。

2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。

3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

4.练习法:布置适量作业,巩固所学知识。

六. 教学准备1.教材:北师大版八年级数学上册。

2.教案:实数教学设计。

3.PPT:实数相关知识点和案例分析。

4.作业:适量实数运算练习题。

七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。

2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。

3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。

4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。

5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。

最新北师大版八年级数学上册《实数》1教学设计

最新北师大版八年级数学上册《实数》1教学设计

第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

依据新课标制定教学难点:利用数轴上的点表示无理数。

二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。

3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。

三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。

通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。

第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。

教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。

但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。

此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够进行实数的大小比较、加减乘除运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数的运算规则。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。

2.运用实例解析法,让学生通过实际问题理解实数的运算规则。

3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作PPT,展示实数的定义、性质和运算规则。

3.分组安排,便于学生进行小组合作学习。

七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。

2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。

3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。

4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。

5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

2024年北师大版八年级数学上册全册教案教学设计

2024年北师大版八年级数学上册全册教案教学设计

2024年北师大版八年级数学上册全册教案教学设计一、教学内容第一章《实数》详细内容:1.1 有理数的复习;1.2 无理数的概念;1.3 实数的性质与分类。

第二章《平面几何》详细内容:2.1 线段与角;2.2 三角形;2.3 四边形;2.4 圆。

第三章《函数及其图像》详细内容:3.1 函数的定义;3.2 函数的图像;3.3 一次函数;3.4 二次函数。

第四章《数据的收集与处理》详细内容:4.1 数据的收集与整理;4.2 数据的表示;4.3 概率初步。

二、教学目标1. 理解实数的概念,掌握实数的分类及性质,能够进行实数的四则运算。

2. 掌握平面几何的基本概念,熟练运用几何图形的性质解决实际问题。

3. 理解函数的定义,掌握函数图像的特点,能够解决实际问题中的函数关系。

4. 学会数据的收集、整理和表示方法,了解概率初步知识,提高解决实际问题的能力。

三、教学难点与重点1. 教学难点:实数的性质与分类,函数的定义与图像,数据的收集与处理。

2. 教学重点:实数的概念与运算,几何图形的性质,函数的应用,概率初步。

四、教具与学具准备1. 教具:多媒体教学设备,几何模型,计算器。

2. 学具:直尺,圆规,三角板,计算器。

五、教学过程1. 实数教学:a. 通过数轴引入实数概念;b. 讲解有理数与无理数的区别;c. 举例说明实数的性质与分类;d. 课堂练习:实数的四则运算。

2. 平面几何教学:a. 以生活中的实例引入几何图形;b. 讲解线段、角、三角形、四边形、圆的性质;c. 例题讲解:几何图形的求解;d. 课堂练习:几何图形的作图。

3. 函数及其图像教学:a. 以实际问题引入函数概念;b. 讲解函数的定义、图像及性质;c. 例题讲解:一次函数、二次函数的应用;d. 课堂练习:绘制函数图像,解决实际问题。

4. 数据的收集与处理教学:a. 讲解数据的收集、整理和表示方法;b. 概率初步知识讲解;c. 例题讲解:数据的统计分析;d. 课堂练习:设计调查问卷,进行数据分析。

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。

但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。

因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数的概念解决实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。

六. 教学准备1.教材、教案、PPT。

2.练习题。

3.数轴教具。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。

2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。

3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。

4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。

5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。

6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。

7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。

8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。

北师大初中数学八年级上册 第二章《2.6实数》教案

北师大初中数学八年级上册 第二章《2.6实数》教案

北师大数学八年级上册《实数(二)》教案一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。

当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.(3)正确运用公式: b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word ,Powerpoint .四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用? 答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。

《2.6 实数》示范公开课教学PPT课件【北师大版八年级数学上册】

《2.6 实数》示范公开课教学PPT课件【北师大版八年级数学上册】

O 4 2 0
5
2
4
随堂练习
1.开方开不尽的数是无理数;(√) 2.无理数就是开方开不尽的数;(×) 3.有理数都可以用数轴上的点表示;(√) 4.无理数都可以用数轴上的点表示;(√)
5.任意两个有理数之间都有有理数,因此,有理数
可以铺满整个数轴.(×)
随堂练习
2.下列说法正确的是( B ) A.任何一个实数都可以用分数表示 B.无理数化为小数形式后一定是无限小数 C.无理数与无理数的和是无理数 D.有理数与无理数的积是无理数
第二章实数
6.实数
学习目标
1. 了解实数的意义,能对实数按要求进行分类; 2.了解实数范围内的相反数、倒数、绝对值的意义和有 理数范围内的相反数、倒数、绝对值的意义完全一样; 3.了解实数和数轴上的点一一对应,能根据实数在数轴 上的位置比较大小.
复习巩固
(1)什么是有理数?有理数怎样分类? (2)什么是无理数?带根号的数都是无理数吗?
4
2
3
9
0.373 773 777 3…(相邻两个3之间7的个数逐次增加1)
0… 有理数集合

