年广东省潮州市中考数学模拟试卷含详细复习资料
2024年广东省中考数学模拟卷答案
![2024年广东省中考数学模拟卷答案](https://img.taocdn.com/s3/m/5fcc0728a517866fb84ae45c3b3567ec112ddc6e.png)
2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。
广东省潮州市2019-2020学年中考数学模拟试题含解析
![广东省潮州市2019-2020学年中考数学模拟试题含解析](https://img.taocdn.com/s3/m/db65df92fc4ffe473368ab99.png)
广东省潮州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点A 、C 为半径是4的圆周上两点,点B 为»AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( )A.7或22B .7或23C .26或22D .26或232.如图,在▱ABCD 中,AB=2,BC=1.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .12B .1C .65D .323.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①② B .3-2⨯⨯①② C .53⨯+⨯①② D .5-3⨯⨯①②4.如图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于( )A .10°B .12.5°C .15°D .20°5.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是( )A .7B .8C .9D .106.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A .B .C .D .7.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .48.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下9.如图已知⊙O 的内接五边形ABCDE ,连接BE 、CE ,若AB =BC =CE ,∠EDC =130°,则∠ABE 的度数为( )A .25°B .30°C .35°D .40°10.2-的相反数是( )A .2-B .2C .12D .12- 11.下列实数中是无理数的是( )A .227B .2﹣2C .5.15&&D .sin45°12.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,3,[﹣2.5]=﹣3.现对82进行如下操作:821第次−−−−−→ [82⎡⎤]=92第次−−−−−→ [93]=33第次−−−−−→ 3,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,反比例函数3y x=(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF 的面积的值为 .14.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______15.如图,已知点A (2,2)在双曲线上,将线段OA 沿x 轴正方向平移,若平移后的线段O'A'与双曲线的交点D 恰为O'A'的中点,则平移距离OO'长为____.16.已知在Rt △ABC 中,∠C =90°,BC =5,AC =12,E 为线段AB 的中点,D 点是射线AC 上的一个动点,将△ADE 沿线段DE 翻折,得到△A′DE ,当A′D ⊥AB 时,则线段AD 的长为_____.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.18.如图,CD 是⊙O 直径,AB 是弦,若CD ⊥AB ,∠BCD=25°,则∠AOD=_____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,O e 是ABC V 的外接圆,AC 是O e 的直径,过圆心O 的直线PF AB ⊥于D ,交O e 于,E F ,PB 是O e 的切线,B 为切点,连接AP ,AF .(1)求证:直线PA 为O e 的切线;(2)求证:24EF OD OP =⋅;(3)若6BC =,1tan 2F ∠=,求AC 的长. 20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)22.(8分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 23.(8分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).24.(10分)已知:如图,一次函数y kx b =+与反比例函数3y x=的图象有两个交点(1,)A m 和B ,过点A 作AD x ⊥轴,垂足为点D ;过点B 作BC y ⊥轴,垂足为点C ,且2BC =,连接CD .求m ,k ,b 的值;求四边形ABCD 的面积.25.(10分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.26.(12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AB ,DC 的延长线交于点E .(1)求证:AC 平分∠DAB ;(2)若BE=3,3。
广东省潮州市中考数学模拟试卷含答案解析
![广东省潮州市中考数学模拟试卷含答案解析](https://img.taocdn.com/s3/m/ab37c3305627a5e9856a561252d380eb629423da.png)
广东省潮州市中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列图形中,不是中心对称图形但是轴对称图形的是()A.B.C.D.2.图中三视图所对应的直观图是()A.B.C.D.3.某城市底已有绿化面积380公顷,经过两年绿化,绿化面积逐年增加,到底增加到480公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.380(1+x)2=480 B.380(1+2x)=480C.380(1+x)3=480 D.380+380(1+x)+380(1+x)2=4804.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A. =B. =C. =D. =6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm7.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2) B.(0,﹣2) C.(1,﹣3) D.(0,﹣4)8.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称9.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠510.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5二、填空题(本大题6小题,每小题4分,共24分)11.随机掷两枚硬币,落地后全部正面朝上的概率是.12.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是.13.若正六边形的边心距为,则这个正六边形的半径为.14.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为m.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.16.如图,⊙O的半径为2,OA=4,AB切⊙O于B,弦BC∥OA,连结AC,图中阴影部分的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:x2﹣6x+3=0.18.计算: +2﹣1+cos60°﹣3tan30°.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).将△ABC绕坐标原点O逆时针旋转90°,得到△A′B′C′,画出△A′B′C′.并计算点A 旋转经过的路径长度.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,某同学在楼房的A处测得荷塘的一端D处的俯角为60°,另一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知楼高AC=24米,求荷塘宽BD为多少米?21.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°①求∠ABD的度数;②已知OA=2,求BD的长.(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1)22.已知二次函数y=x2+bx+c的图象经过一次函数y=﹣3x+3的图象与x轴、y轴的交点.求这个二次函数解析式,并直接回答该函数有最值(最大值或最小值)为.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.24.(1)如图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D.求证:AB•AC=AD•AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.25.直线l:y=﹣2x+2m(m>0)与x,y轴分别交于A、B两点,点M是双曲线y=(x >0)上一点,分别连接MA、MB.(1)如图,当点A(,0)时,恰好AB=AM;∠M1AB=90°试求M1的坐标;(2)如图,当m=3时,直线l与双曲线交于C、D两点,分别连接OC、OD,试求△OCD面积;(3)如图,在双曲线上是否存在点M,使得以AB为直角边的△MAB与△AOB相似?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.广东省潮州市高级实验学校中考数学模拟试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列图形中,不是中心对称图形但是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选A.2.图中三视图所对应的直观图是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.3.某城市底已有绿化面积380公顷,经过两年绿化,绿化面积逐年增加,到底增加到480公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.380(1+x)2=480 B.380(1+2x)=480C.380(1+x)3=480 D.380+380(1+x)+380(1+x)2=480【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.【解答】解:设绿化面积平均每年的增长率为x,根据题意即可列出方程380(1+x)2=480.故选A.4.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.【解答】解:由图可得tan∠AOB=.故选B.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A. =B. =C. =D. =【考点】平行线分线段成比例.【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:∵AB∥CD∥EF,∴=.故选A.6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【考点】垂径定理;勾股定理.【分析】首先连接OA,由半径OC⊥AB,AB=6cm,根据垂径定理的即可求得AD的长,然后利用勾股定理即可求得半径的长,继而求得DC的长.【解答】解:连接OA,∵半径OC⊥AB,∴AD=BD=AB=×6=3(cm),∵OD=4cm,∴OA==5(cm),∴OC=OA=5cm,∴DC=OC﹣OD=5﹣4=1(cm).故选D.7.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2) B.(0,﹣2) C.(1,﹣3) D.(0,﹣4)【考点】二次函数的性质.【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣4的顶点坐标为(0,﹣4).故选D.8.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【考点】反比例函数的性质;轴对称图形;中心对称图形.【分析】把(1,1)代入得到左边≠右边;k=4>0,图象在第一、三象限;根据轴对称的定义沿X轴对折不重合;根据中心对称的定义得到两曲线关于原点对称;根据以上结论判断即可.【解答】解:A、把(1,1)代入得:左边≠右边,故A选项错误;B、k=4>0,图象在第一、三象限,故B选项错误;C、沿x轴对折不重合,故C选项错误;D、两曲线关于原点对称,故D选项正确;故选:D.9.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:a≥1且a≠5.故选C.10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【考点】相似三角形的判定与性质;勾股定理;平行四边形的性质.【分析】本题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2AG=4,所以△ABE的周长等于16,又由▱ABCD可得△CEF∽△BEA,相似比为1:2,所以△CEF的周长为8,因此选A.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.二、填空题(本大题6小题,每小题4分,共24分)11.随机掷两枚硬币,落地后全部正面朝上的概率是.【考点】列表法与树状图法.【分析】利用列举法,列举出出现的各种可能情况,根据概率公式即可求解.【解答】解:用列举法表示出各种可能:则共有4种情况,而全部正面朝上的只有一种,则概率是:.故答案是:.12.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是k>﹣3.【考点】反比例函数的性质.【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k+3>0,解可得k的取值范围.【解答】解:根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k+3>0,解得k>﹣3.故答案为k>﹣3.13.若正六边形的边心距为,则这个正六边形的半径为2.【考点】正多边形和圆.【分析】首先根据题意作出图形,由正六边形的性质,易得△BOC是等边三角形,然后由三角函数的性质,可求得OB的值,继而可求得答案.【解答】解:如图所示,连接OB、OC;∵此六边形是正六边形,∴∠BOC==60°,∵OB=OC,∴△BOC是等边三角形,∴∠OBC=60°,∵OH=,∴在Rt△OBH中,OB===2,∴OB=OC=BC=2,即这个正六边形的半径为2.故答案为:2.14.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为20m.【考点】相似三角形的应用.【分析】根据CD∥AB可得△CDE∽△BAE,再根据其相似比解答.【解答】解:∵CD∥AB,∴△ABE∽△DCE,∴CD:AB=DE:AE,∴5:AB=3:12,∴AB=20m.答:A、B两点间的距离为20m.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=5.【考点】解直角三角形.【分析】根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.【解答】解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt △ABC 中,∵tanB=, ∴AC=×=5.16.如图,⊙O 的半径为2,OA=4,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,图中阴影部分的面积为 .【考点】切线的性质;扇形面积的计算.【分析】首先连接OB ,OC ,由⊙O 的半径为2,OA=4,AB 切⊙O 于B ,易求得∠AOB=60°,又由弦BC ∥OA ,可得△BOC 是等边三角形,且S △ABC =S △OBC ,则可得S 阴影=S 扇形BOC ==.【解答】解:连接OB ,OC ,∵弦BC ∥OA ,∴S △ABC =S △OBC ,∵AB 切⊙O 于B ,∴OB ⊥AB ,∵⊙O 的半径为2,OA=4,∴sin ∠OAB===,∴∠OAB=30°,∴∠AOB=90°﹣∠OAB=60°,∵弦BC ∥OA ,∴∠OBC=∠AOB=60°,∵OB=OC ,∴△OBC 是等边三角形,∴∠BOC=60°, ∴S 阴影=S 扇形BOC ==.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:x2﹣6x+3=0.【考点】解一元二次方程-公式法.【分析】找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣6,c=3,∵△=b2﹣4ac=36﹣12=24,∴x==3±,则x1=3+,x2=3﹣.18.计算: +2﹣1+cos60°﹣3tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,第三、四项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2++﹣3×=2+1﹣=+1.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).将△ABC绕坐标原点O逆时针旋转90°,得到△A′B′C′,画出△A′B′C′.并计算点A 旋转经过的路径长度.【考点】作图-旋转变换.【分析】利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′,由于点A旋转经过的路径是以点O为圆心,OA为半径,圆心角为90°的弧,所以利用弧长公式可计算出点A旋转经过的路径长度.【解答】解:如图,△A′B′C′为所作;OA==,所以A旋转经过的路径长度==π.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,某同学在楼房的A处测得荷塘的一端D处的俯角为60°,另一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知楼高AC=24米,求荷塘宽BD为多少米?【考点】解直角三角形的应用-仰角俯角问题.【分析】由三角函数分别求出BC、CD,即可得出BD的长.【解答】解:由题意知:∠CAB=90°﹣30°=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,∴BC=AC•tan60°=24米,∵∠CAD=90°﹣60°=30°,∴CD=AC1tan30°=24×=8(米),∴BD=BC﹣CD=24﹣8=16(米);答:荷塘宽BD为16米.21.