小学数学解题方法专题讲座(10个专题)
小学数学专题讲座(课堂)

小学数学专题讲座(课堂)一、教学中的常见问题1、学习兴趣不足在小学数学教学过程中,学习兴趣不足是一个普遍存在的问题。
由于数学学科本身具有较强的逻辑性和抽象性,容易让学生产生枯燥乏味的感受。
一方面,传统的教学方式往往注重知识的灌输,忽视了激发学生的学习兴趣;另一方面,教师可能缺乏针对学生兴趣的有效教学手段,导致课堂氛围沉闷,学生参与度不高。
(1)课堂互动不足:在部分数学课堂中,教师过于关注知识点的讲解,忽视了与学生的互动,使得学生缺乏积极参与课堂的机会,从而影响学习兴趣的激发。
(2)教学方式单一:部分教师习惯于采用讲授式教学,缺乏多样化的教学手段,如情境教学、游戏教学等,使得课堂氛围单调,难以激发学生的学习兴趣。
2、重结果记忆,轻思维发展在实际教学中,部分教师过于关注学生的成绩,导致教学过程中重视知识的记忆,而忽视了学生思维能力的发展。
这种现象表现在以下方面:(1)题目训练过于应试化:教师为了提高学生的考试成绩,往往侧重于让学生进行大量题目训练,而忽视了培养学生的解题思路和思维方法。
(2)忽视思维过程:在课堂教学中,教师有时过于关注答案的正确与否,而忽略了学生在解题过程中的思维发展,导致学生无法真正掌握数学知识。
3、对概念的理解不够深入对数学概念的理解是学好数学的基础,然而在实际教学中,部分学生对概念的理解不够深入,主要原因如下:(1)教学方法不当:教师可能没有运用恰当的教学方法帮助学生理解概念,导致学生对概念的理解停留在表面。
(2)缺乏实际应用:在教学中,教师可能忽视了将数学概念与实际生活相结合,使得学生难以体会数学概念的实际意义,从而影响其深入理解。
(3)概念辨析不足:在讲解数学概念时,教师可能没有引导学生进行充分的辨析,导致学生对概念的理解模糊不清。
二、教学实践与思考1、梳理脉络,全面理解教材(1)从培养目标出发,理解课程核心素养的发展体系为了解决教学中存在的问题,教师需要从培养目标出发,深入理解课程核心素养的发展体系。
小学数学思维拓展训练《数字迷藏》专题讲座之(9)(含参考答案)

第9讲数字迷藏(含参考答案和部分解题思路)一、解题技巧:1. 当数字和我们捉迷藏时,我们要仔细观察图形,确定图形中关键的位置应填几。
图形中关键的位置一般在三角形、长方形、正方形的顶点、图形中的中心和交叉的位置。
2. 将所填的数与所提供的数字联系起来考虑,一般要先计算所填数字的总和与提供的数字的和之间差多少,从而确定关键位置应填几。
二、新课教学1. 例1、在右图中分别填入1至9使两条直线上的五个数的和相等,和是多少呢?解题思路:在这9个数中选出一个数,填入中心的圆中,再把剩下的8个数两两搭配成和相等的四组,分别填入相对应的位置中。
如中心填5,那么4+6=10,3+7=10,2+8=10,1+9=10.或者中心填1,2+9=1,3+8=11,4+7=11,5+6=11.或者中心填3,1+5+7+8=21,2+4+6+9=21 (详见上图,答案3自己做)巩固练习。
(1) 将11、12、13、14、15、16、17这7个数分别填入下面的中,使每条线上的和都等于44。
解题思路:这是7个连续自然数,同样按照上面的道理,先确定中间数“17”,然后,将剩下的6个数两两搭配,组成三组和相等的数,再分别填入相应的位置中。
这7个数的和是98,三条线上各数字的和是44×3=132,中间的数多算了2次。
(132-98)÷2=17。
中间的17就是这样求得的。
(2) 在下图中填入2~10,使横行竖行中的五个数的和相同,和是多少呢?2107 5 6 3 948找出这9个连续自然数最中间的数“6”,把6填入最中间的位置,再把剩下的8个数两两搭配,组成和是12的4组数,再把各数填入相应的位置。
(3) 把1、4、7、10、13、16、19这7个数填入☆中,使每条直线上三个数的和相等。
解题思路:这是一组等差数列,先找出最中间的数“10”,将10填入最中间的星星中,再可按上面的方法,将各数填入相应的位置。
2. 例2、把9、12、15、18、21、27、33分别填入下图中的圆圈内,使每条直线上的三个数的和相等。
小学数学奥数解题方法讲义40讲

