八年级数学分式的运算同步练习1
人教版初中数学八年级上册《15.2 分式的运算》同步练习卷

人教新版八年级上学期《15.2 分式的运算》同步练习卷一.选择题(共20小题)1.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a103.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁4.计算﹣的结果是()A.1B.﹣1C.2D.﹣25.化简﹣的结果是()A.x+1B.x﹣1C.x D.﹣x6.计算结果是()A.0B.1C.﹣1D.x7.化简得()A.B.﹣C.D.8.化简(1﹣)÷的结果是()A.(x+1)2B.(x﹣1)2C.D.9.计算÷(a﹣)的正确结果是()A.B.1C.D.﹣110.已知+=,则+等于()A.1B.﹣1C.0D.211.若x+y=2,xy=﹣2,则+的值是()A.2B.﹣2C.4D.﹣412.已知x2﹣3x+1=0,则的值是()A.B.2C.D.313.若(t﹣3)2﹣2t=1,则t可以取的值有()A.1个B.2个C.3个D.4个14.已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为()A.﹣1或2B.1C.±1D.015.下列计算正确的是()A.﹣2+|﹣2|=0B.20÷3=0C.42=8D.2÷3×=2 16.3﹣1的值等于()A.﹣3B.3C.﹣D.17.若a=﹣2﹣2,b=(﹣)﹣2,c=(﹣)0,则()A.a<b<c B.a<c<b C.b<c<a D.c<a<b18.计算3﹣2=()A.﹣6B.﹣9C.D.﹣19.一件工作,甲独做x小时完成,乙独做y小时完成,那么甲、乙合做全部工作需()小时A.B.C.D.20.一件工作,甲独做a小时完成,乙独做b小时完成,则甲,乙两人合作完成需要()小时.A.B.C.D.二.填空题(共10小题)21.化简:•的结果是.22.化简的结果为.23.若m+n=1,mn=2,则的值为.24.已知a﹣=3,则﹣a2+a=.25.x+=3,则x2+=.26.化简(x﹣)÷(1﹣)的结果是.27.已知:x:y:z=2:3:4,则的值为.28.已知﹣=4,则=.29.若(x﹣1)x+1=1,则x=.30.若(a﹣1)a+2=1,则a=.三.解答题(共5小题)31.化简:(xy﹣x2)÷÷.32.计算:.33.化简:()÷().34.先化简,再求值:,其中x=2.35.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.人教新版八年级上学期《15.2 分式的运算》2019年同步练习卷参考答案与试题解析一.选择题(共20小题)1.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.【分析】原式分子分母分别立方,计算即可得到结果.【解答】解:原式=﹣=﹣.故选:C.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5•=a3,故选:B.【点评】此题主要考查了分式的乘法,关键是掌握分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【解答】解:∵÷=•=•=•==,∴出现错误是在乙和丁,故选:D.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算法则.4.计算﹣的结果是()A.1B.﹣1C.2D.﹣2【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==﹣=﹣1.故选:B.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.化简﹣的结果是()A.x+1B.x﹣1C.x D.﹣x 【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==x,故选:C.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.计算结果是()A.0B.1C.﹣1D.x【分析】由于是同分母的分式的加减,直接把分子相减即可求解.【解答】解:==﹣1.故选:C.【点评】此题主要考查了分式的加减,解题时首先判定分母是否相同,然后利用分式加减的法则计算即可求解.7.化简得()A.B.﹣C.D.【分析】把除法化为乘法,能分解因式的分解因式,按乘法分配律,最后约分即可.【解答】解:原式=+,=,=,=.故选:D.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.注意:y ﹣x﹣﹣(x﹣y).8.化简(1﹣)÷的结果是()A.(x+1)2B.(x﹣1)2C.D.【分析】先对括号内的式子通分,然后再将除法转化为乘法即可解答本题.【解答】解:(1﹣)÷===(x﹣1)2,故选:B.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.9.计算÷(a﹣)的正确结果是()A.B.1C.D.﹣1【分析】首先计算括号内的,然后根据分式的除法法则进行计算.【解答】解:原式===.故选:A.【点评】对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.