求最值方法--高考数学复习

合集下载

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。

已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。

解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。

已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。

解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。

已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。

解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。

所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。

专题03 函数的单调性和最值的处理途径-学会解题之高三数学万能解题模板【2022版】(解析版)

专题03 函数的单调性和最值的处理途径-学会解题之高三数学万能解题模板【2022版】(解析版)

专题03 函数的单调性和最值的处理途径【高考地位】函数的单调性是函数的一个重要性质,几乎是每年必考的内容,例如判断和证明单调性、求单调区间、利用单调性比较大小、求值域、最值或解不等式.方法一 定义法例1 已知函数()log (2)log (4)a a f x x a a x =-+-(0a >且1a ≠). (1)当1a >时,写出函数()f x 的单调区间,并用定义法证明;(2)当01a <<时,若11()log 48a f x a ⎛⎫≥+ ⎪⎝⎭恒成立,求实数a 的取值范围.【来源】辽宁省辽西联合校2020-2021学年高三(上)期中数学试题【答案】(1)增区间为()2,3a a ,减区间为()3,4a a ;证明见解析;(2)10,2⎛⎤⎥⎝⎦.【解析】(1)求得()f x 的定义域,运用复合函数的单调性,结合对数函数和二次函数的单调性,可得所求单调区间,再由单调性的定义证明;(2)由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号; (4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.例2 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【来源】上海市金山区2021届高三上学期一模(期末教学质量检测)数学试题 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【解析】(1)利用证明函数单调性的步骤,取值、作差、变形、等号、下结论即可证明()f x 在R 上的单调性;(2)首先利用定义证明()f x 的奇偶性,再根据奇偶性和单调性脱掉f ,转化为关于t 的一元二次不等式恒成立,分离t 转化为最值问题即可求解. 【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减.(2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.【点睛】方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤 1.取值:任取1x ,2x D ∈,规定12x x <, 2.作差:计算()()12f x f x -, 3.定号:确定()()12f x f x -的正负, 4.得出结论:根据同增异减得出结论.【变式演练1】(多选)【海南省2021届高三年级第二次模拟考试】下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【解析】利用函数的奇偶性的定义判断奇偶性,根据函数解析式判断单调性. 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意; B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD例3 定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号: ∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 【变式演练2】已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

高中数学解题方法系列:函数的值域与最值

高中数学解题方法系列:函数的值域与最值


y

k
b x2
型,可直接用不等式性质,
【及时反馈】

y

3 2 x2
的值域(答: (0,
3]) 2

y

x2
ቤተ መጻሕፍቲ ባይዱ
bx mx
n
型,先化简,再用均值不等式,
【及时反馈】
(2)求函数 y x 2 的值域(答:[0, 1] )
x3
2
③ y x2 mx n 型,可用判别式法或均值不等式法, mx n
(3)、求函数 y x 2 2x 3 在如下区间中的的最值与值域。
ⅰ、 (4,2] ;ⅱ、 (1,2] ;ⅲ、 (3,5) ;ⅳ、 (,)
(4)、求函数 y sin x cos 2x 的最值与值域。(提示:先转化为带有限制条
件的二次型函数的最值与值域的求解)
(5)、若
所示:
定义域
值域
原函数 y f (x)
A
C
反函数 y f 1 (x)
C
A
由上表知,求原函数的值域就是相当于求它的反函数的定义域 ⅱ、求反函数的步骤(“三步曲”)
①求 x ( y) ;②x、y 互换;③通过求原函数的值域得出反函数的定义域
【及时反馈】
(1)、求函数 f (x) 2x 4 的值域 x 1
解: y x x 1 (x 1) x 1 1
令 x 1 t(运用换元法时,要特别要注意新元 t 的范围),易知 t 0(why ?) 所 以 x 1 t 2 , 所 以 y t 2 t 1(t 0) , 欲 求 原 函 数 的 值 域 , 只 需 求 y t 2 t 1(t 0) 的最值与值域即可(解法同上面的【及时反馈】)。

高考数学利用基本不等式求最值8大题型(解析版)

高考数学利用基本不等式求最值8大题型(解析版)

利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。

导数与函数的极值、最值-高考数学复习

导数与函数的极值、最值-高考数学复习
2
1
解:当 a = 时, f ( x )=ln
2
1
x - x ,函数的定义域为
2
1
1
2−
(0,+∞),且f'( x )= - =


2Hale Waihona Puke 2令f'( x )=0,得 x =2,
目录
高中总复习·数学
于是当 x 变化时,f'( x ), f ( x )的变化情况如下表:
x
(0,2)
2
(2,+∞)
f'( x )
则函数在(0,+∞)上是增函数,此时函数在定义域上无
极值点;
当 a >0时,若 x ∈
若x∈
1
,+∞

1
0,

,则f'( x )>0,
,则f'( x )<0,
目录
高中总复习·数学
1

故函数在 x = 处有极大值.
综上可知,当 a ≤0时,函数 f ( x )无极值点;
当 a >0时,函数 y = f ( x )有一个极大值点,且为
2. 函数的最值与导数
(1)如果在区间[ a , b ]上函数 y = f ( x )的图象是一条
连续不

断 的曲线,那么它必有最大值和最小值;
(2)若函数 f ( x )在[ a , b ]上单调递增,则 f ( a )为函数

最小值 , f ( b )为函数的
最大值 ;若函数 f ( x )
在[ a , b ]上单调递减,则 f ( a )为函数的
导数与函数的极值、最值
1. 借助函数的图象,了解函数在某点取得极值的必要条件和充分条件.

