数量关系重点公式及例题讲解

合集下载

数量关系公式总结

数量关系公式总结

1..两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。

到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸400 米处又重新相遇。

问:该河的宽度是多少?典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?解:车速/人速=(10+6)/(10-6)=44.往返运动问题公式:V均=(2v1*v2)/(v1+v2)例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()解:代入公式得2*30*20/(30+20)=245.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)能看到的扶梯级数=(2+1.5)*40=1406.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为 4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?7.十字交叉法:A/B=(r-b)/(a-r)例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:析:男生平均分X,女生1.2X1.2X 75-X 175 =X 1.2X-75 1.8得X=70 女生为84分析:假设女生的平均成绩为X,男生的平均Y。

行测数量关系知识点汇总

行测数量关系知识点汇总

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

行测数量关系的常用公式讲解

行测数量关系的常用公式讲解

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

行测数量关系50大公式全解析

行测数量关系50大公式全解析

一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

(完整版)行测数量关系的常用公式讲解

(完整版)行测数量关系的常用公式讲解

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

数量关系技巧

数量关系技巧

(一)奇偶性例题:有8个盒子分别装有17个,24个,29个,33个,35个,36个,38个和44个乒乓球,小赵取走一盒,其余各盒被小钱,小孙,小李取走,已知小钱和小孙取走的乒乓球个数相同,并且是小李取走的两倍,则小钱取走的各个盒子中的乒乓球最可能是A.17个,44个B.24个,38个C.24个,29个,36个D.24个,29个,35个墨子解析:小钱是小李的两倍,小钱肯定是偶数,排除AC,B选项的一半是12+19=31,上面没有31这个数字,排除B,得到答案为D。

(二)大小性例题:现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒溶液。

若从甲中取2100克,乙中取7 00克混合而成的消毒浓度为3%;若从甲中取900克,乙中取2700克,则混合而成的溶液的浓度为5%。

则甲、乙两种消毒溶液的浓度分别为:A、3% 6%B、3% 4%C、2% 6%D、4% 6%墨子解析:A,B,D不管怎么配都不可能达到3%,得到答案为C。

(三)因数特性(重点是因数3和9)例题: A、B两数恰含有质因数3和5,它们的最大公约数是75,已知A数有12个约数,B数有10个约数,那么AB两数和等于()A 2500B 3115C 2225D 2550墨子解析:AB的和肯定能被3整除,ABC显然都不能被3整除,得到答案为D。

例题:某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少()A.12 B.9 C.15 D.18墨子解析:第10名能被10整除,尾数肯定是0。

1到9 应该是XXX1,XXX2,XXX3………..XXX9,XX X9能被9整除,所以XXX能被9整除,答案减去3肯定能被9整除,只有12-3=9,得到答案为A。

(四)尾数法例题:一只木箱内有白色乒乓球和黄色乒乓球若干个。

小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。

公务员行测备考:数量关系常见公式及妙招

公务员行测备考:数量关系常见公式及妙招

公务员行测备考:数量关系常见公式及妙招一、常用公式1、容斥问题题干特征:已知总量I,第一个集合A,第二个集合B。

求:两个集合的交集的最小值公式:A+B-I【例题1】在100个学生中,音乐爱好者有56人,体育爱好者75人,那么既爱好音乐,又爱好体育的人最少有多少人?A.31B.35C.41D.53【解析】直接代入公式:56+75-100=31,选择A。

题干特征:已知总量I,第一个集合A,第二个集合B,第三个集合C。

求:三个集合的交集的最小值公式:A+B+C-2I【例题2】小明、小刚和小红三人一起参加一次英语考试,已知考试共有100道题,且小明做对了68题,小刚做对了58题,小红做对了78题。