在分式的乘除运算中,注意利用因式分解进行约分.10.已知+=,则+等于()A.1B.﹣1C.0D.2【分析】先将+=转化为=,再得到m2+n2=﹣mn,然后转化为+===﹣1.【解答】解:∵+=,∴=,∴(m+n)2=mn,∴m2+n2=﹣mn,∴+===﹣1,故选:B.【点评】本题考查了分式的化简求值,通过完全平方公式和整体思想将原式展开是解题的关键.11.若x+y=2,xy=﹣2,则+的值是()A.2B.﹣2C.4D.﹣4【分析】原式通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,把已知等式代入计算即可求出值.【解答】解:∵x+y=2,xy=﹣2,∴原式====﹣4.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.已知x2﹣3x+1=0,则的值是()A.B.2C.D.3【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选:A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.若(t﹣3)2﹣2t=1,则t可以取的值有()A.1个B.2个C.3个D.4个【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,﹣1的偶数次幂等于1解答.【解答】解:当2﹣2t=0时,t=1,此时t﹣3=1﹣3=﹣2,(﹣2)0=1,当t﹣3=1时,t=4,此时2﹣2t=2﹣2×4=﹣6,1﹣6=1,当t﹣3=﹣1时,t=2,此时2﹣2t=2﹣2×2=﹣2,(﹣1)﹣2=1,综上所述,t可以取的值有1、4、2共3个.故选:C.【点评】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.14.已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为()A.﹣1或2B.1C.±1D.0【分析】根据任何非0数的0次幂等于1,求x的值,注意1的任何正整数次幂也是1.【解答】解:根据题意,得x﹣1≠0,|x|﹣1=0.∵|x|﹣1=0,∴x=±1,∵x﹣1≠0,∴x≠1,又当x=2时,(x﹣1)|x|﹣1=1,综上可知,x的值是﹣1或2.故选:A.【点评】此题考查了绝对值的定义,零指数幂的定义,比较简单.15.下列计算正确的是()A.﹣2+|﹣2|=0B.20÷3=0C.42=8D.2÷3×=2【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选:A.【点评】本题考查内容较多,包含绝对值的规律:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.及实数的四则运算、乘法运算.16.3﹣1的值等于()A.﹣3B.3C.﹣D.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:3﹣1=,故选:D.【点评】本题考查了负整数指数幂,利用了负整数指数幂与正整数指数幂互为倒数.17.若a=﹣2﹣2,b=(﹣)﹣2,c=(﹣)0,则()A.a<b<c B.a<c<b C.b<c<a D.c<a<b【分析】根据负整数指数幂和零指数幂的概念求解即可.【解答】解:∵a=﹣2﹣2=﹣,b=(﹣)﹣2=4,c=(﹣)0=1,∴a<c<b.故选:B.【点评】本题考查了负整数指数幂和零指数幂的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.18.计算3﹣2=()A.﹣6B.﹣9C.D.﹣【分析】根据负整数指数幂的运算法则计算即可.【解答】解:原式==.故选:C.【点评】幂的负整数指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.19.一件工作,甲独做x小时完成,乙独做y小时完成,那么甲、乙合做全部工作需()小时A.B.C.D.【分析】根据甲独做x小时完成,乙独做y小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【解答】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:,∴甲、乙合做全部工作需:=,故选:D.【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.20.一件工作,甲独做a小时完成,乙独做b小时完成,则甲,乙两人合作完成需要()小时.A.B.C.D.【分析】根据“甲乙合作时间=工作总量÷甲乙工效之和”列式即可.【解答】解:甲和乙的工作效率分别是,,合作的工作效率是+,所以合作完成需要的时间是.故选:D.【点评】解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.二.填空题(共10小题)21.化简:•的结果是.【分析】先把分子分母因式分解,然后进行乘法运算,再约分即可.【解答】解:原式==.故答案为.【点评】本题考查了分式的乘除法:分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.22.化简的结果为.【分析】本题是分式的乘法运算,在分式的化简过程中首先要把式子的分子、分母分解因式,然后进行约分.【解答】解:原式=.