无理数集合
探究新知
有理数和无理数统称实数

探究新知
无理数和有理数一样,也有正负之分.
正实数 1.从正负性考虑: 实数0
负实数
2.从实数的概念: 实数无 有理 理数 数
探究新知
实数的相关概念 1.3-π的绝对值是 3 . 2.想一想:a是一个实数,它的相反数是 a ,它的
1
绝对值是 a ,当a≠0时,它的倒数是 a .
探究新知
(1)相反数:a与-a互为相反数;0的相反数仍是0; (2)倒数:当a≠0时,a与 1 互为倒数(0没有倒数);

北师大版八年级上册数学《实数》说课稿

北师大版八年级上册数学《实数》说课稿

谢谢
03
说教学目标
说教学目标
1. 理解实数的定义 和基本概念;
3. 能够运用所学知 识解决实际问题。
2. 掌握实数的分类 方法和比较大小的
方法;
04
说教学重难点
说教学重难点
本节课的教学重点是实数的定义和基本概 念,难点是实数的分类方法和比较大小的 方法。在教学中需要注意让学生理解实数 的概念和性质,同时要引导学生掌握实数 的分类方法和比较大小的技巧。
新课引入
教师可以通过一个实际问题引出实数 的概念和意义,例如:
小明在超市购买了一些商品,总共花 费了100元,但是他只有80元现金, 需要使用信用卡支付剩余的20元,请 问这个问题涉及到哪些数?
通过这个问题,引出有理数和无理数 的概念,并让学生了解实数的重要性 和应用价值。
实数的定义和基本概念
教师可以先介绍实数的定义和基本概念,例如: 实数是有理数和无理数的总称,有理数是可以表示为两个整数之比的 数,无理数是不能表示为两个整数之比的数。
05
说教法与学法
说教法与学法
在本节课的教学中,可以采用讲授、讨论、 练习等多种教学方法,同时也要注重启发 式教学,引导学生通过思考和实践来理解 和掌握所学知识。在学习过程中,学生应 该注重思考,积极参与课堂讨论和练习, 同时也要注重归纳总结,加深对所学知识 的理解和记忆。
06
说教学过程
说教学过程
07
说板书设计
说板书设计
实数 实数的定义、有理数和无理数的概念、实数的分类 方法和比较大小的技巧等内容。同时,板书应该清 晰明了,重点突出,便于学生理解和记忆。
08说教Βιβλιοθήκη 反思说教学反思在本节课的教学中,应该注重启发式教 学,引导学生通过思考和实践来理解和 掌握所学知识。同时,也要注重巩固和 拓展,让学生在课后能够进一步深化对 所学知识的理解和掌握。

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版一、教学目标:1. 让学生理解实数的概念,掌握实数的分类及特点。