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

高考求函数值域及最值得方法及例题_训练题

高考求函数值域及最值得方法及例题_训练题

一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.例1:求函数)+=的值域.y-3x32(点拨:根据算术平方根的性质,先求出)-的值域.32(x解:由算术平方根的性质,知)2(x-≥3。

∴函数的值域为)3-≥0,故3+)2(x3,3[+∞ .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2:求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

高考数学最值问题及解题思路分享

高考数学最值问题及解题思路分享

高考数学最值问题及解题思路分享在高考数学中,最值问题是一道经典的题型,出现频率较高。

关于最值问题,我们可以从以下三个方面来进行探讨:最大值、最小值和最优解。

接下来,我们将从这三个方面入手,来一起学习解题思路。

一、最大值最大值问题通常可以通过以下步骤来解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最大值点。

2. 计算:将最大值点代入原函数,可得函数的最大值。

3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。

在多数情况下,最值点就是导数为零的点。

举个例子:已知函数$f(x)=x^3-3x+1$,求其在区间$[-2,2]$上的最大值。

解:首先,求导数:$f'(x)=3x^2-3$。

令$f'(x)=0$,可得极值点$x=\pm1$。

由此得出,当$x=\pm1$时,函数$f(x)$取得最大值。

将$x=\pm1$代入原函数,可得最大值为$f(1)=f(-1)=3$。

二、最小值与最大值问题类似,最小值问题也可以通过以下步骤解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最小值点。

