苏科版数学九年级下册 第七章 锐角三角函数 全章巩固练习(含答案)
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A. B. C. D.2、如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75mB.50mC.30mD.12m3、如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2B.C.D.4、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()A.3B.2C.6D.5、计算sin45°的结果是( )A. B.1 C. D.6、如图所示,从山顶A望地面C、D两点,测得它们的俯角分别为45°和30°,已知CD=100m,点C在BD上,则山高AB为()A.100mB.100 mC.50 mD. m7、如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为()A. B. C. D.8、sin 30°的值为()A. B. C.1 D.9、已知:如图,⊙O的半径为9,弦AB⊥OC于H,,则AB的长度为()A.6B.12C.9D.10、关于直角三角形,下列说法正确的是()A.所有的直角三角形一定相似;B.如果直角三角形的两边长分别是3和4,那么第三边的长一定是5;C.如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解;D.如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定.11、sin30°的值是()A. B. C.1 D.12、若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30°B.45°C.60°D.75°13、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形。
苏科版九年级数学下《第七章锐角三角函数》单元检测试卷有答案
2017-2018学年度第二学期苏科版九年级数学下册第七章锐角三角函数单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在中,,,,则A. B. C. D.2.如图,为了测量学校操场上旗杆的高度,在距旗杆米的处用测倾器测得旗杆顶部的仰角为,则旗杆的高度为()A.米B.米C.米D.米3.是锐角,且,则()A. B.C. D.4.如图,一艘海轮位于灯塔的北偏东方向,距离灯塔为海里的点处,如果海轮沿正南方向航行到灯塔的正东方向处,那么海轮航行的距离的长是()A.海里B.海里C.海里D.海里5.在中,,,那么等于()A. B. C. D.6.将一副直角三角板中的两块按如图摆放,连接,则的值为()A. B.C. D.7.水库大坝横断面是梯形,坝顶宽,坝高,斜坡的坡角是,斜坡的坡比,则坝底的长是.A. B.C. D.8.在中,,若,则的值是()A. B. C. D.9.如图所示,是平面镜,光线从点出发经上的点反射后到达点,若入射角为,,,垂足分别为,,且,,,则的值是()A. B. C. D.10.在离地面高度米处引两根拉线固定电线杆,两根拉线与电线杆在同一平面内,拉线与地面的夹角为,则两根拉线与地面的交点间的距离为()A.米B.米C.米D.米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,从点处观测点的仰角为,则从点处观测点的俯角为________.1 / 412.某厂家心开发的一种电动车如图,它的大灯射出的光线、与地面所夹的锐角分别是和.大灯离地面的距离为,则该车大灯照亮地面的宽度是________.(不考虑其他因素)(参考数据:,,,).13.如图,若某人在距离大厦底端处米远的地测得塔顶的仰角是,则塔高________米.(,精确到米)14.如图,在东西方向的马路处,测得草坪中的雕塑在北偏东方向上,在与相距米的马路处,测得在北偏东方向上,则到马路的距离________米(用根号表示).15.如图是某水库大坝的横断面,若坡面的坡度,则斜坡的坡角________度.16.从处测得处仰角,那么从处测得处的俯角________.17.中,,,则________.18.如图,在一张圆桌(圆心为点)的正上方点处吊着一盏照明灯,实践证明,桌子边沿处的光的亮度与灯距离桌面的高度有关,且当时,桌子边沿处点的光的亮度最大,设,则此时灯距离桌面的高度________(结果精确到)(参考数据:;;)19.国际田联钻石联赛美国尤金站比赛中,百米跨栏飞人刘翔以的成绩打破世界记录并轻松夺冠.、两镜头同时拍下了刘翔冲刺时的画面(如图),从镜头观测到刘翔的仰角为,从镜头观测到刘翔的仰角为,若冲刺时的身高大约为,请计算、两镜头之间的距离为________.(结果保留两位小数,,)20.如图,在某监测点处望见一艘正在作业的渔船在南偏西方向的出,若渔船沿北偏西方向以海里/小时的速度航行,航行半小时后到达处,在处观测到在的北偏东方向上,则、之间的距离为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:.22.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点,再在河这边沿河边取两点、,在点处测得在北偏东方向上,在点处测得点在西北方向上,量得长为米,请你求出该河段的宽度.(结果保留根号)23.如图是某一过街天桥的示意图,天桥高为米,坡道倾斜角为,在距点米处有一建筑物.为方便行人上下天桥,市政部门决定减少坡道的倾斜角,但要求建筑物与新坡角处之间地面要留出不少于米宽的人行道.2 / 4若将倾斜角改建为(即),则建筑物是否要拆除?()若不拆除建筑物,则倾斜角最小能改到多少度(精确到)?24.如图,某人在山坡坡脚处测得电视塔塔尖的仰角为,沿山坡走到处测得塔尖的仰角为,已知为米,山坡坡度,、、三点在同一直线上.求此人所在位置点的铅直高度.(结果保留根号形式)25.游艇在湖面上以千米/小时的速度向正东方向航行,在处看到灯塔在游艇北偏东方向上,航行小时到达处,此时看到灯塔在游艇北偏西方向上.求灯塔到航线的最短距离(答案可以含根号).26.山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角,量得树干倾斜角,大树被折断部分和坡面所成的角,.求的度数;求这棵大树折点到坡面的距离.(结果精确到个位,参考数据:,,)答案1.A2.A3.B4.C5.C6.C7.D8.D9.D10.B11.12.13.14.15.16.17.18.19.20.21.解:..3 / 422.解:过作于点,设,由题意得:,,∴,,∵米,∴,解得:,即河宽为米.23.解:当时,在中,∵,,∴,在中,∵,∴,∵,因此建筑物要拆除;若不拆除建筑物,则最长可以是,在中,∵,,∴,因此倾斜角最小能改到.24.此人所在位置点的铅直高度为米.25.灯塔到航线的最短距离为千米.26.折点距离坡面约为米.4 / 4。
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、将点A(4,0)绕着原点O顺时针方向旋转30角到对应点A,则点A的坐标是()A. B. C. D.2、在△ABC中,若三边BC、CA、AB满足BC:CA:AB=5:12:13,则cosB=()A. B. C. D.3、如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为()A.﹣3B.﹣6C.﹣9D.﹣124、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是()A.( + )mB.()mC. mD.4m5、下列计算正确的是()A.sin60°﹣sin30°=sin30°B.sin 245°+cos 245°=1C.cos60D.cos306、如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.7、如图,在△ABC中,∠BAC=90°, AB=20, AC=15,△ABC的高AD与角平分线CF交于点E,则的值为()A. B. C. D.8、计算:tan45°+()﹣1﹣(π﹣)0=()A.2B.0C.1D.﹣19、若cosA=,则下列结论正确的为()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60° D.60°<∠A<90°10、一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A. 米2B. 米2C.(4+ )米2D.(4+4tan θ)米211、如图,在平面直角坐标系xOy中,O是坐标原点,已知A(3,2)、B(-2,3),则∠OAB的等于()A.30°B.45°C.60°D.75°12、在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A. B. C. D.13、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2B.C.1D.14、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B. C. D.615、如图,在中,,,按以下步骤作图:①以点A为圆心,适当的长为半径作弧,分别交AC,AB于M,N两点;②分别以点M,N为圆心,大于的长为半径作弧,两弧相交于点P;③作射线AP,交BC于点E.则()A. B. C. D.二、填空题(共10题,共计30分)16、矩形在平面直角坐标系中的位置如图所示,已知,点A 在x轴上,点C在y轴上,P是对角线上一动点(不与原点重合),连接,过点P作,交x轴于点D.则下列结论正确的是________.(写出所有正确结论的序号)①;②当点D运动到的中点处时,;③当时,点D的坐标为;④在运动过程中,是一个定值.17、如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)18、在△ABC中,AB=5,BC=6,B为锐角且cosB= ,则sinC=________.19、计算: sin260°+cos260°﹣tan45°=________.20、在直角三角形中,一个锐角为57°,则另一个锐角为________.21、如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=3,则BC=________.22、如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为________.23、如图,在平面直角坐标系中,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与直线y=kx交于点C(4,n),则tan∠OCB的值为________.24、如图,点A1, A2依次在y= (x>o)的图象上,点B1, B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为________25、如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处此时测得岛礁P在北偏东方向,同时测得岛礁P正东方向上的避风港M在北偏东方向为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)三、解答题(共5题,共计25分)26、计算:﹣32+ ﹣(cos30°﹣1)0﹣(﹣)﹣3+82×0.1252.27、如图,某公园内有一棵大树,为测量树高,小明在D处用测角仪测得树顶端A的仰角为30°,已知测角仪高DC=1.4m,BC=30m,请帮助小明计算出树高AB(取1.732,结果保留三个有效数字).28、为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图所示,测量队在点A处观测河对岸水边有一点C,测得C在北偏东60°的方向上,沿河岸向东前行30米到达B处,测得C在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度(结果保留根号).29、如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100到达D点,在D点测得山顶A的仰角为30°,求山AB的高度(精确到0.1米).(参考数据:≈1.73)30、如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行20m到达B处,侧的灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD.(结果保留整数)参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、B7、A8、A9、B10、D11、B12、A13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
第7章-专题16用锐角三角函数解决问题-同步学与练(含解析)-数学苏科版九年级下册
专题16用锐角三角函数解决问题(5个知识点4种题型3个中考考点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.坡度、坡角问题(重点)知识点2.仰角、俯角问题(重点)知识点3.方向角问题知识点4.解直角三角形的实际应用(重点)知识点5.对实际测量问题的设计(难点)【方法二】实例探索法题型1.利用锐角三角函数解决实际生活中的问题题型2.利用锐角三角函数解航线问题题型3.利用锐角三角函数进行方案设计题型4.利用锐角三角函数解决与圆有关的实际应用问题【方法三】仿真实战法考法1.仰角、俯角问题考法2.方向角问题考法3.坡度问题【方法四】成果评定法【学习目标】1.了解坡角、坡度、仰角、俯角、方向角等概念,并能在具体问题中正确运用.2.会用解直角三角形的有关知识来解决某些简单的实际问题,从而进一步把形和数结合起来.3.能把实际问题转化为数学问题,进一步体会三角函数在解决实际问题过程中的应用,增强应用数学的意识和解决问题的能力.【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.坡度、坡角问题(重点)1.如图,坡面的铅垂高度(A)和水平宽度(B)的比叫做坡面的坡度(或坡比),记作A,即B.坡度通常写成DC的形式,如i=1︰1.5.2.坡面与水平面的夹角叫做坡角,记作B.坡度C与坡角B之间的关系:B.【例1】.(2023秋•盘州市期中)1.某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂∠为43︒,坡长AB为2m.为保障安直于地面,AB表示平台前方的斜坡.斜坡的坡角ABC全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),∠为31︒.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.1m)【参考数坡角ADC据:sin430.68cos430.73ta430.93,,】︒=︒=︒=n,,;sin310.52cos310.86tan310.60︒=︒=︒=知识点2.仰角、俯角问题(重点)1.水平线:水平面上的直线以及和水平面平行的直线.2.铅垂线:垂直于水平面的直线,我们通常称为铅垂线.3.在测量时,如图,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.【例2】.(2023秋•成都期中)2.