人教版八年级数学上册 分式的运算 教案
人教版数学八年级上册15.3分式方程的解法(教案)
1.教学重点
(1)理解分式方程的定义:重点强调分式方程的形式特点,即方程中包含有分母,且分母不为零,让学生充分理解这一核心内容。
举例:如方程2/x = 3/(x+1),其中x≠0。
(2)掌握分式方程的解法:包括消元法、代入法、加减法等,特别是消元法在求解分式方程中的应用。
举例:消元法求解方程2/x = 3/(x+1):
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是指含有分母的方程,它是代数方程的一种特殊形式。分式方程在解决实际问题时具有重要作用,能够帮助我们处理比例、速率、百分比等问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小红的糖果总数为10个,要平均分给两人,我们可以建立分式方程x/2 = 10,其中x表示每人应得的糖果数。通过解这个方程,我们可以得到答案。
2.提升学生的数学建模素养:使学生能够将实际问题抽象为分式方程模型,并运用所学方法求解,从而提高解决实际问题的能力;
3.增强学生的数学运算能力:让学生熟练掌握分式方程的消元、代入、加减等解法,培养他们准确、迅速地进行数学运算的能力。
这些核心素养目标与新教材的要求相符,旨在帮助学生形成系统的数学知识体系,提高数学思维品质和解决问题的综合能力。
难点解析:代入法中,学生可能会遇到以下困难:
-不清楚应该将哪个表达式代入另一个表达式中;
-在代入过程ቤተ መጻሕፍቲ ባይዱ,容易忽视方程中的限制条件(如分母不为零);
-计算过程中可能因粗心导致错误。
(3)分式方程在实际问题中的应用:学生需要学会将实际问题抽象为分式方程,并正确求解。
难点解析:实际问题抽象为分式方程时,学生可能会遇到以下问题:
人教版八年级数学上册15.2分式的混合运算优秀教学案例
本案例注重引导学生进行反思与评价,帮助学生总结学习过程中的优点和不足,明确下一步的学习方向。通过开展多种形式的评价,激发学生的学习积极性,培养他们勇于展示自己的学习成果。
5.内容与过程的系统性
本案例在教学内容与过程的设计上,遵循了由浅入深、循序渐进的原则。从导入新课、讲授新知、小组讨论、总结归纳到作业小结,每个环节都紧密联系,形成了完整的教学体系。这种系统性的设计有助于学生更好地掌握分式混合运算的知识,提高数学素养。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发他们学习数学的内在动力。
2.引导学生树立正确的数学观念,认识到数学在现实生活中的重要作用。
3.培养学生的合作精神,使他们学会倾听、尊重他人意见,形成良好的团队协作能力。
4.培养学生勇于面对困难和挑战,善于克服问题,树立自信心。
三、教学策略
(一)情景创设
在教学过程中,我重视引导学生进行反思与评价。在每个环节结束后,组织学生进行自我反思,总结自己在分式混合运算中的优点和不足,帮助他们明确下一步的学习方向。同时,开展学生互评、教师评价等多种形式的评价,鼓励学生积极参与,勇于展示自己的学习成果。
此外,我还将关注学生的情感态度,及时发现和解决他们在学习过程中遇到的问题,给予积极的情感支持。通过反思与评价,帮助学生建立自信,培养良好的学习习惯,提高数学素养。
二、教学目标
(一)知识与技能
1.理解分式混合运算的概念,掌握分式加减乘除的运算规则,提高运算速度和准确性。
2.能够运用分式混合运算解决实际问题,培养将现实问题转化为数学问题的能力。
3.学会使用分式运算的性质和法则,简化复杂的分式表达式,提高解题效率。
4.通过对分式混合运算的练习,使学生掌握基本的数学思维方法,培养逻辑推理能力。
八年级数学上册《分式的运算》教案、教学设计
-完成课本第章节后的练习题,包括分式的定义、分式的基本运算规则。
-设计一些简单的分式运算题目,要求学生独立完成,并在家长监督下进行自我检查,以提高学生的自主学习能力。
2.应用能力提升:
-选择一些具有实际背景的分式问题,如购物打折、配比问题等,要求学生运用所学知识解决,并写出解题过程。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以学生熟悉的生活情境为背景,提出一个关于比例分配的问题,如“小华和小明一起做家务,小华打扫卫生,小明洗衣服,如果他们共同得到10个积分,按照打扫卫生和洗衣服的工作量比例分配,小华应该得到多少积分?”