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.23.若m+n=1,mn=2,则的值为.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.24.已知a﹣=3,则﹣a2+a=﹣.【分析】由a﹣=3即可得出a﹣3=,在﹣a2+a中提出公因数﹣a,将﹣a2+a 变形为﹣a(a﹣3),再将a﹣3=代入其中即可得出结论.【解答】解:∵a﹣=3,∴a﹣3=,∴﹣a2+a=﹣a(a﹣3)=﹣a•=﹣.故答案为:﹣.【点评】本题考查了分式的加减法,根据分式的加减运算得出a﹣3=是解题的关键.25.x+=3,则x2+=7.【分析】直接利用完全平方公式将已知变形,进而求出答案.【解答】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.26.化简(x﹣)÷(1﹣)的结果是x﹣1.【分析】首先把括号内的分式进行通分相减,然后把除法转化为乘法,最后进行分式的乘法运算即可.【解答】解:原式=(﹣)÷=•=x﹣1.故答案是:x﹣1.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.27.已知:x:y:z=2:3:4,则的值为.【分析】由已知的比例式,设每一份为k,表示出x,y及z,将表示出的x,y及z代入所求的式子中,化简后即可得到值.【解答】解:由x:y:z=2:3:4,可设x=2k,y=3k,z=4k,∴===.故答案为:.【点评】此题考查了分式的化简求值,以及比例的性质,熟练掌握比例性质是解本题的关键.28.已知﹣=4,则=6.【分析】先将的分子与分母同除以ab,再将﹣=4代入即可.【解答】解:==,∵﹣=4,∴原式===6.故答案为6.【点评】本题考查了分式的化简求值,是基础知识要熟练掌握.29.若(x﹣1)x+1=1,则x=﹣1或2.【分析】由于任何非0数的0次幂等于1,1的任何次幂都等于1,﹣1的偶次幂等于1,故应分三种情况讨论.【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.【点评】主要考查了零指数幂的意义,既任何非0数的0次幂等于1.注意此题有两种情况.30.若(a﹣1)a+2=1,则a=﹣2,0,2.【分析】本题分三种情况解答:当为计算0指数幂时;当为1的整数次幂时;当为﹣1的偶次幂时.【解答】解:分三种情况解答:(1)a﹣1≠0,a+2=0,即a=﹣2;(2)a﹣1=1时,a=2,此时a+2=4原式成立;(3)a﹣1=﹣1,此时a=0,a+2=2,原式成立.故本题答案为:﹣2,0,2.【点评】本题需要根据非0数的0指数幂和1的整数次幂和﹣1的偶次幂解答.三.解答题(共5小题)31.化简:(xy﹣x2)÷÷.【分析】先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母中的多项式分解因式,然后约分化简.【解答】解:原式=﹣x(x﹣y)•=﹣y.【点评】本题主要考查了分式的除法运算,做题时把除法运算转化为乘法运算,然后进行解答.32.计算:.【分析】首先把分式变形为,再根据同分母分式相加减,分母不变,把分子相加减进行计算即可.【解答】解:原式=,=,=,=﹣1.【点评】此题主要考查了分式的加减,关键是要把结果化简.33.化简:()÷().【分析】先把分母因式分解,再把括号内通分,接着把除法运算转化为乘法运算,然后约分即可.【解答】解:原式=[﹣]÷=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.34.先化简,再求值:,其中x=2.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:=[﹣]×=×=2(x+3),当x=2时,2(x+3)=2×5=10.【点评】考查了分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.35.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.【分析】分为2x+3=1,2x+3=﹣1,x+2016=0三种情况求解即可.【解答】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.【点评】本题主要考查的是零指数幂的性质、有理数的乘方,分类讨论是解题的关键.。
八年级数学上册分式加减运算计算题练习(含答案)(最新整理)

八年级数学上册 分式加减运算 计算题练习1、化简:.2、化简:. 2(2222abb a b a b a ++÷--421444122++--+-x x x x x 3、化简:. 4、化简:.a a a a 21222-÷-+a a ---1115、化简:.6、化简:. 2222)2(nm mnm m n mn m --⋅++1224422-+÷--x x x x 7、化简:. 8、化简:.)111(111(2+-÷-+a a 1)12111(2-÷+-+-+x xx x x x 9、化简:. 10、化简:.a a a a a -+-÷--2244)111(14414(2-+-÷---x x x x x x 11、化简:. 12、化简:.962966322--+++⋅+a a a a a a 112222+---x xx x x 13、化简:. 