2. 能够正确运用实数进行运算,解决实际问题。

3. 培养学生逻辑思维能力,提高学生解决数学问题的能力。

二、教学内容:1. 实数的概念及分类:有理数、无理数、实数。

2. 实数的运算:加法、减法、乘法、除法。

3. 实数在实际问题中的应用。

三、教学重点与难点:1. 实数的分类及特点。

2. 实数的运算规律。

3. 实数在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解实数的概念、分类及运算规律。

2. 利用案例分析法,分析实数在实际问题中的应用。

3. 运用讨论法,引导学生探讨实数问题,培养学生的逻辑思维能力。

五、教学过程:1. 导入:回顾七年级学习的有理数知识,引导学生过渡到实数的学习。

2. 讲解实数的概念,阐述实数的分类及特点。

3. 讲解实数的运算规律,示范运算方法。

4. 运用案例分析,让学生理解实数在实际问题中的应用。

5. 布置作业,巩固所学知识。

7. 课后反思,针对学生的学习情况,调整教学策略。

六、教学评价:1. 课后作业:布置有关实数的运算题目,检验学生对实数运算规律的掌握程度。

2. 课堂练习:设计一些实际问题,让学生运用实数进行解答,评估学生运用实数解决问题的能力。

3. 单元测试:进行一次实数知识点的测试,了解学生对实数概念、分类和运算的掌握情况。

七、教学策略:1. 采用循序渐进的教学方法,由浅入深地引导学生学习实数知识。

2. 利用多媒体教学手段,如图片、视频等,增强课堂趣味性,提高学生的学习兴趣。

3. 创设生活情境,让学生感受到实数在现实生活中的应用,提高学生的学习积极性。

八、教学资源:1. 教材:北师大版八年级数学上册。

2. 教辅资料:实数相关习题集、案例分析资料。

3. 教学工具:黑板、粉笔、多媒体设备等。

九、教学进度安排:1. 第一课时:讲解实数的概念及分类。

2. 第二课时:讲解实数的运算规律。

八年级数学北师大版上册 第2章《2.6 实数》教学设计 教案

八年级数学北师大版上册 第2章《2.6 实数》教学设计 教案

第六节 实数教学目标:1、了解无理数和实数的概念,知道实数和数轴上的点是一一对应关系,能估算无理数的大小。

2、正确理解有理数和无理数的区别。

3、会求有理数的相反数、倒数、绝对值,并会对其进行大小比较。

知识要点:一、无理数(1)无理数:无限不循环小数叫做无理数。

(2)对无理数的判断注意以下三点:1、无理数是无限不循环小数,所以只能以四种形式出现 ①开方开不尽的数,如2,37等②化简后含圆周率π的数。

“π”虽然是一个常数,但它是无限不循环小数,属无理数 ③特定结构的数,如0.100 100 010 000 1……等 ④有些三角函数值2、判断无理数要先化简,不能只看表面形式3、一些除不尽的分数,如722,131等,会误认为是无理数,但事实上分数都是有理数。

二、实数(重点)(1)概念:有理数和无理数统称实数。

也就是说,实数可分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

(2)分类:三、实数的有关概念及运算(重点)实数的相反数:只有符号不同的两个实数,其中一个叫做另一个的相反数。

零的相反数是零。

实数的绝对值:一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。

从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

实数的倒数:1除以一个非零实数的商叫这个实数的倒数。

零没有倒数。

实数的运算:(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算。

在进行实数的运算时,有理数的运算法则和运算性质等同样适用。

(2)实数的混合运算顺序与有理数的混合运算顺序基本相同,先乘方、开方,再乘除,最后算加减,同级运算按从左到右的顺序进行,有括号先算括号里面的。

(3)在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算。

原创北师大版八年级数学上册第二章2.6 实数教学设计

原创北师大版八年级数学上册第二章2.6 实数教学设计

义务教育教科书数学八年级上册(北京师范大学出版社)2.6 实数一、教学内容与内容解析本节内容是北师大版《义务教育课程标准实验教科书·数学》八年级上册第二章“实数”第六节“实数”.本节内容主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。

在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

二、教学目标与目标解析(一)教学目标(1)了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小;(2)了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样;(3)在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想;(4)在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法;(5)了解数系扩展对人类认识发展的必要性。

(二)教学目标解析学生是数学学习的主人。

动手实践、自主探索、合作交流是学生学习数学的重要途径。

教师应将情境与学生的自主知识相结合,尽最大努力引导学生发现并解决问题。

通过独立思考、小组讨论和合作交流,学生在“自主探索、合作交流”中充分发挥主观能动性。

在学习方法上,主要采用观察法、独立探究法、讨论法、实践法等形式。

三、教学问题诊断分析(一)学情分析八年级学生初步认识了无理数,对平方根和立方根也有了一定的了解,实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

八年级数学上册 实数(第一课时)教案 北师大版

八年级数学上册 实数(第一课时)教案 北师大版

实数教学设计第(一)课时教学设计思想本节内容需三课时讲授;本课时是对这段时间以来学过的数作一归纳性的总结,这个总结过程可由学生自己通过对具体的数比较的基础上引入,分清带根号的数不一定是无理数,对提出实数的概念(有理数和无理数的总称)表示接受和理解。

通过议一议,掌握数的分类要遵循的规则,领会分类的思想;在此过程中,通过对上述数的特点的分析,指出实数的绝对值和相反数的意义与在有理数X围内的意义是一样的,设计有针对性的例题和习题巩固对这些概念的认识,会求一个数的绝对值、相反数及倒数。