2.教学过程:
-引导学生思考如何表示小华和小明的工作量比例。
4.培养学生的自主学习能力,引导他们通过观察、思考、总结等过程,掌握分式运算的方法和技巧。
三、教学重难点和教学设想
(一)教学重难点
1.分式的基本概念:分子、分母、分式值等概念的理解是学习分式运算的基础,需要学生深刻理解并熟练掌握。
2.分式的运算规则:分式乘除法、分式加减法、分式乘方等运算规则是本章节的重点,学生需要熟练掌握并能够灵活运用。
2.教学过程:
-教师引导学生回顾本节课所学的内容,总结分式的定义、运算规则及解题方法。
-帮助学生梳理分式运算的重难点,巩固记忆。
-鼓励学生提出疑问,针对问题进行解答,确保学生对所学知识有深刻的理解。
五、作业布置
为了巩固学生对分式运算的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.分式方程与不等式的解法:将分式运算应用于实际问题中,解决方程和不等式问题,是本章节的难点。
(二)教学设想
1.创设情境,引入新课:通过生活中的实例,如比例分配问题,引出分式的概念,让学生感受到分式运算的实际意义,激发学习兴趣。
第十五章 分式【教案】八年级上册数学
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
八年级数学上册《分式的乘法和除法》教案、教学设计
在教学中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学素养,提高学生的综合素质。通过本章节的学习,使学生能够掌握分式的乘法和除法,为后续学习打下坚实基础。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了整式的乘除运算,对于分式的概念也有初步的了解。但在分式的乘法和除法方面,学生可能还存在以下问题:对分式乘除法则的理解不够深入,运算过程中容易出现符号错误、漏项等;面对实际问题时,难以将问题转化为分式乘除运算模型。此外,学生的个体差异较大,部分学生对数学学习兴趣不足,自信心不强。针对这些情况,教师应采取以下策略:加强基础知识的教学,巩固学生的分式概念;通过典型例题,引导学生发现分式乘除的运算规律;关注学困生,提高他们的学习兴趣和自信心;注重分层教学,使每个学生都能在原有基础上得到提高。从而为分式乘除法的学习打下坚实基础,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘、除法的运算法则,以及在实际问题中的应用。
2.难点:理解分式乘、除法的运算规律,正确进行符号处理,避免漏项和误操作;将实际问题转化为分式乘、除运算模型。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题导入,激发学生的学习兴趣;
(2)运用启发式教学法,引导学生主动探究分式乘、除法的运算规律;
(三)学生小组讨论
1.教学活动设计:
将学生分成若干小组,每组针对以下问题进行讨论:
(1)分式乘、除法与整式乘、除法的联系与区别是什么?
(2)如何正确处理分式乘、除法中的符号问题?
(3)如何将实际问题转化为分式乘、除运算模型?
人教版-数学-八年级上册-人教数学 分式的加减乘除混合运算 教案
(1)(x+y)2· +
(2)
(3)
(4) - ·
教学设计:
教学
环节
教学活动过程
思考与
调整
活动内容
师生行为
预习
交流
通过回顾分式的加法、减法、乘法和除法法则,帮助学生回顾这些法则的得出过程,为本节的混合运算奠定基础,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
学习重点
分式的加、减、乘、除混合运算的顺序。
学习难点
1、分式的加、减、乘、除混合运算。
2、分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
3、灵活运用添括号,去括号法则
教具学具
小黑板、三角板等
预习作业
1.分式的乘除法法则是
2.分式的加减法法则是
3.回顾小学所的数的混合运算的顺序是:先,再,然后,遇有括号,先算。从而类比得到分式的混合运算法则。
展示例题,让学生动手计算,教师巡视、指导、及时纠正错误。
在独立探究Байду номын сангаас基础上,学生分组交流与研讨,并汇总解决问题的方法。
学生观察、思考、交流,教师深入学生当中,参与活动,倾听学生交流并适时的进行点拨。
检测
反馈
1.计算:
(1)
(2)
2.计算 ,并求出当 -1的值.
3.课堂上,李老师出了这样一道题:
已知 ,求代数式 的值。
例3:已知x+ =3,求下列各式的值:
(1)x2+ ;(2 。
分析:观察已知条件和所求式,可将所求的式进行分解因式,将已知条件整体代入,第(2)题是先求它的倒数值,可以将x2+ =7直接代入,求得它的值。此外对于已知条件x+ =3,可以变形为x2-3x+1=0,也可以变形为 =1,在后两种表达形式下,要能熟练地将它转化为x+ =3。
人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。
人教版八年级数学上册第十五章《分式》教案
第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。
人教版数学八年级上册教学设计15.2.2《分式的加减》
人教版数学八年级上册教学设计15.2.2《分式的加减》一. 教材分析《分式的加减》是人教版数学八年级上册第15章的一部分,这部分内容是学生在学习了分式的概念、分式的乘除的基础上进一步学习的。
分式的加减是分式运算的重要组成部分,也是学生进一步学习代数式运算的基础。
二. 学情分析学生在学习本节内容之前,已经掌握了分式的概念、分式的乘除,对代数式运算有一定的了解。
但是,学生对分式的加减运算可能存在理解上的困难,特别是对于分母不同的情况。
因此,在教学过程中,需要引导学生理解分式加减的实质,掌握相应的运算技巧。