2. 计算:将最小值点代入原函数,可得函数的最小值。

3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。

在多数情况下,最值点就是导数为零的点。

举个例子:已知函数$f(x)=(x-1)^3-x^2$,求其在区间$[0,2]$上的最小值。

解:首先,求导数:$f'(x)=3(x-1)^2-2x$。

令$f'(x)=0$,可得极值点$x=\frac{3}{4}$和$x=2$。

由此得出,当$x=\frac{3}{4}$和$x=2$时,函数$f(x)$取得最小值。

将$x=\frac{3}{4}$和$x=2$代入原函数,可得最小值为$f(\frac{3}{4})=\frac{-49}{64}$和$f(2)=-4$。

三、最优解在实际问题中,我们通常要找到一个最优解,这个解可能既不是最大值也不是最小值,而是在某种条件下最合适的解。

高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略主讲人:黄冈中学高级教师汤彩仙一、复习策略1、函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2):均值不等式法和单调性加以选择;(3)多元函数:数形结合或转化为一元函数.3、三角函数、数列、解析几何中的最值问题,往往将问题转化为函数问题,利用求函数最值的方法或基本不等式法求解.4、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,二次函数的最值).5、不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.6、参数范围问题内容涉及代数和几何的多个方面,解题的关键是不等关系的建立,其途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.解决这一类问题,常用的思想方法有:函数思想、数形结合等.二、典例剖析问题1:函数的最值问题例1、(07江苏卷)已知二次函数的导数为,,对于任意实数,都有,则的最小值为()A.3B.C.2D.解:=,依题意,有:,可得,==+1≥2+1≥2+1=2,故选(C).例2、如下图(1)所示,定义在D上的函数,如果满足:对任意,存在常数A,都有≥A成立,则称函数在D上有下界,其中A称为函数的下界. (提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)(1)(2)(Ⅰ)试判断函数在(0,+)上是否有下界?并说明理由;(Ⅱ)又如具有上右图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数在D上有上界的定义,并判断(Ⅰ)中的函数在(-,0)上是否有上界?并说明理由;(Ⅲ)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.分析:利用导数判断函数的单调性,求出函数的最值,从而可以确定函数的下界或上界;或用重要不等式求最值.解:(Ⅰ)解法1:∵,由得,∵,∴x=2,∵当时,,∴函数在(0,2)上是减函数;当时,,∴函数在(2,+)上是增函数;∴是函数在区间(0,+)上的最小值点,.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.解法2:.当且仅当即x=2时“=”成立.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:定义在D上的函数,如果满足:对任意,存在常数B,都有≤B 成立,则称函数在D上有上界,其中B称为函数的上界.设则,由(Ⅰ)知,对任意,都有,∴,∵函数为奇函数,∴.∴,∴.即存在常数B=-32,对任意,都有,∴函数在(-,0)上有上界.(Ⅲ)质点在上的每一时刻的瞬时速度.依题意得对任意有.对任意恒成立.令,∵函数在[0,+∞)上为减函数.∴.∴.问题2:三角函数、数列、解析几何中的最值问题将问题转化为函数问题,利用求函数最值的方法求解.例3、(05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.分析:将d用点M的坐标表示出来,,然后求其最小值.解:(1)由已知可得点A(-6,0),F(0,4).设点P(x,y),则={x+6,y},={x-4,y},由已知可得,则2x2+9x-18=0,解得x=或x=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2) 直线AP的方程是x-y+6=0.设点M(m,0),则M到直线AP的距离是.于是=,又-6≤m≤6,解得m=2.椭圆上的点(x,y)到点M的距离d有,由于-6≤≤6,∴当=时,d取得最小值.例4、(05年辽宁)如图,在直径为1的圆中,作一关于圆心对称、邻边互相垂直的十字形,其中.(Ⅰ)将十字形的面积表示为的函数;(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?分析:将十字型面积S用变量表示出来,转化为三角函数的极值问题,利用三角函数知识求出S的最大值.(Ⅰ)解:设S为十字形的面积,则(Ⅱ)解法一:其中当最大.所以,当最大. S的最大值为解法二:因为所以令S′=0,即可解得,所以,当时,S最大,S的最大值为例5、已知点A(-1,0),B(1,-1)和抛物线,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(I)若△POM的面积为,求向量与的夹角;(II)试探求点O到直线PQ的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.分析:可先设出M与P点的坐标,再利用斜率相等求出的值,利用向量的数量积求出夹角.第二问中可用重要等式求出最值.解:(I)设点、M、A三点共线,设∠POM=α,则由此可得tanα=1.又(II)由第(I)问答案知,令,则. ∴O到PQ的距离:,即当且仅当t=16时取最大值,且最大值为.故存在最大值,且最大值为.问题3:最值的实际应用在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.例6、(06年江苏卷)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示).试问当帐篷的顶点O到底面中心O的距1离为多少时,帐篷的体积最大?分析:将帐蓬的体积用x表示(即建立目标函数),然后求其最大值.解:为,则.设OO1由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:)求导得.令,解得(不合题意,舍去),,当时,,为增函数;当时,,为减函数.∴当时,最大.答:当OO为2m时,帐篷的体积最大,最大体积为.1点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.例7、(05年湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99,有两种方案可供选择.方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是.用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方法用水量较小.(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.点拨与提示:设初次与第二次清洗的用水量分别为与,,.于是+,利用均值不等式求最值.方案甲与方案乙的用水量分别为x与z,由题设有,解得x=19,由c=0.95得方案乙初次用水量为3,第二次用水量y满足方程:,解得y=4a,故z=4a+3,即两种方案的用水量分别为19与4 a +3,因为当1≤a≤ 3时,x-z =4(4-a)>0,即x>z.故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+.当a为定值时,.当且仅当时等号成立,此时(不合题意,舍去)或.将代入(*)得,.故时用水量最少,此时第一次与第二次用水量分别为与,最少总用水量为.当1≤a≤3时,,故T(a)是增函数(也可用二次函数的单调性来判断),这说明随着a的值的增加,最少总用水量增加.问题4:恒成立问题不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.例8、已知函数f(x)=.(Ⅰ)当时,求的最大值;(Ⅱ) 设,是图象上不同两点的连线的斜率,是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.分析:利用导数求出函数的单调性,再比较其极大值与端点值的大小求出的最大值.解:(Ⅰ)当-2≤<时,由=0得x1=显然-1≤x1<,<x2≤2,又=-.当≤x≤x2时,≥0,单调递增;当x<x≤2时,<0,单调递减,2=(x2)=∴max=-(Ⅱ)答:存在符合条件.解:因为=.不妨设任意不同两点,其中.则.由知:1+<1.又,故.故存在符合条件.解法二:据题意在图象上总可以找一点,使以P为切点的切线平行于图象上任意两点的连线,即存在.故存在符合条件.问题五:参数的取值范围问题参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力.在历年高考中占有较稳定的比重.解决这一类问题,常用的思想方法有:函数思想、数形结合等.例9、设直线过点P(0,3)且和椭圆顺次交于A、B两点,求的取值范围.分析:=.要求的取值范围,一是构造所求变量关于某个参数(自然的想到“直线AB的斜率k”)的函数关系式(或方程),通过求函数的值域来达到目的.二是构造关于所求量的一个不等关系,由判别式非负可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称式.问题找到后,解决的方法自然也就有了,即我们可以构造关于的对称式:.由此出发,可得到下面的两种解法.解法1:当直线垂直于x轴时,可求得;当l与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得.解之得由椭圆关于y轴对称,且点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以,即.解法2:设直线的方程为:,代入椭圆方程,消去得(*)则,令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.例10、在直角坐标平面中,过点作函数的切线,其切点为;过点作函数的切线,其切点为;过点作函数的切线,其切点为;如此下去,即过点作函数的切线,其切点为;过点作函数的切线,其切点为….(1)探索与,与的关系,说明你的理由,并求,的值;(2)求数列通项公式;(3)是否存在正实数,使得对于任意的自然数,不等式恒成立?若存在,求出这样的实数的取值范围;若不存在,则说明理由.分析:利用导数先找出切线方程,从而可以确定数列与,与的关系,再分奇数项与偶数项来求出数列的通项,在第三问中可用错位相消法求出不等式左端的和,再证明其单调性来求解.解:(1)∵,∴切线的方程为,又切线过点,∴,且,∴∴.又,∴切线的方程为,而切线过点,∴,且,∴∴.(2)由(1) 可知,即,∴数列为等比数列,且首项为4,∴,即.而,故数列通项公式为(3)令∴,两式相减得∴.∴,∴数列递增.又当时,.∴,而,∴.∴对于任意的正整数和任意的实数不等式恒成立等价于,而,所以有,解得或(舍).故存在这样的正实数,其取值范围为.冲刺练习一、选择题1、若,则a的取值范围是()A.B.C.D.2、下列结论正确的是()A.当B.C.的最小值为2D.当无最大值3、在R上定义运算:.若不等式对任意实数x 成立,则()A.B.C.D.4、设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.5、若动点()在曲线上变化,则的最大值为()A.B.C.D.2b6、已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则()A.⊥B.⊥(-)C.⊥(-)D.(+)⊥(-)7、已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.38、设,对于函数,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值9、在约束条件下,当时,目标函数的最大值的变化范围是()A.B.C.D.10、已知不等式对任意正实数恒成立,则正实数的最小值为()A.2B.4C.6D.8[提示]二、填空题11、已知,则的最小值是__________.12、在△OAB中,O为坐标原点,,则△OAB的面积达到最大值时,__________.13、设实数x,y满足__________.14、在中,O为中线AM上一个动点,若AM=2,则的最小值是__________.15、已知函数在[0,1]上的最大值与最小值的和为a,则a的值为____________.[答案]三、解答题16、若函数的最大值为,试确定常数a的值.[答案]17、已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.(1)求a、b的值与函数f(x)的单调区间.(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.[答案]18、已知函数,其中0<a<4.(Ⅰ)将的图像向右平移两个单位,得到函数,求函数的解析式;(Ⅱ)函数与函数的图像关于直线对称,求函数的解析式;(Ⅲ)设,已知的最小值是,且,求实数的取值范围.[答案]19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.[答案]20、已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.提示:1、①当,即时,无解;②当,即时,,故选C.2、A中lgx不满足大于零,C中的最小值为2的x值取不到,D中当x=2时有最大值,选B.3、∵,∴不等式对任意实数x成立,则对任意实数x成立,即使对任意实数x成立,所以,解得,故选C.4、因为,所以(A)恒成立;在(B)两侧同时乘以得,所以(B)恒成立;(C)中,当a>b时,恒成立,a<b时,不成立;(D)中,分子有理化得恒成立,故选(C).5、由曲线方程得,=,∵-b≤y≤b,∴若即b≥4,则当y=b时,最大值为2b;若即0<b<4,则当时,最大值为.(本题也可用三角代换求解).6、由|-t|≥|-|得|-t|2≥|-|2展开并整理得,由,所以,得,即,选(C).7、,解得,选B.8、令,则函数的值域为函数的值域,又,所以是一个减函减,故选B.9、解:由,交点为,(1)当时可行域是四边形OABC,此时,.(2)当时可行域是△OA此时,.10、,∴≥9,≥4.11、12、13、14、-2 15、提示:11、表示直线=0上动点P(x,y)到点(1,1)的距离,的最小值就是点(1,1)到直线=0的距离,可求得.12、,当即时,面积最大.13、表示两点(0,0),P(x,y)的斜率,作出不等式组表示的平面区域即△ABC及其内部,由图形可得AO的斜率最大,可求得A(1,),.14、如图,即的最小值为-2.15、若a>1,与是增函数,为增函数,f(x)的最大值为f(1),最小值为f(0),所以f(1)+f(0)=a;若0<a<1,与是减函数,为减函数,f(x)的最大值为f(0),最小值为f(1),所以f(0)+f(1)=a;故+=a,解得a =.16、解:因为的最大值为的最大值为1,则所以17、解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.由f′()=,f′(1)=3+2a+b=0得a=,b=-2.f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:,-) -,所以函数f(x)的递增区间是(-∞,-)与(1,+∞).递减区间是(-,1).(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.解得c<-1或c>2.18、(Ⅰ);(Ⅱ)设点是函数上任一点,点关于的对称点是,由于函数与函数的图像关于直线对称,所以,点在函数的图像上,也即:.所以,;(Ⅲ).解法一:注意到的表达式形同,所以,可以考虑从的正负入手.(1)当,即时,是R上的增函数,此时无最小值,与题设矛盾;(2) 当,即时,.等号当且仅当,即时成立.由及,可得:,解之得:.解法二:由可得:.令,则命题可转化为:当时,恒成立.考虑关于的二次函数.因为,函数的对称轴,所以,需且只需,解之得:.此时,,故在取得最小值满足条件.19、解:(Ⅰ)设双曲线方程为由已知得故双曲线C的方程为(Ⅱ)将由直线l与双曲线交于不同的两点得即①设,则而于是②由①、②得故k的取值范围为。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