如图,一座古塔座落在小山上(塔顶记作点A,其正下方水平面上的点记作点B),小李站在附近的水平地面上,他想知道自己到古塔的水平距离,便利用无人机进行测量,但由于某些原因,无人机无法直接飞到塔顶进行测量,因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°,点A,B,C,O在同一平面)的方向匀速飞行4秒到达空中O点处,再调整飞行方向,继续匀速飞行8秒到达塔顶,已知无人机的速度为5米/秒,∠= ,求小李到古塔的水平距离即BC的长. (结果精确到1m,参考数据:75AOC≈≈)1.73知识点3.方向角问题1.方向角:以观测者的位置为中心,将正北或正南方向作为起始方向,旋转到目标的方向线所成的小于90°的角,通常表达成北(南)偏东(西)* 度.若正好为45°,则表示为西(东)南(北)方向.2.方位角:从标准方向的北端起,顺时针方向到直线的水平角称为该直线的方位角.方位 .角A的取值范围为0360θ≤<【例3】.(2023秋•九龙坡区校级月考)3.如图,海岸边上有三个观测站,,A B C ,观测站B 在观测站A 的东北方向,观测站C 在观测站B 的正东方向,观测站,B C 之间的距离为30海里.某天,观测站,,A B C 同时收到一艘轮船在D 处发出的求救信号,经分析,D 在观测站C 的南偏东15︒方向,在观测站B 的东南方向,在观测站A 的正东方向.(1)求CD 的长度.(结果精确到个位)(2)目前只有观测站A 与B 配备了搜救艇,搜救艇航速为30海里/时.收到求救信号后,因观测站B 的搜救艇在检修,接到任务后不能马上出发,需30分钟后才能出发,而且必须先去C 处,才能再去D 处(在C 处停留时间可忽略不计);而观测站A 的搜救艇接到任务后可马上出发,并直接到达D 处.请问哪一个观测站的搜救艇可以更快到达D 处?(参考数据:1.732≈≈)知识点4.解直角三角形的实际应用(重点)【例4】.(2023•秦都区校级模拟)4.菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB 的长为8米,更换后的电梯坡面为AD ,点B 延伸至点D ,求BD的长.(结果精确到0.1米.参考数据:sin 370.60,cos370.80,tan 37 1.73≈≈≈≈︒︒︒)知识点5.对实际测量问题的设计(难点)【例5】.(2023秋•大东区期末)5.如图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小明爸爸的身高为1.83m ,他从打开的车后盖C 处经过,有没有碰头的危险请说明理由.(结果精确到0.01m ,参考数据:sin 270.454︒≈,cos 270.891︒≈,tan 270.510︒≈,1.732)≈【方法二】实例探索法题型1.利用锐角三角函数解决实际生活中的问题(2023秋•长春期末)6.在综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB 前有一座高为3m 的观景台DE ,已知30DCE ∠=︒,点E C A 、、在同一条水平直线上.某学习小组在观景台C 处测得塔顶部B 的仰角为45︒,在观景台D 处测得塔顶部B 的仰角为27︒.求塔AB 的高度.【参考数据:tan 27 1.7︒==】.(2023秋•闵行区月考)7.小明想利用建筑CD 玻璃幕墙的反射作用来测建筑AB 的高度.如图所示,他先在建筑AB 的底部A 处用测角仪测得其顶部B 在建筑CD 玻璃幕墙上的反射点E 的仰角为α,然后他沿AC 前进了10米到达点F 处,再用测角仪测得建筑AB 的顶部B 在建筑CD 玻璃幕墙上的反射点G 的仰角为β.已知1tan 3α=,sin 13β=,测角仪置于水平高度1.5米的M 、N 处.求建筑AB 的高度.题型2.利用锐角三角函数解航线问题(2023上·山东东营·九年级统考期中)8.如图,灯塔A 周围12海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行8海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530︒≈,cos320.848︒≈,tan 320.625︒≈,sin 580.848︒≈,cos580.530︒≈,tan 58 1.6︒≈)(2023上·河北保定·九年级校考阶段练习)9.嘉淇看到这样一道题目:如图,某巡逻船在A 处测得一艘敌舰在北偏东31︒的B 处,卫星测得AB 相距6海里,巡逻船静止不动,6分钟后测得该敌舰在巡逻船的北偏东57.6︒的C 处,此时卫星信号突然中断,已知该敌舰的航速为30海里/小时.(结果保留整数,参考数据:tan310.6︒≈,tan 57.6 1.6︒≈,tan 26.60.5≈° 2.236≈)嘉淇过点C 作CD AB ⊥于D ,设CD x =海里,请你帮她接着解决以下问题:(1)BD =______里(用含用x 的代数式表示);(2)求敌舰在C 处时与巡逻船的距离.题型3.利用锐角三角函数进行方案设计(2023•东台市一模)10.图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道120AB cm = ,两扇活页门的宽60OC OB cm == ,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若50OBC ∠=︒,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.(参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)图1 图2(2023•洪泽区二模)11.某班学生到工厂参加劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10cm AB =,5cm =BC .求零件的截面面积.(参考数据:sin 530.80︒≈,cos530.60︒≈)(2023•滨湖区一模)12.如图,某工程队从A 处沿正北方向铺设了184米轨道到达B 处.某同学在博物馆C 测得A 处在博物馆C 的南偏东27︒方向,B 处在博物馆C 的东南方向.(参考数据:sin 270.45︒≈︒,cos270.90︒≈︒,tan 270.50︒= 2.45=.)(1)请计算博物馆C 到B 处的距离;(结果保留根号)(2)博物馆C 周围若干米内因有绿地不能铺设轨道.某同学通过计算后发现,轨道线路铺设到B 处时,只需沿北偏东15︒的BE 方向继续铺设,就能使轨道线路恰好避开绿地.请计算博物馆C 周围至少多少米内不能铺设轨道.(结果精确到个位)(2023•苏州)13.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)题型4.利用锐角三角函数解决与圆有关的实际应用问题(2023•建湖县三模)14.水乡建湖小桥多.桥的结构多为弧形的桥拱,弧形桥拱和平静的水面构成了一个美丽的弓形(图①).我校数学兴趣小组同学研究如何测量圆弧形拱桥中桥拱圆弧所在圆的半径问题,将桥拱记为弧AB ,弦AB 为水平面,设弧AB 所在圆的半径为r ,建立了数学模型,得到了多个方案.(1)如图②,从点A 处测得桥拱上点C 处的仰角为30︒,BC a =,则r = .(用含a 的代数式表示)(2)如图③,在实地勘测某座拱桥后,同学们记录了下列数据:50B ∠=︒,8.8AC =米,求半径r (结果精确到0.1).(参考数据:sin 200.34cos 200.94tan 200.36sin 500.77,cos500.64tan 50 1.19︒≈︒≈︒≈︒≈︒≈︒≈,,,,)(3)如图④,在弧AB 上任取一点C (不与A B 、重合),作CD AB ⊥于点D ,若2CD =,3BD =,8AD =,求r 的值.【方法三】 仿真实战法考法1.仰角、俯角问题(2023•南通)15.如图,从航拍无人机A 看一栋楼顶部B 的仰角α为30︒,看这栋楼底部C 的俯角β为60︒,无人机与楼的水平距离为120m ,则这栋楼的高度为( )A.B.C.D.(2023•淮安)16.根据以下材料,完成项目任务,项目测量古塔的高度及古塔底面圆的半径测量工具测角仪、皮尺等测量 说明:点Q 为古塔底面圆圆心,测角仪高度15m AB CD ==.,在B D 、处分别测得古塔顶端的仰角为3245,9m BD ︒︒=、,测角仪CD 所在位置与古塔底部边缘距离12.9m DG =.点B D G Q 、、、在同一条直线上.参考数据sin320.530,cos320.848,tan320.625︒≈︒≈︒≈项目任务(1)求出古塔的高度.(2)求出古塔底面圆的半径.(2023•泰州)17.如图,堤坝AB 长为10m ,坡度i 为1:0.75,底端A 在地面上,堤坝与对面的山之间有一深沟,山顶D 处立有高20m 的铁塔CD .小明欲测量山高DE ,他在A 处看到铁塔顶端C 刚好在视线AB 上,又在坝顶B 处测得塔底D 的仰角α为2635︒'.求堤坝高及山高DE .(sin 26350.45'︒≈,cos 26350.89'︒≈,tan 26350.50'︒≈,小明身高忽略不计,结果精确到1m )考法2.方向角问题(2022•南京)18.如图,灯塔B 位于港口A 的北偏东58︒方向,且A ,B 之间的距离为30km ,灯塔C 位于灯塔B 的正东方向,且B ,C 之间的距离为10km .一艘轮船从港口A 出发,沿正南方向航行到达D 处,测得灯塔C 在北偏东37︒方向上,这时,D 处距离港口A 有多远(结果取整数)?(参考数据:sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)考法3.坡度问题(2023•淄博)19.如图,与斜坡CE 垂直的太阳光线照射立柱AB (与水平地面BF 垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若2BC =米,8.48CD =米,斜坡的坡角32ECF ∠=︒,则立柱AB 的高为 米(结果精确到0.1米).科学计算器按键顺序计算结果(已取近似值)0.5300.8480.625(2023•深圳)20.爬坡时坡角与水平面夹角为α,则每爬1m 耗能()1.025cos J α-,若某人爬了1000m ,该坡角为30° 1.732≈ 1.414≈)( )A .58JB .159JC .1025JD .1732J(2023•辽宁)21.暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m 高的山峰,由山底A 处先步行300m 到达B 处,再由B 处乘坐登山缆车到达山顶D 处.已知点A ,B .D ,E ,F 在同一平面内,山坡AB 的坡角为30︒,缆车行驶路线BD 与水平面的夹角为53︒(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)(2023•大庆)22.某风景区观景缆车路线如图所示,缆车从点A 出发,途经点B 后到达山顶P ,其中400AB =米,200BP =米,且AB 段的运行路线与水平方向的夹角为15︒,BP 段的运行路线与水平方向的夹角为30︒,求垂直高度PC .(结果精确到1米,参考数据:sin150.259︒≈,cos150.966︒≈,tan150.268︒≈)【方法四】 成果评定法一、选择题(共5小题)(2023•苏州一模)23.如图,为测楼房BC 的高,在距离楼房30米的A 处测得楼顶的仰角为α,则楼高BC 为( )A .30tan α米B .30tan α米C .30sin α米D .30sin α米(2023秋•沛县校级月考)24.如图,滑雪场有一坡角20︒的滑雪道,滑雪道AC 长为200米,则滑雪道的坡顶到坡底的竖直高度AB 的长为( )米.A .200cos 20︒B .200sin 20︒C .200cos 20︒D .200sin 20︒(2023秋•淮阴区期中)25.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC a =米,35PCA ∠=︒,则小河宽PA 等于( )A .sin 35a ⋅︒米B .sin 55a ⋅︒米C .tan 35a ⋅︒米D .tan 55a ⋅︒米(2023•梁溪区校级二模)26.小明家的花洒的实景图及其侧面示意图分别如图1、图2所示,花洒安装在离地面高度160厘米的A 处,花洒AD 的长度为20厘米.已知花洒与墙面所成的角120BAD ∠=︒,当花洒喷射出的水流CD 与花洒AD 成90︒的角时,水流喷射到地面的位置点C 与墙面的距离为( )A B .200厘米C D .170厘米(2023秋•江阴市月考)27.如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60°方向上有一小岛C ,小岛C 在观测站B 的北偏西15°方向上,码头A 到小岛C 的距离AC 为)1海里.观测站B 到AC 的距离BP 是( )AB .1C .2D 二、填空题(共5小题)(2023秋•通州区校级月考)28.如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知2m BC =, 5.8m CD =,30DCF ∠=o ,则车位所占的宽度EF 为 米. 1.7≈,结果精确到1m)(2023秋•靖江市期中)29.如图是某书店扶梯的示意图,扶梯AB的坡度i=王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.(2023•靖江市模拟)30.如图,斜面AC的坡度(CD与AD的比)为1:2,BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为.(2023秋•无锡月考)31.“十一”假期,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为15m,旋转1周需要24min(匀速).小明乘坐最底部(离地面约1m)的车厢按逆时针方向旋转开始1周的观光,启动10min时,小明离地面的高度是m.(2023秋•海门市校级月考)32.已知B港口位于A观测点北偏东45︒方向,且其到A观测点正北风向的距离BM的长为,一艘货轮从B港口沿如图所示的BC方向航行到达C处,测得C处位于A观测点北偏东75︒方向,则此时货轮与A 观测点之间的距离AC 的长为 km .三、解答题(共7小题)(2023秋•通州区校级月考)33.2022年举世瞩目的北京冬奥会的成功举办掀起了全民冰雪运动的热潮.图1、图2分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED 与斜坡AB 垂直,大腿EF 与斜坡AB 平行,G 为头部,假设G ,E ,D 三点共线且头部到斜坡的距离GD 为1.05m ,上身与大腿夹角53GFE ∠=︒,膝盖与滑雪板后端的距离EM 长为0.9m ,30EMD ∠=︒(1)求此滑雪运动员的小腿ED 的长度;(2)求此运动员的身高.(运动员身高由GF EF DE 、、三条线段构成;参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)(2023•灌云县校级模拟)34.如图,建筑物BC 的顶部有一个广告牌AB ,从距离建筑物15米的D 处测得广告牌的顶部A 的仰角为39︒,测得广告牌的底部B 的仰角为30︒,求广告牌AB 的高度(结果保留一位小数).参考数据:sin 390.63︒≈,cos390.78︒≈,tan 390.81︒≈ 1.73≈.(2022秋•高邮市期末)35.如图1是一辆汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,当旋转角为n ︒时,箱盖DCE 落在DC E ''的位置(如图2),100cm DC =,20cm CE =,40cm EB =.(1)若72n =,求点C 、C '两点之间的距离;(参考数据:sin360.59︒≈,cos360.81︒≈)(2)若60n =,求E 、E '两点之间的距离.