三. 教学目标1.理解分式加减的运算规则,掌握分式加减的运算方法。
2.能够正确进行分式的加减运算,解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重点:分式加减的运算规则和运算方法。
2.难点:理解分式加减的实质,解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过自主学习、合作交流,掌握分式的加减运算。
六. 教学准备1.教学PPT2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的加减运算,激发学生的学习兴趣。
2.呈现(10分钟)呈现分式的加减运算规则,引导学生理解分式加减的实质。
3.操练(10分钟)学生分组进行练习,教师巡回指导,帮助学生掌握分式加减的运算方法。
4.巩固(10分钟)出示一些分式加减的题目,让学生独立完成,巩固所学知识。
5.拓展(10分钟)出示一些综合性的题目,让学生进行解答,提高学生的解题能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)布置一些分式加减的练习题,让学生进行巩固。
8.板书(5分钟)教师根据教学内容,进行板书设计,方便学生理解和记忆。
在教学过程中,要注意关注学生的学习情况,对于学生的错误要及时进行纠正,引导学生正确理解分式的加减运算。
同时,要注重培养学生的逻辑思维能力,提高学生的数学素养。
人教版八年级上册15.2.2分式的加减(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式加减的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调同分母分式加减和异分母分式加减这两个重点。对于难点部分,如通分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如调配饮料,演示分式加减的基本原理。
三、教学难点与重点
1.教学重点
-分式加减的基本概念:理解分式加减的定义,掌握分式加减的法则,能够正确应用法则进行计算。
-分式的通分:掌握寻找公分母的方法,能够将异分母分式转化为同分母分式进行加减运算。
-实际应用:能够将分式加减应用于解决实际问题,建立数学模型。
举例解释:
(1)重点讲解分式加减的运算步骤,通过多个例题演示,强调分子相加(减)时分母必须保持不变。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式加减的基本概念。分式加减是指对具有相同或不同分母的分式进行加或减的运算。它在数学运算中非常重要,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两种不同浓度的溶液混合后的浓度,通过分式加减可以帮助我们解决这个问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教版八年级数学第十五章《分式的除法运算》全章教案
人教版八年级数学第十五章《分式的除法运算》全章教案一、教学目标1. 掌握分式的除法运算的基本概念和方法;2. 能够正确使用分式的除法运算解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。
二、教学重难点1. 教学重点:分式的除法运算的步骤和注意事项;2. 教学难点:将实际问题转化为分式的除法运算。
三、教学准备1. 教材:人教版八年级数学教材;2. 教具:黑板、粉笔、教学PPT。
四、教学过程1. 导入(5分钟)通过一个简单的例子引起学生对分式的除法运算的兴趣,并让学生回顾上一章节研究的内容。
2. 基础知识讲解(15分钟)- 讲解什么是分式的除法运算;- 分式的除法运算的步骤和注意事项。
3. 练与讨论(25分钟)布置一些练题,让学生进行个人或小组练,并进行讨论。
4. 错题讲解(10分钟)根据学生练的情况,选择一些典型的错题进行讲解,帮助学生理解和掌握分式的除法运算。
5. 拓展应用(15分钟)通过一些实际问题,让学生将问题转化为分式的除法运算,并进行求解。
6. 小结与反思(5分钟)对本节课的内容进行小结,让学生总结分式的除法运算的要点,并反思自己在研究过程中的收获和不足。
五、课后作业布置一些练题,巩固学生对分式的除法运算的理解和应用能力。
六、教学反思本节课通过导入、知识讲解、练习与讨论、错题讲解、拓展应用等环节,全面培养学生对分式的除法运算的理解和应用能力。
通过实际问题的拓展应用环节,能够更好地激发学生的学习兴趣和思维能力。
在教学过程中,学生的参与度较高,积极性较好,但还需加强对知识的理解和运用能力的培养。
在布置课后作业时,需要根据学生的实际情况进行分层设计,以帮助学生巩固所学知识。
初中数学《分式的基本性质》精品教案
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
人教版八年级上册数学教案15.2 分式的运算(5课时)
15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案
人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。
八年级数学上册《分式》教案、教学设计
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
八年级数学 (分式)教案 人教新课标版 教案
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。
初中数学《分式的基本性质》教案
初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。
具体内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。