第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。
(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。
例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。
求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3 +1)份数。
因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。
例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。
所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。
例3 妈妈给了李平元钱,正好可买4瓶啤酒,3瓶香槟酒。
李平错买成3瓶啤酒,4瓶香槟酒,剩下元。
求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下元,这说明每瓶啤酒比每瓶香槟酒贵元。
把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的元钱就是(4+3)份数多(×4)元,()元就正好是(4+3)份数。
每瓶香槟酒的价钱是:()÷(4+3)=÷7=(元)每瓶啤酒的价钱是:+=(元)答略。
小学数学专题讲座

小学数学专题讲座一、开场语尊敬的各位听众,大家好!今天,我们聚集在这里,共同探讨小学语文教学的诸多方面。
我非常荣幸能在这里与大家分享我的一些想法和经验。
二、主题介绍小学语文教学,无疑是教育领域中至关重要的一环。
它承载着为学生打下语言基础,培养阅读理解能力,激发写作兴趣的重要任务。
在这个阶段,孩子们不仅需要掌握基本的语言技能,更需要通过不断的探索和实践,培养出独立思考、创新思维的能力。
三、教学内容和方法在教学内容上,除了基础的字词教学,我们还应该学生的阅读和写作能力。
阅读是获取知识的重要途径,而写作则是表达自我、沟通交流的重要手段。
在教学过程中,我们应该注重培养学生的阅读兴趣,引导他们通过阅读来开阔视野,提高理解能力。
同时,写作训练也不可忽视,我们可以从简单的日记开始,逐步提高学生的写作技巧。
教学方法上,我们应尽可能地多样化。
对于小学生来说,兴趣是学习的最好动力。
因此,我们可以采用故事、游戏、音乐等多种形式来激发学生的学习热情。
我们还应注重实践教学,让学生在实际操作中掌握知识,提高技能。
四、学生个体差异每个学生都是独一无二的个体,他们在学习上有着不同的特点和需求。
因此,我们应该学生的个体差异,因材施教。
对于那些在学习上遇到困难的学生,我们应给予更多的关心和帮助;对于那些学有余力的学生,我们则应提供更多的挑战和机会。
五、结语小学语文教学是一项充满挑战和机遇的任务。
作为教师,我们应该始终保持热情和耐心,用科学的方法引导孩子们在知识的海洋中探索和成长。
我们还应学生的心理健康和情感需求,帮助他们建立正确的价值观和世界观。
我相信,只要我们用心去教,用心去听,我们就能为孩子们创造一个愉快且富有成效的学习环境。
再次感谢大家的参与!标题:小学数学专题讲座——小学数学计算能力的培养“精编版”一、引言在当今社会,数学计算能力的重要性不言而喻。
无论是在日常生活,还是在工作学习中,计算能力都是每个人必备的基本技能。
尤其在小学数学教育中,计算能力的培养是重中之重。
小学数学奥数35个专题题型分类及解题技巧word精品文档10页

小学奥数辅导35个专题汇总1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学数学奥数方法讲义40讲(全)

第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)1966+1976+1986+1996+2006=1966×5+10×(1+2+3+4)=9830+100=99301966+1976+1986+1996+2006=1986×5=9930例7你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)*例8把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。
如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。
因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一个数大1、2、7、8、9,所以,这六个数中的第一个数是:=135二136三137四142五143六144(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分别是上横行与下横行三个数的中间数。
*例9有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以,8-1+3=10 即锯去一个顶点后还有10个顶点。
小学数学奥数个专题题型分类及解题技巧