(2023•阜宁县二模)36.一架无人机沿水平方向飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为24︒.无人机保持飞行方向不变,继续飞行48米到达点Q 处,此时测得该建筑物底端B 的俯角为66︒.已知建筑物AB 的高度为36米,求无人机飞行时距离地面的高度.(参考数据:2sin 245≈ ,9cos 2410︒≈,9tan 2420︒≈,9sin 6610︒≈,2cos 665︒≈,9tan 664︒≈)(2023秋•泰兴市期中)37.随着互联网的发展,网上购物几乎成为了人们日常生活中不可或缺的一部分,这也使得快递行业市场规模呈现出爆发式的增长.为了方便居民领取快递,小明的爸爸计划在一条笔直的公路l 旁设一个菜鸟驿站点P ,使驿站到公路同侧的A 、B 两个小区的距离相等.(1)如图 1,当A 小区到公路l 的距离300m AC =, B 小区到公路l 的距离400m BD =,且700m CD =时,求驿站点P 到A 小区的距离;(2)如图2,若A 、B 两个小区到公路l 的距离均为a ,CD 的长度为2a ,求APB ∠的度数;(3)爱动脑的小明通过推理发现:当A 小区到公路l 的距离a 与B 小区到公路l 的距离b 之和等于CD 的长度时,APB ∠始终是直角. 请利用图3加以说明.(2023秋•启东市期中)38.如图,上午8时,一条船从A 处测得灯塔C 在北偏西30°,以15海里/时的速度向正北航行,10时到达B 处,测得灯塔C 在北偏西60°,若船继续向正北方向航行,求轮船何时到达灯塔C 的正东方向D 处?(2023•栖霞区校级三模)39.某校“综合与实践”活动小组的同学要测量两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在两楼之间上方的点O 处,点O 距地面AC 的高度为60m ,此时观测到楼AB 底部点A 处的俯角为70︒,楼CD 上点E 处的俯角为30︒,沿水平方向由点O 飞行24m 到达点F ,测得点E 处俯角为60︒,其中点A ,B ,C ,D ,E ,F ,O 均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长.(结果精确到1m ,参考数据:sin 700.94︒≈,cos 700.34︒≈,tan 70 2.75︒≈ 1.73)≈参考答案:1.2.3m【分析】本题考查了解直角三角形的应用,首先在Rt ABC △中,求出AC 的长,再在Rt ADC ,由tan AC ADC CD ∠=,即可求出CD 的长,解答本题的关键是利用三角函数知识解直角三角形.【详解】解:在Rt ABC △中,sin AC ABC AB∠=,()sin4320.68 1.36m AC AB ∴=⋅︒=⨯=,在Rt ADC 中,tan AC ADC CD ∠=, ∴()1.36 2.3m tan 310.60AC CD ==≈︒,∴斜坡AD 底端D 与平台AC 的距离CD 约为2.3m .2.21【分析】过点O 作OD BC ⊥,交BC 的延长线于点D ,过点O 作OE AB ⊥,垂足为E ,根据题意可得:40AO =米,20OC =米,OE BD =,OE BD ∥,从而可得45EOC OCD ∠=∠=︒,进而可得30AOE ∠=︒,然后在Rt OCD △中,利用锐角三角函数的定义求出CD 的长,再在Rt AOE 中,利用锐角三角函数的定义求出OE 的长,从而求出BD 的长,最后利用线段的和差关系进行计算,即可解答.本题考查了解直角三角形的应用−仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点O 作OD BC ⊥,交BC 的延长线于点D ,过点O 作OE AB ⊥,垂足为E ,由题意得:8540AO =⨯=(米),4520OC =⨯=(米),OE BD =,OE BD∥∴45EOC OCD ∠=∠=︒,∵75AOC ∠=︒,∴30AOE AOC EOC ∠=∠-∠=︒,在Rt OCD △中, cos 4520CD OC =⋅︒==(米),在Rt AOE 中,cos3040OE AO =⋅︒==,∴OE BD ==,∴21BC BD CD =-=-≈(米),∴小李到古塔的水平距离即BC 的长约为21米.3.(1)42(海里);(2)A 观测站搜救艇可以更快到达D 处.【分析】(1)本题主要考查锐角三角函数的实际应用,解答本题的关键在于找到相应边与角的对应关系,会正确处理15︒是解答本题的重点也是难点,再用已知条件结合勾股定理去求解即可.(2)本题考查运用锐角三角函数解决问题的实际应用,解答本题的关键在于运用小问(1)的信息和结论,求出两观测站的搜救艇所经过的路程,及所用时间即可解答本题.【详解】(1)解:预备知识:如图1,在以90B Ð=°,15C ∠=︒,1AB =的Rt ABC △中,作AD BC =.∵15C DAC ∠=∠=︒∴30ADB C DAC ∠=∠+∠=︒∴在Rt △ABD 中,1AB =,∴由锐角三角函数可得BD =2AD CD ==,∴2BC =+,在Rt ABC △中,tan tan152AB C BC ∠=︒===.如图,过点D 作ED BC ⊥于点E ,由题意可得,45A HBD BDH ∠=∠=∠=︒,15FCD DC ∠=∠E =︒30BC HF ==.设CE x =,则30BE BH ED x ===+,∴在Rt EDC 中,tan tan152CE CDE ED∠=︒==∴(2CE ED =⋅∴(30)(2x x =+1)x =-,∴1)CE =,301)1)ED =+=.由勾股定理得,222CE ED CD +=∴42CD ==≈(海里).(2)由(1)知,1)BH ED ==,∴从A 观测站行驶距离:21)AD BH ==(海里)时间:11) 2.732t ==≈(小时);从B 观测站行驶距离1)BC CD +=(海里)时间:20.5 1.5 2.914t ==≈(小时)∵12t t <,∴A 观测站的搜救艇可以更快到达D 处.4.约为1.9米【分析】根据正弦的定义求出AC ,根据余弦的定义求出BC ,根据正切的定义求出CD ,结合图形计算,得到答案.【详解】解:在Rt △ABC 中,AB =8米,∠ABC =37°,则AC =AB •sin ∠ABC ≈8×0.60=4.8(米),BC =AB •cos ∠ABC ≈8×0.80=6.40(米),在Rt △ADC 中,∠ADC =30°,则CD= 4.8tan tan 30AC ADC ==∠︒(米),∴BD =CD -BC =8.30-6.40≈1.9(米),答:BD 的长约为1.9米.【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.5.(1)车后盖最高点B '到地面l 的距离约为2.15m(2)没有碰头的危险.理由见解析【分析】本题考查的是解直角三角形的应用,正确作出辅助线、熟记锐角三角函数的定义是解题的关键.(1)过点B E AD '⊥于E ,根据正弦的定义求出B E ',进而求出车后盖最高点B '到地面l 的距离;(2)过点C '作C F B E ''⊥于点F ,根据题意求出60C B F ''∠=︒,根据余弦的定义求出B F ',再求出点C '到地面l 的距离,比较大小证明结论.【详解】(1)解:如图2,过点B E AD '⊥于E ,在Rt AB E '△中,1m AB AB '==,27B AD '∠=︒,sin B E B AE AB ''∠=',()sin 1sin 270.454m B E AB B AE '''∴=⋅∠=⨯︒≈,∴点B '到地面l 的距离为:()0.454 1.7 2.154 2.15m +=≈,答:车后盖最高点B '到地面l 的距离约为2.15m ;(2)没有碰头的危险,理由如下:如图2,过点C '作C F B E ''⊥于点F ,在Rt AB E '△中,27B AD '∠=︒,则902763AB E '∠=︒-︒=︒,123AB C ABC '∠=∠=︒ ,60C B F ''∴∠=︒,0.6m B C BC ''== ,()1cos 0.60.3m 2B F BC C B F ∴=⋅∠⨯''=''=',∴点C '到地面l 的距离为:()2.150.3 1.85m -=,1.85 1.83> ,∴没有碰头的危险.6.塔AB 的高度约为11.1m【分析】本题考查解直角三角形的应用−仰角俯角,根据题意可得:DE EC ⊥,然后在Rt DEC △中,利用含30度角的直角三角形的性质得CE ==,过点D 作DF AB ⊥,垂足为F ,设m AB h =,根据题意得:()m,3m DF EA h DE FA ====则()3m BF h =-,然后在Rt BDF △中,利用锐角三角函数的定义求出BF 的长,从而列出关于h 的方程,进行计算即可解答,熟练掌握直角三角形中的边角关系是解题的关键.【详解】由题意得:DE EC ⊥,在Rt DEC △中,90,30DEC DCE ∠=︒∠=︒,3m DE =,CE ∴==BA EA ⊥ ,在Rt ABC △中,m,45AB h BCA =∠=︒,m tan45AB AC h ∴=︒=()mAE EC AC h ∴=+=+过点D 作DF AB ⊥,垂足为F ,由题意得:()m,3m DF EA h DE FA ==+==,m AB h = ,()3m BF AB AF h ∴=-=-,在Rt BDF △中,27BDF ∠=︒,()tan270.5m BF DF h ∴=⋅︒=()30.5h h ∴-=,解得:611.1h ==11.1m AB ∴=∴塔AB 的高度约为11.1m .7.31.5+【分析】延长BE BG ,分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,然后在Rt MM B ' 和Rt MN B ' 中解直角三角形可得()1·tan 2103BM MM x α==+'、·tan BM MN β'=,由sin 13β=可得tan β=)210BM x =+,据此列方程解得35x =,最后代入即可解答.正确的作出辅助线、灵活应用解直角三角形解实际问题是解题的关键.【详解】解:如图:延长BE BG .分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,在Rt MM B ' 中,()1·tan 2103BM MM x α==+';在Rt MN B ' 中,·tan BM MN β'=,∵sin 13β=,∴cos β=,∴tan β=∴)210BM x =+,∴())12202103x x +=+,解得:35x =,∴()()123520 1.531.5m 3AB ⎡⎤=⨯++=⎣⎦.答:建筑AB 的高度为()31.5m .8.渔船没有触礁的危险.【分析】本题考查解直角三角形的应用—方向角问题.过点A 作AD BC ⊥,分别解Rt ADC 和Rt ADB ,求出AD 的长,即可得出结论.【详解】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,8BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴8BD x =+,在Rt ADB 中,tan 0.6258AD x ABD BD x ∠==≈+,∴13x ≈,∴13AD ≈,∵1312>,∴渔船没有触礁的危险.9.(1)()62x -;(2)敌舰在C 【分析】(1)在Rt ADC 中运用1tan 2CD CAD AD ∠==,可求出2AD x =,再根据线段的和差即可求解; (2)运用勾股定理求出3CD =或95,再根据勾股定理求出AC 的长即可求解;本题考查了解直角三角形的应用一方向角问题,解题的关键是根据题目中所给方向角构造直角三角形,然后利用三角函数的知识求解.【详解】(1)解:根据题意得, 57.63126.6CAB ∠=︒-︒=︒,630360BC =⨯=(海里), 在Rt ADC 中,CD x =海里,∴1tan 2CD CAD AD ∠==,∴2AD x =,∴()62BD AB AD x =-=-海里,故答案为:()62x -;(2)解:∵CD AB ⊥,∴90ADC BDC ∠=∠=︒,∴222BD CD BC +=,即()222623x x -+=,解得13x =,295x =,∵CD BC <,∴13x =不合,舍去,∴95x =,又222AD CD AC +=,即()2222x x AC +=,∴AC =(负值舍去),∴AC =海里) ,答:敌舰在C 10.(1)43.2cm. (2)62.8cm.【详解】【分析】(1)如图,作OH ⊥AB 于H ,在Rt △OBH 中, 由cos ∠OBC=BH OB,求得BH 的长,再根据AC=AB -2BH 即可求得AC 的长;(2)由题意可知△OBC 是等边三角形,由此即可求出弧OC 的长,即点O 在此过程中运动的路径长.【详解】(1)如图,作OH ⊥AB 于H ,∵OC=OB=60,∴CH=BH ,在Rt △OBH 中,∵ cos ∠OBC=BH OB,∴BH= OB·cos50°≈60×0.64=38.4,∴AC=AB -2BH≈120-2×38.4=43.2,∴AC 的长约为43.2cm ;(2)∵AC=60,∴BC=60 ,∵OC=OB=60,∴OC=OB=BC=60 ,∴△OBC 是等边三角形,∴ OC 的长=6060180π⨯=20 3.14⨯ =62.8,∴点O 在此过程中运动的路径长约为62.8cm.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质、等边三角形的判定与性质、弧长公式等,结合题意正确画出图形是解题的关键.11.截面的面积为250cm .【分析】本题主要考查解直角三角形的应用.由矩形的性质解直角三角形求得AE ,BE 的长,再解直角三角形求解BF ,FC 的长,进而可求解四边形EFDA ,ABE ,BCF △的面积,根据截面的面积ABE BCF EFDA S S S =-- 四边形计算可求解.【详解】解: 四边形AEFD 为矩形,53BAD ∠=︒,∴AD EF ∥,90E F ∠=∠=︒,53BAD EBA ∴∠=∠=︒,在Rt ABE △中,90E ∠=︒,10cm AB =,53EBA ∠=︒,sin 0.80AE EBA AB∴∠=≈,cos 0.60BE EBA AB ∠=≈,8AE ∴=,6BE =,90ABC ∠=︒ ,9037FBC EBA ∴∠=︒-∠=︒,9053BCF FBC ∴∠=︒-∠=︒,在Rt BCF 中,90F ∠=︒,6BC cm =,sin 0.80BF BCF BC ∴∠=≈,cos 0.60FC BCF BC∠=≈,4BF ∴=,3=FC ,6410EF ∴=+=,()281080cm EFDA S AE EF ∴=⋅=⨯=四边形,()2118624cm 22ABE S AE BE =⋅=⨯⨯= ,()211436cm 22BCF S BF CF =⋅=⨯⨯= ,∴截面的面积()28024650cm ABE BCF EFDA S S S =--=--= 四边形.答:截面的面积为250cm .12.(1)博物馆C 到B 处的距离约为(2)博物馆C 周围至少225米内不能铺设轨道【分析】本题考查了解直角三角形的应用-方向角问题,熟练掌握锐角三角函数定义,添加适当的辅助线是解题的关键.(1)过点C 作CG AB ⊥于点G ,证明BCG 是等腰直角三角形,得到CG BG =,设CG BG x ==,则BC =,再由锐角三角函数定义得2AG x =,再由2184x x =+,问题可解;(2)过点C 作CH BE ⊥于点H ,根据题意得60CBE CBG DBE ∠=∠+∠=︒,利用锐角三角函数的定义求出CH 的长即可.【详解】(1)解:如图1,过点C 作CG AB ⊥于点G ,在Rt BCG 中,45CBG ∠=︒,。