2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。
3. 学会分式的约分方法,能够熟练地进行分式的约分。
三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。
教学重点:分式的概念、分式的约分。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。
2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。
(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。
(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。
3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。
(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。
2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。
2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。
重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。
人教版八年级上册第15章《分式》全章教案(21页,含反思)
第十五章分式15.1分式15. 1.1从分数到分式1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.2.能够经过分式的定义理解和掌握分式存心义的条件.要点理解分式存心义的条件及分式的值为零的条件.难点能娴熟地求出分式存心义的条件及分式的值为零的条件.一、复习引入1. 什么是整式?什么是单项式?什么是多项式?2. 判断以下各式中 ,哪些是整式?哪些不是整式?① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2a +b 2;⑥3;⑦3x 2- 43 ;④ ;⑤ a 2+ b 2 .32x 2+ 2x +12x二、研究新知1. 分式的定义(1) 学生看教材的问题:一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为多少?剖析:设江水的流速为 v 千米 / 时.轮船顺流航行 90 千米所用的时间为90小时 ,逆流航行 60 千米所用时间为60小时,30+ v 30- v所以 90 = 60.30+ v 30- v(2) 学生达成教材第 127 页“思虑”中的题.察看:以上的式子 9060S V30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不同点?能够发现 ,这些式子都像分数相同都是AB (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.A归纳:一般地 ,假如 A ,B 表示两个整式 ,并且 B 中含有字母 ,那么式子 B 叫做分式. 稳固练习:教材第 129 页练习第 2 题.2. 自学教材第 128 页思虑:要使分式存心义 ,分式中的分母应知足什么条件?分式的分母表示除数 ,因为除数不可以为 0,所以分式的分母不可以为 0,即当 B ≠ 0 时,分 式 A才存心义.B学生自学例 1.例 1以下分式中的字母知足什么条件时分式存心义?2 ;(2) x; (3) 1 ; (4)x +y (1) 3xx - 1 5- 3bx - y.解: (1)要使分式 3x 2存心义 ,则分母 3x ≠ 0,即 x ≠ 0;(2) 要使分式x存心义 ,则分母x - 11(3) 要使分式存心义 ,则分母 5- 3bx + y(4) 要使分式 x - y 存心义 ,则分母x - 1≠ 0,即 x ≠ 1;55- 3b ≠ 0,即 b ≠ ;x - y ≠ 0,即 x ≠ y.思虑:假如题目为:当x 为何值时 ,分式无心义.你知道怎么解题吗?稳固练习:教材第 129 页练习第 3 题. 3. 增补例题:当 m 为何值时 ,分式的值为 0?m ;(2) m - 2; (3) m 2- 1(1) m - 1 m + 3 m + 1 .思虑:当分式为 0 时,分式的分子、分母各知足什么条件?剖析:分式的值为 0 时,一定同时知足两个条件: (1) 分母不可以为零;(2)分子为零.答案: (1)m = 0; (2)m = 2; (3)m = 1. 三、归纳总结 1. 分式的观点.2. 分式的分母不为 0 时,分式存心义;分式的分母为 0 时,分式无心义.3. 分式的值为零的条件: (1)分母不可以为零; (2) 分子为零.四、部署作业教材第 133 页习题 15.1 第 2, 3 题.在引入分式这个观点从前先复习分数的观点,经过类比来自主研究分式的观点 ,分式有意义的条件 ,分式值为零的条件 ,从而更好更快地掌握这些知识点,同时也培育学生利用类比转变的数学思想方法解决问题的能力.15. 1.2 分式的基天性质 (2 课时 )第 1 课时分式的基天性质1.认识分式的基天性质,灵巧运用分式的基天性质进行分式的变形.2.会用分式的基天性质求分式变形中的符号法例.要点理解并掌握分式的基天性质.难点灵巧运用分式的基天性质进行分式变形.一、类比引新 1. 计算:(1) 5 2 4 8× 15 ; (2) ÷ .6 5 15 思虑:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基天性质. 2. 你能说出分数的基天性质吗?分数的分子与分母都乘 (或除以 )同一个不为零的数 ,分数的值不变.3. 