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°①求∠ABD的度数;②已知OA=2,求BD的长.(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1)【考点】圆周角定理;解直角三角形.【分析】①根据圆周角定理得到∠ADB=90°,∠A=∠C=40°,然后利用互余计算∠ABD;②在Rt△ABD中利用正弦的定义计算BD的长.【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠C=40°,∴∠ABD=90°﹣∠A=50°;②在Rt△ABD中,AB=2OA=4,∵sinA=,∴BD=4sin40°=4×0.64≈2.6.22.已知二次函数y=x2+bx+c的图象经过一次函数y=﹣3x+3的图象与x轴、y轴的交点.求这个二次函数解析式,并直接回答该函数有最小值(最大值或最小值)为﹣1.【考点】抛物线与x轴的交点.【分析】首先求得y=﹣3x+3与x轴、y轴的交点坐标,利用待定系数法求得二次函数的解析式,然后求得最值.【解答】解:在y=﹣3x+3中令x=0,则y=3,则y=﹣3x+3与y轴的交点是(0,3);在y=﹣3x+3中,令y=0,则﹣3x+3=0,解得x=1,则与x轴的交点是(1,0);根据题意得:,解得:,则二次函数的解析式是y=x2﹣4x+3=(x﹣2)2﹣1.则函数有最小值是﹣1.故答案是:小,﹣1.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.24.(1)如图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D.求证:AB•AC=AD•AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.【考点】相似三角形的判定与性质;圆心角、弧、弦的关系.【分析】(1)要证明AB•AC=AD•AE成立,只要能证得,要用AB=AC,结合圆,等弧对等角,观察本题无平行关系,首先考虑三角形的相似.连接CE,可证明△AEC∽△ACD,问题解决.(2)假设结论仍成立,考虑作辅助线,看是否有三角形相似,能说明与AB•AC=AD•AE 有关的成比例的线段关系.连接BE,可证得△AEB∽△ABD,进而可使问题解决.【解答】(1)证明:连接CE,∵AB=AC,∴,∴∠AEC=∠ACD;又∵∠EAC=∠DAC,∴△AEC∽△ACD,∴,即AC2=AD•AE;又∵AB=AC,∴AB•AC=AD•AE.(2)答:上述结论仍成立.证明:连接BE,∵AB=AC,∴,∴∠AEB=∠ABD;又∵∠EAB=∠DAB∴△AEB∽△ABD,∴,即AB2=AD•AE.又∵AB=AC,∴AB•AC=AD•AE.25.直线l:y=﹣2x+2m(m>0)与x,y轴分别交于A、B两点,点M是双曲线y=(x >0)上一点,分别连接MA、MB.(1)如图,当点A(,0)时,恰好AB=AM;∠M1AB=90°试求M1的坐标;(2)如图,当m=3时,直线l与双曲线交于C、D两点,分别连接OC、OD,试求△OCD面积;(3)如图,在双曲线上是否存在点M,使得以AB为直角边的△MAB与△AOB相似?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)把A的坐标代入直线的解析式即可求得m的值,然后证明△OAB≌△EMA,求得ME和AE的长,则M1的坐标即可求解;(2)解一次函数与反比例函数的解析式组成的方程组,即可求得C和D的坐标,作DF⊥y轴于点F,CG⊥y轴,根据S△OCD=S+S△OCG﹣S△ODF求解;梯形CDFG(3)需要分类讨论:以∠BAM和∠ABM为直角两种情况.以∠BAM为例进行解答:作MH⊥x轴于点H,根据△AOB∽△MAB求得AM的长,然后证明△AOB∽△MHA,根据相似三角形的性质求得AH和MH的长,进而求得M的坐标,然后判断M是否在反比例函数的图象上即可.【解答】解:(1)把A(,0)代入y=﹣2x+2m得:﹣ +2m=0,解得:m=.则直线的解析式是:y=﹣2x+,令x=0,解得y=,则B的坐标是(0,).作ME⊥x轴于点E.∵∠BAM=90°,∴∠BAO+∠MAE=90°,又∵直角△AEM中,∠AME+∠MAE=90°,∴∠BAO=∠AME.在△OAB和△EMA中,,∴△OAB≌△EMA(AAS),∴ME=OA=,AE=OB=.∴OE=OA+AE=2,则M1的坐标是(2,);(2)当m=3时,一次函数的解析式是y=﹣2x+6.解不等式组,解得:或,则D的坐标是(1,4),C的坐标是(2,2).作DF⊥y轴于点F,CG⊥y轴,则F和G的坐标分别是(0,4),(0,2).则S△OCG=S△ODF=×4=2,=(1+2)×(4﹣2)=3,S梯形CDFG+S△OCG﹣S△ODF=3;则S△OCD=S梯形CDFG(3)作MH⊥x轴于点H.则△AOB、△ABM、△BMH都是两直角边的比是1:2的直角三角形.①当∠BAM=∠BOA=90°时,OA=m,OB=2m,得:AM=AB=m,MH=OA=;从而得到点M的坐标为(2m, m).代入双曲线解析式为: =m,解得:m=2,则点M的坐标为(4,1);同理当∠BAM=∠OBA时,可求得点M的坐标为(,).②当∠ABM=90°时,过点M作MH⊥y轴于点H,则△AOB、△ABM、△AMH都是直角边的比是1:2的直角三角形;当∠AMB=∠OAB时,OB=m,OA=2m,得:AH=2OB=2m,MH=2OA=4m,从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m•4m=4,解得:m=,点M的坐标为(2,2);同理,当∠AMB=∠OBA时,点M的坐标为(,).综上所述,满足条件的点M的坐标是:(4,1),(,)或(2,2),(,).5月30日21 / 21。
2024年广东省潮州市中考数学模拟试卷+答案解析
![2024年广东省潮州市中考数学模拟试卷+答案解析](https://img.taocdn.com/s3/m/157e0468a4e9856a561252d380eb6294dd8822c1.png)
2024年广东省潮州市中考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形具有稳定性的是()A.菱形B.三角形C.正方形D.圆形2.点关于x轴对称的点的坐标为()A. B. C. D.3.计算的结果是()A.20B.C.14D.4.若三角形的三边长分别是4、9、a,则a的取值可能是()A.3B.4C.5D.65.分式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.分式可化简为()A. B.1 C. D.7.正方形是轴对称图形,它的对称轴共有()A.1条B.2条C.3条D.4条8.下列关于体育运动的图标是轴对称图形的为()A. B. C. D.9.下列计算正确的是()A. B. C. D.10.如图,在中,,,可直接利用“SSS”可以判定()A.≌B.≌C.≌D.≌11.方程的解为()A. B. C. D.12.如图,在中,分别以A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点D,E,连结DE,交BC于点若,的周长为10,则BC的长为()A.6B.7C.8D.9二、填空题:本题共4小题,每小题5分,共20分。
13.若是完全平方式,则数______.14.已知一个多边形的内角和为,则这个多边形是__________边形.15.把数用科学记数法表示为______.16.若,,则______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题8分因式分解:18.本小题8分如图1,在平面直角坐标系中,的顶点坐标分别为,,①请画出关于x轴对称的图形;②请写出点,的坐标:______,______.要在燃气管道m上建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方可使所用输气管道最短?请在图2中画出P点位置,保留作图痕迹,不用写作法.19.本小题8分如图,在中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得,连求证:;若,连接BE,BE平分,CA平分,求的度数.20.本小题8分某校从商场购进A、B两种品牌的营养早餐牛奶,购买A品牌牛奶花费了1500元,购买B品牌牛奶花费了1000元,且购买A品牌牛奶的数量是购买B品牌牛奶数量的2倍.已知购买一公斤B品牌牛奶比购买一公斤A品牌牛奶多花20元.问购买一公斤A品牌、一公斤B品牌的牛奶各需多少元?该校决定再次购进A、B两种品牌牛奶共20公斤,恰逢商场对两种品牌牛奶的售价进行调整,A品牌牛奶售价比第一次购买时提高了,B品牌牛奶按第一次购买时售价的9折出售.如果该校此次购买A、B两种品牌牛奶的总费用不超过1350元,那么该校此次最多可购买多少公斤B品牌牛奶?答案和解析1.【答案】B【解析】解:由题意可得,三角形具有稳定性,菱形,正方形,圆形不具有稳定性,故选:根据三角形具有稳定性直接判断即可得到答案.本题考查三角形的稳定性,关键是三角形性质的应用.2.【答案】A【解析】【分析】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.直接利用关于x轴对称点的性质分析得出答案.【解答】解:点关于x轴对称的点的坐标为:故选3.【答案】C【解析】解:原式,故选:C。
潮州市重点中学2021-2022学年中考数学全真模拟试卷含解析
![潮州市重点中学2021-2022学年中考数学全真模拟试卷含解析](https://img.taocdn.com/s3/m/75afa8c9250c844769eae009581b6bd97f19bcb4.png)
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c2.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.253.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )A.7 B.﹣7 C.1 D.﹣14.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5005.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A.36°B.45°C.72°D.90°6.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A .30°B .35°C .40°D .45°7.函数y =ax 2与y =﹣ax +b 的图象可能是( )A .B .C .D .8.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043nn ;③1014043n n ;④40m+10=43m+1,其中正确的是( ) A .①②B .②④C .②③D .③④9.下列计算中,正确的是( ) A .a •3a =4a 2 B .2a +3a =5a 2 C .(ab )3=a 3b 3D .7a 3÷14a 2=2a10.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( ) A .155B .14C .13D .15411.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A .B .C.D.12.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是()A.无法求出B.8 C.8πD.16π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果23ab=,那么b aa b-+=_____.14.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.15.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=1x的图象上.若点B在反比例函数y=kx的图象上,则k的值为_____.16.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=23.其中正确的结论是_____.(把正确结论的序号都填上)17.写出一个大于3且小于4的无理数:___________.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?20.(6分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=kx在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.21.(6分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b = ,m = ;求扇形统计图中扇形C 的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.22.(8分)解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①② 23.(8分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标. 24.(10分)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx ﹣32与x 轴交于点A (1,0)和点B (﹣3,0).绕点A 旋转的直线l :y =kx +b 1交抛物线于另一点D ,交y 轴于点C . (1)求抛物线的函数表达式;(2)当点D 在第二象限且满足CD =5AC 时,求直线l 的解析式;(3)在(2)的条件下,点E 为直线l 下方抛物线上的一点,直接写出△ACE 面积的最大值;(4)如图2,在抛物线的对称轴上有一点P ,其纵坐标为4,点Q 在抛物线上,当直线l 与y 轴的交点C 位于y 轴负半轴时,是否存在以点A ,D ,P ,Q 为顶点的平行四边形?若存在,请直接写出点D 的横坐标;若不存在,请说明理由.25.(10分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB (结果保留根号).26.(12分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°. (1)求证:CD ∥AB ; (2)填空:①当∠DAE = 时,四边形ADFP 是菱形; ②当∠DAE = 时,四边形BFDP 是正方形.27.(12分)在矩形ABCD 中,AD=2AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合,两直角边与AB ,BC 分别交于点M ,N ,求证:BM=CN .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.2、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112 333 +=.【点睛】掌握分类讨论的方法是本题解题的关键.3、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故选A.考点:代数式的求值;整体思想.4、A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 8、D 【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案. 解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确; 根据客车数列方程,应该为,②错误,③正确;所以正确的是③④. 故选D .考点:由实际问题抽象出一元一次方程. 9、C 【解析】根据同底数幂的运算法则进行判断即可. 【详解】解:A 、a•3a=3a 2,故原选项计算错误; B 、2a+3a=5a ,故原选项计算错误; C 、(ab )3=a 3b 3,故原选项计算正确; D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C . 【点睛】本题考点:同底数幂的混合运算.【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴22224115AC AB BC=-=-=,∴154ACsinBAB==,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.11、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系12、D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm . ∵圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)又∵直角△OBC 中,OB 2=OC 2+BC 2∴圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)=π•BC 2=16π.故选D .考点:1.垂径定理的应用;2.切线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、15【解析】 试题解析:2,3a b = 设a =2t ,b =3t ,321.235b a t t a b t t --∴==++ 故答案为:1.514、8【解析】如图,连接OC ,在在Rt △ACO 中,由tan ∠OAB=OC AC,求出AC 即可解决问题. 【详解】解:如图,连接OC .∵AB 是⊙O 切线,∴OC ⊥AB ,AC=BC ,在Rt △ACO 中,∵∠ACO=90°,OC=OD=2tan ∠OAB=OC AC , ∴122AC=, ∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.15、﹣2【解析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:BD OD OBOC AC OA===1,然后用待定系数法即可.【详解】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴BD OD OB OC AC OA==,∵OB=1OA,∴BD=1m,OD=1n.因为点A在反比例函数y=2x的图象上,∴mn=1.∵点B在反比例函数y=kx的图象上,∴B点的坐标是(-1n,1m).∴k=-1n•1m=-4mn=-2.故答案为-2.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.16、①②【解析】只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.【详解】∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠故答案为①②.【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17π等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数. 18、2【解析】设乘客所携带行李的重量x (kg )与运费y (元)之间的函数关系式为y=kx+b ,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x (kg )与运费y (元)之间的函数关系式为y=kx+b ,由题意,得3003090050k b k b =+⎧⎨=+⎩, 解得,30600k b =⎧⎨=-⎩, 则y=30x-1.