2020年高考数学冲刺复习知识点精讲:数列中的最值问题含解析

2020年高考数学冲刺复习知识点精讲:数列中的最值问题含解析

数列中的最值问题一、考情分析数列中的最值是高考热点,常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的n 最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等. 二、经验分享(1) 数列的最值可以利用数列的单调性或求函数最值的思想求解.解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列.②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断.(2) 最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1,则a n 最小. (3)求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值. 三、知识拓展已知等差数列{}n a 的公差为d ,前n 项和为n S ,①若0d >,n S 有最小值,若,则k S 最小,若0k a =则1,k k S S -最小; ①若0d <,n S 有最大值,若,则k S 最大,若0k a =则1,k kS S -最大。

四、题型分析(一) 求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项. 【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项. 【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n nn n a a a a 的n 的值.【解法一】基本不等式法., 120S <,则当0n S >时, n 的最大值为11,故选A(三) 求满足数列的特定条件的n 的最值【例3】【贵州省凯里市第一中学2018届高三下学期一模】已知{}n a 的前n 项和为,且145,,2a a a -成等差数列,,数列{}n b 的前n 项和为n T ,则满足20172018n T >的最小正整数n 的值为( )A. 8B. 9C. 10D. 11 【分析】先求和,再解不等式. 【答案】C【解析】,当2n ≥时,,由145,,2a a a -成等差数列可得,即,解得2m =-,故2nn a =,则,故,由20172018n T >得,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10.【小试牛刀】【湖南省邵东县创新实验学校2019届高三月考】已知数列的通项,数列的前项和为,若这两个数列的公共项顺次构成一个新数列,则满足的的最大整数值为( )A .338B .337C .336D .335 【答案】D(四) 求满足条件的参数的最值【例4】已知n S 为各项均为正数的数列{}n a 的前n 项和,.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对恒成立,求实数t 的最大值.【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.(2)由32n a n =- ,可得.因为,所以1n n T T +>,所以数列{}n T 是递增数列,所以,所以实数t 的最大值是1.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前n 项和为n S ,若对任意的正整数n ,不等式恒成立,则常数m 所能取得的最大整数为 .【答案】5 【解析】要使恒成立,只需.因,所以,,数列为等差数列,首项为,,,,,在数列中只有,,为正数的最大值为故选5.【湖南师范大学附属中学2019届高三上学期月考】已知数列的前项和为,通项公式,则满足不等式的的最小值是( )A.62 B.63C.126 D.127【答案】D6.【湖南省岳阳市第一中学2019届高三上学期第三次质检】在数列中,,,若数列满足,则数列的最大项为()A.第5项 B.第6项 C.第7项 D.第8项【答案】B【解析】数列中,,,得到:,,,,上边个式子相加得:,解得:.当时,首项符合通项.故:.数列满足,则, 由于,故:,解得:,∴当n ∈[1,44]时,{a n }单调递减,当n ∈[45,100]时,{a n }单调递减,结合函数f (x )=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.10.已知函数,且,设等差数列{}n a 的前n 项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得. 由题意可得或解得a=1或a=-4, 当a=-1时, ,数列{a n }不是等差数列;当a=-4时,,,,当且仅当1311n n +=+,即1n =时取等号, ∵n 为正数,故当n=3时原式取最小值378,故选D . 11.已知等差数列{}n a 的通项公式为n a n =,前n 项和为n S ,若不等式恒成立,则M 的最小值为__________. 【答案】625912.【江苏省常州2018届高三上学期期末】各项均为正数的等比数列{}n a 中,若,则3a 的最小值为________.【解析】因为{}n a 是各项均为正数的等比数列,且,所以,则,即,即,即3a 13.【福建省闽侯县第八中学2018届高三上学期期末】已知数列{}n na 的前n 项和为n S ,且2n n a =,则使得的最小正整数n 的值为__________.【答案】5【解析】,,两式相减,故, 112n n a ++=故,故n 的最小值为5.14.【河北省承德市联校2018届高三上学期期末】设等差数列{}n b 满足136b b +=, 242b b +=,则12222n b b b 的最大值为________.【答案】512【解析】依题意有,解得,故.,故当3n =时,取得最大值为92512=.15.【新疆乌鲁木齐地区2018届高三第一次诊断】设n S 是等差数列{}n a 的前n 项和,若250S >, 260S <,则数列的最大项是第________项.【答案】1316.【安徽省淮南市2018届高三第一次(2月)模拟】已知正项数列{}n a 的前n 项和为n S ,当2n ≥时,,且11a =,设,则的最小值是________.【答案】9【解析】当2n ≥ 时,,即,展开化为:∵正项数列{}n a 的前n 项和为n S∴数列{}n S 是等比数列,首项为1,公比为4.则则当且仅当3611n n +=+即5n =时等号成立. 故答案为919.已知数列{}n a 满足:*1a ∈N ,136a …,且,记集合.(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数.由,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数; 如果1k >,因为12k k a a -=或,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.。