同时让学生思考,数的绝对值与相反数往往与数轴有密切的联系,进而让学生议一议“有理数能填满整个数轴吗?”,引出实数与数轴的关系,“每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

”,掌握如何在数轴上画出如: ,3等数,真切感受实数在数轴上的存在和实际大小,掌握实数大小比较的方法。

10教学目标(一)知识与技能1.能对实数按要求进行分类.2.知道在实数X围内、相反数、倒数、绝对值的意义和有理数X围内的相反数、倒数、绝对值的意义完全一样.3.明白实数和数轴上的点是一一对应的并能根据它们在数轴上的位置来比较大小.(二)过程与方法1.通过对实数进行分类,培养学生的分类意识.2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.(三)情感、态度与价值观通过对实数进行分类的练习,让学生进一步领会分类的思想.鼓励学生要从不同角度入手,寻求解决问题的多种途径.训练学生的多角度思维,为他们以后更好地工作作准备.教学重点1.实数概念的建立.2.实数的分类.3.在实数X围内,求相反数、倒数、绝对值.教学难点1.实数概念的建立.2.实数的分类.教学方法指导法.教具准备投影片.教学安排3课时.教学过程Ⅰ.导入新课在前面我们学了有理数和无理数,有理数是有限小数或无限循环小数,无理数是无限不循环小数,如π.在学了平方根和立方根之后,我们知道2、332、334=2,2是有理数,一般来说开方开不尽的数就是无理数,如5,7等.在小学学了非负数,上初一引入了负数,数的X 围扩充到有理数X 围,那么引入无理数之后数的X 围扩充到什么X 围呢?本节课就来研究此问题以及与之有关的问题.Ⅱ.讲授新课1.实数的概念把下列各数分别填入相应的集合内:3737737773.0,0,94,8,5,520,2,25,,7,41,233---π…有理数和无理数统称为实数(real number ),即实数可以分为有理数和无理数.2.实数的分类[师]在有理数的分类中可以按正数、负数、零进行分类,也可按整数和分数进行分类,那么在实数X 围内是不是也能这样分类呢?下面我们把上面各数填入下面相应的集合内.填完之后大家发现了什么?[生]无理数也有正负之分,0既不能填入正数集合,也不能填入负数集合.[师]因此,从正、负方面来考虑,实数可以分为正实数、零、负实数.即实数⎪⎩⎪⎨⎧负实数零正实数另外从定义也可以进行分类.实数⎩⎨⎧无理数有理数 这就是实数的两种分法.3.在实数X 围内的几个概念.在实数X 围内,相反数、倒数、绝对值的意义和有理数X 围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a 与-a 互为相反数,0的相反数是0.(2)倒数:若a≠0,则a 与a 1互为倒数.(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即|a |=⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a想一想[师]请大家思考并回答:(1)2的相反数是_________,绝对值是_________;(2)35与351是_________;(3)-π的相反数是_________,它们的和是_________;(4)a 是一个实数,它的相反数为_________,绝对值为_________.(5)若a≠0,则它的倒数为_________.[生](1)-2,2;(2)互为倒数;(3)π,0;(4)-a ,|a |;(5)a 14.实数与数轴上的点之间的关系.[师]请大家认真观察图,然后再回答.(1)如图,OA=OB ,数轴上A 点对应的数是什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?[生]因为根据勾股定理得OB 2=1+1=2,所以OB=2,OA=OB ,故OA=2,A 点对应的数是无理数2,它介于整数1和2之间.[生]如果把所有有理数都标到数轴上,那么数轴填不满.因为有理数不包括A 点. [师]每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.在数轴上,右边的点表示的数比左边的点表示的数大.Ⅲ.课堂练习(一)随堂练习1.判断下列说法是否正确.(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数;(4)无理数都是实数;(5)实数都是无理数.解:(1)错.如1.333…是无限小数但是有理数;(2)是正确的;(3)错误的. 如 -4、327都是带根号的数,但它们不是无理数;(4)正确;43,0,-3等都是实数,但不是无理数.2.求下列各数的相反数、倒数和绝对值.(1)7; (2)38 ; (3)49.