小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学数学解题的10种方法汇总

小学数学解题的10种方法汇总一、形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。
它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。
它的认识特点是以个别表现一般,始终保留着对事物的直观性。
它的思维过程表现为表象、类比、联想、想象。
它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。
它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
1、实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。
比如:数学中的相遇问题。
通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。
像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。
长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。
这样可以有效地提高课堂教学效率,提升学生的学习成绩。
2、图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学解题方法专题讲座目录第一讲逻辑推理初步 (2)第二讲循环小数化分数 (4)第三讲分数计算(一) (10)第四讲分数计算(二) (13)第五讲分数、百分数应用题(一) (17)第六讲分数、百分数应用题(二) (22)第七讲生活中的经济问题 (27)第八讲工程问题 (29)第九讲圆的周长与面积 (32)第十讲不定方程 (40)第一讲逻辑推理初步学习提示:本讲主要是逻辑推理问题,这类问题很少依赖数学概念、法则、公式进行计算,而主要是根据某些条件、结论以及它们之间的逻辑关系进行判断推理,最终找到问题的答案,像这样的问题我们称之为逻辑推理问题。
典型题解下面介绍一些逻辑推理问题以及逻辑推理的基本方法和基本技巧。
例1 我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山和中岳嵩山。
一位老师拿出这五座山的图片,并在图片上标出数字,他让五位同学来辨别,每人说出两个。
学生回答如下:甲:2是泰山,3是华山乙:4是衡山,2是嵩山丙:1是衡山,5是恒山丁:4是恒山,3是嵩山戊:2是华山,5是泰山。
老师发现五个同学都只说对了一半,那么正确的说法是什么呢?例2 甲乙丙三人对小强的藏书数目做了一个估计,甲说:“他至少有1000本书”。
乙说:“他的书不到1000本”。
丙说:“他至少有一本书”。
这三个估计只有一句是对的,那么小强究竟有多少本书?例3 从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他问第一个和尚:“你后面是哪一个和尚?”和尚回答:“讲真话的”。
他又问第二位和尚:“你是哪一位?”得到的回答是:“有时讲真话,有时讲假话”。
他问第三位和尚:“你前面是哪位和尚?”第三位和尚回答说:“讲假话的”。
根据他们的回答,智者很快分清了他们各自是哪一位和尚,请你说出智者的答案。
例4 桌上放了8张扑克牌,都背向上,牌放置的位置如图所示。
现已知:(1)每张都是A、K、Q、J中的一张;(2)这8张牌中至少有一张Q;(3)其中只有一张A;(4)所有的Q都夹在两张K之间;(5)至少有一张K夹在两张J之间;(6)J和Q互不相邻,A和K也互不相邻;(7)至少有两张K相邻。
则图中的8张牌各是什么牌?例5 一天,一位老师让学生来分辨五位科学家的画像,老师把画像从1到5编了好,让各个学生说出其中任意两位科学家的名字:张三说:“2号是牛顿,3号是伽利略”李四说:“1号是瓦特,2号是爱因斯坦”王五说:“3号是爱因斯坦,5号是瓦特”许六说:“2号是牛顿,4号是哥白尼”陈七说:“4号是哥白尼,1号是伽利略”老师听后,发现每人都只说对了一半,试问这几位科学家的画像分别是几号?例6 在一次有3人参加的讲话中,小张指责小王和小李:“你们都在说谎。
”小李却说:“小张正在说谎。
”小王则说:“小李正在说谎。
”试判断他们谁讲的是真话,谁讲的是假话?例7 有三名工人,一名是电工,一名是车工,一名是钳工。
又知道下面三种说法只有一种是对的:(1)甲是车工(2)乙不是车工(3)丙不是钳工请问他们各是什么工种?例8 有四人打桥牌(牌中不含大、小王,每人共13张牌),已知某人手中的牌如下:(1)红桃、黑桃、方块、梅花四种花色的牌都有;(2)各种花色的牌,张数不同;(3)红桃和黑桃共有6张;(4)红桃和方块共有5张;(5)有两张主牌(将牌)问这手牌以什么花色为主牌?逻辑推理的特点就是条件繁多、错综复杂、纵横交错。
如何从复杂的条件中选准突破口,层层剖析,步步逼近,逐渐向结论靠拢,这是解决这类问题的关键,因此我们在推理的过程中有时常采用列表的方法将条件当中的一些信息进行分类的用各类符号表示各种条件,然后运用几何直观把错综复杂的条件变的一目了然,答案也就找到了。
例9 同住一间宿舍的A、B、C、D四名女大学生,正在听一组乐曲。
她们当中有一人在修指甲,一人在做头发,一人在化妆,另一人在看书。
已知:(1)A不在修指甲,也不在看书(2)B不在化妆,也不在修指甲(3)如果A补在化妆,那么C不在修指甲(4)D不在看书,也不在修指甲。
问她们各自在做什么?例10 在一个年级里,甲、乙、丙三位老师分别讲授数学、物理、化学、生物、语文、历史,每位老师教两门课。
现知道:(1)化学老师和数学老师住在一起,(2)甲老师是三位老师中最年轻的,(3)数学老师和丙老师是一对优秀的国际象棋手,(4)物理老师比生物老师年长,比乙老师年轻,(5)三人中最年长的老师住家比其他二位老师远。