当y=0时,30x-1=0,解得:x=2.故答案为:2.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根,所以把2x =代入上面的等式得()3221m +-=-1m =-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值.20、(1)反比例函数解析式为y=8x ;(2)C 点坐标为(2,1) 【解析】(1)由S △BOD =1可得BD 的长,从而可得D 的坐标,然后代入反比例函数解析式可求得k ,从而得解析式为y=8x; (2)由已知可确定A 点坐标,再由待定系数法求出直线AB 的解析式为y=2x ,然后解方程组82y x y x⎧=⎪⎨⎪=⎩即可得到C 点坐标.【详解】(1)∵∠ABO=90°,OB=1,S △BOD =1,∴OB×BD=1,解得BD=2,∴D (1,2)将D (1,2)代入y=k x, 得2=4k , ∴k=8,∴反比例函数解析式为y=8x; (2)∵∠ABO=90°,OB=1,AB=8,∴A 点坐标为(1,8),设直线OA 的解析式为y=kx ,把A (1,8)代入得1k=8,解得k=2,∴直线AB 的解析式为y=2x , 解方程组82y x y x⎧=⎪⎨⎪=⎩得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴C 点坐标为(2,1).21、50;28;8【解析】【分析】1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A 、B 、E 的人数即可求得a+b 的值;(2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°. 即扇形统计图中扇形C 的圆心角度数为144°;(3)1000×2850=560(人). 即每月零花钱的数额x 元在60≤x<120范围的人数为560人.【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.22、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式①,得x >﹣4,解不等式②,得x≤1,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤1.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.23、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)2+-或317(1,)2--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =, ∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛⎫+- ⎪ ⎪⎝⎭或3171,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.24、(1)y =12x 2+x ﹣32;(2)y =﹣x +1;(3)当x =﹣2时,最大值为94;(4)存在,点D 的横坐标为﹣3或7或﹣7.【解析】(1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即可求解;(2)OC ∥DF ,则1,5AC AO CD OF == 即可求解; (3)由S △ACE =S △AME ﹣S △CME 即可求解;(4)分当AP 为平行四边形的一条边、对角线两种情况,分别求解即可.【详解】(1)设二次函数的表达式为:y =a (x +3)(x ﹣1)=ax 2+2ax ﹣3a ,即:332a -=-,解得:12a =, 故函数的表达式为: 21322y x x =+-①; (2)过点D 作DF ⊥x 轴交于点F ,过点E 作y 轴的平行线交直线AD 于点M ,∵OC ∥DF ,∴1,5AC AO CD OF ==OF =5OA =5, 故点D 的坐标为(﹣5,6),将点A 、D 的坐标代入一次函数表达式:y =mx +n 得:650m n m n =-+⎧⎨=+⎩,解得:11.m n =-⎧⎨=⎩ 即直线AD 的表达式为:y =﹣x +1,(3)设点E 坐标为213,22x x x ⎛⎫+- ⎪⎝⎭, 则点M 坐标为(),1x x -+, 则221315122222EM x x x x x =-+--+=--+, ()211912244ACE AME CME S S S EM x ,=-=⨯⨯=-++ ∵104a =-<,故S △ACE 有最大值, 当x =﹣2时,最大值为94; (4)存在,理由:①当AP 为平行四边形的一条边时,如下图,设点D 的坐标为213,22t t t ⎛⎫+- ⎪⎝⎭, 将点A 向左平移2个单位、向上平移4个单位到达点P 的位置,同样把点D 左平移2个单位、向上平移4个单位到达点Q 的位置,则点Q 的坐标为215222t t t ⎛⎫-++ ⎪⎝⎭,, 将点Q 的坐标代入①式并解得:3t ;=- ②当AP 为平行四边形的对角线时,如下图,设点Q 坐标为213,22t t t ⎛⎫+- ⎪⎝⎭,点D 的坐标为(m ,n ), AP 中点的坐标为(0,2),该点也是DQ 的中点,则:20213222,2m t n t t +⎧=⎪⎪⎨++-⎪=⎪⎩ 即: 2111,22m t n t t =-⎧⎪⎨=--+⎪⎩将点D 坐标代入①式并解得:7m =±.故点D 的横坐标为:3-或7或7-.【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.25、6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB =x ,则AF =x -4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF =4tan30x -︒=BD , 同理,Rt △ABE 中,BE =tan60x ︒, ∵BD -BE =DE ,∴4tan30x -︒-tan60x ︒=3, 解得x =6+332. 答:树高AB 为(6+332)米 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键.26、(1)详见解析;(2)①67.5°;②90°.【解析】(1)要证明CD ∥AB ,只要证明∠ODF =∠AOD 即可,根据题目中的条件可以证明∠ODF =∠AOD ,从而可以解答本题;(2)①根据四边形ADFP 是菱形和菱形的性质,可以求得∠DAE 的度数;②根据四边形BFDP 是正方形,可以求得∠DAE 的度数.【详解】(1)证明:连接OD ,如图所示,∵射线DC 切⊙O 于点D ,∴OD ⊥CD ,即∠ODF =90°,∵∠AED =45°,∴∠AOD =2∠AED =90°,∴∠ODF =∠AOD ,∴CD ∥AB ;(2)①连接AF 与DP 交于点G ,如图所示,∵四边形ADFP 是菱形,∠AED =45°,OA =OD ,∴AF ⊥DP ,∠AOD =90°,∠DAG =∠PAG ,∴∠AGE =90°,∠DAO =45°,∴∠EAG =45°,∠DAG =∠PEG =22.5°,∴∠EAD =∠DAG +∠EAG =22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP 是正方形,∴BF =FD =DP =PB ,∠DPB =∠PBF =∠BFD =∠FDP =90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.27、证明见解析.【解析】试题分析:作EF BC ⊥于点F ,然后证明Rt AME ≌Rt FNE ,从而求出所AM FN =,所以BM 与CN 的长度相等.试题解析:在矩形ABCD 中,AD =2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB =AE =EF =FC ,90,90AEM DEN FEN DEN ∠+∠=∠+∠=,∴∠AEM =∠FEN ,在Rt △AME 和Rt △FNE 中,∵E 为AB 的中点,∴AB =CF ,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.。
广东省潮州市中考数学模拟考试试卷
![广东省潮州市中考数学模拟考试试卷](https://img.taocdn.com/s3/m/31f1fc2eaef8941ea66e05cb.png)
广东省潮州市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·罗平模拟) 一艘轮船满载排水量为38000吨,把数38000用科学记数法表示为()A . 3.8×103B . 38×103C . 3.8×104D . 3.8×1052. (2分) (2019八上·霍林郭勒月考) 下列各式不能用平方差公式计算的是()A .B .C .D .3. (2分)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于()A . 55°B . 60°C . 65°D . 70°4. (2分)利用因式分解简便计算57×99+44×99-99正确的是()A . 99×(57+44)=99×101=9999B . 99×(57+44-1)=99×100=9900C . 99×(57+44+1)=99×102=10096D . 99×(57+44-99)=99×2=1985. (2分)(2018·兴化模拟) 下列计算错误的是()A .B .C .D .6. (2分)如图,直角三角板ABC的斜边AB=12㎝,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点落在原三角板ABC的斜边AB上,则三角板平移的距离为()A . 6㎝B . 4㎝C . (6-)㎝D . (-6)㎝7. (2分)(2019·越城模拟) 某运动鞋经销商到某校三(2)班抽样选取9位学生,分别对他们的鞋码进行了查询,记录下的数据是:24,22,21,24,23,20,24,23,24.经销商对这组数据最感兴趣的是()A . 中位数B . 众数C . 平均数D . 方差8. (2分) (2019八下·番禺期末) 如图,E , F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G ,则△GEF的周长为()A . 9B . 12C . 9D . 189. (2分)将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A . 3B . 9C . 12D . 1810. (2分)(2019·乌鲁木齐模拟) 某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A . 每天比原计划多铺设10米,结果延期20天完成B . 每天比原计划少铺设10米,结果延期20天完成C . 每天比原计划多铺设10米,结果提前20天完成D . 每天比原计划少铺设10米,结果提前20天完成二、填空题 (共5题;共5分)11. (1分) (2016七下·随县期末) 已知y=1+ + ,则2x+3y的平方根为________.12. (1分) (2019八上·扬州月考) 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D、E,连接AD、若△ABD的周长C=16cm、AB=5cm,则线段BC的长度等于________cm13. (1分)(2020·新泰模拟) 如图,在矩形纸片中,将沿翻折,使点落在上的点处,为折痕,连接;再将沿翻折,使点恰好落在上的点处,为折痕,连接并延长交于点,若,,则线段的长等于________.14. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.15. (1分)(2019·上海) 在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是________.三、计算 (共1题;共10分)16. (10分) (2017八下·定安期末) ①计算:②解方程:.四、综合题 (共6题;共55分)17. (7分) (2019九上·道外期末) 某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任宁老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是多少,并将条形统计图补充完整;(2)宁老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这组学生中任意挑选两名担任活动记录员,那么恰好选1名男生和1名女生担任活动记录员的概率;(3)若学校学生总人数为2000人,根据八年级(3)班的情况,估计全校报名军事竞技的学生有多少人?18. (2分) (2020八上·淮安期末) 分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边上找一点,使到和的距离相等;(2)在射线上找一点,使 .19. (15分)为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.(1)求这批赈灾物资运往甲、乙两县的数量各是多少吨?(2)若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:A地B地C地运往甲县的费用(元/吨)220200200运往乙县的费用(元/吨)250220210为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?20. (10分) (2017九上·乐清月考) 如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x-与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a ,始终满足MN·M K=a ,如果存在,请求出a的值;如果不存在,请说明理由.21. (11分) (2017七下·昌平期末) 请你根据右框内所给的内容,完成下列各小题.(1)若m⊕n=1,m⊕2n=-2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(-8)>0,求m的取值范围.22. (10分)(2017·临海模拟) 如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y= x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y= x2+bx+c 交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、计算 (共1题;共10分)16-1、四、综合题 (共6题;共55分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、。
广东省潮州市九年级数学中考模拟试卷
![广东省潮州市九年级数学中考模拟试卷](https://img.taocdn.com/s3/m/38c5273d81c758f5f61f67e2.png)
广东省潮州市九年级数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)利用分配律可以得到﹣2×6+3×6=(﹣2+3)×6=6,如果用a表示任意的一个数,那么用分配律可以得到﹣2a+3a等于什么()A . 1B . aC . -aD . 5a2. (2分) (2018九上·哈尔滨月考) 下列各几何体中,主视图是圆的是()A .B .C .D .3. (2分) (2017七下·邗江期中) 下列计算中正确的是()A . a4+a2=a6B . (a﹣b)2=a2﹣b2C . a6÷a3=a3D . (﹣a3)2=﹣a64. (2分) (2019八上·锦江期中) 若式子有意义,则x的取值范围是()A . x≤2B . x≥1C . x≥2D . 1≤x≤25. (2分)(2020九上·湛江开学考) 一个零件的形状如图所示,,则的度数是()A . 70°B . 80°C . 90°D . 100°6. (2分)计算:552﹣152=()A . 40B . 1600C . 2400D . 28007. (2分) (2017九上·西城期中) 如图,⊙O的直径AB垂直于弦CD,垂足为E.若∠B=60°,AC=3,则CD 的长为()A . 6B . 2C .D . 38. (2分)(2019·秀洲模拟) 某电动车厂2018年第三、四季度各月产量情况如图所示。
某电动车厂2018年第三、四季则下列说法错误的是()A . 7月份产量为300辆B . 从10月到11月的月产量增长最快C . 从11月到12月的月产量减少了20%D . 第四季度比第三季度的产量增加了70%9. (2分)已知a-b = -2,则代数式3 (a-b)2 -b+a的值为()A . -12B . -10C . 10D . 1210. (2分)(2019·鄂尔多斯) 在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从两地同时出发,相向而行.快车到达地后,停留3秒卸货,然后原路返回地,慢车到达地即停运休息,如图表示的是两车之间的距离(米)与行驶时间(秒)的函数图象,根据图象信息,计算的值分别为()A . 39,26B . 39,26.4C . 38,26D . 38,26.4二、填空题 (共4题;共4分)11. (1分)(2016·六盘水) 由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为________.12. (1分)(2020·黔东南州) 如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为________.13. (1分)如果记f(x)=1﹣,并且f(2)表示当x=2时的值,即f(2)=1﹣, f(3)表示,当x=3时的值即f(3)=1﹣…则f(2)×f(3)×f(4)×…×f(50)=________14. (1分)(2019·海曙模拟) 如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=________.三、解答题 (共9题;共76分)15. (5分) (2020·阳新模拟) 先化简,再从-2,-1,0,1,2中选取一个合适的数作为x的值代入求值.16. (10分)观察下列各式及其验算过程:=2 ,验证: = = =2 ;=3 ,验证: = = =3(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.17. (10分) (2019八下·永寿期末) 如图,在平面直角坐标系中,△ABC的三个顶点位于格点上,点M(m ,n)是△ABC内部的任意一点,请按要求完成下面的问题(1)将△ABC向右平移8个单位长度,得到△A1B1C1 ,请直接画出△A1B1C1;(2)将△ABC以原点为中心旋转180°,得到△A2B2C2 ,请直接画出△A2B2C2 ,并写出点M的对应点M’的坐标.18. (5分)(2017·西乡塘模拟) 张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)19. (10分)根据题意列出方程组(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长.(2)将若干只鸡放人若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼?20. (10分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;(2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率(2)求乙取胜的概率.(请用“画树状图”或“列表”等方法写出分析过程);21. (10分) (2017九上·凉山期末) 已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.22. (10分) (2020九上·温州开学考) 如图,抛物线与x轴交于点A(﹣1,0)与点B(3,0),与y轴交于点C(0,3),P为抛物线上的点.(1)求该抛物线的函数解析式.(2)若△PAB的面积为,求P点的坐标.23. (6分) (2018七上·襄州期末) 如图,BD是△ABC的角平分线,DE⊥AB,DF⊥BC垂足分别为E、F.(1)求证:BE=BF;(2)若△ABC的面积为70,AB=16,DE=5,则BC=________.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共76分)15-1、16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。