14、化简:.1231621222+-+÷-+-+x x x x x x x 12)121(22+-+÷-+x x xx x 15、化简:. 16、化简:.)111(12+-÷-x x x 44211(22+++÷+-x x xx x 17、化简:. 18、化简:.11221(223+-+--÷--x xx x x x x x x 24)2122(--÷--+x x x x 19、化简:. 20、化简:.1112221222-++++÷--x x x x x x 11131332+-+÷--x x x x x 21、化简:. 22、化简:.9)3132(2-÷-++x x x x 12242(2++÷-+-x x x x x23、化简:. 24、化简:.x x x x x x x x -⋅+----+444122(22344)3392(2--+-÷+-+-x x x x x x 25、化简:. 25、化简:. 121441222+-÷-+-+-a a a a a a 2422(2+÷---m m m m m m 27、化简:. 28、化简:.222a b ab b a a b a b --++-x x x x x x -+⋅+÷++-21)2(1242229、化简:. 30、化简:12412122++-÷+--x x x x x )111(1222+-+÷+-x x x x x 31、化简:. 32、化简:.1221122+-+÷--+a a a a a a ba ba b a b b a b a +-÷--+-2)2(33、化简:. 34、化简:.121)121(2+-+÷-+x x x x 11211222---+--⨯+-x aax a a a a a a 35、化简:. 36、化简:. 41)2212(216822+++-+÷++-x x x x x x x xa x x a 221(-÷-37、化简:. 38、化简:.1)11(22-÷---x xx x x 1)112(2-÷+--a a a a a a 39、化简:421211(2--÷-+x x x参考答案1、原式=.2、原式=.3、原式=a 2+2a.4、原式=.5、原式=m+n.b a ab +2)2(24--x x 122--a a6、原式=.7、原式=.8、原式=.9、原式=. 10、原式=.x x -1a a 1+1-x x 2-a a 22-+x x 11、原式=. 12、原式=. 13、原式=3x-7. 14、原式=. 15、原式=.a 21+x x x x 1-11-x 16、原式=1+. 17、原式=. 18、原式=-x-4. 19、原式=.2x x +-2122-x x20、原式=. 21、原式=. 22、原式=x+1. 24、原式=. x x +21x x 9-2)2(1--x 25、原式=. 26、原式=. 27、原式=. 28、原式=. 2-x x 1-a a 2-m m b a ba -+29、原式=. 30、原式=. 31、原式=. 32、原式=.11+-x 21+x 11-x 21+a 33、原式=. 34、原式=x ﹣1. 35、原式=0. 36、原式=.b a a -2x x 442+37、原式=. 38、原式=. 39、原式=a+3. 40、原式=.a x +1x x 1+12+x。
八年级上册数学同步练习题库:分式的运算(简答题:容易)

分式的运算(简答题:容易)1、先化简,再求值:(),其中a是方程x2+2x﹣3=0的解.2、计算:3、计算:.4、化简并求值:,其中x=﹣3.5、(1)计算(x+y)2-y(2x+y);(2)先化简,再求代数式的值:÷,其中a=.6、先化简,再求值:,其中x=﹣9.7、先化简:(x-1﹣)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.8、计算:(1)2-2+-sin30º;(2)(1+)÷.9、计算:(1)2-2+-sin30º;(2)(1+)÷.10、计算:(1)(2)11、计算:(1);(2).12、先化简,再求值:,其中a=213、先化简,再求值:14、先化简,再计算:,其中是方程的正数根.15、先化简,再求值: ÷,其中x=2sin45°﹣1.16、先化简,再求值:,其中.17、先化简,再计算:,其中是方程的正数根.18、(10分)先化简,再从-2<x<3中选一个合适的整数代入求值。
19、化简:.20、计算:.21、化简:22、先化简,再求值:,其中a=2tan45°+2sin45°.23、先化简再求值:,其中满足.24、已知:,求:的值.25、(7分)先化简:(﹣1)÷,再选择一个恰当的x值代入求值.26、(5分)先化简,再求值:,其中a5.27、已知,求的值.28、(7分)先化简:,然后解答下列问题:(1)当时,求原代数式的值;(2)原代数式的值能等于吗?为什么?29、(本小题满分6分)先化简,再求值:,其中.30、已知,求代数式的值.31、先化简,再求值:÷(2+1),其中=-1.参考答案1、原式=,当a=﹣3时,原式=.2、a+23、4、2.5、(1)x2;(2),6、原式=7、-3或8、(1)2;(2)x+19、(1)原式=+2-=210、(1)(2)x+911、(1)2(2)12、原式=,当a=2时,原式=.13、14、15、原式=,∵x=2sin45°﹣1=2×﹣1=﹣1,∴原式===.16、17、18、;.19、0.20、21、22、2﹣223、化简结果:;值为2.24、-1.25、﹣x+1,-126、,.27、,.28、(1)2;(2)不能.29、原式=,当时, 原式=.30、5.31、【解析】1、试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到a的值,代入计算即可求出值.