人教版八年级数学上册15.2分式的运算
八年级数学上册15.2 分式的运算(有答案)

八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。
最简公式的定义:分子与分母没有公因式的分式。
分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。
注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。
八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时

= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x
y x
c x
m y x
c
(2)
m 2abc
n 2bca
d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式
1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4
a
1
2
a2 -4 能分解 :
解:原式
(a
2a 2)(a
2)
(a
a2 2)(a
2)
2a (a 2) (a 2)(a 2)
2a a 2 (a 2)(a 2)
2024年人教版八年级数学上册教案及教学反思全册第15章 分式 整数指数幂(第2课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第2课时一、教学目标【知识与技能】1.会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数.2.经历探索用10的负整数次幂来表示绝对值较小的数的过程,完善科学记数法,培养正向、逆向思维能力.【过程与方法】经历探索用科学记数法表示数的过程,理解科学记数法.【情感、态度与价值观】用科学记数法的形式渗透数学的简洁之美,通过完善科学记数法,培养对数学完美形式的追求.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用科学记数法表示绝对值较小的数.【教学难点】含负指数的整数指数幂的运算,尤其是混合运算以及科学记数法中10的指数与小数点的关系.五、课前准备教师:课件、直尺、科学记数结构图等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课通过上节课的学习,大家明确了整数指数幂具有正整数指数幂的运算性质,这节课我们来学习运用其性质进行有关计算及负整数指数幂在科学记数法中的运用.(出示课件2)(二)探索新知1.创设情境,探究用科学记数法表示绝对值较小的数教师问1:口答:(1)(3-2)2;(2)[(-4)-3]0;(3)5-3×52;(4)(-0.5)-2;(5)222332--⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭;(6)4.7×10-4.注:前三个小题计算比较直接,可快速抢答,并陈述所用法则;后三个小题允许学生笔算后再口答,并陈述计算时的注意点,尤其是第(5)小题,有正向、逆向两个思路,注意方法的选择.而(6)为学习科学记数法表示绝对值较小的数作了铺垫.学生回答:(1)3-4=181;(2)1;(3)5-1=15;(4)(-12)-2=(-2)2=4;(5)(23×32)-2=1-2=1;(6)0.00047教师问2:由前面的练习可知4.7×10-4=0.00047,反过来就是,0.00047=4.7×10-4,由这个形式同学们能想到什么?学生回答:科学记数法.教师问3:那现在我们就一起研究怎样把绝对值较小的数用科学记数法表示出来.请同学们首先完成以下练习:填空:(用科学记数法表示一些绝对值较大的数)(1)4000000000=________;(2)-369000=________;学生回答:(1)4×109(2)-3.69×105教师问4:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?(出示课件4)先完成下面的题目:(出示课件5)填空:(1)0.1=______=______;(2)0.01=______=_______;(3)0.001=______=______;(4)0.0001=_______=______;(5)0.00001=_______=________.学生讨论后回答:(1)110=10-1;(2)1100=10-2;(3)11000=10-3;(4)110000=10-4;(5)1100000=10-5.