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A. B. C. D.2、在中,,如果,那么的值是()A.1B.C.D.3、如图,在平面直角坐标系中,直线OA过点(2,1),则sinα的值是()A. B. C. D.24、如图,在中,,,以为直径的⊙O交于点,点为线段上的一点,,连接并延长交的延长线于点,连接交⊙O于点,若,则的长是()A. B. C. D.5、在Rt△ABC中,各边都扩大5倍,则锐角A的正切函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定6、聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米7、如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,大于长为半径作弧,两弧相交于点;②作直线,且恰好经过点,与交于点,连接,则()A. B. C. D.8、在中,,,则等于()A. B. C. D.9、在Rt△ABC中,∠C=90°,tanB=,则cosA=()A. B. C. D.10、如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.()米11、如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是( )A. B. C. D.12、如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为().A.4B.2.5C.2D.13、如图,在Rt△ACB中,∠C=90°,∠A=37°,AC=4,则BC的长约为()(sin37°≈0.80,cos37°≈0.60,tan37°≈0.75)A.2.4B.3.0C.3.2D.5.014、在Rt△ABC中,∠ACB=90°,CD⊥AB于D,,,那么sin∠ACD的值是A. B. C. D.15、如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)二、填空题(共10题,共计30分)16、如图,利用标杆测量楼房的高度,如果标杆长为3. 6米,若,米,则楼高是________米.17、如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为________.18、计算|﹣20|﹣tan45°﹣的结果是________.19、若tanα•tan50°=1,则锐角α=________度.20、如图,已知半⊙O的直径AB为3,弦AC与弦BD交于点E,OD⊥AC,垂足为点F,AC=BD,则弦AC的长为________.21、某厂家新开发的一种电动车如图,它的大灯A射出的光线AB、AC与地面MN所夹的锐角分别是8°和10°.大灯A离地面的距离为lm,则该车大灯照亮地面的宽度BC是________m.(不考虑其他因素)(参考数据:,,,).22、如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离为________海里.23、已知甲、乙两楼相距米,如果从甲楼底看乙楼顶,测得仰角为,从乙楼顶看甲楼顶,测得俯角为,那么甲楼高是________米.24、如图,在矩形中,点E在边上,与关于直线对称,点B的对称点F在边上,G为中点,连结分别与交于M,N两点,若,,则的长为________,的值为________.25、如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是________.三、解答题(共5题,共计25分)26、计算:tan60°+| ﹣2|+()﹣1﹣(π+2)0.27、在Rt△ABC中,∠C=90°,若.求,,的值;28、如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,公路上距A处45千米的红方在B处沿南偏西67°方向前进实施拦截.红方行驶26千米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西37°方向前进,刚好在D处成功拦截蓝方.求拦截点D处到公路的距离AD.(参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ ,sin37°≈,cos37°≈ ,tan37°≈ )29、已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)30、小雁塔位于西安市南门外的荐福寺内,与大雁塔同为唐长安城保留至今的重要标志.小莹在数学综合实践活动中,欲利用所学的数学知识对小雁塔的高度进行测量,如图,CD是临时搭建的一个钢架,小莹先测得小雁塔与钢架CD之间的距离AC为43m,然后她站在E点处测得钢架CD的顶端D的仰角为26.7°,转身测得小雁塔AB的顶端B的仰角为47.8°,已知钢架CD的高度为4m,小莹的观测点E距地面的距离EF=1.5m,且AB⊥AC,EF⊥AC,CD⊥AC,求小雁塔AB的高度.(参考数据:sin47.8°≈0.74,cos47.8°≈0.67,tan47.8°≈1.10,sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、A6、B7、B8、C9、D11、A12、C13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A. B. C. D.2、如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.3、sin45°的值等于( )A. B. C. D.14、如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正弦值是( )A.2B.C.D.5、在Rt△ABC中,∠C=90º,若sinA=,则cosA的值为( )A. B. C. D.6、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.37、已知∠A是锐角,且sinA=,则tanA的值为()A. B. C. D.8、在Rt△ABC中,∠C=90°,AB=10,BC=6,则cosA的值是()A. B. C. D.9、在△ABC中,若∠A,∠B满足+=0,则△ABC是()A.等腰非等边三角形B.等边三角形C.直角三角形D.钝角三角形10、如果α是锐角,且cosα=,那么sinα的值()A. B. C. D.11、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A. +1B. +1C.2.5D.12、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.13、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于()A.15°B.20°C.30°D.45°14、如图,已知AD是等腰三角形ABC底边上的高,且sinB= ,点E在AC上且AE:EC=2:3,则tan∠ADE=()A. B. C. D.15、如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.二、填空题(共10题,共计30分)16、已知如图,正方形的边长为4,取边上的中点E,连接,过点B作于点,连接,过点A作于点H,交于点M,交于点N,则________.17、如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接AE并延长交CD于F,连接BD分别交CE、AF于G、H,下列结论:①;②;③;④;⑤:,其中正确的是________.18、如图,点P在正方形ABCD的BC边上,连接AP,作AP的垂直平分线,交AD延长线于点E,连接PE,交CD于点F.若点F是CD的中点,则tan∠BAP=________.19、点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C 是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是________.20、如图,某飞机于空中探测某座山的高度,在点处飞机的飞行高度是米,从飞机上观测山顶目标的俯角是,飞机继续以相同的高度飞行米到地,此时观察目标的俯角是,则这座山的高度是________米(参考数据:,,)21、如图,△ABC中,∠B=90°,∠C=30°,BC= ,将△ABC•绕顶点A旋转180°,点C落在C′处,则CC′的长为________.22、如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF//AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为________.23、如图,是矗立在高速公路地面上的一块交通警示牌,经测量得知PA=4米,AB=5米,∠PAD=45°,∠PBC=30°,则警示牌的高CD为________.(结果保留小数点后一位)24、在△ABC中,∠B=45°,cosA=,则∠C的度数是________.25、已知对任意锐角α、β均有:cos(α+β)=cosα•cosβ﹣sinα•sinβ,则cos75°=________.三、解答题(共5题,共计25分)26、计算:(3.14﹣π)0﹣﹣|﹣3|+4sin60°27、如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)28、如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B 处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.29、某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°。
苏科版九年级数学下册 第 7章 锐角三角函数 7.3---7.5练习题含答案
7.3 特殊角的三角函数一.选择题(共15小题)1.45°的正弦值为()A.1 B.C.D.2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形;B.△ABC是等腰直角三角形C.△ABC是直角三角形;D.△ABC是一般锐角三角形3.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是()A.75°B.90°C.105°D.120°4.cos60°的值等于()A.B.1 C.D.5.因为cos60°=,cos240°=﹣,所以cos240°=cos(180°+60°)=﹣cos60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=﹣cosα,由此可知:cos210°=()A.﹣B.﹣C.﹣D.﹣6.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.第6题第8题7.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.8.把一块直尺与一块三角板如图放置,若sin∠1=,则∠2的度数为()A.120°B.135°C.145°D.150°9.计算:tan45°+sin30°=()A.2 B.C.D.10.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A.直角三角形;B.等腰三角形;C.等边三角形;D.等腰直角三角形11.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°12.计算sin60°+cos45°的值等于()A.B.C.D.13.已知∠C=75°,则∠A与∠B满足以下哪个选项才能构成△ABC()A.sinA=,sinB=B.cosA=,cosB=C.sinA=,tanB=D.sinA=,cosB=14.若sin(α﹣10o)=,则∠α为()A.30°B.40°C.60°D.70°15.已知∠A为锐角,且tanA=,那么下列判断正确的是()A.0<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°二.填空题(共10小题)16.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.17.已知△ABC的内角满足|tanA﹣3|+=0,则∠C=度.18.如图,在正方形网格中,小正方形的边长均为1,点A、B、C都是格点,则cos∠BAC=.第18题第19题19.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)tanα+tanβ.(填“>”“=”“<”)20.若tan(x+10°)=1,则锐角x的度数为.21.计算:tan45°﹣2cos60°=.22.已知α是锐角,tanα=2cos30°,那么α=度.23.在△ABC中,若,∠A、∠B都是锐角,则∠C=.24.已知对任意锐角α、β均有:cos(α+β)=cosα•cosβ﹣sinα•sinβ,则cos75°=.25.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.1 2 3 4 5 6 7 8 9 1011 12 13 14 1516. ;17. ;18. ;19. ;20. ;21. ;22. ;23. ;24. ;25. ;三.解答题(共8小题)26.计算:tan30°cos60°+tan45°cos30°.27.计算:2sin30°+4cos30°•tan60°﹣cos245°.28.计算:sin45°.29.计算:cos245°+﹣•tan30°.30.计算:2cos230°﹣sin30°+.31.若规定:sin(α+β)=sinα•sinβ+cosα•sinβ,试确定sin75°+sin90°的值.32.已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.33.计算:﹣sin60°(1﹣sin30°)参考答案与解析一.选择题(共15小题)1.45°的正弦值为()A.1 B.C.D.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin45°=,故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断.【解答】解:∵tanA=1,sinB=,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选B.【点评】解答此题关键是熟记特殊角的三角函数值,三角形内角和定理及等腰三角形的判定.3.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是()A.75°B.90°C.105°D.120°【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0.”分别求出∠A、∠B的值.然后用三角形内角和定理即可求出∠C的值.【解答】解:∵|sinA﹣|=0,(﹣cosB)2=0,∴sinA﹣=0,﹣cosB=0,∴sinA=,=cosB,∴∠A=45°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=105°.故选C.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式、绝对值、非负数等考点的运算.4.cos60°的值等于()A.B.1 C.D.【分析】根据特殊角三角函数值,可得答案.【解答】解:cos60°=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.