问三人都做对的题目至少有几题?A.4题B.8题C.12题D.16题【解析】直接代入公式:68+58+78-2100=4,选择A。

2、流水行船问题题干特征:A、B两地由一条河流相连,轮船匀速前进,从A到B顺流需时间a,从B到A逆流需时间b。

求:从A城放一个无动力的木筏,它漂到B城需要多久?公式:2ab/(b-a)求:轮船在静水中从A到B需要多久?公式:2ab/(b+a)【例题3】轮船从A城到B城需行3天,而从B城到A城需行6天.若轮船在静水中从A到B需要多长时间?A.3.5B.4C.4.5D.5【解析】直接代入公式:236(3+6)=4天,选择B。

二、小妙招1.选项之间加和构成题干信息【例题5】公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。

问今年男员工有多少人?A.329B.350C.371D.504【解析】A、D两个选项之和329+504=833,恰好是今年员工总人数,即A、D两个选项中一个是今年男员工人数,一个是今年女员工人数,由于女员工人数增加的百分比较小,而最后总人数还增加了,可以推断出女员工人数较多,因此选择A。

出题人会故意设置错误选项,我们要利用选项之间的加和关系,直接选出选项。

公务员及事业单位考试行测数量关系的常用公式

公务员及事业单位考试行测数量关系的常用公式

行测常用数学公式_ 2 21.平方差公式:(a+ b)・( a—b)= a —b2.完全平方公式:(a±b) 2= a2± 2ab + b23.完全立方公式:(a±b)3= (a±b) (a2」ab+b2)4.立方和差公式:a3+b3=(a _ b)(a 2+」ab+b2)n m+ n m n m-n m n mn n n n• a = a a ±a= a (a ) =a (ab) =a • b二、等差数列n (印a n) 1(1)s n= __- = na i+ n(n-1)d ;(2)a n = 81+( n —1) d;(3)项数n= + 1;d(4)若a,A,b成等差数列,贝2A= a+b;(5)若m+n二k+i,贝U:a n+a n=a k+a ;(6)前n 个奇数:1, 3, 5, 7, 9,-( 2n—1)之和为n2(其中:n为项数,a1为首项,a n为末项,d为公差,S n为等差数列前n项的和)三、等比数列(1)a n= a1q n—1;(2)s n= a1 11—q°)(q = 1)1-q(3)若a,G,b成等比数列,贝G= ab;(4)若m+n二k+i,贝U:a m • a n=a k • a i;(5) amra n=(m-n)d(6) a m = q(m-n)a n(其中:n为项数,a i为首项,a n为末项,q为公比,S n为等比数列前n项的和) 四、不等式(1) 一元二次方程求根公式:ax2+bx+c=a(x-x J(x-x 2)其中:X i=p b 二4ac;X2=P b -4ac(b2-4ac_0)2a 2a根与系数的关系:X i+X2=-b, x i • x2=-a a推广:x1 x2 x3 ... x^ n n、% X2..X(2)—阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

公务员及事业单位考试行测数量关系的常用公式

公务员及事业单位考试行测数量关系的常用公式

行测常用数学公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) mnm +nm n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 21为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

数量关系49个常见问题公式

数量关系49个常见问题公式

一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X 就不要加1000或者100一类的了,比如,7000页中有多少3 就是 1000+700*3=3100(个)20000页中有多少6就是 2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X , Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

数量关系基础知识点

数量关系基础知识点

数量关系基础知识点第一类知识点:数字特性法。

数字特性法主要分为三部分知识点,比例倍数特性,整除特性和奇偶特性。

比例倍数特性指:1.出现倍数:A=M×B+C,可得到的结论是A-C是M和B的倍数,M和B 是A-C的约数。

2.出现比例:a:b=m:n(m与n互质)可得到结论是a是m的倍数,b是n 的倍数。

整除特性指特殊数字整除判定法则:2(5)的整除判定,看末1位数字能否被2(5)整除;4(25)的整除判定,看末2位数字能否被4(25)整除;8(125)的整除判定,看末3位数字能否被8(125)整除;3(9)的整除判定,看数字加和能否被3(9)整除;奇偶特性指:乘法当中,有偶则偶。