教师问5:你发现用10的负整数指数幂表示0.0000…001这样较小的数有什么规律吗?请你把总结的规律和你的同伴交流.学生交流后,师生达成共识:表达成10的负整数指数幂的形式时,其指数恰好是第一个非零数前面所有“0”的个数的相反数.教师问6:你能归纳出数学式子吗?学生讨论后回答:教师问7:你能利用10的负整数指数幂,将绝对值较小的数表示成类似形式吗?0.00001=________;0.0000000257=2.57×0.00000001=2.57×________.学生回答:10-5;10-8教师问8:如何用科学记数法表示0.0035和0.0000982呢?(出示课件6)学生回答:0.0035=3.5×0.001=3.5×10-3;0.0000982=9.82×0.00001=9.82×10-5教师问9:观察这两个等式,你能发现10的指数与什么有关呢?师生共同讨论后解答如下:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.教师问10:归纳:请说一说你对科学记数法的认识.师生共同讨论后解答如下:绝对值较大的数用科学记数法能表示为a×10n的形式,其中,n等于数的整数位数减1,a的取值为1≤|a|<10;绝对值较小的数用科学记数法能表示为a×10-n的形式,其中,a的取值一样为1≤|a|<10,但n的取值为小数中第一个不为零的数字前面所有的零的个数.教师讲解:这样,任何一个数根据需要都可以记成科学记数法的形式. a×10n的形式,其中,n为整数,a的取值为1≤|a|<10;例1:用科学记数法表示下列各数:(出示课件7-9)(1)0.005师生共同解答如下:(2)0.0204师生共同解答如下:(3)0.00036师生共同解答如下:例2:计算下列各题:(出示课件11)(1)(-4×10-6)÷(2×103)(2)(1.6×10-4)×(5×10-2)师生共同解答如下:解:(1)(-4×10-6)÷(2×103)=(-4÷2)(10-6÷103)=-2×10-9(2)(1.6×10-4)×(5×10-2)=(1.6×5)×(10-4×10-2)=8×10-6总结点拨:科学记数法的有关计算,分别把前边的数进行运算,10的幂进行运算,再把所得结果相乘.例3:纳米(nm)是非常小的长度单位,1nm=10–9m,把1nm3的物体放到乒乓球上,就如同把乒乓球放到地球上,1mm3的空间可以放多少个1nm3的物体?(物体之间间隙忽略不计)师生共同解答如下:(出示课件13)解:1mm=10-3m,1nm=10-9m.(10-3)3÷(10-9)3=10-9÷10-27=1018,1mm3的空间可以放1018个1nm3的物体.(三)课堂练习(出示课件16-20)1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克将0.0000005用科学记数法表示为()A.5×107B.5×10-7C.0.5×10-6D.5×10-62.用科学记数法表示下列各数:(1)0.001=________________;(2)-0.000001=_______________;(3)0.001357=____________________;(4)-0.000504=________________________.3.下列是用科学记数法表示的数,试写出它的原数.(1)4.5×10-8=________________;(2)-3.14×10-6=________________;(3)3.05×10-3=___________________.4.计算(结果用科学记数法表示).(1)(6×10-3)×(1.8×10-4);(2)(1.8×103)÷(3×10-4).5.一根约为1米长、直径为80毫米的光纤预制棒,可拉成至少400公里长的光纤.试问:1平方厘米是这种光纤的横截面积的多少倍?(用科学记数法表示且保留一位小数)参考答案:1.B2.(1)10-3;(2)-10-6;(3)1.357×10-3;(4)-5.04×10-43.(1)0.000000045;(2)-0.00000314;(3)-0.00305.4.(1)解:原式=1.08×10-6;(2)解:原式=0.6×107=6×1065.解:这种光纤的横截面积为1÷(1.256×10-4)≈8.0×103答:1平方厘米是这种光纤的横截面的8.0×103倍.(四)课堂小结今天我们学了哪些内容:用科学记数法表示绝对值小于1的数绝对值小于1的数用科学记数法表示为a×10-n的形式,1≤│a│<10,n为原数第1个不为0的数字前面所有0的个数(包括小数点前面那个0).(五)课前预习预习下节课(15.3)149页到151页的相关内容。
人教版八年级数学上册说课稿15.2分式的运算