因为cos60°=,cos240°=﹣,所以cos240°=cos(180°+60°)=﹣cos60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=﹣cosα,由此可知:cos210°=()A.﹣B.﹣C.﹣D.﹣【分析】当α为锐角时有cos(180°+α)=﹣cosα.把210°代入计算即可.【解答】解:∵cos(180°+α)=﹣cosα,∴cos210°=cos(180°+30°)=﹣cos30°=﹣.故选:C.【点评】此题主要考查了特殊角的三角函数值,本题是信息题,按照“一般地当α为锐角时有cos(180°+α)=﹣cosα”去答题.同时熟记特殊角的三角函数值也是解题的关键.6.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.【分析】连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.【解答】解:连接AB,∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=.故选C.【点评】本题考查的是特殊角的三角函数值及等边三角形的判定与性质,熟记各特殊角的三角函数值是解答此题的关键.7.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.【分析】根据比例设三个内角分别为k、2k、3k,然后根据三角形内角和等于180°列出方程求出最小角,继而可得出答案.【解答】解:∵三角形三个内角度数的比为1:2:3,∴设三个内角分别为k、2k、3k,∴k+2k+3k=180°,解得k=30°,最小角的正切值=tan30°=.故选:C.【点评】本题主要考查了三角形的内角和定理,利用“设k法”求解更加简单.8.把一块直尺与一块三角板如图放置,若sin∠1=,则∠2的度数为()A.120°B.135°C.145°D.150°【分析】首先根据特殊角的三角函数值即可求得∠1的度数,然后根据直角三角形的两个锐角互余,以及平行线的性质即可求解.【解答】解:∵sin∠1=,∴∠1=45°,∵直角△EFG中,∠3=90°﹣∠1=90°﹣45°=45°,∴∠4=180°﹣∠3=135°,又∵AB∥CD,∴∠2=∠4=135°.故选B.【点评】本题考查了特殊角的三角函数值,以及直角三角形的性质、平行线的性质,正确理解平行线的性质是关键.9.计算:tan45°+sin30°=()A.2 B.C.D.【分析】将tan45°=1,sin30°=,分别代入,然后合并即可得出答案.【解答】解:∵tan45°=1,sin30°=,∴tan45°+sin30°=1+=.故选C.【点评】此题考查了特殊角的三角函数值,解答本题的关键是掌握tan45°=1,sin30°=,难度一般,注意记忆一些特殊角的三角函数值.10.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得A、B的值,根据直角三角形的判定,可得答案.【解答】解:由,(2cosA﹣)2+|1﹣tanB|=0,得2cosA=,1﹣tanB=0.解得A=45°,B=45°,则△ABC一定是等腰直角三角形,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.11.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°【分析】先根据非负数的性质求出tanA及cosB的值,再根据特殊角的三角函数值求出∠A 及∠B的值,根据三角形内角和定理即可得出结论.【解答】解:∵(tanA﹣)2+|﹣cosB|=0,∴tanA﹣=0,﹣cosB=0,∴tanA=,cosB=,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=75°,故选B.【点评】本题考查是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.计算sin60°+cos45°的值等于()A.B.C.D.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin60°+cos45°=,故选:B.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.13.已知∠C=75°,则∠A与∠B满足以下哪个选项才能构成△ABC()A.sinA=,sinB=B.cosA=,cosB=C.sinA=,tanB=D.sinA=,cosB=【分析】根据三角形内角和可得∠A+∠B=180°﹣75°=105°,然后再根据特殊角的三角函数进行分析即可.【解答】解:∵∠C=75°,∴∠A+∠B=180°﹣75°=105°,A、sinA=,sinB=,则∠A=45°,∠B=45°,∠A+∠B=90°,故此选项错误;B、cosA=,cosB=,则∠A=60°,∠B=30°,∠A+∠B=90°,故此选项错误;C、sinA=,tanB=,则∠A=45°,∠B=60°,∠A+∠B=105°,故此选项正确;D、sinA=,cosB=,∠A=60°,∠B=60°,∠A+∠B=120°,故此选项错误;故选:C.【点评】此题主要考查特殊角的三角函数值,关键掌握30°、45°、60°角的各种三角函数值.14.若sin(α﹣10o)=,则∠α为()A.30°B.40°C.60°D.70°【分析】根据特殊角三角函数值,可得答案.【解答】解:sin(α﹣10o)=,得α﹣10=60°,α=70°,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15.已知∠A为锐角,且tanA=,那么下列判断正确的是()A.0<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【分析】根据正切函数的增减性,可得答案.【解答】解:<<1,由正切函数随锐角的增大而增大,得tan30°<tanA<tan45°,即30°<A<45°,故选:B.【点评】本题考查了特殊角的三角函数值,利用正切函数的增减性是解题关键.二.填空题(共10小题)16.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.【分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【解答】解:∵sinA==,∴∠A=60°,∴sin=sin30°=.故答案为:.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.17.已知△ABC的内角满足|tanA﹣3|+=0,则∠C=75度.【分析】根据非负数的和为零,可得特殊角三角函数值,根据特殊角三角函数值,可得答案.【解答】解:由题意,得,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为与:75.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.如图,在正方形网格中,小正方形的边长均为1,点A、B、C都是格点,则cos∠BAC=.【分析】分别利用勾股定理求出AB、BC、AC的长度,然后判断△ABC的形状,得出∠BAC 的度数,求出cos∠BAC的值.【解答】解:AB=BC==,AC==,则AB2+BC2=5+5=10=AC2,则△ABC为等腰直角三角形,∠BAC=45°,则cos∠BAC=.故答案为:.【点评】本题考查了特殊角的三角函数值以及勾股定理及逆定理,解答本题的关键是判断三角形ABC为直角三角形.19.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.【解答】解:由正方形网格图可知,tanα=,tanβ=,则tanα+tanβ=+=,∵AC=BC,∠ACB=90°,∴α+β=45°,∴tan(α+β)=1,∴tan(α+β)>tanα+tanβ,故答案为:>.【点评】本题考查的是特殊角的三角函数值、锐角三角函数的定义以及等腰直角三角形的性质,熟记特殊角的三角函数值、正确理解锐角三角函数的定义是解题的关键.20.若tan(x+10°)=1,则锐角x的度数为20°.【分析】利用特殊角的三角函数值得出x+10°的值进而求出即可.【解答】解:∵tan(x+10°)=1,∴tan(x+10°)==,∴x+10°=30°,∴x=20°.故答案为:20°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关角对应的函数值是解题关键.21.计算:tan45°﹣2cos60°=0.【分析】把特殊角的三角函数值代入,再计算乘法,后计算加减法即可.【解答】解:原式=1﹣2×,=1﹣1,=0.故答案为:0.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°,45°,60°角的三角函数值.22.已知α是锐角,tanα=2cos30°,那么α=60度.【分析】根据30°角的余弦值等于,正切值是的锐角为60°解答即可.【解答】解:∵tanα=2cos30°=2×=,∴α=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的正弦值、余弦值、正切值是解此类题目的关键.23.在△ABC中,若,∠A、∠B都是锐角,则∠C=105°.【分析】根据绝对值及完全平方的非负性,可得出∠A及∠B的度数,再利用三角形的内角和定理即可得出∠C的度数.【解答】解:∵,∴sinA=,cosB=,∴∠A=45°,∠B=30°,故可得∠C=180°﹣45°﹣30°=105°.故答案为:105°.【点评】此题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出sinA=,cosB=,另外要熟练掌握特殊角的三角函数值.24.已知对任意锐角α、β均有:cos(α+β)=cosα•cosβ﹣sinα•sinβ,则cos75°=.【分析】直接利用已知公式将原式变形,进而结合特殊角的三角函数值求出答案.【解答】解:∵cos(α+β)=cosα•cosβ﹣sinα•sinβ,∴cos75°=cos(30°+45°)=cos30°•cos45°﹣sin30°•sin45°=×﹣×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确将原式变形是解题关键.25.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是直角三角形.【分析】根据一个角的正弦等于它余角的余弦,可得答案.【解答】解:由△ABC中,∠A、∠B都是锐角,且sinA=cosB=,得∠A+∠B=90°,故答案为:直角.【点评】本题考查了余角,利用直角三角形的判定是解题关键.三.解答题(共8小题)26.计算:tan30°cos60°+tan45°cos30°.【分析】根据特殊角的三角函数值可以计算出tan30°cos60°+tan45°cos30°的值.【解答】解:tan30°cos60°+tan45°cos30°===.【点评】本题考查特殊角的三角函数值,解题的关键是明确特殊角的三角函数值.27.计算:2sin30°+4cos30°•tan60°﹣cos245°.【分析】将sin30°=,cos30°=,tan60°=,cos45°=代入运算,即可得出答案.【解答】解:原式=2×+4ו﹣=1+6﹣=.【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是掌握一些特殊角的三角函数值,需要我们熟练记忆,难度一般.28.计算:sin45°.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=﹣×+×=﹣+1=0.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.29.计算:cos245°+﹣•tan30°.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=()2+﹣×=+﹣1=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.30.计算:2cos230°﹣sin30°+.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×()2﹣+=1++.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.31.若规定:sin(α+β)=sinα•sinβ+cosα•sinβ,试确定sin75°+sin90°的值.【分析】根据给出的公式,将75°和90°化为特殊角即可求出答案.【解答】解:原式=sin(30°+45°)+sin(30°+60°)=sin30°•cos45°+cos30°•sin45°+sin30°•cos60°+cos30°•sin60°=×+×+×+×=+++=【点评】本题考查特殊角的三角函数值,解题的关键是将75°和90°化为特殊角进行计算,本题属于基础题型.32.已知α为锐角,sin (α+15°)=,计算﹣4cosα+tanα+()﹣1的值.【分析】首先得出α的值,进而利用特殊角的三角函数值以及负指数幂的性质化简求出答案.【解答】解:∵sin (α+15°)=,∴α=45°, ∴﹣4cosα+tanα+()﹣1=2﹣2+1+3=4.【点评】此题主要考查了特殊角的三角函数值以及负指数幂的性质,正确掌握相关性质是解题关键.33.计算:﹣sin60°(1﹣sin30°)【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=﹣×(1﹣)=﹣×=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.7.4三角函数求锐角1.在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 都扩大2倍B 都扩大4倍C 没有变化D 都缩小一半2.在Rt △ABC 中,∠C=90°,c=10 23cos B ,则b=( ) A 5 3 B 10 3 C 5 D 103.等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )A 600B 900C 1200D 15004.若∠A 是锐角,sinA=43, 那么( ) A .0°<∠A <30°B.30°<∠A <45°C .45°<∠A <60°D .60°<∠A <90°5.有一个角的余弦值为21的直角三角形,斜边为cm 1,则斜边上的高为 ( ) A cm 41 B cm 21 C cm 43 D cm 23 6.若sin α=23,则锐角α=________. 若2cos α= 2 ,则锐角α=_________; 7. α为锐角,若sin α=21,则cos α=_________;若sin α=23,则tan α=_________; 8.已知a 是锐角, ()01sin 152α+=,则a =_____; 9. △ABC 中,且0cos 2233tan 22=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-B A ,则∠C=_________; 10.Rt △ABC 中∠C =900 ,6,3si 2==a nB ,则__________,==c b ;11.在△ABC 中,若∠C =900,2,32==b c ,,则____tan =B ,面积S = ;12.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB 上的一点(不与A 、B 重合),则sin C 的值为_______.13.