解:(1)7的相反数为-7,倒数为71,绝对值为7;(2)38-=-2的相反数为2,倒数为-21,绝对值为2;(3)49=7,7的相反数为-7,倒数为71;绝对值为7.3.在数轴上作出5对应的点.解:如图,点A 所表示的点即为5对应的点.(二)补充练习比较下列各组数的大小:(1)21750与;(2)-π与-722;(3)215与36;(4)5+26与6+25.解:(1)∵(721)2=56.25,而56.25>50∴5025.56>,即721>50;(2)-722=-3.1428…,-π=-3.1415… ∴-π>-722;(3)采用平方法∵(215)2=60,(36)2=54而60>54 ∴215>36;(4)∵6+25=5+(1+25)以下采用平方法比较26与1+25的大小.(26)2=24,(1+25)2=1+45+20=21+45,又24=21+3,而3<45 ∴5+26<6+25.说明:被开方数较大的算术平方根较大.Ⅳ.课时小结本节课学了如下内容:1.实数的概念.2.实数的两种分类.(1)按大小分为:正实数,0,负实数.(2)按定义分为:有理数和无理数.3.在实数X 围内,相反数,倒数,绝对值的意义仍然和在有理数X 围内的意义相同.4.实数和数轴上的点是一一对应的.5.根据实数在数轴上的位置比较实数的大小.Ⅴ.课后作业Ⅵ.活动与探究1.写出适合下列条件的数.(1)大于-13小于5的所有整数;(2)小于20的所有自然数;(3)大于-11的所有负整数;(4)绝对值小于7的所有整数.分析:首先找到满足条件的最大数和最小数,然后再将它们之间的所有满足条件的数都写出来.解:(1)∵-13<-4,9<5 ∴大于-13且小于5的所有整数是:-3,-2,-1,0,1,2.(2)∵252016<< ∴小于20的所有自然数是:4,3,2,1,0.(3)∵-911-< ∴大于-11的所有负整数是:-3,-2,-1.(4)∵绝对值小于7的数x ,满足-7<x <7,而-7<-4,4<7∴绝对值小于7的所有整数是:-2,-1,0,1,2.说明:两个负数比较大小,绝对值大的反而小.2.求满足下列各式的x 的值.(1)|x |=3 (2)|x 2-5|=4分析:根据绝对值的概念,正实数的绝对值是它本身,负实数的绝对值是它的相反数.所以(1)中的x 既可以是正实数,也可以是负实数.(2)把(x 2-5)视作一个整体,类似于(1).解:(1)∵|x |=3 ∴x=±3(2)∵|x 2-5|=4∴x 2-5=±4当x 2-5=4时x 2=9∴x=±3当x 2-5=-4时x 2=1∴x=±1∴满足等式的x 的值为-3,-1,1,3说明:互为相反数的二数的绝对值相等,即|a |=|-a |.3.已知x 是实数,化简|3x -1|-|2x+1|.分析:设法脱掉绝对值符号,但x 的X 围没有具体给定,所以应讨论,具体方法是: (1)找零点:令3x -1=,x=31,令2x+1=0,x=-21;(2)描零点:在数轴上找出零点;(3)分区间:两个零点把实数轴所表示的数分成三个区间:x≤-21,-21<x≤31,x >31;(4)作化简:在各个区间上分别去绝对值符号,进行化简.解:(1)当x≤-21时,3x -1<0,2x+1≤0word11 / 11 原式=(1-3x )+(2x+1)=2-x.(2)当-21<x≤31时,3x -1≤0,2x+1>0原式=(1-3x )-(2x+1)=-5x.(3)当x >31时,3x -1>0,2x+1>0原式=(3x -1)-(2x+1)=x -2.说明:在实数X 围内的运算中,去绝对值符号时根据字母的取值X 围确定绝对值符号内数的正、负、零,进行变形.否则就要分类讨论,借助于数轴把实数分为若干个区间,在每个区间内根据数的X 围分别去掉绝对号,再进行合并同类项即可,这样形象、直观、简明,且可保证不重不漏.板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 实 数
1.了解实数的概念,能按要求进行分类;(重点) 2.能利用化简对实数进行简单的四则运算.(难点)
一、情境导入
毕达哥拉斯学派认为宇宙间的一切现象都能归结为整数或整数之比,即都可用有理数来描述,但后来这个学派的一位年轻成员希伯索斯(Hippasus)发现边长为1的正方形的对角线的长度不能用整数或整数的比来表示,这就引起了毕达哥拉斯学派信徒们的恐慌,为此希伯索斯招来了杀身之祸,后来被投入大海.他这一死,使得这一伟大发现的发展推迟了500多年,给数学的发展造成了不可弥补的损失.这是怎样的一个发现呢?
学习了本节知识之后,你就会知道了.
二、合作探究
探究点一:实数的相关概念及分类
把下列各数填入相应的集合内:
-12,-3,23,92,-3
-8,0,-π,-1173
,-4.2·01·
,3.1010010001…(相邻两个1之间0的个数逐次加1).
有理数集合:{ …}; 无理数集合:{ …};
整数集合:{ …}; 分数集合:{ …}; 正实数集合:{ …}; 负实数集合:{ …};