人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
人教版数学八年级上册15.2.1:分式的乘除法课件

分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
(2)12xy8x2y 5a
解:原式
12xy 5a
8
1 x2
y
12xy 5a 8x2 y
3 10 ax
巩固 练习
(3) xy yx ; xy xy
解:原式 x y -(x y) ; xy xy
(x y)(x y) (x y)(x y)
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
一定要注意符号变化呦!
当分子分母是多项式时,先分解因式便于约分的进行
3a16b 分 的乘法法则:
解:原 式 分 的乘法法则:
2
4b9a (3)因式分解在分式乘除法中的应用;
思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?
分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。
2 分式运算的结果通常要化成最简分式或整式.
4 xy (3)因式分解在分式乘除法中的应用; 当分子分母是多项式时,先分解因式便于约分的进行 2
3 3 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
6 x y 分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
当分子分母是多项式时,先分解因式便于约分的进行
分 的乘法法则:
(3)因式分解在分式乘除法中的应用;
4xy 分 的除法法则:
解:原 式 (2)运用法则时注意符号变化;
(3)因式分解在分式乘除法中的应用;
3
3y2x (1)分式的乘除法法则;
当分子分母是多项式时,先分解因式便于约分的进行
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
分 乘分 ,用分子的积作为积的分子,分母的积作为积的分母。
八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分

15.2分式的运算15.2.1分式的乘除第1课时分式的乘除◇教学目标◇【知识与技能】理解并掌握分式的乘除法那么,运用法那么进展运算,能解决一些与分式有关的实际问题.【过程与方法】经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.【情感、态度与价值观】通过让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验.◇教学重难点◇【教学重点】掌握分式的乘除运算.【教学难点】分子、分母为多项式的分式乘除法运算.◇教学过程◇一、情境导入观察以下运算:.猜一猜=?=?二、合作探究探究点1分式的乘法典例1化简分式的结果是()A. B. C. D.[解析]进展分式乘除法运算时,先约分,再化简即可..[答案] B变式训练计算的结果是()A.-1B.0[解析]原式==1.[答案] C探究点2分式的除法典例2化简的结果是()A.a2B.C. D.[解析]先将分子因式分解,再将除法转化为乘法后约分即可.原式=.[答案] D变式训练计算:,其结果正确的选项是()A. B.C. D.[答案] D探究点3分式乘除混合运算典例3计算的结果是()A. B.-C. D.-[解析]先将除法转化为乘法,再根据分式的乘法法那么计算、约分即可.=-.[答案] B【技巧点拨】做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,运算的最后结果是最简分式或整式.计算÷(y-x)·.[解析]÷(y-x)·.三、板书设计分式的乘除分式的乘除◇教学反思◇在分式的乘除法这一课的教学中,仍然采用类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法那么与分数的乘除法法那么类似,要求他们用语言描述分式的乘除法法那么.学生反响较好,能根本上完整地讲出分式的乘除法法那么;要让学生明确分式乘除运算的结果是最简分式或整式,最后的结果是要化简的.如有侵权请联系告知删除,感谢你们的配合!。
人教版八年级数学上册 15.2 分式的运算(含答案)

15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nna a -=。
2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。
人教八年级数学上册分式的加减

新知探究 知识点1
分式的混合运算顺序:先算乘方,再算乘除,最后算加减;若有括号,则先算 括号里面的;同级运算,按从左到右的顺序进行计算.
分式的混合运算中要注意各分式中分子、分母符号的处理,结果 中分子或分母的系数(或首项的系数)是负数时,要把“-”号提到分式本身的 前面.
新知探究
知识点1
分式混合运算的重点: (1)进行分式的混合运算时,可以根据需要合理地运用运算律来简化运算,先 将分式的乘除法统一成乘法,分式的加减法统一成加法,再利用乘法运算律、 加法运算律简化运算. (2)分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结 果是最简分式或整式.
-
2x x2 - y2
1 1 (2) 2 p 3q 2 p - 3q
解:(2)原式
2 p - 3q
2 p 3q
(2 p 3q)(2 p - 3q) (2 p 3q)(2 p - 3q)
2 p - 3q 2 p 3q (2 p 3q)(2 p - 3q)
4p 4 p2 - 9q2
a-b
a-b a-b
随堂练习 2
计算:
(1) a - 3b - a b a-b b-a
5c 6a2b
7a 8b2c
(- 122)ba2c
解:(2)原式 5c 4bc 7a 3a2 - b 2b2 24a2b2c 24a2b2c 24a2b2c
20bc2 24a 2b 2c
21a3 24a 2b 2c
(1
1
).
n3
n n3
课堂导入
问题2:2009年,2010年,2011年某地的森林面积 (单位:km2) 分别是S1,S2, S3,2011年与2010年相比,森林面积增长率提高了多少?
人教版八年级数学上册第15章 分式1 第2课时 分式的乘方