(1)tan230°+2sin60°+tan45°-tan60°+cos230°;(2)cos60°-sin245°+tan230°+cos230°-sin30°.14.在矩形ABCD中,CE⊥BD,E为垂足,连结AE,已知BC=3,CD=4, 求(1)△ADE的面积,(2)tan∠EAB.15.如图,△ABC中,DC⊥AC交AB于D,若4 :2:3,cos5 ACD CDBS S DCB∆∆=∠=.(1)求∠A的度数;(2)若AC+CD=36,求AB的长.7.5解直角三角形及其应用-一、选择题1.在△ABC中,∠C=90°,4sin5A ,则tan B= ( )A.43 B.34C.35D.452.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC 长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.第2题第3题第4题3.河堤、横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为 ( )A .12 B .22C .32D .1 5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h αB .tan h αC .cos h αD .sin h α第5题 第6题 第7题 第8题6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos 5BDC ∠=,则BD 的长是 ( )A .4 cmB .6 cmC .8 cmD .10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距 ( ) A.30海里 B.40海里 C.50海里 D.60海里8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P的位置,P在M的正北方向,在N 的北偏西30°的方向,则河的宽度是 ( )m C.1003m D.100m A.2003m B.20033二、填空题9.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.第9题第10题第11题10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AG的值为______.AF11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为____海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)17.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)一、选择题1.【答案】B ;【解析】如图,sin A=45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴33tan 44AC x B BC x ===. 2.【答案】B .【解析】如图所示:设BC=x ,∵ 在Rt △ABC 中,∠B=90°,∠A=30°,∴ AC=2BC=2x ,AB=BC=x ,根据题意得:AD=BC=x ,AE=DE=AB=x ,作EM ⊥AD 于M ,则AM=AD=x ,在Rt △AEM 中,cos ∠EAD==x x321=;3.【答案】A ;【解析】由tan BC i A BC===知,53AC BC ==(米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°,∴ △ABC 为等边三角形,∴ AC =AB =40海里.8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM =, 2003PM =. 二、填空题9.【答案】2;【解析】设菱形ABCD 边长为t ,∵ BE=2,∴ AE=t ﹣2,∵ cosA=,∴,∴ =,∴ t=5, ∴ AE=5﹣2=3,∴ DE==4, ∴ tan ∠DBE 224===BE DE .故答案为:2. 10.3; 【解析】由已知条件可证△ACE ≌△CBD .从而得出∠CAE =∠BCD . ∴ ∠AFG =∠CAE+∠ACD =∠BCD+∠ACD =60°,在Rt △AFG 中,3sin 602AG AF ==°. 11.【答案】40403+;【解析】在Rt △APC 中,PC =AC =AP ·sin ∠APC =2402402⨯=. 在Rt △BPC 中,∠BPC =90°-30°=60°,BC =PC ·tan∠BPC =403,所以AB =AC+BC =40403+.12.【答案】12;【解析】如图,连接BD ,作DF ⊥BC 于点F ,则CE ⊥BD ,∠BCE =∠BDF ,BF =AD =2,DF =AB =4,所以21tan tan 42BF BCE BDF DF ∠=∠===. 13.【答案】58;【解析】α=45°,∴ DE =AE =BC =30,EC =AB =28,DE =DE+EC=5814.【答案】200;【解析】由已知∠BAC =∠C =30°,∴ BC =AB =200.三、解答题15.【答案与解析】过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形, ∴ AF =BE ,EF =AB =2.设DE =x ,在Rt △CDE 中,3tan tan 603DE DE CE x DCE ===∠°. 在Rt △ABC 中,∵ 3AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x -2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE .∴ 33(2)23x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2)∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴ 3x=6,得x=2,∴ BE=8,AE=10,∴ tanE====,解得,DE=,∴ AD=AE﹣DE=10﹣=,即AD的长是.17.【答案与解析】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3米.所以生命迹象所在位置C的深度约为3米.。
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)
2022-2023学年苏科版九年级数学下册《第7章锐角三角函数》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.在Rt△ABC中,如果各边的长度同时扩大2倍,那么锐角A的正弦值和余弦值()A.都扩大2倍B.都缩小2倍C.都不变D.不能确定2.若∠A为锐角,且sin A=,则cos A等于()A.1B.C.D.3.如图,在△ABC中,∠C=90°,AC=3,BC=4,则tan A的值是()A.B.C.D.4.如图,在△ABC中,∠B=45°,AD⊥BC交BC于点D,若AB=4,tan∠CAD=,则BC=()A.6B.6C.7D.75.在△ABC中,BC=+1,∠B=45°,∠C=30°,则△ABC的面积为()A.B.+1C.D.+16.如图,AB表示一条跳台滑雪赛道,在点A处测得起点B的仰角为40°,底端点C与顶端点B的距离为50米,BC⊥AC于点C,则赛道AB的长度为()A.米B.米C.50sin40°米D.50cos40°米7.如图,河堤横断面迎水坡AB坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8B.16C.4D.48.如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则sin∠BAC的值是()A.B.C.D.二.填空题(共8小题,满分32分)9.比较大小:tan50°tan60°.10.若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是.11.如图所示的网格是正方形网格,点A,B,P是网格线交点,则tan∠P AB+tan∠PBA =.12.如图所示,某河提的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且AB边的坡度为,则河堤的高BE为米.13.如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A 为圆心,AB的长为半径画弧,交x轴的负半轴于点C,连接BC,则∠C的正弦值为.14.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是.15.如图,在△ABC中,AH⊥BC于点H,在AH上取一点K,连接CK,使得∠HKC+∠HAC=90°,在CK上取一点N,使得CN=AC,连接BN,交AH于点M,若tan∠ABC =2,BN=15,则CH的长为.16.如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为.三.解答题(共7小题,满分56分)17.计算:﹣2(1+sin60°)18.(1)在△ABC中,∠C=90°.已知c=8,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sin A=,D为AC上一点,∠BDC=45°,CD =6.求AD的长.19.已知:如图,在△ABC中,AB=AC=15,tan A=.求:(1)S△ABC;(2)∠B的余弦值.20.如图,楼房AB后有一假山CD,CD的坡度为i=1:2,测得B与C的距离为24米,山坡坡面上E点处有一休息亭,与山脚C的距离CE=8米,小丽从楼房房顶A处测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高.21.某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A 处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:≈1.414,=1.732)22.如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B 的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC 的高度.(参考数据:)23.阅读以下材料,并解决相应问题:在学习了直角三角形的边角关系后,我们可以继续探究任意锐角三角形的边角关系,在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.如图1,过点A作AD⊥BC于点D,则根据定义得sin B=,sin C=,于是AD=c sin B,AD=b sin C,也就是c sin B =b sin C,即.同理有,,即最终得到.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)在锐角△ABC中,若∠B=30°,∠C=45°,AC=2,求AB.(2)仿照证明过程,借助图2或图3,证明和中的其中一个.参考答案一.选择题(共8小题,满分32分)1.解:∵锐角A的正弦值是对边和斜边的比,余弦值是邻边和斜边的比,∴边长同时扩大2倍对于锐角A的正弦值和余弦值没有影响,∴锐角A的正弦值和余弦值没有改变.故选:C.2.解:∵∠A为锐角,且sin A=,∴∠A=60°,∴cos A=cos60°=,故选:D.3.解:∵AC=3,BC=4,∠C=90°,∴tan A==,故选:D.4.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=4,∠B=45°,∴AD=AB sin45°=4×=4,BD=AB cos45°=4×=4,在Rt△ADC中,tan∠CAD=,∴CD=AD tan∠CAD=4×=3,∴BC=BD+DC=4+3=7,故选:C.5.解:过A点作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°=∠B,∴AD=BD,设BD=x,则AD=x,∵∠C=30°,∴tan C=,∴,∵BC=+1,∴x+x=+1,∴x=1,即AD=1,∴.故选:A.6.解:在Rt△ABC中,∵∠A=40°,BC=50米,∴sin40°=,∴AB==米,故选:A.7.解:Rt△ABC中,BC=4m,tan A=1:2;∴AC==8m,∴AB===4(m).故选:C.8.解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴sin∠BAC=.故选:A.二.填空题(共8小题,满分32分)9.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.10.解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.11.解:设小正方形的边长是a,∵tan∠P AB===,tan∠PBA===,∴tan∠P AB+tan∠PBA=+=.12.解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x米,则BE=12x米,在直角三角形AEB中,根据勾股定理得:132=5x2+(12x)2,即169x2=169,解得:x=1或x=﹣1(舍去),5x=5,12x=12即河堤高BE等于12米.故答案为:12.13.解:∵点A的坐标为(4,0),点B的坐标为(0,3),∴BO=3,AO=4,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴CO=5﹣4=1,BC==,∴sin∠C===,故答案为:.14.解:过点F作直线F A∥OG,交y轴于点A,过点G作GH⊥F A于点H,则∠F AE=90°,∵F A∥OG,∴∠FGO=∠HFG.∵∠EFG=90°,∴∠FEA+∠AFE=90°,∠HFG+∠AFE=90°,∴∠FEA=∠HFG=∠FGO,∵cos∠FGO=,∴cos∠FEA=,在Rt△AEF中,EF=10,∴AE=EF cos∠FEA=10×=6,∴根据勾股定理得,AF=8,∵∠F AE=90°,∠AOG=90°,∠GHA=90°,∴四边形OGHA为矩形,∴AH=OG,∵OG=17,∴AH=17,∴FH=17﹣8=9,∵在Rt△FGH中,=cos∠HFG=cos∠FGO=,∴FG=9÷=15,∴由勾股定理得:HG==12,∴F(8,12).故答案为:(8,12).15.解:如图,过点N作NJ⊥BC于J.设HJ=x.∵AH⊥BC,∴∠AHB=∠AHC=90°,∵tan∠ABH==2,∴可以假设BH=k,2k,∵∠HKC+∠HAC=90°,∠HKC+∠KCH=90°,∴∠HAC=∠KCH,∵NJ⊥BC,∴∠AHC=∠CJN=90°,∴△AHC∽△CJN,∴===2,∴CJ=k,∴CH=x+k,JN=(x+k),∴tan∠NBJ==,设NJ=y,BJ=2y,∵BN=15,∴5y2=152,∴y=3,∴NJ=3,∴CH=2NJ=6.16.解:连接CM,DN,由题意得:CM∥AB,∴∠APD=∠NCD,由题意得:CN2=12+12=2,DN2=32+32=18,CD2=22+42=20,∴CN2+DN2=CD2,∴△CND是直角三角形,∴tan∠NCD===3,∴∠APD的正切值为:3,故答案为:3.三.解答题(共7小题,满分56分)17.解:原式=﹣2(1+)=+﹣2﹣=﹣2.18.