高考数学总复习考点知识专题讲解9---导数与函数的极值、最值

高考数学总复习考点知识专题讲解9---导数与函数的极值、最值

角度2:已知函数求极值
【例1-2】
(1)(2020·广东深圳质检)已知函数f(x)=
1 2
x2
-(a+1)x+alnx+1,a∈R.若x=3是f(x)的极值点,求f(x)的
极大值.
(2)(2020·泉州质检)已知函数f(x)=x-1+
a ex
(a∈R,e为
自然对数的底数),求函数f(x)的极值.
[思路引导] (1)由f′(3)=0求出a→确定f′(x)的符号→
已知函数 求极值
求f′(x)→求方程f′(x)=0的根→列 表检验f′(x)在f′(x)=0的根的附近 两侧的符号→下结论.
若函数f(x)在x=x0处取得极 已知极值求 值,则f′(x0)=0,且在该
点左、右两侧的导数值符 参数值或范
号相反,求出参数后要检 围
验所求参数值是否满足x0的 极值点特征.
(2)f′(x)=ex(cosx-sinx)-1, 设h(x)=ex(cosx-sinx)-1,则 h′(x)=ex(cosx-sinx-sinx-cosx)=-2exsinx. 当x∈0,π2时,h′(x)<0, 所以h(x)在区间0,π2上单调递减.
所以对任意x∈0,π2有h(x)<h(0)=0,即f ′(x)<0. 所以函数f(x)在区间0,π2上单调递减. 因此f(x)在区间 0,π2 上的最大值为f(0)=1,最小值为 fπ2=-π2.
3ax2+bx-2a2在x=2时有极值0,那么a+b的值为( B )
A.14
B.40
C.14或40
D.52
(2)(2019·沈阳模拟)已知函数f(x)=x(lnx-ax)有两个极值 点,则实数a的取值范围是__0_,__12___.