试试用字母表示分数的基天性质:小组议论沟通如何用字母表示分数的基天性质,而后写出分数的基天性质的字母表达式.a = a ·c a = a ÷cb b ·c , b b ÷c .( 此中 a , b ,c 是实数 ,且 c ≠ 0) 二、研究新知1. 分式与分数也有近似的性质 ,你能说出分式的基天性质吗?分式的基天性质:分式的分子与分母乘 (或除以 )同一个不为零的整式 ,分式的值不变. 你能用式子表示这个性质吗? AA ·C A A ÷CB = B ·C , B = B ÷C .(此中 A , B ,C 是整式 ,且 C ≠ 0)如 x = 1, b =ab2,你还可以举几个例子吗?2x 2 a a回首分数的基天性质 ,让学生类比写出分式的基天性质 ,这是从详细到抽象的过程.学生试试着用式子表示分式的性质 ,增强对学生的抽象表达能力的培育.2. 想想以下等式成立吗?为何?- a a ; - a a a= = =- . - b b b - b b教师出示问题.学生小组议论、沟通、总结.例 1 不改变分式的值 ,使以下分式的分子与分母都不含“-”号:- 2a- 3x- x 2(1) - 3a ; (2) 2y ; (3)- y.例 2不改变分式的值 ,使以下分式的分子与分母的最高次项的系数都化为正数:x + 1 2- x - x - 1(1) - 2x - 1; (2)- x 2+ 3;(3) x + 1 .指引学生在达成习题的基础长进行归纳 ,使学生掌握分式的变号法例.例 3填空:x 3( ) 3x 2+ 3xy=x + y;= y,( )(1) xy6x 2(),2a -2 ( ) .(b ≠ 0)(2)1=2b = 2aba b a a bx 3解: (1)因为 xy 的分母 xy 除以 x 才能化为 y ,为保证分式的值不变 ,依据分式的基天性 质,分子也需除以 x ,即x 3= x 3 ÷x =x 2. xy xy ÷ x y相同地 ,因为 3x 2+ 3xy的分子 3x 2+3xy 除以 3x 才能化为 x + y ,所以分母也需除以 3x ,6x 2即3x 2+ 3xy(3x 2+ 3xy ) ÷( 3x ) x + y6x 2=6x 2 ÷( =2x.3x )所以 ,括号中应分别填入 x 2和 2x.(2) 因为 ab1的分母 ab 乘 a 才能化为 a 2b ,为保证分式的值不变 ,依据分式的基天性质 ,分子也需乘 a ,即1 = 1·a = a2 . ab ab ·a a b2a - b相同地 ,因为a2 的分母 a 2乘 b 才能化为 a 2b ,所以分子也需乘 b ,即2a - b ( 2a -b ) ·b 2ab -b 22 == 2.a a 2 ·b a b所以 ,括号中应分别填 a 和 2ab - b 2.在解决例题 1, 2 的第 (2)小题时 ,教师能够指引学生察看等式两边的分母发生的变化,再思虑分式的分子如何变化;在解决例2 的第 (1)小题时 ,教师指引学生察看等式两边的分子发生的变化 ,再思虑分式的分母随之应当如何变化.三、讲堂小结1. 分式的基天性质是什么? 2. 分式的变号法例是什么?3. 如何利用分式的基天性质进行分式的变形? 学生在教师的指引下整理知识、理顺思想. 四、部署作业教材第 133 页习题 15.1 第 4, 5 题.经过算数中分数的基天性质,用类比的方法给出分式的基天性质,学生接受起来其实不感觉困难,但要要点重申分子分母同乘 (或除 )的整式不可以为零,让学生养成谨慎的态度和习惯.第 2 课时分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的观点.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.要点运用分式的基天性质正确地进行分式的约分与通分.难点通分时最简分分母确实定;运用通分法例将分式进行变形.一、类比引新1.在计算56×152时,我们采纳了“约分”的方法,分数的约分约去的是什么?分式a+ b相等吗?为何?aba2+ab利用分式的基天性质,分式a2b约去分子与分母的公因式a,其实不改变分式的值a+ b获得. a2+ ab a2b,,能够教师点拨:分式a2+ ab能够化为a+ b__分式的约分 __.a2b ab ,我们把这样的分式变形叫做4 64 62. 如何计算 5+ 7?如何把 5,7通分?近似的 ,你能把分式 a, c变为同分母的分式吗?b d利用分式的基天性质 ,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分 __.二、研究新知- 25a 2bc 3;(2) x 2- 9; 1. 约分: (1) 15ab 2c x 2+ 6x +9 6x 2- 12xy + 6y 2 (3) 3x -3y .剖析:为约分 ,要先找出分子和分母的公因式.2322解: (1) - 25a bc =- 5abc ·5ac =-5ac ;15ab 2c5abc · 3b 3bx 2- 9 ( x + 3)( x - 3) x - 3(2)x2+= (x + 3) 2 =;6x +9x + 36x 2- 12xy + 6y 2 6( x - y )2(3)3x -3y==2(x - y).3(x - y )若分子和分母都是多项式 ,则常常需要把分子、分母分解因式(即化成乘积的形式 ) ,然后才能进行约分. 约分后 ,分子与分母没有公因式 ,我们把这样的分式称为 __最简分式 __.( 不 能再化简的分式 )2. 练习:约分:2ax 2y ; - 2a ( a +b ) ( a - x ) 2 2- 4 ; m 2- 3m 2-13b ( a +b ) ; ; x ; 99.3axy 2 ( x -a ) 3 xy + 2y9- m 298学生先独立达成 ,再小组沟通 ,集体校正.3. 议论:分式1 , 114的最简公分母是什么?3 22 3, 6xy2x y z 4x y提出最简公分母观点.一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.