思考:a 可以取任何实数吗?
a 不可以取 0,±1,-2.
分式 乘除 混合 运算
混合运算
乘除法运算及乘方法则 先算乘方,再算乘除
乘方运算 乘方法则
注意
(1) 乘除运算属于同级运算,应按照 先出现的先算的原则,不能交换运算 顺序
(2) 当除变成乘的形式时,灵活运用 乘法交换律和结合律可以简化运算
分母分解因式,再进行约分化简.
x 2x 4 3x 42 x 2x 4 解:原式 = x 4 x 4 • x 22 • x 33x 4
= 3x 4 . x3
方法总结:进行分式的乘除、乘方混合运算时,要 严格按照运算顺序进行运算,先算乘方,再算乘除. 注意结果一定要化成一个整式或最简分式的形式.
1.
计算
(ab)2 ab2
的结果为(
B
)
A. b
B. a C. 1
D. 1
b
2.
化简
2b a
2
•
ac 6b2
的结果是
2c 3a
.
3. 计算:
1
3x
2
y
2x2 y
3
;
3
2
x y
y2
x
2
x2 y 2
z
.
解:(1) 原式 3x2 y
8x6 y3
3x2 y y3 8x6
(2) am÷an=am-n;
(3) (am)n=amn;
(4) (ab)n = anbn;
5
a n b
an bn .
例2 下列运算结果不正确的是( D )
√ A.
8a2bx2 6ab2 x
2
4ax 3b
八年级数学 15.2.2分式的混合运算

b d b c bc
同分母加减:b c b c
加减法
aa a
异分母加减:b d bc ad bc ad
a c ac ac ac
一 新课讲解
2
问题:如何计算
2m
n
1 m-n
-
m n
n 4
?
请先思考这道题包含的运算,再确定运算顺 序,并独立完成.
b
a
1
b
a
1
b
a
1
b
a
1
b
a
1
b
a
1
b
2a
a2 b2
巧用公式
一 能力提升
例4.若
2 x2 1
A x 1
B ,求A、B的值. x 1
解析:先将等式两边化成同分母分式,然后对 照两边的分子,可得到关于A、B的方程组.
2.课本p146 习题15.2 第6题
一 课堂练习
1.
计算
1
3x 2y
3x 2y
2y 3x
的结果是( C
)
2 y 6xy
A. 9x2
2y 3x
B. 2y
3x 2y
C. 3x
3x
D. 2 y
2.
化简(
x y
y) x
x
x
y
的结果是
x y y.3.化简来自1x y x 3y
解:∵ A B x 1 x 1
人教版八年级上册数学教案15.2 分式的运算(5课时)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。
学生:直尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案

人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。
人教版数学八年级上册15.2第2课时 分式的混合运算

-2(3 m) -6-2m.
第2课时 分式的混合运算
(2)
x2 x2 -2x
-
x2
x-1 -4x
4
x-4 x
解:(2)
x2 x2 -2x
-
x-1 x2 -4x
4
x-4 x
x2 x(x-2)
-
x-1 ( x-2) 2
x x-4
( x+2)( x-2)-( x-1) x x(x-2)2
小华给出的代数式为:(3 x )( x 2)
小出的这个题你能算出来吗?试一试吧
解:(3 x )( x 2)
x2 3( x 2) x ( x 2)
x2
注意:先按照分式的混合运算顺序 化简,然后根据条件代入求值.
2x 6.
当
x
3 2
时,原式=3.
第2课时 分式的混合运算
第2课时 分式的混合运算
主题情境·运算中的精彩游戏
第2课时 分式的混合运算
学习目标
1.掌握分式的混合运算法则. 2.能熟练运用分式的混合运算法则进行计算.
第2课时 分式的混合运算
情境学新知
老师今天要和大家玩游戏 ①接力游戏,规则是:每个人只能看到前一个同学给的式子,并进行 下一步,再将结果传递给下一个人,直到不能化简为止. ②组合出题游戏,规则是:同桌两人分别给出代数式和未知数的值, 合作出一道化简求值的题,并进行展示分享.
x x-4
x2 -4-x2+x (x-2)2 (x-4)
1
.
( x-2)2
注意:分子或分母是多项式的先因 式分解,不能分解的要视为整体.
第2课时 分式的混合运算
人教版八年级数学上册15.2分式的混合运算优秀教学案例