解三角形中的最值与范围问题-高考数学复习

解三角形中的最值与范围问题-高考数学复习

∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

解几最值求有妙法,构造函数多方出击-高考数学一题多解

解几最值求有妙法,构造函数多方出击-高考数学一题多解

解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。

高考数学复习三角函数的最值

高考数学复习三角函数的最值

4.9 三角函数的最值●知识梳理1.y =a sin x +b cos x 型函数最值的求法.常转化为y =22b a +sin (x +ϕ),其中tan ϕ=ab . 2.y =a sin 2x +b sin x +c 型.常通过换元法转化为y =at 2+bt +c 型.3.y =d x c bx a ++cos sin 型.(1)转化为型1.(2)转化为直线的斜率求解. 4.利用单调性. ●点击双基 1.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则 A.a <b <1 B.a >b >1 C.ab <1D.ab >1解析:a =2sin (α+4π),b =2sin (β+4π),0<α+4π<β+4π<2π,∴1<a <b ,ab >1.答案:D2.函数f (x )=cos 2x +sin x 在区间[-4π,4π]上的最小值是 A.212- B.-221+ C.-1D.221- 解析:f (x )=1-sin 2x +sin x =-(sin x -21)2+45. ∴当x =-4π时,y min =221-.答案:D3.函数y =x -sin x 在[2π,π]上的最大值是 A.2π-1 B.2π3+1 C.2π3-22D.π解析:y =x -sin x 在[2π,π]上是增函数,∴x =π时,y max =π. 答案:D 4.y =xxsin 2sin +的最大值是_________,最小值是_________.解析一:y =x x sin 22sin 2+-+=1-xsin 22+.当sin x =-1时,得y min =-1, 当sin x =1时,得y max =31.解析二:原式⇒sin x =yy-12(∵y ≠1)⇒|y y -12|≤1⇒-1≤y ≤31. ∴y max =31,y min =-1.答案:31-15.y =xxsin cos 2-(0<x <π)的最小值是________.解析一:y =xxsin cos 2-⇒y sin x +cos x =2⇒21y +sin (x +ϕ)=2⇒sin (x +ϕ)=212y+(x ∈(0,π))⇒0<212y+≤1⇒y ≥3.∴y min =3.解析二:y 可视为点A (-sin x ,cos x ),B (0,2)连线的斜率k AB ,而点A 的轨迹 ⎩⎨⎧='-=',,x y x x cos sin x ∈(0,π)是单位圆在第二、三象限的部分(如下图),易知当A (-23,21)时,y min =k AB =3.答案:3●典例剖析【例1】 函数y =a cos x +b (a 、b 为常数),若-7≤y ≤1,求b sin x +a cos x 的最大值.剖析:函数y =a cos x +b 的最值与a 的符号有关,故需对a 分类讨论. 解:当a >0时,⇒⎩⎨⎧=+-=+71b a b a a =4,b =-3;当a =0时,不合题意;当a <0时,⇒⎩⎨⎧-=+=+-71b a b a a =-4,b =-3.当a =4,b =-3时,b sin x +a cos x =-3sin x +4cos x =5sin (x +ϕ)(tan ϕ=-34); 当a =-4,b =-3时,b sin x +a cos x =-3sin x -4cos x =5sin (x +ϕ)(tan ϕ=34). ∴b sin x +a cos x 的最大值为5.【例2】 求函数y =cot 2xsin x +cot x sin2x 的最值. 剖析:先将切函数化成弦函数,再通过配方转化成求二次函数的最值问题. 解:y =x x sin cos 1+·sin x +xxsin cos ·2sin x cos x =2(cos x +41)2+87. ∵sin x ≠0,∴cos x ≠±1. ∴当cos x =-41时,y 有最小值87,无最大值. 评述:这是个基本题型,解题时要注意式中的隐含条件. 【例3】 求函数y =xxcos 2sin 2--的最大值和最小值.剖析:此题的解法较多,一是利用三角函数的有界性;二是数形结合法,将y 看成是两点连线的斜率;三是利用万能公式换算,转化成一元函数的最值问题(由于万能公式不要求掌握,所以此方法只作了解即可).解法一:去分母,原式化为 sin x -y cos x =2-2y ,即sin (x -ϕ)=2122yy +-.故21|22|y y +-≤1,解得374-≤y ≤374+. ∴y max =374+,y min =374-. 解法二:令x 1=cos x ,y 1=sin x ,有x 12+y 12=1.它表示单位圆,则所给函数y 就是经过定点P (2,2)以及该圆上的动点M (cos x ,sin x )的直线PM 的斜率k ,故只需求此直线的斜率k 的最值即可.由21|22|k k +-=1,得k =374±.n )x∴y max =374+,y min =374-. 评述:数形结合法是高考中必考的数学思维方法,对此读者要有足够的重视.●闯关训练 夯实基础1.函数y =log 2(1+sin x )+log 2(1-sin x ),当x ∈[-6π,4π]时的值域为 A.[-1,0] B.(-1,0] C.[0,1)D.[0,1]解析:y =log 2(1-sin 2x )=log 2cos 2x . 当x =0时,y max =log 21=0; 当x =4π时,y min =-1.∴值域为[-1,0]. 答案:A2.当y =2cos x -3sin x 取得最大值时,tan x 的值是 A.23 B.-23 C.13 D.4解析:y =13sin (ϕ-x )(其中tan ϕ=32).y 有最大值时,应sin (ϕ-x )=1⇒ϕ-x =2k π+2π⇒-x =2k π+2π-ϕ. ∴tan x =-tan (-x )=-tan (2k π+2π-ϕ)=-cot ϕ=-ϕtan 1=-23.答案:B 3.函数y =2sin 1sin 3+-x x 的最大值是_______,最小值是_______.解析:∵y =2sin 1sin 3+-x x =2sin 72sin 3+-+x x )(=3-2sin 7+x ,∴当sin x =1时,y max =3-37=32; 当sin x =-1时,y min =-4. 答案:32-4 4.在△ABC 中,a =sin (A +B ),b =sin A +sin B ,则a 与b 的大小关系为_______. 解析:a =sin A cos B +cos A sin B <sin A +sin B =b . 答案:a <b 5已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值是____________. 解析:∵2a -b =(2cos θ-3,2sin θ+1),∴|2a -b |=22sin 23cos 2)()(1++-θθ=)(3πsin 88-+θ≤4. ∴|2a -b |的最大值为4. 答案:46.求y =1+sin x +cos x +sin x cos x 的值域. 解:设t =sin x +cos x ,则t ∈[-2,2]. 由(sin x +cos x )2=t 2⇒sin x cos x =212-t .∴y =1+t +212-t =21(t +1)2.∴y max =21(2+1)2=2223+,y min =0.∴值域为[0,2223+].培养能力7.已知对任意x ,恒有y ≥sin 2x +4sin 2x cos 2x ,求y 的最小值. 解:令u =sin 2x +4sin 2x cos 2x ,则u =sin 2x +sin 22x =21(1-cos2x )+(1-cos 22x )=-cos 22x -21cos2x +23=-(cos2x +41)2+1625,得u max =1625.由y ≥u 知y min =1625. 8.已知向量a =(cos 23x ,sin 23x ),b =(cos 2x ,-sin 2x),c =(3,-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合;(2)求|a -c |的最大值.解:(1)由a ⊥b 得a ·b =0,即cos 23x cos 2x -sin 23x sin 2x=0.则cos2x =0,得x =2πk +4π(k ∈Z ). ∴{x |x =2πk +4π,k ∈Z }为所求. (2)|a -c |2=(cos23x -3)2+(sin 23x +1)2=5+4sin (23x -3π), ∴|a -c |有最大值3. 探究创新 9.设函数f (x )=a sin ωx +b cos ωx (ω>0)的最小正周期为π,并且当x =12π时,有最大值f (12π)=4. (1)求a 、b 、ω的值;(2)若角α、β的终边不共线,f (α)=f (β)=0,求tan (α+β)的值.解:(1)由ωπ2=π,ω>0得ω=2.∴f (x )=a sin2x +b cos2x . 由x =12π时,f (x )的最大值为4, 得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=+.3224232422b a b a b a ,(2)由(1)得f (x )=4sin (2x +3π). 依题意有4sin (2α+3π)=4sin (2β+3π)=0. ∴sin (2α+3π)-sin (2β+3π)=0. ∴cos (α+β+3π)sin (α-β)=0(和差化积公式见课本). ∵α、β的终边不共线,即α-β≠k π(k ∈Z ), 故sin (α-β)≠0. ∴α+β=k π+6π(k ∈Z ).∴tan (α+β)=33.●思悟小结1.求三角函数最值的常用方法有:①配方法(主要利用二次函数理论及三角函数的有界性);②化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);③数形结合法(常用到直线的斜率关系);④换元法(如万能公式,将三角问题转化为代数问题);⑤基本不等式法等.2.三角函数的最值都是在给定区间上取得的,因而特别要注意题设中所给出的区间. (1)求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件及弦函数的有界性.(2)含参数函数的最值问题,要注意参数的作用和影响. 3.注意题中的隐含条件. ●教师下载中心 教学点睛1.建议让学生从做“点击双基”中体会总结方法.2.例题也可由学生独立完成,并从中总结方法. 拓展题例【例题】 (2001年春季全国)已知sin 2α+sin 2β+sin 2γ=1(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于_______.解析:∵sin 2α+sin 2β+sin 2γ=1, ∴3-(cos 2α+cos 2β+cos 2γ)=1.∴cos 2α+cos 2β+cos 2γ=2≥33γβα222cos cos cos . ∴cos 2αcos 2βcos 2γ≤(32)3.∴cos αcos βcos γ≤332)(=3232=962. 答案:962。