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∵tan A=,∴a=b tan A,∴a=4×=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sin A=,∴AB==10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.19.解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tan A==,∴设CD=4k,则AD=3k,∴AC===5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,∴S△ABC=AB•CD=×15×12=90,∴S△ABC=90;(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC===6,∴cos B===,∴∠B的余弦值为.20.解:(1)过点E作EF⊥BC,交BC的延长线于F,∵CD的坡度i=EF:CF=1:2,∴设EF=a米,则CF=2a米,在Rt△CEF中,根据勾股定理得:CE===a(米),∵CE=8米,∴a=8,∴a=8,∴EF=8米,CF=2a=16(米),∴点E到水平地面的距离为8米;(2)如图:延长FE交AG于点H,由题意得:∠HAE=45°,AH=BF=BC+CF=24+16=40(米),AB=FH,在Rt△AHE中,HE=AH•tan45°=40×1=40(米),∴AB=HF=HE+EF=40+8=48(米),∴楼房AB的高为48米.21.解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=AC=5海里,AE=AC=5海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=5海里,∴CD=5+5≈13.66(海里),轮船航行的速度为:13.66÷=27.3(海里/时),答:轮船航行的速度是27.3海里/时,22.解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°==,∴CF=EF=50=86.6(米),∴BC=BF+CF=136.6(米).答:建筑物BC的高度约为136.6米.23.解:(1)根据阅读材料可知,,∵∠B=30°,∠C=45°,AC=2,∴=,∴AB==2;(2)证明.理由如下:如图,连接CO并延长交⊙O于D,连接AD、BD,则∠DAC=∠DBC=90°,∠BAC=∠BDC,∠ABC=∠ADC.在Rt△ADC中,sin∠ADC=,∴CD=.在Rt△BDC中,sin∠BDC=,∴CD=,∴=,∴=,即在△ABC中,.。
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷及解析
苏科版九年级数学下册第七章【锐角三角函数】单元测试卷一、单选题(共10题;共29分)1.在△ABC中,∠A,∠B都是锐角,tanA=1,sinB= ,你认为△ABC最确切的判断是()A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形2.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB= =()A. B. C. D.3.游客上歌乐山山有两种方式:一种是如图,先从A沿登山步道走到B,再沿索道乘座缆车到C,另一种是沿着盘山公路开车上山到C,已知在A处观铡到C,得仰角∠CAD=3l°,且A、B的水平距离AE=430米,A、B的竖直距离BE=210米,索道BC的坡度i=1:1.5,CD⊥AD于D,BF⊥CD于F,则山篙CD为()米;(参考数据:tan31°≈0.6.cos3l°≈0.9)A. 680B. 690C. 686D. 6934.若α是锐角,tanα•tan50°=1,则α的值为()A. 20°B. 30°C. 40°D. 50°5.某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为()A. 8B. 9C. 10D. 126.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M,N分别在AB,AD边上,若AM:MB=AN:ND=1:2,则sin∠MCN=()A. B. C. D. ﹣27.在Rt△ABC中,∠C=90°,若cosB=,则sinB的值得是()A. B. C. D.8.如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为()A. ﹣3B. ﹣6C. ﹣9D. ﹣129.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB)为1.6m ,则这棵树的高度为()(结果精确到0.1m ,≈1.73).A. 3.5mB. 3.6mC. 4.3mD. 5.1m.10.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A. (﹣4,﹣2﹣)B. (﹣4,﹣2+ )C. (﹣2,﹣2+ )D. (﹣2,﹣2﹣)二、填空题(共10题;共30分)11.已知α、β均为锐角,且满足|sinα﹣|+ =0,则α+β=________.12.在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,如果sinA:sinB=2:3,那么a:b等于________.13.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC =________.14.在△ABC中,已知∠C=90°,sinA= ,则cosA= ________,tanB= ________.15.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.16.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)17.已知菱形的边长为3,一个内角为60°,则该菱形的面积是________.18.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.19.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA= ,则PB+PC=________.20.(2017•贵港)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.三、解答题(共8题;共58分)21.计算.22.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)23.如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)24.如图,某湖心岛上有一亭子,在亭子的正东方向上的湖边有一棵树,在这个湖心岛的湖边处测得亭子在北偏西°方向上,测得树在北偏东°方向上,又测得、之间的距离等于米,求、之间的距离(结果精确到米).(参考数据:,°,°,°,°)25.某海船以海里/小时的速度向北偏东70°方向行驶,在A处看见灯塔B在海船的北偏东40°方向,5小时后船行驶到C处,发现此时灯塔B在海船的北偏西65°方向,求此时灯塔B到C处的距离。
苏科版九年级下册数学第7章 锐角函数含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A. B. C. D.2、如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论:;;;当时,,其中正确结论的个数是()A.1B.2C.3D.43、如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为()A.2+B.2C.3+D.34、在中,,如果,那么的值是()A.1B.C.D.5、如图,△ABC是锐角三角形,sinC= ,则sinA的取值范围是()A.0B.C.D.6、以直角坐标系的原点O为圆心,以1为半径作圆。
若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为()A.(cosα, 1)B.(1, sinα)C.(cosα, sinα)D.(sinα, cosα)7、如图,在5×4的正方形网格中,每个小正方形的边长都是l,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A. B. C. D.8、在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半9、如图,在△ABC中,∠C=90o, AC=3,BC=4,则sinB的值是()A. B. C. D.10、如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100 mB.50 mC.50 mD. m11、如图,在矩形中,,E是的中点,连接,,P是边上一动点,沿过点P的直线将矩形折叠,使点D落在上的点处,当是直角三角形时,的值为()A. 或B. 或C. 或D. 或12、在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A. B. C. D.13、计算的值等于()A. B. C. D.14、如图,在Rt△ABC中,∠C为直角,CD⊥AB于D,已知AC=4,AB=5,则tan∠BCD等于( )A. B. C. D.15、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)都为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5mB.6mC.7mD.8m二、填空题(共10题,共计30分)16、如图,圆O的半径为2,弦BC= ,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED,下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED= ;④线段ED的垂直平分线必平分弦BC.其中正确的结论是________.(把正确的结论的序号都填在横线上)17、一斜面的坡度i=1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了________ 米.18、如图,在矩形中,,,点在上,将矩形沿折叠,点恰好落在边上的点处,那么的值为________.19、在以O为坐标原点的直角坐标平面内有一点A(2,4),如果AO与x轴正半轴的夹角为α,那么sinα=________ .20、如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________ 米.21、计算:________.22、如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=________.23、菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是________cm.24、如图,在正六边形ABCDEF中,AC=2 ,则它的边长是________.25、在Rt△ABC中,∠C=90°,tanA= ,BC=8,则△ABC的面积为________ .三、解答题(共5题,共计25分)26、计算:﹣22+(tan60°﹣1)×+ ﹣×.27、如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m到达C点,测得点B在点C的北偏东60°方向,如图2,求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).28、如图,港口在观测站的正东方向处,某船从港口出发,沿东偏北方向匀速航行2小时后到达处,此时从观测站处测得该船位于北偏东的方向,求该船航行的速度.29、为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)30、如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、A2、B3、A4、B5、D6、C7、C8、C9、C10、A11、B12、B13、B14、A15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A. B. C. D.2、在△ABC中,∠A,∠B均为锐角,且有|tanB﹣|+(2cosA﹣1)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形 D.等腰直角三角形3、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定4、如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米5、已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A. ACB.2 ndFC. MODED. DMS6、在Rt ABC中,∠C= ,则的值为()A. B. C. D.7、如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A.60海里B.45海里C.20 海里D.30 海里8、如图,在△ABC中,∠C=90 °,∠B=60 °,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为A.2B.C.D.9、如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°10、如果tanα=0.213,那么锐角α的度数大约为()A.8°B.10°C. 12°D.14°11、如图,点O是边长为4 的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1, B1C1交BC于点D,B1C1交AC于点E,则DE=()A.2B.4C.2D.6﹣212、用计算器求sin24°37′18″的值,以下按键顺序正确的是()A.B.C.D.13、已知A,B是两个锐角,且满足,,则实数t所有可能值的和为()A. B. C.1 D.14、已知在R t △ABC中,∠C = 90°,∠A =,AB = 2,那么BC的长等于A. B. C. D.15、已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)17、如图,△ABC中,AB= ,AC=5,tanA=2,D是BC中点,点P是AC上一个动点,将△BPD沿PD折叠,折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半,则AP的长为________.18、在△ABC中∠C=90°,tanA=,则cosB=________.19、如图,中,,,点D在上(),将沿翻折,得到,交于点F.当时,的值为________.20、如左下图,已知Rt△ABC中,斜边BC上的高AD=4,cosB= ,则AC=________.21、如果,那么锐角A的度数为________.22、已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=________23、如图,△ABC是边长为4的正三角形,以AB边作正方形ABDE,点P和点Q 分别是线段AC和线段BC上的中点,连接AQ和BP相交于点M,则点M到DE的距离是________.24、计算:2cos45°=________.25、如图,在一笔直的海岸线l上有A、B两个观测站,AB=6 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为________km.三、解答题(共5题,共计25分)26、先化简,再求值:,其中x=6tan30°﹣2.27、某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)28、如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?29、如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4, ≈1.4)30、人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点. 图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0. 1cm;参考数据sin70°≈0. 94,cos70°≈0. 34,sin20°≈0. 34,cos20°≈0. 94)参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、A5、D6、D7、D8、B9、C10、C11、D13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