即两个数相乘有一个数是偶数,结果就是偶数。

加减法当中和差同性、奇反偶同。

和差同性指两个数相加相减,奇偶性相同、奇反偶同指以结果为导向,如果最后结果是偶数,那么前面两个数奇偶性相同。

最后结果是奇数那么前面两个数奇偶性相反。

第二类知识点:赋值法。

应用特征:题干中有分数、百分数、比例、倍数等。

或者有A=B×C的形式。

经常应用在比例题型中,如工程问题、行程问题、溶液问题、经济利润问题。

题干中有分数、百分数、比例、倍数等,直接根据比例去赋值即可。

对于A=B×C的形式。

优先赋值总量A(一般A为不变量)。

如果A变化,则赋值B或C(存在比例关系优先);B或C按比例赋值。

第三类知识点:经济利润问题。

经济利润问题主要两类题型:第一类题型基础公式型,主要根据基础公式列式即可,主要的公式有以下几个:实际售价=原定售价*折扣利润=售价-成本售价=利润+成本=成本*(1+利润率)总利润=单件利润×数量=总售价-总成本利润率=利润÷成本第二类题型分段计费型,常常出现在电费,水费,个人所得税的计算当中。

做题步骤主要两步,第一步找准分段点;第二步,各段费用之和为总费用。

公务员及事业单位考试行测数量关系的常用公式

公务员及事业单位考试行测数量关系的常用公式

行测常用数学公式)·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2μab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+μab+b 2) mnm +nm n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ; (3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=ac推广:n n n x x x n x x x x ......21321≥++++(2)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

(完整版)数量关系公式

(完整版)数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法解析:设扶梯为s级,速度为v,根据公式带入S=30×1×(1+v÷1) 解得 v=1S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

(完整版)数量关系公式

(完整版)数量关系公式
解答:W=55,z=6,A=35,B=28,C=31,代入公式
55=x+y+6 解得 x=22
35+28+31= x×1+y×2+6×3 y=27
7.几何问题模块
周长计算公式:
正方形周长=4a;长方形周长=2(a+b);圆周长=2πR;扇形周长=2πR×(n/360°)
面积计算公式:
正方形面积=a²;菱形面积=对角线乘积的一半;长方形面积=ab;圆面积=πR²;扇形面积=πR²×(n/360°);三角形面积=1/2ah=1/2absinC;平行四边形=ah;梯形面积=1/2(a+b)h;正方体表面积=6a²;长方体表面积=2ab+2ac+2bc;
2。在方阵中,总人数=N²=(外圈人数÷4+1)²
8.其他一些常用公式:
1.前n个奇数之和为n²;
2.等差数列公式:和=(首项+末项)×项数÷2=平均数 (中位数)×项数;项数=(末项—首项)÷公差+1
3.等比数列公式:an=a1×qn-1;sn=a1×(qn-1/q—1)
4.三位数的页码公式:页码=(数字+111)÷3—1=数字÷3+36(数字代表用了多少个数字,如115,用了2个1和1个 5,共3个数字)
二、不相邻—插空法
6人排队,ab不排在一起:A44*A52(先排 除了ab之外的4人,4人排好后有5个空位,再选择其中2个排ab两人)
三、围成一圈
6人围成一圈:A55(选定6人中其中一人标定位置,其余5人按顺序排队)
四、几对夫妻排队
4对夫妻排队:A88(相当于8人排队)
五、夫妻要排一起
4对夫妻排队,并且夫妻要排在一起:(A22*A22*A22*A22)*A44(先把每对夫妻排好,再将每队夫妻捆绑在一起排队)

行测数量关系的常用公式

行测数量关系的常用公式

行测常用数学公式工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N边行每边有a人,则一共有N(a-1)人。

4.实心长方阵:总人数=M×N 外圈人数=2M+2N-45.方阵:总人数=N2 N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?解:(10-3)×3×4=84(人)(2)排队型:假设队伍有N人,A排在第M位;则其前面有(M-1)人,后面有(N-M)人(3)爬楼型:从地面爬到第N层楼要爬(N-1)楼,从第N层爬到第M层要爬NM-层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长÷间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系重点公式及例题讲解
数量关系重点公式:
重点公式1、弃9验算法
利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。