试题解析:原式=÷==,把x=a代入方程得:a2+2a﹣3=0,即(a﹣1)(a+3)=0,解得:a=1(舍去)或a=﹣3,则当a=﹣3时,原式=.考点:分式的化简运算.2、试题分析:先将括号里面通分,利用因式分解、分式的性质化简分式.试题解析:原式==a+2.点睛:分式化简的时候常用到因式分解,要熟练掌握因式分解的各种方法,灵活运用.3、试题分析:根据算术平方根、特殊角的三角函数、负整数指数幂进行计算进行计算即可.试题解析:原式.4、试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣3时,原式=﹣2.5、试题分析:(1)根据完全平方和公式、单项式乘多项式法则去括号后,再进行加减运算即可;(2)先化简,再代入a的值计算即可;试题解析:(1)解:原式=x2+2xy+y2-2xy-y2=x2(2)解:原式====当a=2-时,=6、试题分析:首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,最后进行约分化简,将x的值代入化简后的式子进行计算,得出答案.试题解析:原式=÷=•=,当x=﹣9时,原式=.7、试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可;试题解析:(x-1﹣)÷===又∵﹣1≤x≤2中选一个合适的整数作为x的值,∴x=1或x=-1或x=2(无意义,舍去),当x=1时代入原式=;当x=-1时代入原式=。
人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。
(完整版)八年级数学上册分式加减运算计算题练习(含答案)

八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222ab b a b a b a ++÷--.2、化简:421444122++--+-x x x x x . 3、化简:a a a a 21222-÷-+. 4、化简:a a ---111.5、化简:2222)2(n m mn m m n mn m --⋅++.6、化简:1224422-+÷--x xx x .7、化简:)111()111(2+-÷-+a a . 8、化简:1)12111(2-÷+-+-+x xx x x x .9、化简:a a a a a -+-÷--2244)111(. 10、化简:144)14(2-+-÷---x x x x x x .11、化简:962966322--+++⋅+a a a a a a . 12、化简:112222+---x x x x x .13、化简:1231621222+-+÷-+-+x x x x x x x . 14、化简:12)121(22+-+÷-+x x x x x .15、化简:)111(12+-÷-x x x . 16、化简:44)211(22+++÷+-x x x x x .17、化简:1122)1(223+-+--÷--x x x x x x x x x . 18、化简:24)2122(--÷--+x xx x .19、化简:1112221222-++++÷--x x x x x x . 20、化简:11131332+-+÷--x x x x x .21、化简:9)3132(2-÷-++x xx x . 22、化简:12)242(2++÷-+-x x x x x .23、化简:xxx x x x x x -⋅+----+4)44122(22. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 25、化简:2)422(2+÷---m mm m m m . 27、化简:222a b abb a a b a b --++-. 28、化简:x x x x x x -+⋅+÷++-21)2(12422. 29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x31、化简:1221122+-+÷--+a a a a a a . 32、化简:ba ba b a b b a b a +-÷--+-2)2(.33、化简:121)121(2+-+÷-+x x x x . 34、化简:11211222---+--⨯+-x a ax a a a a a a .35、化简:41)2212(216822+++-+÷++-x x x x x x x . 36、化简:xa x x a 22)1(-÷-.37、化简:1)11(22-÷---x x x x x . 38、化简:1)112(2-÷+--a a a a a a .39、化简:421)211(2--÷-+x x x参考答案1、原式=ba ab +. 2、原式=2)2(24--x x . 3、原式=a 2+2a. 4、原式=122--a a . 5、原式=m+n.6、原式=x x -1.7、原式=a a 1+.8、原式=1-x x .9、原式=2-a a . 10、原式=22-+x x . 11、原式=a 2. 12、原式=1+x x . 13、原式=3x-7. 14、原式=x x 1-. 15、原式=11-x .16、原式=1+2. 17、原式=x x +-21. 18、原式=-x-4. 19、原式=22-x x.20、原式=x x +21. 21、原式=xx 9-. 22、原式=x+1. 24、原式=2)2(1--x . 25、原式=2-x x . 26、原式=1-a a . 27、原式=2-m m . 28、原式=b a ba -+. 29、原式=11+-x . 30、原式=21+x . 31、原式=11-x . 32、原式=21+a .33、原式=b a a -2. 34、原式=x ﹣1. 35、原式=0. 36、原式=x x 442+.37、原式=a x +1. 38、原式=x x 1+. 39、原式=a+3. 40、原式=12+x .。