广东省潮州市2019-2020学年中考数学模拟试题(3)含解析
![广东省潮州市2019-2020学年中考数学模拟试题(3)含解析](https://img.taocdn.com/s3/m/3c0717e927d3240c8447effa.png)
广东省潮州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的不等式组255 332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围()A.1162a-<-„B.116a2-<<-C.1162a-<-„D.1162a--剟2.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90°D.四边形AFCE 是矩形3.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同4.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是( )A.B.C.D.5.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A .赚了10元B .赔了10元C .赚了50元D .不赔不赚6.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A .70°B .65°C .50°D .25°7.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 8.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52bD .a =3b9.计算23(1)x -﹣23(1)x x -的结果为( ) A .31x - B .31x - C .23(1)x - D .23(1)x - 10.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 11.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =3212.12的倒数是()A.﹣12B.2 C.﹣2 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).14.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.16.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.18.6_____,倒数是_____,绝对值是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy 中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B 两(点A在点 B 左侧).(1)当抛物线过原点时,求实数 a 的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当AB≤4 时,求实数 a 的取值范围.20.(6分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=12,⊙O的半径为3,求OA的长.21.(6分)计算:(1-n)0-|3-23|+(-13)-1+4cos30°.22.(8分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.23.(8分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.24.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.25.(10分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?26.(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.27.(12分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可.【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15,1162a ∴-<-… 故选:A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.2.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B ,EF=2OC ,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD 是△ABC 的外角,∴∠ACD=∠BAC+∠B ,∵CE 平分∠DCA ,∴∠ACD=2∠ACE ,∴2∠ACE=∠BAC+∠B ,故A 选项正确;∵EF ∥BC ,CF 平分∠BCA ,∴∠BCF=∠CFE ,∠BCF=∠ACF ,∴∠ACF=∠EFC ,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.3.B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.考点:由三视图判断几何体;简单组合体的三视图.4.A【解析】【分析】【详解】解:分析题中所给函数图像,O E-段,AP随x的增大而增大,长度与点P的运动时间成正比.E F-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,F G-段,AP逐渐减小直至为0,排除B选项.故选A.【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.5.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.C【解析】【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故选:C.【点睛】此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.7.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件;()P A 1=②为必然事件;()0P A 1③<<为随机事件.8.B【解析】【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a+b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解.【详解】由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,S 1=(a+b )2-S 2=2ab-b 2,∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2),∴a 2﹣4ab+4b 2=0,即(a ﹣2b )2=0,∴a =2b ,故选B .【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.9.A【解析】【分析】根据分式的运算法则即可【详解】解:原式=23(1)3(1)1x x x-=--,本题主要考查分式的运算。
广东省潮州市中考数学模拟试卷
![广东省潮州市中考数学模拟试卷](https://img.taocdn.com/s3/m/4ea505f7dd36a32d737581f4.png)
广东省潮州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -14的倒数是()A . 14B . -14C .D . -2. (2分) (2019八下·平顶山期末) 下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是()A .B .C .D .3. (2分)数据2,﹣1,0,﹣3,﹣2,3,1的方差为()A . 4B . 2C . 3D . 14. (2分) (2019八上·松桃期中) 把分式方程 +2=化为整式方程,正确的是()A . x+2=1B . x+2(x﹣2)=1C . x+2(x﹣2)=﹣1D . x+2=﹣15. (2分)若不等式组有解,则m的取值范围是()A . m<2B . m≥2C . m<1D . 1≤m<26. (2分) (2016九上·婺城期末) 四边形的内角和为()A . 90°B . 180°C . 360°D . 720°7. (2分)(2020·铜仁模拟) 下列方程中,没有实数根的方程是()A .B .C .D .8. (2分)火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a,b,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头长)至少应为()A . a+3b+2cB . 2a+4b+6cC . 4a+10b+4cD . 6a+6b+8c9. (2分)(2020·泸县模拟) 如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2 ,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A . (30+5 )πm2B . 40πm2C . (30+5 )πm2D . 55πm210. (2分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点,过点P作平行于y轴的直线PM,交线段BC于M,当△PCM是以PM为腰的等腰三角形时,点P的坐标是()A . (2,-3)或( +1,-2)B . (2,-3)或(,-1-2 )C . (2,-3)或(,1-2 )D . (2,-3)或(3- ,2-4 )二、填空题 (共8题;共8分)11. (1分)(2017·江汉模拟) 分解因式:x2+3x(x﹣3)﹣9=________.12. (1分)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为________ .13. (1分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________ .14. (1分)如图,从楼AB的A处测得对面楼CD的顶部C的仰角为37°,底部D的俯角为45°,两楼的水平距离BD为24m,那么楼CD的高度约为________m.(结果精确到1m,参考数据:sin37°≈0.6;cos37°≈0.8;tan37°≈0.75)15. (1分) (2018八下·乐清期末) 如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC 于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.16. (1分)(2016·新疆) 对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是________.17. (1分) (2019八上·建湖月考) 一直角三角形两边分别为5,12,则这个直角三角形第三边的长________.18. (1分) (2019九上·邯郸开学考) 如图,两条抛物线,与分别经过点,且平行于y轴的两条平行线围成的阴影部分的面积为________ .三、解答题 (共8题;共69分)19. (10分) (2020七下·嘉兴期中)(1)计算:(2)求式中的值:20. (5分)(2016·西城模拟) 先化简,再求值:÷(﹣),其中x= ﹣1.21. (10分)如图将圆分成A.B.C.三个扇形,且半径为3cm.(1)求扇形C的面积.(2)求扇形A和B圆心角的度数.22. (5分)(2012·辽阳) 某工程队(有甲、乙两组)承接了世界园艺博览会的一项小型工程任务,这项任务规定在若干天内完成.已知甲组单独完成这项工程所需时间比规定时间多20天,乙组单独完成这项工程所需时间比规定时间多10天.如果甲、乙两组先合作15天,剩下的由甲单独做,则正好如期完成,那么规定的时间是多少天?(列方程解应用题)23. (5分) (2017八下·宝坻期中) 如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.24. (5分) (2016九上·蓬江期末) 如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)25. (12分) (2016九上·盐城期末) 如图,二次函数y= +bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1) b=________;点D的坐标:________;(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED 与正方形ABCD重叠部分的面积;若不存在,请说明理由.26. (17分)(2019·高新模拟) 如图,在矩形ABCD中,AB=6 ,BC=3 动点P从点A出发,沿AC 以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB或BC于点E,交AD或DC 于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.(1)①AC=________.②当点F在AD上时,用含t的代数式直接表示线段PF的长________.(2)当点F与点D重合时,求t的值.(3)设方形EFGH的周长为l,求l与t之间的函数关系式.(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共69分)19-1、19-2、20-1、21-1、21-2、22-1、23-1、24-1、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。
广东省潮州市2019-2020学年第四次中考模拟考试数学试卷含解析
![广东省潮州市2019-2020学年第四次中考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/cfda493a8e9951e79b8927f0.png)
广东省潮州市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 2.如图所示的几何体的主视图是( )A .B .C .D .3.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是( ). A .m >-1且m≠0 B .m <1且m≠0 C .m <-1 D .m >14.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )A .12B .13C .310D .155.在△ABC 中,∠C =90°,1cos 2A =,那么∠B 的度数为( ) A .60° B .45° C .30° D .30°或60°6.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .7.如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠B =58°,则∠OAC 的度数是( )A .32°B .30°C .38°D .58°8.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )A .极差是20B .中位数是91C .众数是1D .平均数是9110.-sin60°的倒数为( )A .-2B .12C .-33D .-23311.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补12.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x 人合买,这件物品y 元,则根据题意列出的二元一次方程组为( )A .8374x y x y =-⎧⎨=+⎩B .8+473x y x y =⎧⎨=-⎩C .3+847x y x y =⎧⎨=-⎩D .8+374x y x y =⎧⎨=-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:(x 2﹣2x)2﹣(2x ﹣x 2)=______.14.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为___.15518x <<x 的值是_____.16.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.17.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.18.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=13CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?20.(6分)如图,平面直角坐标系中,直线y 2x 2=+与x 轴,y 轴分别交于A ,B 两点,与反比例函数k y (x 0)x=>的图象交于点()M a,4. ()1求反比例函数k y (x 0)x=>的表达式; ()2若点C 在反比例函数k y (x 0)x =>的图象上,点D 在x 轴上,当四边形ABCD 是平行四边形时,求点D 的坐标.21.(6分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.22.(8分)已知抛物线y=x 2+bx+c (b ,c 是常数)与x 轴相交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)当A (﹣1,0),C (0,﹣3)时,求抛物线的解析式和顶点坐标;(2)P (m ,t )为抛物线上的一个动点.①当点P 关于原点的对称点P′落在直线BC 上时,求m 的值;223.(8分)如图,圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点.求证:PE ⊥PF .24.(10分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD ∽矩形A′B′C′D′,它们各自对角线的交点重合于点O ,连接AA′,CC′.