学生议论、小组沟通、总结得出求最简公分母的步骤:(1) 系数取各分式的分母中系数最小公倍数; (2) 各分式的分母中所有字母或因式都要取到; (3) 相同字母 (或因式 )的幂取指数最大的;(4) 所得的系数的最小公倍数与各字母 (或因式 )的最高次幂的积 (此中系数都取正数 ) 即为最简公分母.4. 通分: (1) 32 与a -2 b; (2) 2x 与 3x .2a b ab c x - 5 x + 5 剖析:为通分 ,要先确立各分式的公分母.解: (1)最简公分母是 2a 2b 2c.33·bc 3bc2a 2b = 2a 2b · bc =2a 2b 2 c , a - b ( a -b ) ·2a 2a 2 -2abab 2c =ab 2c · 2a = 2a 2b 2c .(2) 最简公分母是 (x - 5)(x + 5) .2x=2x( x+ 5)=2x2+ 10xx- 5 ( x- 5)( x+ 5)x2- 25,3x =3x( x- 5)= 3x2- 15x x+ 5 ( x+ 5)( x- 5)x2- 25. 5.练习:通分: (1) 12与 5 ; (2) 21与 2 1 ; (3) 12与2x.3x 12xy x + x x - x (2- x)x - 4教师指引:通分的要点是先确立最简公分母;假如分式的分母是多项式则应先将分母分解因式,再按上述的方法确立分式的最简公分母.学生板演并互批实时纠错.6.思虑:分数和分式在约分和通分的做法上有什么共同点?这些做法的依据是什么?教师让学生议论、沟通,师生共同作以小结.三、讲堂小结1.什么是分式的约分?如何进行分式的约分?什么是最简分式?2.什么是分式的通分?如何进行分式的通分?什么是最简公分母?3.本节课你还有哪些迷惑?四、部署作业教材第 133 页习题 15.1 第 6, 7 题.本节课是在学习了分式的基天性质后学的,要点是运用分式的基天性质正确的约分和通分,约分时要注意必定要约成最简分式,娴熟运用因式分解;通分时要将分式变形后再确立最简公分母.15. 2分式的运算15. 2.1分式的乘除(2课时)第 1 课时分式的乘除法1.理解并掌握分式的乘除法例.2.运用法例进行运算,能解决一些与分式相关的实质问题.要点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1. 分数的乘除法的法例是什么?2. 计算: 3 × 15 ; 3 155 12 ÷ .5 2由分数的运算法例知3 15 = 3× 15 315 3 × 2 = 3× 2× 12 5× 12 ; ÷ = 15 .5 5 2 5 5× 153. 什么是倒数? 我们在小学学习了分数的乘除法 ,关于分式如何进行计算呢?这就是我们这节要学习的内容.二、研究新知问题 1:一个水平搁置的长方体容器 ,其容积为 V ,底面的长为 a ,宽为 b 时,当容器的水占容积的 m时,水面的高度是多少?n问题 2:大拖沓机 m 天耕地 a hm 2,小拖沓机 n 天耕地 b hm 2,大拖沓机的工作效率是小拖沓机的工作效率的多少倍?问题 1 求容积的高 V m,问题 2 求大拖沓机的工作效率是小拖沓机的工作效率的 a b ·÷ 倍.ab nm n依据上边的计算 ,请同学们总结一下对分式的乘除法的法例是什么?分式的乘法法例:分式乘分式 ,用分子的积作为积的分子 ,分母的积作为积的分母. 分式的除法法例:分式除以分式 ,把除式的分子、分母颠倒地点后,与被除式相乘.a ca ·c a c a d a ·d·=; ÷ = ·=.b d b ·d b d bc b ·c 三、举例剖析例 1 计算:4x y ab 3 - 5a 2b 2(1) 3y ·2x 3; (2)2c 2÷4cd.剖析:这道例题就是直策应用分式的乘除法法例进行运算.应当注意的是运算结果应约分到最简 ,还应注意在计算时跟整式运算相同 ,先判断运算符号 ,再计算结果.解: (1)4xy = 4xy = 2 ;3y ·36x 3y 3x 22x(2) ab 3- 5a 2b 2 ab 34cd 4ab 3cd 2bd2c 2÷ = 2· 2 2=- 2 2 2=- .4cd 2c - 5a b 10a b c 5ac 例 2 计算:a 2- 4a +4 a - 1(1) a 2- 2a +1·a 2- 4;1 1(2) 49-m 2÷ m 2- 7m . 剖析:这两题是分子与分母是多项式的状况 ,第一要因式分解 ,而后运用法例.( a -2) 2 a - 1 a - 2解: (1)原式 ( a -1) 2· ( a + 2)( a - 2)= ( a -1)( a + 2) ;(2) 原式 1 1÷( 7- m )( 7+ m ) m ( m - 7)= 1 m ( m - 7) =- m7+m ) · 1 .( 7- m )( m + 7例 3 “丰产 1 号”小麦试验田边长为 a 米 (a > 1)的正方形去掉一个边长为 1 米的正方形蓄水池后余下的部分 ,“丰产 2 号”小麦的试验田是边长为 (a - 1)米的正方形 ,两块试验田的小麦都收获了 500 千克.(1) 哪一种小麦的单位面积产量高?(2) 高的单位面积产量是低的单位面积产量的多少倍?剖析:此题的实质是分式的乘除法的运用.解: (1)略.500500 500 a 2- 1 a + 1 (2) ( a -1) 2÷ a 2- 1=( a - 1) 2· 500 =a - 1.“丰产 2 号”小麦的单位面积产量是“丰产1 号”小麦的单位面积产量的a + 1倍.a - 1四、随堂练习1. 计算: (1) c 2 · a 2b 2 (2)- n 2 · 4m 2 y 2; 2m 5n 3;(3) ÷(- );ab c 7x x 2ya 2- 4 a 2- 1 (4) - 8xy ÷ ; (5)- 2 ·2 4a + 4 ;5x a -2a + 1 a +y 2- 6y + 9(6)÷(3- y).y + 2答案: (1)abc ; (2)- 2m; (3)- y; (4)- 20x 2;(5) ( a + 1)( a - 2) ;(6) 3- y 5n 14-( a - 1)( a + 2) y + 2 . 