2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求最值方法 -- 高考数学复习一问一答 -------- 最值问题方法总论1高中数学求最值有哪些方法?答:有 9 种方法: 1)配方法 2)鉴别式法; 3)不等式法; 4)换元法; 5)函数单一性法; 6)三角函数性质法; 7)导数法; 8)数形联合发;9)向量法2如何将恒成立问题转变为最值问题?答:1) a f ( x)恒成立,则a f (x)max 2)a f ( x)恒成立,则 a f (x)min一元整式函数最值1、二次函数张口方向、对称轴、所给区间均确立,如何求最值 ?答:1)确立对称轴与x轴交点的横坐标能否在所给区间。

2)假如在所给区间,一个最值在极点处获得,另一个最值在与极点横坐标较远的端点处获得。

3)若不在所给区间,利用函数的单一性确立其最值。

2、二次函数所给区间确立,对称轴地点变化,如何求最值 ?答: 1)挪动对称轴,将对称轴平移到定区间的左边、右边及区间内议论, 2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴地点确立,如何求最值 ?答:分类议论,分为四种状况: 1)对称轴在闭区间左边;2)对称轴在闭区间右边3)对称轴在闭区间内且在中点的左边; 4)对称轴在闭区间内且在中点的右边(或过中点);4、二次函数所给区间、对称轴地点都不确立,如何求最值 ?答:将此中一个看作是“定”的,另一个看作是“动”的,而后如上分四种状况进行议论。

5、什么状况下运用基本不等式求最值?答:当两个变量的和或积为定值时运用,有时需要变形。

即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。

6、对于多项式乘积的最值问题,如何求解答:能够考虑睁开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数f ( x), g( x) 在 [ mn.] 上单调性相同,则h( x) f (x)g(x) 在 [m.n] 上与 f ( x), g( x) 有同样的单一性,可利用单一性求h( x) 在[ mn.] 上的最值。

8、如何求三次及三次以上函数的最值?答:用导数法求,利用函数的单一性;9、如何求二次函数与指数、对数函数经过四则运算组成的函数答:用导数法求单一性,利用单一性求最值10、如何求含绝对值的函数的最值?答:1)去掉绝对值,转变为分段函数后求最值/11、如何求含参数的函数最值答:1)利用导数求最值, 2)依据参数的取值范围,用分类议论思想求解12、如何求指数,对数函数最值?答:利用换元法,转变成整式函数最值问题,注意换元后函数定义域的变化。

分式函数最值问题1、如何求形如y ax b( x 0)的函数的最值x答:有两种方法 1)利用基本不等式求最值法 2)利用其单一性求最值,求解时,需先判断其单一区间。

ax2bx c2、如何求一元二次分式函数,形如y dx2ex f(ad 0)的函数值域?4答: 1)转变成对于自变量 x 的一元二次方程 2)利用鉴别式求 y 的取值范围。

3)注意二次系数等于零的状况。

3、分式函数 yf ( x)中分子的次数小于分母的次数g( x)最值问题,如何求解?答:可取倒数后,利用基本不等式求解无理函数最值问题1、对于含有根式的最值问题,第一考虑如何处理答:考虑平方后,利用基本不等式求解/2、如何求无理函数被开方数含自变量的一次式,形如 y ax b cx d (a, c 不为零)的最值答:利用整体换元法求解3、如何求解无理式的和、差最值问题答: 1)将根号下的变量进行配方 2)转变为两点间的距离的和、差最值 3)依据已知条件,利用数形联合的方法求解。

/4、如何求形如 y m ax b n cx d (ac 0) 型函数的值域答:1)确立函数的定义域, 设为闭区间 [ x 1, x 2] , )2令 x | x2x 1 | sin 2 t x 1,且 t [0,2] ,原函数可化为 y A sin(t )型的函数,进而得出函数的值域。

(例题在书上105页)5、如何求形如y mx n ax2bx c(m 0, a 0,b24ac0) 型函数值域?答:1)确立函数的定义域,设为闭区间[ x1, x2],2)令 t x2 x1x2x1 sin t 且 t [0,] ,换元,将 y A sin( x) t 型222函数,求值域(例题在书上105 页)条件最值问题a b1、已知或可化为已知 1 型为条件的如何求x ycx dy(a, b, c, d 均不为零)最值答:可利用“1”的代换求乘法,即cx dy 1 (cx dy) ( a b) (cx dy) ,睁开后用基本不等式求x y最值。

2 、已知ax by k (a,b, k 均不为零),如何求F ( x, y)m n(m, n, c, d 均不为零)的最值?cx dy答:常将 ax by k( a, b, k 变形为a x b y 1 后,而后利用k k“ 1的”代换求乘法,睁开后用基本不等式求最值。