请你帮他们解决下列问题: 观察发现:(1)如图1,若A′B′∥AB ,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD 保持不动,矩形A′B′C′D′绕点O 逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O 旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.25.(10分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则sinB=AD c,sinC=AD b ,即AD =csinB ,AD =bsinC ,于是csinB =bsinC ,即sin sin b c B C =,同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,6≈2.449)26.(12分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.27.(12分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】解:∵一次函数y=(m+1)x+m 的图象过第一、三、四象限,∴m+1>0,m <0,即-1<m <0, ∴函数221()24m y mx mx m x =-=--有最大值, ∴最大值为4m -, 故选B .2.C【解析】【分析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C .【点睛】考核知识点:组合体的三视图.3.A【解析】【详解】∵一元二次方程mx 2+2x -1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m >﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)根的判别式:(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.4.D【解析】【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.5.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A ,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.6.B【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a->0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .7.A【解析】【分析】根据∠B =58°得出∠AOC=116°,半径相等,得出OC=OA ,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.【详解】解:∵∠B =58°, ∴∠AOC=116°,∵OA=OC ,∴∠C=∠OAC=32°,故选:A .【点睛】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.8.A【解析】【分析】 根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩,9.D【解析】【分析】【详解】试题分析:因为极差为:1﹣78=20,所以A 选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B 选项正确;因为1出现了两次,最多,所以众数是1,所以C 选项正确; 因为9178988598905x ++++==,所以D 选项错误. 故选D .考点:①众数②中位数③平均数④极差.10.D【解析】分析:sin 602-︒=-根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:sin 60-︒=1,⎛⎛⨯= ⎝⎭⎝⎭Q的倒数是3-. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.11.C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C .考点:角的度量.12.D【解析】【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.由题意可得:8+3 74x yx y=⎧⎨=-⎩,故选D.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x(x﹣2)(x﹣1)2【解析】【分析】先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.【详解】解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2故答案为x(x﹣2)(x﹣1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.14.25﹣2【解析】【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=25,从而得到CE的最小值为25﹣2.【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=2,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E 在以AB 为直径的O 上,∵O 的半径为2,∴当点O 、E. C 共线时,CE 最小,如图2在Rt △AOC 中,∵OA=2,AC=4,∴2225AC OA =+∴52,即线段CE 长度的最小值为5﹣2.故答案为5 2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质. 15.3,1【解析】【分析】直接得出253,1185,进而得出答案.【详解】解:∵253,1185, 518x <<x 的值是:3,1.故答案为:3,1.【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.16.1【解析】【分析】根据题意和二次函数的性质可以求得线段AB 的长度,从而可以求得正方形ABCD 的周长.【详解】∵在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣32,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.17.22°【解析】【分析】由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.【详解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为22°【点睛】本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.18.1.【解析】【分析】根据三角形的性质求解即可。
广东省潮州市2019-2020学年中考数学考前模拟卷(4)含解析
![广东省潮州市2019-2020学年中考数学考前模拟卷(4)含解析](https://img.taocdn.com/s3/m/cef91f8ede80d4d8d05a4f30.png)
广东省潮州市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+312.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC =∠ADC ,∠BAD =∠BCDB .AB =BCC .AB =CD ,AD =BC D .∠DAB+∠BCD =180°3.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则4.如图,将Rt ABC △绕直角顶点C 顺时针旋转90o ,得到A B C ''V ,连接'A A ,若120︒∠=,则B Ð的度数是( )A .70︒B .65︒C .60︒D .55︒5.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A.40°B.60°C.80°D.100°6.﹣3的绝对值是()A.﹣3 B.3 C.-13D.137.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个B.2个C.3个D.4个8.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.169.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.610.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人11.-5的相反数是()A.5 B.15C5D.1512.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5 则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在反比例函数2yx图象的每一支上,y随x的增大而______(用“增大”或“减小”填空).14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PAB S△PBC S△PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B 恰好与AC上的点B1重合,则AC=_____cm.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)17.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(13),则点C的坐标为_____.18.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tanA=34,求FD的长.20.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)21.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?22.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹. 已知:如图,线段a ,h .求作:△ABC ,使AB=AC ,且∠BAC=∠α,高AD=h .23.(8分)如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的倾斜角∠BAH =30°,AB =20米,AB =30米.(1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.24.(10分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.25.(10分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.26.(12分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?27.(12分)如图,在Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边AC于点D,延长BD 至点E,且BD=2DE,连接AE.(1)求线段CD 的长;(2)求△ADE 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 2.D 【解析】 【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断. 【详解】 解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则 AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D . 【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”. 3.B 【解析】试题分析:根据反比例函数y=的性质,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大,即可作出判断. 试题解析:A 、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B 、在每个象限内y 随x 的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质4.B【解析】【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.5.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键. 6.B 【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-1|=1. 故选B . 【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 7.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.8.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.9.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.10.C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:1x(x-1)=55,2化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 11.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5. 故选A.12.A【解析】【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.减小【解析】【分析】根据反比例函数的性质,依据比例系数k的符号即可确定.【详解】∵k=2>0,∴y随x的增大而减小.故答案是:减小.【点睛】本题考查了反比例函数的性质,反比例函数y=kx(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.14.17;答案见解析.【解析】【详解】(1)AB=2214=17.故答案为17.(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△PAC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.15.4【解析】【详解】∵AB=2cm,AB=AB1,∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.16.(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A 13(6,1),∴点A 4n+1(2n ,1).17.(﹣3,1)【解析】如图作AF ⊥x 轴于F ,CE ⊥x 轴于E .∵四边形ABCD 是正方形,∴OA=OC ,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF ,在△COE 和△OAF 中,90CEO AFO COE OAF OC OA ⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAF ,∴CE=OF ,OE=AF ,∵A (1,3),∴CE=OF=1,OE=AF=3,∴点C 坐标(﹣3,1),故答案为(3-,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.18.18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°. 考点:圆锥的展开图三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)5【解析】【分析】(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG•FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=5.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.20.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=221.6 1.2求出即可;(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
广东省潮州市2019-2020学年第二次中考模拟考试数学试卷含解析
![广东省潮州市2019-2020学年第二次中考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/9ea3d1186bec0975f565e26a.png)