苏科版九年级下册数学第7章 锐角函数 含答案
苏科版九年级下册数学第7章锐角函数含答案一、单选题(共15题,共计45分)1、在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是()A. B. C. D.2、如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,m+3)和CD上的点E,且OB﹣CE=1.直线l过O、E两点,则tan∠EOC的值为()A. B.5 C. D.33、在Rt△ABC中,∠C=90°,,则的值为()A. B. C. D.4、在中,,则的值为()A. B. C. D.5、如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A. B. C. D.6、在如图所示的正方形网格中,⊙O的内接△ABC的顶点均为格点,则tanA的值为( )A. B. C. D.7、三角形在方格纸中的位置如图所示,则tanα的值是()A. B. C. D.8、下列计算正确的是()A. B. C.2cos 60°= D.9、一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t (s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16 mB.32 mC.32 mD.64 m10、如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A.1小时B. 小时C.2小时D. 小时11、在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是()A. B. C. D.12、在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3B.C.D.13、如图,在矩形中,,,E是的中点,将沿直线翻折,点B落在点F处,连结,则的值为()A. B. C. D.14、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2B.C.D.15、已知sin6°=a,sin36°=b,则sin26°=()A.a 2B.2aC.b 2D.b二、填空题(共10题,共计30分)16、如图,边长为的等边△ABC的内切圆的半径为________.17、如图,菱形ABCD的对角线AC和BD交于点O,点G在射线OD上,且,过点G作交射线OC于点E,过点E作OE的垂线,与过点G作OG的垂线交于点P,得到矩形OEFG.射线AD交线段GF于点H,将沿直线AH折叠,得到,当点M在矩形OEFG的边上时,________.18、如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC=________.19、在△ABC中,AC=5,AB=6,则△ABC面积的最大值为________.20、如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=________.21、如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC=∠BAC,则 sin∠BPC=________ .22、如图,在△ABC中,已知AB=AC=5cm,BC=8 cm,点P在边BC上沿B到C的方向以每秒1cm的速度运动(不与点B,C重合),点Q在AC上,且满足∠APQ=∠B,设点P运动时间为t秒,当△APQ是等腰三角形时,t=________.23、己知在中,,,,则________.24、用科学计算器计算:﹣tan65°≈________ (精确到0.01)25、在Rt△ABC中,∠C=90°,如果tan∠A= ,那么cos B=________.三、解答题(共5题,共计25分)26、计算:2-1-|-2|+(2017-π)0-2cos60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《锐角三角函数》全章复习与巩固--巩固练习(基础)一、选择题1.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4 C.8 D.42.等腰三角形底边与底边上的高的比是2:,则顶角为()A.60° B.90° C.120° D.150°第2题第3题第4题3.如图所示,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA ,BC=10,则AB的值是 ( ) =45A.3 B.6 C.8 D.94.如图所示,在菱形ABCD中,DE⊥AB,3A , tan∠DBE的值cos5是 ( )A. 125.如图所示,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC =5,CD =3,则tan C 等于 ( )A .34B .43C .35D .45第5题图 第7题图6.已知Rt △ABC 中,∠C =90°,sin B =,则cosA 的值为( )A .12B .2C .2D .37.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树 之间的水平距离为5米,那么这两树在坡面上的距离AB 为 ( ) A .5cos α米 B .5cos α米 C .5sin α米 D .5sin α米 8.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为 ( )A .30°B .50°C .60°或120°D .30°或150° 二、填空题9.计算:11|245| 1.41)3-⎛⎫--+= ⎪⎝⎭°________.10.如图所示,已知Rt △ABC 中,斜边BC 上的高AD =4,4cos 5B =,则AC =________.11.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到A B C '''△,使点B '与C 重合,连接A B ',则tan ∠A BC ''的值____.第10题图 第11题图 第12题图 12.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB =_______米.13.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ' 处,那么tan ∠BAD ′等于_____.第13题 第15题 第16题14.一次函数经过(tan 45°,tan 60°)和(-cos 60°,-6tan30°),则此一次函数的解析式为________.15.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边的中线,AC=6,CD=5,则sinA等于________.16.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值= ,tan∠APD 的值= .三、解答题17.如图是某市一座人行过街天桥,天桥高CB=5米,斜坡AC的坡度为1:1,为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的傾斜角为30°.若新坡脚前需留3m的人行道,问离原坡脚A 处7m的建筑物M是否需要拆除,请说明理由.(≈1.73)18.如图所示,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.19.如图所示,点E、C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=3,ME=2,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.20.如图所示,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB=3:2,求⊙O的半径及DF的长.一、选择题1.【答案】D.【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.2.【答案】A;【解析】如图,在△ABC中,AB=AC,AD⊥CB于D,依题意得CD:AD=1:=:3,而tan∠DAC=CD:AD,∴tan∠DAC=:3,∴∠DAC=30°,∴顶角∠BAC=60°.3.【答案】B;【解析】因为AD=DC,所以∠DAC=∠DCA,又∵ AD∥BC,∴∠DAC=∠ACB,所以∠DCA=∠ACB.在Rt△ACB中,AC=BC·cos∠BCA=4⨯=,1085则226=-=.AB BC AC4.【答案】B;【解析】∵ DE ⊥AB ,∴ 在Rt △ADE 中,cosA =35.∴ 设AD =5k ,则AE =3k ,DE =4k ,又AD =AB , ∴ BE =2k , ∴ tan ∠DBE =422DE kBE k==. 5.【答案】B ;【解析】如图所示,连结BD , 由三角形中位线定理得BD =2EF =2×2=4,又BC =5,CD =3, ∴ CD 2+BD 2=BC 2.∴ △BDC 是直角三角形.且∠BDC =90°, ∴ 4tan 3BD C CD ==. 6.【答案】C ; 【解析】∵ 3sin 2B =, ∴ ∠B =60°,∠A =90°-60°=30°, ∴ 3cos A =. 7.【答案】B ;【解析】由上图知ABC α∠=, 在Rt △ABC 中,cos BCABα=. ∴5cos AB α=. 8.【答案】D ;【解析】有两种情况:当∠A 为锐角时,如图(1),sin A =12,∠A =30°; 当∠A 为钝角时,如图(2),sin(180°-∠BAC)=12, 180°-∠BAC =30°,∠BAC =150°.二、填空题9.【答案】2;【解析】原式=3|21422--+=-+=+. 10.【答案】5;【解析】在Rt △ABC 中,.AD ⊥BC ,所以∠CAD =∠B .∴cos cos AD CAD B AC =∠=,∴ 45AD AC =,又∵ AD =4, ∴ AC =5..11.【答案】13;【解析】过A '作A D BC ''⊥于点D , 在Rt △A B D ''中,设A D x '=, 则B D x '=,BC=2x,BD=3x. 12.【答案】4 ; 【解析】由3cos 4AC BAC AB ∠==,知334AB =,AB =4米. 13.【答案】2;【解析】由题意知22BD BD '==.在Rt △ABD ′中,22tan 22BD BAD AB ''∠===. 14.【答案】233y x =-;【解析】tan 45°=1, tan60°=3,-cos60°=12-, -6tan30°=23-.设b kx y +=经过点(1,3)、1,232⎛⎫-- ⎪⎝⎭, 则用待定系数法可求出23k =,3b =-. 15.【答案】45;【解析】∵ CD 是Rt △ABC 斜边上的中线,∴ AB =2CD =2×5=10,BC =22221068AB AC -=-=, ∴ 84sin 105BC A AB ===. 16.【答案】3,2.【解析】解:∵ 四边形BCED 是正方形, ∴ DB ∥AC , ∴ △DBP ∽△CAP ,∴==3,连接BE , ∵ 四边形BCED 是正方形, ∴ DF=CF=CD ,BF=BE ,CD=BE ,BE ⊥CD , ∴ BF=CF ,根据题意得:AC ∥BD ,∴ △ACP ∽△BDP , ∴ DP :CP=BD :AC=1:3, ∴ DP :DF=1:2, ∴ DP=PF=CF=BF , 在Rt △PBF 中,tan ∠BPF==2,∵ ∠APD=∠BPF ,∴ tan ∠APD=2, 三、解答题 17.【答案与解析】解:在Rt △ABC 中,∠ABC=90°,BC=5,∵ i=1:1, ∴ AB=5,在Rt △DBC 中,∠DBC=90°,∠CDB=30°,BC=5, tan30°=,∴ =,解得DB==5×1.73≈8.65,∵ BM=7+5=12,BD ≈8.65,∴ 12﹣8.65>3,所以,离原坡脚7m 的建筑物无需拆除.18.【答案与解析】(1)如图所示,作AE ⊥BC 于E ,则BE =AB ·cos B =8cos 60°=1842⨯=.AE =AB ·sin B =8sin 60°=38432⨯=.∴ EC =BC -BE =12—4=8.∴ 在Rt △ACE 中,tan ∠ACB =433AE EC ==(2)作DF ⊥BC 于F ,则AE ∥DF ,∵ AD ∥EF ,∴ 四边形AEFD 是矩形.AD =EF .∵ AB =DC ,∴ ∠B =∠DCF .又∵∠AEB =∠DFC =90°,∴ △ABE △≌△DCF(AAS). ∴ FC =BE =4,∴ EF =BC -BE —FC =4.∴ AD =4. ∴ MN =12(AD+BC)=12×(4+12)=8.19.【答案与解析】(1)证明:∵ BE =FC ,∴ BC =EF .又∵ ∠ABC =∠DEF ,∠A =∠D ,∴ △ABC ≌△DEF .∴ AB =DE .(2)解:∵ ∠DEF =∠B =45°,∴ DE ∥AB .∴ ∠CME =∠A =90°.∴ AC =AB,MC =ME .∴ CG =CE =2.在Rt △CAG 中,cos 2ACACG CG ∠==,∴ ∠ACG =30°.∴ ∠ECG =∠ACB -∠ACB =45°-30°=15°.20.【答案与解析】(1)连接OD ,∵ 直线CD 与⊙O 相切于点D ,∴ OD ⊥CD ,∴ ∠CD0=90°,∴ ∠CDE+∠ODE =90°.又∵ DF ⊥AB ,∴ ∠DEO =∠DEC =90°,∴ ∠EOD+∠ODE =90°. ∴ ∠CDE =∠EOD .又∵ ∠EOD =2∠B ;∴ ∠CDE =2∠B .(2)连接AD .∵ AB 是⊙O 的直径, ∴ ∠ADB =90°.∵ BD:AB =3:2, ∴ 在Rt △ADB 中,3cos 2BDB AB ==,∴ ∠B =30°, ∵ ∠AOD =2∠B =60°.又∵ ∠CDO =90°, ∴ ∠C =30°,∵ 在Rt △CDO 中,CD =10,∴ OD =10tan 30°=1033.即⊙O 的半径为1033.在Rt △CDE 中,CD =10,∠C =30°,∴ DE =CDsin 30°=5.∵弦DF⊥直径AB于点E,∴ DE=EF=1DF,2∴ DF=2DE=10.。