3、已知条件含形如ax bxy cy d 0(abc 0)型的关系式,如何求对于x, y 一次式的和或积的最值问题答:将关系式 ax bxy cy d 0 变形,用一个变量表示另一个变量后求解,相当于消元后再利用基本不等式求最值。

4、如何求解对称式(随意交换两个字母,代数式不变)和给定字母次序(如 a b c )的表达式的最值?答:用增量换元法进行换元,换元的目的是为了减元。

/5、举例说明增量换元法答:若 a,b R, a b 1,求 y (a 2)2(b2)2最小值,11由于a b 1,因此可设 a 2t,b2t ,代入方程6、如何求已知条件含关系式x2y2r 2型最值问题答: 1)利用x r cos , y r sin换元,转变成三角函数求最值问题求解。

2)若波及x2y2r 2,则利用 x r cos,转变成三角函数求最值问题求解。

y r sin ,此中 | r | 1,[0,2 ) ,将问题转变成三角函数求最值问题求解。

线性规划中最值问题1、如何求解线性规划中最值问题?答:在线性拘束条件下目标函数最值问题求解步骤: 1)7作图 ---画出拘束条件下(不等式组)所确立的平面地区和目标函数所表示的平行直线系中的任意一条直线 2)平移 ------ 将直线平行挪动,以确定最优解所对应点的地点3)求值—解相关的方程组求出最长处的坐标,再代入目标函数,求出目标函数的最值。

(例题在 115 页)三角函数最值问题1、一次三角函数,如y a sin x bcosx型,采纳什么方法?答:采纳引入协助角法,利用关系式asinx+bcosx=a2b2sin x/2、二次三角函数,只含有正弦函数或余弦函数,采纳什么方法?2种类三:y asin x bsinx c(a 0)型。

此种类答:可化为y at2 bt c(a 0)在区间[ 1,1]上的最值问题。

3、二次三角函数y asin 2 x b sin x cosx c cos2 x 的三角函数,采纳什么方法?答:利用倍角公式化为y asin x b cosx ,而后求解。

4、对于表达式中同时含有sinx+cosx,与 sinxcosx 的函数,采纳什么方法?换元法 sinx+cosx=t转变为 t 的二次函数去求最值,要用到sin x cos x 212sin x cos x, 一定要注意换元后新变量的取值范围。

5、合理的拆添项,凑常数,化简成 a cot2 x b tan2 x ,a cot xb tan x ,sin xasin x ,sinx>0,a<1,求最值,采纳什么方法?答:基本不等式求函数的最值6、一次分式三角函数,分子、分母的三角函数同名,如 y a cosx b ,采纳什么方法?ccosx d答:1) 先用反解法,再用三角函数的有界性去解。

2)先化为部分分式(即整数和分式相加),再利用三角函数的有界性去解。

7、一次分式三角函数,分子、分母的三角函数acosx b不一样名,如y csin x d ,采纳什么方法?答: 1)数形联合法,点 (cosx,sinx)在单位圆上,yacosx bcsin x d 是斜率的表达式2)化分式为等式,引入协助角法)和有界性来求解。

8 、sin x a 型三角函数求最值问题,当sin xsinx>0,a>1,采纳什么方法?答:不可以用均值不等式求最值,适适用函数在区间内的单一性来求解。

换元,求导,依据定义域确立单一性。

9、含参数的三角函数的值域问题,需要对参数进行议论。

答:含参数的三角函数的值域问题,需要对参数进行议论。

10、条件最值问题答:依据条件,将高次函数化为降幂,将多多元函数降元。

化简后再求解。

立体几何最值问题 /1、求解立体几何最值问题方法是什么?答: 1)转变为平面问题求解 2)转变为函数的最值,需要合适引入参变量,正确成立目标函数。

2、如何求解三视图中最值问题答:将三视图复原成几何体,而且将三视图中线段的长度正确反应到几何体中,进而求得最值。

/3、如何求解几何表面距离最短的问题?答: 1)将空间几何体表面睁开,将立体几何问题转变为平面几何问题, 2)利用平面内两点间距离最值问题求解 3)求解时注意分类议论思想。

4、立体几何求最值可用的公义和定义有哪些?答: 1)两点之间线段最短 2)分别在两异面直线上的两点的连线中,它们的公垂线最短。

/5、如何求解与立体几何动点相关的最值问题答:成立目标函数法,将动向问题转变为目标函数最值问题。

分析几何最值问题1、求解分析几何最值问题有哪些方法?答: 1)联合定义,转变为平面几何知识求解,利用三角形两边之和大于第三边,或三角形两边之差小于第三边;点到直线的垂线最短等 2)不等式组求解法:列出参数合适的不等式组,经过解不等式组得出参数范围; 3)函数值域求解法4)结构一个二次方程,利用根的鉴别式/2、如何求解对于圆的最值问题答:1)依据圆的对称性,转变为与圆心相关的最值问题,即圆心与圆外的点距离最值与圆半径和、差的关系2)数形联合求解最值;如y x几何意义是圆上一点与原点连线的斜率;如 y x, 最值,可设 y x b ,y x b 则为纵截距最值问题;如 x2 y2为圆上的点与原点距离的平方。

3、如何求解波及椭圆(或双曲线)上的动点与此中一个焦点及此外一个动点的距离和、差最值问题答/1)借助椭圆(或双曲线)定义,转变为该动点与另一个焦点的距离与定点的距离和、差问题,2)而后利用平面几何知识求解,此中常用“两边之和大于第三边”,“两边之差小于第三边”。

4、如何求解圆锥曲线上的动点与圆上动点间的距离最值问题答:1)波及四个变量,没法直接求解2)转变为圆心与圆锥曲线动点距离最值与圆半径和、差的关系 3)也可结构以圆的圆心为圆心,以半径r ( r 0) 的动圆与已知圆锥曲线相切,利用消元后获得的二次方程鉴别式 0 求得r的值。

相关文档
最新文档