广东省潮州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm52.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a 的取值范围是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<03.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1124.﹣12的绝对值是()A.﹣12B.12C.﹣2 D.25.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是()A.B.C.D.6.若x是2的相反数,|y|=3,则12y x的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或47.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对8.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.69.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.10.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤11.- 14的绝对值是()A.-4 B.14C.4 D.0.412.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.14.因式分解:3222x x y xy +=﹣__________.15.若a ﹣3有平方根,则实数a 的取值范围是_____. 16.因式分解:x 2﹣4= .17.如图,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB =__________.18.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?20.(6分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.21.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长. (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.24.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.25.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.26.(12分)如图,AB 是O e 的直径,C 是圆上一点,弦CD AB ⊥于点E ,且DC AD =.过点A 作O e 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1)求证:FG 与O e 相切; (2)连接EF ,求tan EFC ∠的值.27.(12分)为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形, ∴CO=12AC=3,BO=12BD=,AO ⊥BO , ∴2222BC CO BO 345+=+=. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形, ∴BC·AE=24,即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分. 2.B 【解析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a +=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a+=+,由判别式得出a 的取值范围.11<x ,22x >,∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-. ②由①②得0<<3a . 故选B . 3.C 【解析】 【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】 解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126=. 故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键. 4.B 【解析】【分析】根据求绝对值的法则,直接计算即可解答.【详解】111()222-=--=,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.5.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.6.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.7.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.8.C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.9.D【解析】【分析】根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.A【解析】【分析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴1,2bx a=-= ∴2a+b=2;故正确; ③∵2a+b=2, ∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2, ∴a ﹣(﹣2a )+c=3a+c <2,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.⑤如图,当﹣1<x <3时,y 不只是大于2. 故错误. 故选A . 【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项 系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴 左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛 物线与y 轴交点,抛物线与y 轴交于(2,c ). 11.B 【解析】 【分析】直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B . 【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键. 12.C 【解析】 【分析】 【详解】作点D 关于x 轴的对称点D′,连接CD′交x 轴于点P ,此时PC+PD 值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.21 4【解析】【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=52,mn=12,∴m2+n2=(m+n)2-2mn=(52)2-2×12=214,故答案为:214.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211+x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 14.()2x x y - 【解析】 【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解. 【详解】解:原式()()2222x x xy y x x y =-+=-,故答案为:()2x x y - 【点睛】本题考查提公因式,熟练掌握运算法则是解题关键. 15.a≥1. 【解析】 【分析】根据平方根的定义列出不等式计算即可. 【详解】根据题意,得30.a -≥ 解得: 3.a ≥ 故答案为 3.a ≥ 【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 16.(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x 2﹣4=(x+2)(x ﹣2). 考点:因式分解-运用公式法 17.75 【解析】因为△AEF 是等边三角形,所以∠EAF=60°,AE=AF ,因为四边形ABCD 是正方形,所以AB=AD ,∠B=∠D=∠BAD=90°. 所以Rt △ABE ≌Rt △ADF (HL ),所以∠BAE=∠DAF. 所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°, 所以∠BAE=15°,所以∠AEB=90°-15°=75°. 故答案为75.18.1 【解析】【详解】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论. 20.()212a -,1【解析】 【分析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可. 【详解】 解:原式=[()212a a --﹣()22a a a +-]4aa-÷ =()2442a a aa a -⋅-- =()212a -,∵不等式组的解为32<a <5,其整数解是2,3,4, a 不能等于0,2,4, ∴a =3, 当a =3时,原式=()2132-=1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键. 21.1.8米 【解析】 【分析】设PA=PN=x ,Rt △APM 中求得MP =1.6x, 在Rt △BPM 中tan MPMBP BP∠=,解得x=3,MN=MP-NP=0.6x=1.8. 【详解】在Rt △APN 中,∠NAP=45°, ∴PA=PN,在Rt △APM 中,tan MPMAP AP∠=, 设PA=PN=x , ∵∠MAP=58°,∴tan MP AP MAP =⋅∠=1.6x, 在Rt △BPM 中,tan MPMBP BP∠=, ∵∠MBP=31°,AB=5, ∴ 1.60.65xx=+, ∴ x=3,∴MN=MP-NP=0.6x=1.8(米), 答:广告牌的宽MN 的长为1.8米. 【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键. 22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】 解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为 ①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.(1)见解析;(2)tan∠DBC=12.【解析】【分析】(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到¼¼AD DC=,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴¼¼AD DC=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE225-34,∴tan∠DAE=2142 DEAE==,∵∠DAC=∠DBC,∴tan∠DBC=12.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.24.(1)答案见解析;(2)1 3 .【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人),八年级获一等奖人数:4×14=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.25.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数; (2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率. 【详解】(1)∵喜欢散文的有11人,频率为1.25, ∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种, ∴P (丙和乙)=212=16. 26.(1)见解析;(23【解析】 【分析】(1)连接OC ,AC ,易证ACD ∆为等边三角形,可得60CDA DCA DAC ∠=∠=∠=o ,由等腰三角形的性质及角的和差关系可得∠1=30°,由于FG DA P 可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得FG 与O e 相切;(2)作EH FG ⊥于点H .设CE a =,则DE a =,2AD a =.根据两组对边互相平行可证明四边形AFCD 为平行四边形,由DC AD =可证四边形AFCD 为菱形,由(1)得60DCG ∠=o ,从而可求出EH 、CH 的值,从而可知FH 的长度,利用锐角三角函数的定义即可求出tan EFC ∠的值. 【详解】(1)连接OC ,AC .∵AB 是O e 的直径,弦CD AB ⊥于点E , ∴CE DE =,AD AC =.∵DC AD =, ∴DC AD AC ==. ∴ACD ∆为等边三角形.∴60CDA DCA DAC ∠=∠=∠=o ,∠DAE=∠EAC=30°,∵OA=OC ,∴∠OAC=∠OCA=30°, ∴∠1=∠DCA-∠OCA=30°, ∵FG DA P ,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°, ∴FG OC ⊥. ∴FG 与O e 相切.(2)连接EF ,作EH FG ⊥于点H . 设CE a =,则DE a =,2AD a =. ∵AF 与O e 相切, ∴AF AG ⊥. 又∵DC AG ⊥, ∴//AF DC . 又∵FG DA P ,∴四边形AFCD 为平行四边形. ∵DC AD =,∴四边形AFCD 为菱形.∴2AF FC AD a ===,60AFC CDA ∠=∠=o . 由(1)得60DCG ∠=o , ∴3sin 60EH CE =⋅=o ,1cos602CH CE a =⋅=o.∴52FH CH CF a =+=. ∵在Rt EFH ∆中,90EHF ∠=o ,∴332tan 552EH EFC FH a ∠===.【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.27.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。
广东省潮州市2019-2020学年中考数学考前模拟卷(5)含解析
![广东省潮州市2019-2020学年中考数学考前模拟卷(5)含解析](https://img.taocdn.com/s3/m/8f66cc97a8114431b90dd8fd.png)
广东省潮州市2019-2020学年中考数学考前模拟卷(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是( )A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2D.(a+b)2=a2+a22.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.123.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=44.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒5.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.6.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 7.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0)B .(2,0)C .(52,0)D .(3,0)8.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )A .20°B .35°C .15°D .45°9.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )A .B .C .D .10.如图是某零件的示意图,它的俯视图是( )A .B .C .D .11.一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .x >1B .x≥1C .x >3D .x≥312.如图,是反比例函数4y (x 0)x =>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.14.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .15.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.16.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与»BC相交于点D .若»»13CD BD =,则∠B =________°.17.分解因式:32a 4ab -= .18.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n 个图案是由 个组成的.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF .判断AF 与⊙O 的位置关系并说明理由;若⊙O 的半径为4,AF=3,求AC 的长.20.(6分)如图,在平面直角坐标系中有Rt △ABC ,∠A=90°,AB=AC ,A (﹣2,0),B (0,1). (1)求点C 的坐标;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.21.(6分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?22.(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.23.(8分)先化简,再求值,221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭,其中x=1. 24.(10分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数m y x= 的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.25.(10分)如图,AB 为⊙O 的直径,D 为⊙O 上一点,以AD 为斜边作△ADC ,使∠C=90°,∠CAD=∠DAB 求证:DC 是⊙O 的切线;若AB=9,AD=6,求DC 的长.26.(12分)一道选择题有,,,A B C D 四个选项.(1)若正确答案是A ,从中任意选出一项,求选中的恰好是正确答案A 的概率;(2)若正确答案是,A B ,从中任意选择两项,求选中的恰好是正确答案,A B 的概率.27.(12分)在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点B 的坐标为(0,4),BC 平分∠ABO 交x 轴于点C (2,0).点P 是线段AB 上一个动点(点P 不与点A ,B 重合),过点P 作AB 的垂线分别与x 轴交于点D ,与y 轴交于点E ,DF 平分∠PDO 交y 轴于点F .设点D 的横坐标为t .(1)如图1,当0<t <2时,求证:DF ∥CB ;(2)当t <0时,在图2中补全图形,判断直线DF 与CB 的位置关系,并证明你的结论;(3)若点M 的坐标为(4,-1),在点P 运动的过程中,当△MCE 的面积等于△BCO 面积的58倍时,直接写出此时点E 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】利用完全平方公式及平方差公式计算即可.【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B.【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.2.D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF AB=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出GF GDAE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.3.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 4.B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.6.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+1.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.7.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.8.A【解析】【分析】根据∠ABD=35°就可以求出»AD的度数,再根据»180BD︒=,可以求出»AB,因此就可以求得ABC∠的度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.9.B【解析】【分析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.