本案例注重引导学生进行反思与评价,帮助学生总结学习过程中的优点和不足,明确下一步的学习方向。通过开展多种形式的评价,激发学生的学习积极性,培养他们勇于展示自己的学习成果。
5.内容与过程的系统性
本案例在教学内容与过程的设计上,遵循了由浅入深、循序渐进的原则。从导入新课、讲授新知、小组讨论、总结归纳到作业小结,每个环节都紧密联系,形成了完整的教学体系。这种系统性的设计有助于学生更好地掌握分式混合运算的知识,提高数学素养。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发他们学习数学的内在动力。
2.引导学生树立正确的数学观念,认识到数学在现实生活中的重要作用。
3.培养学生的合作精神,使他们学会倾听、尊重他人意见,形成良好的团队协作能力。
4.培养学生勇于面对困难和挑战,善于克服问题,树立自信心。
三、教学策略
(一)情景创设
在教学过程中,我重视引导学生进行反思与评价。在每个环节结束后,组织学生进行自我反思,总结自己在分式混合运算中的优点和不足,帮助他们明确下一步的学习方向。同时,开展学生互评、教师评价等多种形式的评价,鼓励学生积极参与,勇于展示自己的学习成果。
此外,我还将关注学生的情感态度,及时发现和解决他们在学习过程中遇到的问题,给予积极的情感支持。通过反思与评价,帮助学生建立自信,培养良好的学习习惯,提高数学素养。
二、教学目标
(一)知识与技能
1.理解分式混合运算的概念,掌握分式加减乘除的运算规则,提高运算速度和准确性。
2.能够运用分式混合运算解决实际问题,培养将现实问题转化为数学问题的能力。
3.学会使用分式运算的性质和法则,简化复杂的分式表达式,提高解题效率。
4.通过对分式混合运算的练习,使学生掌握基本的数学思维方法,培养逻辑推理能力。
15.2.1第1课时分式的乘除 课件 2024—2025学年人教版数学八年级上册

符号的确定方法相同,且其结果要通过约分化为最简分式或整式.
新知探究
知识点
例3
分式的乘除
如图,“丰收1号”小麦的试验田是边长为a m(a>1)的正方
形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小
麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获
1
.
当取m=1时,原式=
11
2
化简求值问题要注意字母的取值要使分数有意义!
相乘的积做分母.(能约分化简的要约分化简)
分数除以分数的法则:分数除以分数,等于被除数乘以除数的倒数.
(能约分化简的要约分化简)
新知探究
知识点
分式的乘除
思考 类比分数的乘除法法则,你能说出分式的乘除法法则吗?
分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为
积的分母.
a c ac
上述法则可以用式子表示为:
A.三个人都正确
B.甲有错误
C.乙有错误
D.丙有错误
课堂训练
5.计算(x2-xy)÷
的结果是
x2
.
6.如果检测员在n分钟内可检查9个产品,那么他在2小时内可检查产
品
40�� 个
课堂训练
7.八年级的三位同学在一起讨论一个分式乘法题目:
甲:它是一个整式与一个分式相乘.
乙:在计算过程中, 用到了平方差公式进行因式分解.
n
V
V m
长方体容积的高为 , 水面的高度为 ab n .
ab
分式的乘法运算
新知探究
知识点
问题2
分式的乘除