解析:根据有理数、无理数等的概念进行分类,应注意先把一些数化简再进行判断,如-3
-8=2.
解:有理数集合:{-12,92,-3
-8,0,-1173
,-4.2·01·
,…};
无理数集合:{-3,2
3
,-π,3.1010010001…(相邻两个1之间0的个数逐次加1),…};
整数集合:{-3
-8,0,…};
分数集合:{-12,92,-117
3
,-4.2·01·
,…};
正实数集合:{
23,92
,-3
-8,3.1010010001…(相邻两个1之间0的个数逐次加1),…};
负实数集合:{-12,-3,-π,-117
3
,-4.2·01·
,…}.
方法总结:至今我们所学的数不是有理数就是无理数,因此可先把题目中所列各数分成这两类,再从有理数中找整数及分数,这样可分散难点,逐个突破,同时可避免重复或遗漏.
探究点二:实数的性质
分别求下列各数的相反数、倒数和绝对值.
(1)3
-64;(2)225;(3)11.
解析:根据实数的相反数、倒数和绝对值的定义写出相应结果.注意(1)(2)中的两个数要先化简为整数.
解:(1)∵3
-64=-4,∴
3
-64的相反数是4,倒数是-
1
4
,绝对值是4.
(2)∵225=15,∴225的相反数是-15,倒数是
1
15
,绝对值是15.
(3)11的相反数是-11,倒数是1
11
,绝对值是11.
方法总结:在实数范围内,相反数、倒数和绝对值等的意义和在有理数范围内的完全相同.
探究点三:实数与数轴上点的关系
【类型一】求数轴上的点对应的实数
如图所示,数轴上A,B两点表示的数分别为-1和3,点B关于点A
的对称点为C,求点C所表示的实数.
解析:首先结合数轴和利用已知条件可以求出线段AB的长度,然后利用对称轴的性质即可求出点C所表示的实数.
解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+3,则点C到点A的距离为1+3,设点C表示的实数为x,则点A到点C 的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.
方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C为点B关于点A的对称点时,点C到点A的距离等于点B到点A的距离;两点之间的距离为两数差的绝对值.
【类型二】利用数轴进行估算
如图所示,数轴上A,B两点表示的数分别为2和5.1,则A,B两点
之间表示整数的点共有( )
A .6个
B .5个
C .4个
D .3个
解析:∵2≈1.414,∴2和5.1之间的整数有2,3,4,5,∴A ,B 两点之间表示整数的点共有4个.故选C.
方法总结:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.
探究点四:实数的大小比较
已知0<x<1,则x ,1
x ,x 2,x 的大小关系为( )
A .x<1x <x 2<x
B .x<x 2<x<1x
C .x 2<x<x<1x D.x<x 2<x<1x
解析:本题可以用特殊值法求解.例如取x =14,则1x =4,x 2=116,x =1
2,
从而可以比较其大小,
116<14<12<4,即x 2<x<x<1
x
.故选C 项. 方法总结:当直接比较大小较困难时,我们可以采用特殊值法,所取特殊值必须符合两个条件:(1)在字母取值范围内;(2)求值计算简单.而求实数的相反数、倒数、绝对值的方法与求有理数的相反数、倒数、绝对值的方法是一样的.
探究点五:实数的运算
计算:
(1)
5
2
+2.34-π(精确到0.1); (2)(3+5)(2-1)(精确到0.01); (3)(3
-216+
214
+3
64)×1
(-0.1)2
.
解析:在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
解:(1)52+2.34-π≈1
2
×2.24+2.34-3.14≈0.3. (2)(
3+
5)(
2-1)≈(1.732+ 2.236)×(1.414-1)=
3.968×0.414≈1.6
4.
(3)(
3-216+
214
+3
64)×1(-0.1)2=(-6+3
2
+4)×10=-
0.5×10=-5.
方法总结:实数的运算同有理数的运算法则一样.实数运算中,无理数可选取近似值转化为有理数计算,中间结果所取的近似值要比最终结果要求的多一位小数.
三、板书设计
实数⎩⎨
⎧概念及分类
实数的性质
实数与数轴上点的关系实数大小的比较与运算
前面已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数的认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础.。

相关文档
最新文档