【详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B 中的图形符合题意,故选B .【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.10.C【解析】【分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.11.C【解析】试题解析:一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x >1.故选C .考点:在数轴上表示不等式的解集.12.A【解析】【分析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线2y (x 2)2=---向上平移5个单位后形成的图象.【详解】 解:如图,反比例函数4y (x 0)x=>图象与坐标轴围成的区域内(不包括边界)的整数点个数是5个,即k 5=,∴抛物线2y (x 2)2=---向上平移5个单位后可得:2y (x 2)3=--+,即2y x 4x 1=-+-, ∴形成的图象是A 选项.故选A .【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k 的值,利用二次函数图象的平移规律进行解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题解析:设俯视图的正方形的边长为a . ∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22, ∴(2222a a +=, 解得24a =,∴这个长方体的体积为4×3=1.14.1×10﹣1【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:10nm 用科学记数法可表示为1×10-1m , 故答案为1×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.16.18°【解析】【分析】由折叠的性质可得∠ABC=∠CBD ,根据在同圆和等圆中,相等的圆周角所对的弧相等可得»»=AC CD,再由»»13CD BD =和半圆的弧度为180°可得 »AC 的度数×5=180°,即可求得»AC 的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°. 【详解】解:由折叠的性质可得∠ABC=∠CBD ,∴»»=AC CD, ∵»»13CD BD =, ∴»AC 的度数+ »CD的度数+ »BD 的度数=180°, 即»AC 的度数×5=180°, ∴»AC 的度数为36°, ∴∠B=18°.故答案为:18.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系.17.()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-.18.16,3n+1.【解析】【分析】 观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n 个图案的基础图形的个数即可.【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2, …,第5个图案基础图形的个数为4+3(5−1)=16,第n 个图案基础图形的个数为4+3(n−1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)AF 与圆O 的相切.理由为:如图,连接OC ,∵PC 为圆O 切线,∴CP ⊥OC .∴∠OCP=90°.∵OF ∥BC ,∴∠AOF=∠B ,∠COF=∠OCB .∵OC=OB ,∴∠OCB=∠B .∴∠AOF=∠COF .∵在△AOF 和△COF 中,OA=OC ,∠AOF=∠COF ,OF=OF ,∴△AOF ≌△COF (SAS ).∴∠OAF=∠OCF=90°.∴AF 为圆O 的切线,即AF 与⊙O 的位置关系是相切.(2)∵△AOF ≌△COF ,∴∠AOF=∠COF .∵OA=OC ,∴E 为AC 中点,即AE=CE=12AC ,OE ⊥AC .∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=12•OA•AF=12•OF•AE,∴AE=245.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,{32OA OCOF OF=∠=∠=,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴222234OF OA+=+∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=12AF•OA=12OF•AE,∴3×4=1×AE,解得:AE=125,∴AC=2AE=245.考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.20.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵3261m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.21.(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量. 22.(1)见解析(2)当AF=75时,四边形BCEF是菱形.【解析】【分析】(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF 与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=2222AB +BC 4+35==.∵∠BGC=∠ABC=90°,∠ACB=∠BCG ,∴△ABC ∽△BGC . ∴BC CG AC BC =,即3CG 53=.∴9CG 5=. ∵FG=CG ,∴FC=2CG=185, ∴AF=AC ﹣FC=5﹣18755=. ∴当AF=75时,四边形BCEF 是菱形. 23.1.【解析】【分析】 先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()×=× =;将x=1代入原式==1. 【点睛】分式的化简求值24.(1)y=6x-,y=-x+1;(2)C(0,2+1 )或C(0,2【解析】【分析】 (1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x=的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式; (2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=32BC =,再根据1BO =,可得321CO =或321,即可得出点C 的坐标.【详解】(1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x=,解得:6m =-. ∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:AB ==BC =又∵1BO =,∴1CO =或1,∴(0C ,1)或(0C ,1-).【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.25.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了.详解:(1)如下图,连接OD .∵OA=OD ,∴∠DAB=∠ODA ,∵∠CAD=∠DAB ,∴∠ODA=∠CAD∴AC ∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD ⊥CD ,∴CD 是⊙O 的切线.(2)如下图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=9,AD=6,∴∵∠CAD=∠BAD ,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD AB CD BD=,∴6935 CD=,∴CD=185=259.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.26.(1)14;(2)16【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.【详解】解:(1)选中的恰好是正确答案A的概率为14;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以选中的恰好是正确答案A,B的概率=21 126=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=12∠PBO,∠ODF=12∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=12∠ABO,∠CDQ=12∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可.【详解】(1)证明:如图1.∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),∴∠AOB=90°.∵DP⊥AB于点P,∴∠DPB=90°,∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,∴∠PBO+∠PDO=180°,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠PBO,∠ODF=12∠PDO,∴∠CBO+∠ODF=12(∠PBO+∠PDO)=90°,∵在△FDO中,∠OFD+∠ODF=90°,∴∠CBO=∠DFO,∴DF∥CB.(2)直线DF与CB的位置关系是:DF⊥CB,证明:延长DF交CB于点Q,如图2,∵在△ABO中,∠AOB=90°,∴∠BAO+∠ABO=90°,∵在△APD中,∠APD=90°,∴∠PAD+∠PDA=90°,∴∠ABO=∠PDA,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠ABO,∠CDQ=12∠PDO,∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,∴∠CDQ+∠DCQ=90°,∴在△QCD中,∠CQD=90°,∴DF⊥CB.(3)解:过M作MN⊥y轴于N,∵M(4,-1),∴MN=4,ON=1,当E在y轴的正半轴上时,如图3,∵△MCE的面积等于△BCO面积的58倍时,∴12×2×OE+12×(2+4)×1-12×4×(1+OE)=58×12×2×4,解得:OE=72,当E在y轴的负半轴上时,如图4,1 2×(2+4)×1+12×(OE-1)×4-12×2×OE=58×12×2×4,解得:OE=32,即E的坐标是(0,72)或(0,-32).【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.。
广东省潮州市中考数学模拟试卷
![广东省潮州市中考数学模拟试卷](https://img.taocdn.com/s3/m/837a927cff00bed5b8f31d0d.png)
广东省潮州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列计算中,正确的是()A .B .C .D .2. (2分)刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的().A . 众数B . 方差C . 平均数D . 频数3. (2分)(2019·昆明模拟) 如图是由五个相同的小正方体搭成的一个几何体,它的左视图是()A .B .C .D .4. (2分)如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A . 6cmB . cmC . 8cmD . cm5. (2分)下列说法中正确的是()A . 实数-a²是负数B . =|a|C . |-a|一定是正数D . 实数-a的绝对值是a6. (2分) (2019七上·鸡西期末) 如图,已知AC∥BD ,∠A=∠C ,则下列结论不一定成立的是()A . ∠B=∠DB . OA=OCC . OA=ODD . AD=BC7. (2分)不等式﹣4x≤5的解集是()A . x≤﹣B . x≥﹣C . x≤﹣D . x≥﹣8. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④二、填空题 (共10题;共13分)9. (1分)若分式的值为0,则x=________ .10. (1分)(2016·北仑模拟) 因式分解:4a3﹣16a=________.11. (1分)(2019·鞍山) 一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为________个.12. (1分)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为________ .13. (1分)(2017·淅川模拟) 如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积________.14. (1分)(2019·南京模拟) 小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为________.15. (1分)如图,根据所给信息,可知的值为________.16. (1分) (2017七下·宁波期中) 观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n的等式表示你所发现的规律:________.17. (4分)有甲、乙两军舰在南海执行任务.它们分别从A,B两处沿直线同时匀速前往C处,最终到达C 处(A,B,C,三处顺次在同一直线上).设甲、乙两军舰行驶x(h)后,与B处相距的距离分别是y1(海里)和y2(海里),y1 , y2与x的函数关系如图所示(1)①在0≤x≤5的时间段内,y2与x之间的函数关系式为________ .②在0≤x≤0.5的时间段内,y1与x之间的函数关系式为________(2)A,C两处之间的距离是________ 海里.(3)若两军舰的距离不超过5海里是互相望到,当0.5≤x≤3时.求甲、乙两军舰可以互相望到时x的取值范围________18. (1分)(2017·河北模拟) 如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则 =________.三、解答题 (共10题;共82分)19. (5分)(1)计算:()﹣1+|1﹣|﹣tan30°;(2)化简:÷(﹣).20. (5分)计算:()﹣1+(+1)2﹣.21. (15分) (2017九上·巫溪期末) 在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.22. (9分)(2017·襄阳) 中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部,扇形统计图中“1部”所在扇形的圆心角为________度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为________.23. (5分) (2015九上·重庆期末) 如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)24. (8分) (2018九上·灌南期末) 如图:线段AB的端点在边长为1的正方形网格的格点上,现将线段AB 绕点A按逆时针方向旋转90°得到线段AC.(1)请你用直尺和圆规在所给的网格中画出线段AC及点B经过的路径;(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(﹣2,﹣1),则点C 的坐标为________;(3)线段AB在旋转到线段AC的过程中,线段AB扫过区域的面积为________(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个圆锥的侧面,则该圆锥底面圆的半径长为________.25. (10分) (2017八下·秀屿期末) 五一节期间,电器市场火爆,某商店需要购进一批电视机和洗衣机,根据市场调查,电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)18001500售价(元/台)20001600若该商店计划电视机和洗衣机共100台,设购进电视机x台,获得的总利润y元.(1)求出y与x的函数关系;(2)已知商店最多筹集资金161800元,求购进多少台电视机,才能使商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最多利润.(利润=售价﹣进价)26. (10分) (2019九上·淅川期末) 观察发现:如图(1),⊙O是△ADC的外接圆,点B是边CD上的一点,且△ABC是等边三角形.OD与AB交于点E,以O为圆心、OE为半径的圆交AB于点F,连接CF、OF.(1)求∠AOD的度数;(2)线段AE、CF有何大小关系?证明你的猜想.拓展应用:如图(2),△HJI是等边三角形,点K是IH延长线上的一点.点O是△JKI的外接圆圆心,OK与JH 相交于点E.如果等边三角形△JHI的边长为2,请直接写出JE的最小值和此时∠JEO的度数.27. (10分)(2017·安徽模拟) 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD= 时,求线段BG的长.28. (5分) (2020八上·自贡期末) 如图,,,以点为顶点、为腰在第三象限作等腰.()求点的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共13分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共82分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、27-1、27-2、28-1、。
广东省潮州市中考数学模拟试卷
![广东省潮州市中考数学模拟试卷](https://img.taocdn.com/s3/m/3e9d105d84868762cbaed5bc.png)
广东省潮州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)﹣2016的绝对值()A . 2016B . ﹣2016C . ±2016D . 02. (2分)方程﹣2x=3的解是()A . x=-B . x=C . x=D . x=-3. (2分)下面图形中,不能折成无盖的正方体盒子的是()A .B .C .D .4. (2分)某校九年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,10,13.则这组数据的()A . 众数是10.5B . 中位数是10C . 平均数是11D . 极差65. (2分)(2018·锦州) 下列计算正确的是()A . 7a-a=6B . a2·a3=a5C . (a3)3=a6D . (ab)4=ab46. (2分)“一方有难,八方支援。