问甲乙丙三位老师分别教哪两门课?例11 A、B、C、D四人分别掌握英、法、德、日四种语言中的两种,其中有三人会说英语,但没有一种语言四个人都会,并且知道:没有人既会日语又会法语,A会日语,而B 不会,但他们可以用另一种语言交谈。
C不会德语,A和D交谈时,需要C为他们做翻译,B、C、D不会同一种语言,请说出四人分别掌握哪种语言?例12 甲、乙、丙、丁、戊五人各自从图书馆借来一本小说,他们约定读完后互相交换,经过数次交换后,他们五人每人都读完了这五本书。
现已知:(1)甲最后读的书是乙读的第二本,(2)丙读的第二本甲在一开始就读了,(3)丙最后读的书是乙读的第四本,(4)丁读的最后一本是丙读的第三本,(5)乙读的第四本是戊读的第三本,(6)丁第三次读的书是丙开始读的那一本。
请判断出读这五本书的顺序。
例13 小东,小兰,小英读书的学校分别是一中、二中、三中,他们各自爱好游泳、篮球、排球中的一项体育运动,但谁爱哪项运动,在哪个学校读书还不清楚,只知道:(1)小东不在一中,(2)小兰不在二中,(3)爱好排球的不在三中,(4)爱好游泳的在一中,(5)爱好游泳的不是小兰,你能弄清楚他们各自读书的学校和爱好的运动项目吗?例14 宾馆里住着A、B、C、D、E、F六个不同国籍的客人,他们来自美、英、法、德、俄国和意大利,现在知道:(1)A 和美国人是医生,(2)E 和俄国人是教师(3)C 和德国人是工程师 (4)B 和F 都曾是运动员(5)而德国人从来不爱运动(6)法国人比A 年龄要大(7)C 比意大利人年龄小 (8)B 同美国人到英国去旅行(9)C 同法国人要到瑞士去度假。
问:A 、B 、C 、D 、E 、F 各是哪国人?第二讲 循环小数化分数学习提示:在进行分数和小数的大小比较以及分数、小数的混合运算中,常常要把分数化成小数,或者把小数化成分数。
所以,理解和掌握分数和小数互化的方法,不仅可以沟通分数和小数的联系,深刻理解分数、小数的意义,而且可以为学习分数、小数的混合运算打好基础。
从本质上看,小数(这里指有限小数和无限循环小数,不包括无限不循环小数)可以看作分数的另一种表示形式,所以分数和小数可以互化。
典型题解一、 循环小数化成分数1、 纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化成分数呢?看下面例题。
例1把纯循环小数化分数: (1)0.6 (2)3.10210.610 6.66660.6=0.66660.69 6 62 0.6=93⨯=⨯==解:()两式相减得所以2 3.1020.102 0.1021000102.102.1020.1020.102.102 0.10299910210234 0.102999333102 3.1023999⨯==⨯=====解:()先看小数部分……?…两式相减得所以343333从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9,9的个数与循环节的位数相同。
能约分的要约分。
2、 混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数10.215 2 6.353()()10.2151000=215.1515 0.21510=2.1515150.215990=2152215-221371 0.215=990990330⨯⨯⨯-==解:()…………两式相减得20.3530.3531000=353.333 0.353100=35.3330.353900=35335353-3531853 0.353=900900150353-353186.353=66900⨯⨯⨯-===解:()先看小数部分…………两式相减得 所以 536900150=由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
练习:1、化纯循环小数为分数。
10.23 20.107()()2、 化下列混循环小数为分数。
10.312 20.003 30.2316()()()二、 循环小数的四则运算 循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题: 12.45+3.13 22.6091.32 (3)4.3 2.4 (4)1.240.3⨯÷()()-解:先把循环小数化成分数后计算。
529712+3=5 11151656132283922-1=1 1009999001416(3)42=10 3927818(4)1=3 33311⨯÷()原式=()原式=原式=原式=三、循环小数作加法循环小数能直接作加法运算吗?(1)有限小数加循环小数考察下面的例子。
计算:+0.40.32++0.280.70.20.3++0.60.380.980.45+0.6780.5目前我们只能将这些小数都化成分数才能算出结果。
118+=+==0.20.30.535315772380.280.7 1.057+=+==259225232358+=+==0.40.320.7232599495495789+=+==0.980.45 1.4345501155033966729+=+==0.6780.54 1.223454500115500335890.60.380.98+=+==59090现在,根据下面的提示,直接观察每个算式于最后结果之间的关系,希望你能从中发现直接运算的法则。
+⇒+⇒0.20.30.20.330.53+⇒+⇒0.280.70.280.777 1.057+⇒+⇒0.40.320.40.32320.72320.980.450.980.4545 1.4345+⇒+⇒+⇒+⇒0.6780.540.6780.545454 1.223454+⇒0.60.380.98怎么样?发现了什么直接算的规则了吗?请归纳出来。