2. 教材第 137 页练习 1, 2,3 题.五、讲堂小结(1) 分式的乘除法法例; (2) 运用法例时注意符号的变化;(3) 因式分解在分式乘除法中的应用;(4) 步骤要完好 ,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也能够写成一个多项式 ,如 ( a - 1) 2 a 2- 2a + 1或 a .a六、部署作业教材第 146 页习题 15.2 第 1, 2 题.本节课从两个拥有实质背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实质需要产生的,从而激发他们学习的兴趣,接着,从分数的乘除法例的角度指引学生经过察看、研究、归纳总结出分式的乘法法例.有益于学生接受新知识,并且能表现由数到式的发展过程.第 2课时分式的乘方及乘方与乘除的混淆运算1.进一步娴熟分式的乘除法法例,会进行分式的乘、除法的混淆运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.要点分式的乘方运算,分式的乘除法、乘方混淆运算.难点分式的乘除法、乘方混淆运算,以及分式乘法、除法、乘方运算中符号确实定.一、复习引入1.分式的乘除法法例.分式的乘法法例:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘.2.乘方的意义:a n= a·a·a· ·a(n 为正整数 ).二、研究新知例 1(教材例 4) 计算2x 3 x÷·.5x- 3 25x 2- 9 5x + 3解:2x 3·x÷+ 3 5x-3 25x 2- 9 5x25x 2- 9x (先把除法一致成乘法运算 )= 2x ·3 · 5x - 3 5x+3 2x 2 =3 .( 约分到最简公式 ) 分式乘除运算的一般步骤:(1) 先把除法一致成乘法运算;(2) 分子、分母中能分解因式的多项式分解因式; (3) 确立分式的符号 ,而后约分;(4) 结果应是最简分式.1. 由整式的乘方引出分式的乘方,并由特别到一般地指引学生进行归纳.2(1)( a )2=a a= a2;bb ·b b↑↑由乘方的意义 由分式的乘法法例(2) 同理:a 3 a a aa 3( )= ··= 3;b b b b ba n a a aa · a · · an 个a n( ) = ·· ·n个== n .b b b bb · b · · bn 个 b2. 分式乘方法例:n分式: (a b )n = ab n .(n 为正整数 )文字表达:分式乘方是把分子、分母分别乘方. 3. 当前为止 ,正整数指数幂的运算法例都有什么?(1)a n · a n = a m +n ; (2)a m ÷ a n = a m -n ;(3)(a m ) n =a mn ;(4)(ab) n = a n b n ;a a n(5)( b )n= b n . 三、举例剖析 例2计算:- 2a 2b(1)( 3c )2;2a b3÷2a· (c2(3)( - x 2 y 2 )3÷ y )4;y )2· (- x (-x a 2- b 2 a - b(4) 22÷ () 2.a + ba + b22 4 2(- 2a b )=4a b 2 ;解: (1)原式= ( 3c ) 29ca 6b 3 d 3c 2a 3b 3 (2) 原式= -c 3d 9· 2a ·4a 2=- 8cd 6;46 4(3) 原式=x · (- y x =- x 5; y 2x 3)·4y(4) 原式= ( a + b )( a - b ) ( a + b ) 2 ( a + b ) 32 2· ( a - b ) 2=22 .a +b ( a - b )( a + b )学生板演、 纠错并实时总结做题方法及应注意的地方: ①关于乘、 除和乘方的混淆运算 ,应注意运算次序 ,但在做乘方运算的同时 ,可将除变乘;②做乘方运算要先确立符号.例3 计算:b3n -1c2a2n -1(1) a 2n+1·b 3n-2;x 2-2xy + y 2x - y(2)(xy - x 2) ÷ · x 2 ;xy (3)( a 2- b 2 a -b )2.ab )2÷ (a解: (1)原式= b 3n -2· b · c 2 a 2n - 1bc 2 a2n -1· a 2·b 3n -2=a 2;x ( x - y ) xy2· x - y(2) 原式=-1 ·x 2 =- y ;( x - y )( a + b )2( a - b ) 2 a 2 a 2+ 2ab +b 2 (3) 原式= a 2b 2· (a -b ) 2=b 2. 本例题是本节课运算题目的拓展,关于 (1)指数为字母 ,可是方法不变; (2)(3) 是较复杂的 乘除乘方混淆运算 ,要进一步让学生熟习运算次序,注意做题步骤.四、稳固练习教材第 139 页练习第 1, 2 题. 五、讲堂小结 1. 分式的乘方法例. 2. 运算中的注意事项. 六、部署作业教材第 146 页习题 15.2 第 3 题.分式的乘方运算这一课的教课先让学生回想从前学过的分数的乘方的运算方法用类比的方法让学生得出分式的乘方法例.在解说例题和练习时充分调换学生的踊跃性大家都参加进来 ,提升学习效率.,而后采,使15. 2.2分式的加减(2 课时)第 1 课时分式的加减理解并掌握分式的加减法例,并会运用它们进行分式的加减运算.要点运用分式的加减运算法例进行运算.难点异分母分式的加减运算.一、复习发问 1. 什么叫通分? 2. 通分的要点是什么? 3. 什么叫最简公分母?4. 通分的作用是什么? (引出新课 ) 二、研究新知1. 出示教材第 139 页问题 3 和问题 4. 教材第 140 页“思虑”.1 分式的加减法与分数的加减法近似,它们的实质相同. 