人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)

人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
人教版八年级数学上册 分式运算 分式方程同步练习题(附答案)

人教版八年级数学上册分式运算分式方程练习题一、单选题1.当分式31x -有意义时,字母x 应满足( ) A.1x ≠-B.0x =C.1x ≠D.0x ≠ 2.若分式2a a b+中的a b ,的值同时扩大到原来的10倍,则分式的值( ) A.是原来的20倍 B.是原来的10倍 C.是原来的110 D.不变3.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A.3-B.1-C.1D.3 4.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是( ) A.-2 B.-1 C.2 D.35.计算2222ab ab a b a b-÷-+的结果是( ) A.22ab b -+ B.2b a b -+ C.22ab b -- D.2b a b-- 6.在分式2222424312,,,412y x x x xy y a ab a x x y ab b +--++-+-中,是最简分式的有( ) A.1个 B.2个 C.3个 D.4个7.若分式22969x x x -++的值为0,则x 的值为( ) A.3 B.3± C.9 D.9±8.计算2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是( ) A.4- B.4 C.2a D.2a -9.老师设计了接力游戏,用合作的方式完成分式化简,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁 10.计算2235325953x x x x x ÷⋅--+的结果为( ) A.223x B.2(53)3x + C.253x x - D.2159x x - 11.计算2n n m m m ⎛⎫-÷ ⎪-⎝⎭的结果是( ) A.1m -- B. 1m -+ C. mn m -- D.mn n -- 12.计算2221121a a a a a a --⋅+-+结果是( ) A.1a B.a C.11a a +- D.11a a -+ 13.计算222105a b a b ab a b +⋅-的结果为( ) A.2a b - B.a a b - C.b a b - D.2a a b- 14.计算3362b a b a-⋅的结果为( ) A.223a bB.223a b -C.229a b -D.229a b 15.把分式2112,,2(2)(3)(3)x x x x --++通分,下列结论不正确的是( ) A.最简公分母是2(2)(3)x x -+ B.221(3)2(2)(3)x x x x +=--+C.213(2)(3)(2)(3)x x x x x +=-+-+D.22222(3)(2)(3)x x x x -=+-+ 16.化简分式222()x y y x --的结果是( ) A.1- B.1 C.x y y x +- D.x y x y+- 二、计算题17.计算:1.2222255343x y m n xym mn xy n÷ 2.222132(1)441x x x x x x x-++÷+++- 18.先化简,再求值:2221211x x x x x x--+÷+-,其中2x =-. 三、填空题19.计算293242a a a a-+÷--的结果为_________. 20.如果23a b =,那么22242a b a ab --的值是____________. 21.如果2220m m +-=,那么244()2m m m m m ++⋅+的值是 . 参考答案1.答案:C解析:当10x -≠时,分式有意义。
八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2分式的运算
第1课时
课前自主练
1.计算下列各题:
(1)3
2
×
1
6
=______;(2)
3
5
÷
4
5
=_______;(3)3a·16ab=________;
(4)(a+b)·4a b2=________;(5)(2a+3b)(a-b)=_________.2.把下列各式化为最简分式:
(1)
2
2
16
816
a
a a
-
-+
=_________;(2)
22
22
()
()
x y z
x y z
--
+-
=_________.