用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。

对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等
注:1.弃九法不适合除法
2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。

这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意
重点公式2、传球问题重点公式
N个人传M次球,记X=N-1^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数
重点公式3、整体消去法
在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去
重点公式4、裂项公式
1/nn-k =1/k 1/n-k-1/n
重点公式5、平方数列求和公式
1^2+2^2+3^2…+n^2=1/6 nn+12n+1
重点公式6、立方数列求和公式
1^3+2^3+3^3…+n^3=[1/2 nn+1 ]^2
重点公式7、行程问题
1分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的2n-1倍
2A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= 〖2V〗_1 V_2/V_1+V_2 ,
3沿途数车问题:
同方向相邻两车的发车时间间隔×车速=同方向相邻两车的间隔
4环形运动问题:
异向而行,则相邻两次相遇间所走的路程和为周长
同向而行,则相邻两次相遇间所走的路程差为周长
5自动扶梯问题
能看到的级数=人速+扶梯速×顺行运动所需时间
能看到的级数=人速-扶梯速×逆行运动所需时间
6错车问题
对方车长为路程和,是相遇问题
路程和=速度和×时间
7队伍行走问题
V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则
从队尾到队首的时间为:L/V_1-V_2
从队首到队尾的时间为:L/V_1+V_2
重点公式8、比赛场次问题
N为参赛选手数,
淘汰赛仅需决出冠亚军比赛场次=N-1,
淘汰赛需决出前四名比赛场次=N,
单循环赛比赛场次=_N^2,
双循环赛比赛场次=A_N^2
重点公式9、植树问题
两端植树:距离/间隔+1 = 棵数
一端植树环形植树:距离/间隔= 棵数
俩端均不植树:距离/间隔-1=棵数
双边植树:距离/间隔-1*2=棵数
重点公式10、方阵问题
最为层每边人数为N
方阵总人数=N^2
最外层总人数=N-1×4
相邻两层总人数差=8行数和列数>3
去掉一行一列则少2N-1人
空心方阵总人数=最外层每边人数-层数×层数×4
重点公式11、几何问题
N边形内角和=N-2×180°
球体体积=4/3 πr^3
圆柱体积=πr^2 h
圆柱体积=1/3 πr^2 h
重点公式12、牛吃草问题
牛头数-每天长草量×天数=最初总草量
重点公式13、日期问题
一年加1,闰年加2,小月30天加2,大月31天加3,28年一周期 4年1闰,100年不闰,400年再闰
重点公式14、页码问题
如:一本书的页码一共用了270个数字,求这本书的页数。

页数=270+12×9/3=126页
公式:10-99页:页数=数字+1×9/2
100-999页:页数=数字+12×9/3
1000-9999页:页数=数字+123×9/4
重点公式15、时钟问题
小知识:时针与分针一昼夜重合22次,垂直44次,成180°,也是22次
求时针与分针成一定角度时的实际时间T
T=T_0+1/11 T_0,其中T_0为时针不动时,分针走到符合题意位置所需的时间
重点公式16、非闭合路径货物集中问题
在非闭合的路径上包括线形、树形等,不包括环形有多个节点,每个节点之间通过“路”来连通,每个节点上有一定的货物。

当需要用优化的方法把货物集中到一个节点上的时候,通过以下方式判断货物流通的
方向:
1、判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重
的一侧。

2、适用于“非闭合”的路径问题,与各条路径的长短没有关系;实际操作中,我们应
该从中间开始分析,这样可以更快得到答案。

1、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在要把所有
的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要
运费。

A. 4500元
B. 5000元
C. 5500元
D. 6000元
解析:本题中四条“路”都具备“左边总重量轻于右边总重量”的条件,所以这些“路”上的流通方式都是从左到右。

故集中到五号仓库是最优选择。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档