”2013年4月20日四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款135000元用于灾后重建,把135000用科学记数法表示为()A . 1.35×106B . 13.5×10 5C . 1.35×105D . 13.5×1047. (2分) (2019八下·灞桥期末) 若方程的根是正数,则的取值范围是()A .B .C . 且D .8. (2分)在实数﹣2,6,0,1中,最小的实数是()A . -2B . 6C . 0D . 19. (2分)一次函数(m为常数且m≠0),若y随x增大而增大,则它的图象经().A . 第一、二、三象限B . 第一、二、四象限C . 第一、三、四象限D . 第二、三、四象限10. (2分)(2018·青岛模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .11. (2分)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的6倍.其中正确的判断有()个.A . 1个B . 2个C . 3个D . 4个12. (2分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有()A . 1个B . 2个C . 3个D . 4个13. (2分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D ′、C ′ 的位置,若∠EFB=65° ,则∠AED′等于()A . 50°B . 55°C . 60°D . 65°14. (2分) (2020八下·哈尔滨月考) 将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A .B . 3C . 2D . 2二、填空题: (共4题;共4分)15. (1分)(2018·玄武模拟) 分解因式x3-4x的结果是________.16. (1分) (2016九上·景德镇期中) 若(x2+y2)(1﹣x2﹣y2)+6=0,则x2+y2的值是________.17. (1分) (2019七上·威海期末) 已知一次函数y=kx+2(k≠0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为________.18. (1分) (2017九上·东莞开学考) 如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P 为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为________.三、计算题: (共2题;共10分)19. (5分) (2016七上·九台期中) 计算:(﹣ + ﹣)×(﹣12).20. (5分)解不等式组.四、解答题: (共3题;共25分)21. (5分)从甲地到乙地,某人骑自行车比乘公共汽车多用2.5h,已知骑自行车的平均速度为每小时15km,公共汽车的平均速度为每小时40km,求甲乙两地之间的路程(只列方程).22. (15分)某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为_____.23. (5分)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=120m,山坡坡度i=1:2,且O、A、B在同一条直线上,求电视塔OC的高度以及所在位置点P的铅直高度.(测角仪高度忽略不计,结果保留根号形式)五、综合题: (共2题;共21分)24. (6分) (2019九上·西城月考) 如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE =90°,点P为直线BD , CE的交点.(1)如图,将△ADE绕点A旋转,当D在线段CE上时,连接BE ,下列给出两个结论:①BD=CD+ AD;②BE2=2(AD2+AB2).其中正确的是________,并给出证明.(2)若AB=4,AD=2,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②旋转过程中线段PB长的最大值是多少.25. (15分) (2016九下·句容竞赛) 如图,已知抛物线经过点C(-2,6),与x轴相交于A、B两点(A在B的左侧),与y轴交于点D.(1)求点A的坐标;(2)设直线BC交y轴于点E,连接AE、AC,求证:是等腰直角三角形;(3)连接AD交BC于点F,试问当时,在抛物线上是否存在一点P使得以A、B、P为顶点的三角形与相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题: (共4题;共4分)15-1、16-1、17-1、18-1、三、计算题: (共2题;共10分)19-1、20-1、四、解答题: (共3题;共25分) 21-1、22-1、22-2、22-3、23-1、五、综合题: (共2题;共21分)24-1、25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年广东省潮州市中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形但是轴对称图形的是()A.B.C.D.2.图中三视图所对应的直观图是()A.B.C.D.3.某城市2012年底已有绿化面积380公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到480公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.380(1+x)2=480 B.380(1+2x)=480C.380(1+x)3=480 D.380+380(1+x)+380(1+x)2=4804.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm7.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2)B.(0,﹣2)C.(1,﹣3)D.(0,﹣4)8.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称9.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠510.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5二、填空题(本大题6小题,每小题4分,共24分)11.随机掷两枚硬币,落地后全部正面朝上的概率是.12.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是.13.若正六边形的边心距为,则这个正六边形的半径为.14.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为m.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.16.如图,⊙O的半径为2,OA=4,AB切⊙O于B,弦BC∥OA,连结AC,图中阴影部分的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:x2﹣6x+3=0.18.计算:+2﹣1+cos60°﹣3tan30°.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).将△ABC绕坐标原点O逆时针旋转90°,得到△A′B′C′,画出△A′B′C′.并计算点A旋转经过的路径长度.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,某同学在楼房的A处测得荷塘的一端D处的俯角为60°,另一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知楼高AC=24米,求荷塘宽BD为多少米?21.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°①求∠ABD的度数;②已知OA=2,求BD的长.(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1)22.已知二次函数y=x2+bx+c的图象经过一次函数y=﹣3x+3的图象与x轴、y轴的交点.求这个二次函数解析式,并直接回答该函数有最值(最大值或最小值)为.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x 轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.24.(1)如图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D.求证:AB•AC=AD•AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.25.直线l:y=﹣2x+2m(m>0)与x,y轴分别交于A、B两点,点M是双曲线y=(x >0)上一点,分别连接MA、MB.(1)如图,当点A(,0)时,恰好AB=AM;∠M1AB=90°试求M1的坐标;(2)如图,当m=3时,直线l与双曲线交于C、D两点,分别连接OC、OD,试求△OCD 面积;(3)如图,在双曲线上是否存在点M,使得以AB为直角边的△MAB与△AOB相似?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形但是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选A.2.图中三视图所对应的直观图是()A.B.C.D.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.3.某城市2012年底已有绿化面积380公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到480公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.380(1+x)2=480 B.380(1+2x)=480C.380(1+x)3=480 D.380+380(1+x)+380(1+x)2=480【解答】解:设绿化面积平均每年的增长率为x,根据题意即可列出方程380(1+x)2=480.故选A.4.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.【解答】解:由图可得tan∠AOB=.故选B.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【解答】解:∵AB∥CD∥EF,∴=.故选A.6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【解答】解:连接OA,∵半径OC⊥AB,∴AD=BD=AB=×6=3(cm),∵OD=4cm,∴OA==5(cm),∴OC=OA=5cm,∴DC=OC﹣OD=5﹣4=1(cm).故选D.7.抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2)B.(0,﹣2)C.(1,﹣3)D.(0,﹣4)【解答】解:抛物线y=x2﹣4的顶点坐标为(0,﹣4).故选D.8.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【解答】解:A、把(1,1)代入得:左边≠右边,故A选项错误;B、k=4>0,图象在第一、三象限,故B选项错误;C、沿x轴对折不重合,故C选项错误;D、两曲线关于原点对称,故D选项正确;故选:D.9.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【解答】解:由已知得:,解得:a≥1且a≠5.故选C.10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.二、填空题(本大题6小题,每小题4分,共24分)11.随机掷两枚硬币,落地后全部正面朝上的概率是.【解答】解:用列举法表示出各种可能:则共有4种情况,而全部正面朝上的只有一种,则概率是:.故答案是:.12.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是k>﹣3.【解答】解:根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k+3>0,解得k>﹣3.故答案为k>﹣3.13.若正六边形的边心距为,则这个正六边形的半径为2.【解答】解:如图所示,连接OB、OC;∵此六边形是正六边形,∴∠BOC==60°,∵OB=OC,∴△BOC是等边三角形,∴∠OBC=60°,∵OH=,∴在Rt△OBH中,OB===2,∴OB=OC=BC=2,即这个正六边形的半径为2.故答案为:2.14.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B 两点间的距离为20m.【解答】解:∵CD∥AB,∴△ABE∽△DCE,∴CD:AB=DE:AE,∴5:AB=3:12,∴AB=20m.答:A、B两点间的距离为20m.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=5.【解答】解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.16.如图,⊙O的半径为2,OA=4,AB切⊙O于B,弦BC∥OA,连结AC,图中阴影部分的面积为.【解答】解:连接OB ,OC ,∵弦BC ∥OA ,∴S △ABC =S △OBC ,∵AB 切⊙O 于B ,∴OB ⊥AB ,∵⊙O 的半径为2,OA=4,∴sin ∠OAB===,∴∠OAB=30°,∴∠AOB=90°﹣∠OAB=60°,∵弦BC ∥OA ,∴∠OBC=∠AOB=60°,∵OB=OC ,∴△OBC 是等边三角形,∴∠BOC=60°,∴S 阴影=S 扇形BOC ==. 故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:x 2﹣6x+3=0.【解答】解:这里a=1,b=﹣6,c=3,∵△=b 2﹣4ac=36﹣12=24,∴x==3±,则x1=3+,x2=3﹣.18.计算:+2﹣1+cos60°﹣3tan30°.【解答】解:原式=2++﹣3×=2+1﹣=+1.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).将△ABC绕坐标原点O逆时针旋转90°,得到△A′B′C′,画出△A′B′C′.并计算点A旋转经过的路径长度.【解答】解:如图,△A′B′C′为所作;OA==,所以A旋转经过的路径长度==π.四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,某同学在楼房的A处测得荷塘的一端D处的俯角为60°,另一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知楼高AC=24米,求荷塘宽BD为多少米?【解答】解:由题意知:∠CAB=90°﹣30°=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,∴BC=AC•tan60°=24米,∵∠CAD=90°﹣60°=30°,∴CD=AC1tan30°=24×=8(米),∴BD=BC﹣CD=24﹣8=16(米);答:荷塘宽BD为16米.21.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°①求∠ABD的度数;②已知OA=2,求BD的长.(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1)【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠C=40°,∴∠ABD=90°﹣∠A=50°;②在Rt△ABD中,AB=2OA=4,∵sinA=,∴BD=4sin40°=4×0.64≈2.6.22.已知二次函数y=x2+bx+c的图象经过一次函数y=﹣3x+3的图象与x轴、y轴的交点.求这个二次函数解析式,并直接回答该函数有最小值(最大值或最小值)为﹣1.【解答】解:在y=﹣3x+3中令x=0,则y=3,则y=﹣3x+3与y轴的交点是(0,3);在y=﹣3x+3中,令y=0,则﹣3x+3=0,解得x=1,则与x轴的交点是(1,0);根据题意得:,解得:,则二次函数的解析式是y=x2﹣4x+3=(x﹣2)2﹣1.则函数有最小值是﹣1.故答案是:小,﹣1.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x 轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.24.(1)如图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D.求证:AB•AC=AD•AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.【解答】(1)证明:连接CE,∵AB=AC,∴,∴∠AEC=∠ACD;又∵∠EAC=∠DAC,∴△AEC∽△ACD,∴,即AC2=AD•AE;又∵AB=AC,∴AB•AC=AD•AE.(2)答:上述结论仍成立.证明:连接BE,∵AB=AC,∴,∴∠AEB=∠ABD;又∵∠EAB=∠DAB∴△AEB∽△ABD,∴,即AB2=AD•AE.又∵AB=AC,∴AB•AC=AD•AE.25.直线l:y=﹣2x+2m(m>0)与x,y轴分别交于A、B两点,点M是双曲线y=(x >0)上一点,分别连接MA、MB.(1)如图,当点A(,0)时,恰好AB=AM;∠M1AB=90°试求M1的坐标;(2)如图,当m=3时,直线l与双曲线交于C、D两点,分别连接OC、OD,试求△OCD 面积;(3)如图,在双曲线上是否存在点M,使得以AB为直角边的△MAB与△AOB相似?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【解答】解:(1)把A(,0)代入y=﹣2x+2m得:﹣+2m=0,解得:m=.则直线的解析式是:y=﹣2x+,令x=0,解得y=,则B的坐标是(0,).作ME⊥x轴于点E.∵∠BAM=90°,∴∠BAO+∠MAE=90°,又∵直角△AEM中,∠AME+∠MAE=90°,∴∠BAO=∠AME.在△OAB和△EMA中,,∴△OAB≌△EMA(AAS),∴ME=OA=,AE=OB=.∴OE=OA+AE=2,则M1的坐标是(2,);(2)当m=3时,一次函数的解析式是y=﹣2x+6.解不等式组,解得:或,则D的坐标是(1,4),C的坐标是(2,2).作DF⊥y轴于点F,CG⊥y轴,则F和G的坐标分别是(0,4),(0,2).则S△OCG=S△ODF=×4=2,=(1+2)×(4﹣2)=3,S梯形CDFG+S△OCG﹣S△ODF=3;则S△OCD=S梯形CDFG(3)作MH⊥x轴于点H.则△AOB、△ABM、△BMH都是两直角边的比是1:2的直角三角形.①当∠BAM=∠BOA=90°时,OA=m,OB=2m,得:AM=AB=m,MH=OA=;从而得到点M的坐标为(2m,m).代入双曲线解析式为:=m,解得:m=2,则点M的坐标为(4,1);同理当∠BAM=∠OBA时,可求得点M的坐标为(,).②当∠ABM=90°时,过点M作MH⊥y轴于点H,则△AOB、△ABM、△AMH都是直角边的比是1:2的直角三角形;当∠AMB=∠OAB时,OB=m,OA=2m,得:AH=2OB=2m,MH=2OA=4m,从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m•4m=4,解得:m=,点M的坐标为(2,2);同理,当∠AMB=∠OBA时,点M的坐标为(,).综上所述,满足条件的点M的坐标是:(4,1),(,)或(2,2),(,).。