3.分数的乘法法则为_____________________________________________________;
分数的除法法则为_____________________________________________________.4.分式的乘法法则为____________________________________________________;
分式的除法法则为____________________________________________________.课中合作练
题型1:分式的乘法运算
5.(技能题)
2
2
3
4
xy
z
·(-
2
8z
y
)等于()
A.6xyz B.-
23
38
4
xy z
yz
-
C.-6xyz D.6x2yz
6.(技能题)计算:
2
3
x
x
+
-
·
2
2
69
4
x x
x
-+
-
.
题型2:分式的除法运算
7.(技能题)
2
2
ab
cd
÷
3
4
ax
cd
-
等于()
A.
2
2
3
b
x
B.
3
2
b2x C.-
2
2
3
b
x
D.-
22
22
3
8
a b x
c d
8.(技能题)计算:
2
3
a
a
-
+
÷
2
2
4
69
a
a a
-
++
.
课后系统练
基础能力题 9.(-3a b
)÷6ab 的结果是( )
A .-8a 2
B .-2a b
C .-
2
18a b
D .-
2
12b
10.-3xy ÷
2
23y
x
的值等于( )
A .-
2
92x
y
B .-2y 2
C .-
2
29y x
D .-2x 2y 2
11.若x 等于它的倒数,则
2
63
x x x ---÷
2
356
x x x --+的值是( )
A .-3
B .-2
C .-1
D .0 12.计算:(xy-x 2
)·
xy x y
-=________.
13.将分式
2
2
x
x x
+化简得
1
x
x +,则x 应满足的条件是________.
14.下列公式中是最简分式的是( ) A .
2
1227b a
B .
2
2()a b b a
-- C .
22
x y x y
++ D .
22
x y x y
--
15.计算
(1)(2)(1)(2)
a a a a -+++·5(a+1)2的结果是( )
A .5a 2
-1 B .5a 2
-5 C .5a 2
+10a+5 D .a 2
+2a+1 16.(2005·南京市)计算2
2
121
a a a -++÷
2
1
a a a -+.
17.已知
1m
+
1n
=
1m n
+,则
n m
+
m n
等于( )
A .1
B .-1
C .0
D .2 拓展创新题
18.(巧解题)已知x 2
-5x-1 997=0,则代数式
32
(2)(1)1
2
x x x ---+-的值是( )
A .1 999
B .2 000
C .2 001
D .2 002 19.(学科综合题)使代数式
33
x x +-÷
24
x x +-有意义的x 的值是( )
A.x≠3且x≠-2 B.x≠3且x≠4
C.x≠3且x≠-3 D.x≠-2且x≠3且x≠4
20.(数学与生活)王强到超市买了a千克香蕉,用了m元钱,又买了b千克鲜橙,•也用了m元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).
答案
1.(1)1
4
(2)
3
4
(3)48a2b (4)4a2b2+4ab3(5)2a2+ab-3b2
2.(1)
4
4
a
a
+
-
(2)
x y z
x y z
-+
++
3.分数与分数相乘,把分子、分母分别相乘;除以一个数等于乘以这个数的倒数4.分式乘以分式,把分子、分母分别相乘;除以一个分式等于乘以这个分式的倒数
5.C 6.
3
2
x
x
-
-
•7.C 8.
3
2
a
a
+
+
9.D 10.A 11.A 12.-x2y 13.x≠0
14.C 15.B 16.1
a
17.B 18.•C •19.D 20.(
3m
a
+
2m
b
)元。