察看以下分数加减运算的式子:5+2=31- 2=- 11+1= 3+2=5 1- 1= 3- 2=1,得出分式的加减法5 5,5 55, 2 3666, 2 3 6 6 6.你能将它们推行 法例吗?教师提出问题 ,让学生列出算式 ,获得分式的加减法法例. 学生议论:组内沟通 ,教师点拨. 2. 同分母的分式加减法.a b a ±b公式: ±=c .c c文字表达:同分母的分式相加减 ,分母不变 ,把分子相加减.3. 异分母的分式加减法.分式: a c ad bc ad ±bc± = ± = bd .b d bd bd文字表达:异分母的分式相加减 ,先通分 ,变为同分母的分式 ,而后再加减.三、典型例题 例 1(教材例 6) 计算:5x +3y- 2x2; (2)1 + 1(1) 2- y 2 2.xx - y2p + 3q 2p - 3q解: (1)5x + 3y - 2xx 2- y2 x 2- y 25x + 3y - 2x 3x + 3y 3 = 2 2 = 2 - y 2 = ;x - y x x -y(2) 1 + 12p +3q2p - 3q=2p - 3q +2p + 3q ( 2p + 3q )( 2p - 3q ) ( 2p + 3q )( 2p - 3q )= 2p - 3q + 2p + 3q=4p( 2p + 3q )( 2p - 3q ) 4p 2- 9q 2.小结:(1) 注意分数线有括号的作用 ,分子相加减时 ,要注意添括号.(2) 把分子相加减后 ,假如所得结果不是最简分式 ,要约分.例2 计算:m + 2n + n - 2m . n - m m - n n - m剖析: (1)分母能否相同? (2)如何把分母化为相同的?(3)注意符号问题.解:原式= m + 2n - n - 2mn - m n -m n - m= m + 2n - n - 2mn -m=n - mn - m= 1. 四、讲堂练习1. 教材第 141 页练习 1, 2 题.5232.计算: (1)-+ ;12 2(2) m 2- 9+3- m ;(3)a + 2- 4;2- aa 2-b 2 ab - b 2(4) ab -ab -ab 2.五、讲堂小结1. 同分母分式相加减 ,分母不变 ,只要将分子作加减运算 ,但注意每个分子是个整体 ,要合时添上括号.2.关于整式和分式之间的加减运算 ,则把整式当作一个整体 ,即当作是分母为 1 的分式 ,以便通分.3.异分母分式的加减运算 ,第一察看每个公式能否为最简分式 ,能约分的先约分 ,使分式简化 ,而后再通分 ,这样可使运算简化.4. 作为最后结果 ,假如是分式则应当是最简分式. 六、部署作业教材第 146 页习题 15.2 第 4, 5 题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的详细方法,经过类比的思想方法,由数的运算引出式的运算规律,表现了数学知识间详细与抽象、从特别到一般的内在联系.尔后,利用相同的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,切合学生认知的发展规律,有助于知识的层层落实与掌握.第 2 课时分式的混淆运算1.明确分式混淆运算的次序,娴熟地进行分式的混淆运算.2.能灵巧运用运算律简易运算.要点娴熟地进行分式的混淆运算.难点娴熟地进行分式的混淆运算.一、复习引入回想:我们已经学习了分式的哪些运算?1.分式的乘除运算主假如经过( )进行的,分式的加减运算主假如经过( ) 进行的.2.分数的混淆运算法例是再算 (),最后算 ( ( ) ,近似的,分式的混淆运算法例是先算 ) ,有括号的先算 ( )里面的.( ),二、研究新知1.典型例题例1计算:( x+2 + 4 ) ÷x .x-2 x2- 4x+ 4 x- 2 剖析:应先算括号里的.例 2计算:4y 24x 2yx + 2y + x - 2y - x 2- 4y2. 剖析: (1)此题应采纳逐渐通分的方法挨次进行; (2)x + 2y 能够看作 x + 2y.1 例 31 -2x 计算:1x + yx + y ·( 2x -x -y).剖析:此题可用分派律简易计算.例 4 [ 1 2-1 2] ÷( 1 - 1 ).( a + b ) ( a - b ) a +b a - b 剖析:可先把被除式利用平方差公式分解因式后再约分.例 5(教材例 7)2a 21a b计算 ()·- ÷ .b a - b b 4解: 2a1- ab( )2· b ÷b a -b 4= 4a 2 1 - a 4 b 2 · ·a -b b b4a 24a4a 2 4a ( a -b ) = b 2( a - b ) - b 2= b 2( a - b )- b 2( a - b )4a 2- 4a 2+ 4ab 4ab= b 2( a - b ) =b 2( a - b ) = 4a ab - b 2.点拨:式与数有相同的混淆运算次序:先乘方 ,再乘除 ,而后加减. 例 6(教材例 8)计算: (1)(m + 2+ 52m - 4) · ;2- m 3- mx + 2 - x - 1x -4 (2)( x 2- 2x x 2- 4x + 4) ÷ x .解: (1)(m + 2+ 5 2m - 4) ·2- m 3- m = ( m + 2)( 2- m )+ 5 2m - 42-m ·3- m= 9- m 2 2( m - 2) 2- m · 3- m= ( 3- m )( 3+ m ) - 2( 2- m ) 2- m · 3- m=- 2(m + 3);(2)( x + 2- x - 1x -4x 2 x 2) ÷ x - 2x - 4x + 4= [ x + 2 -x - 1 x ( x - 2) 2] ·x ( x - 2)x - 4=( x + 2)( x - 2)-( x -1) x ·x x ( x - 2) 2x - 4 = x 2- 4- x 2+ x( x - 2) 2( x - 4)1= ( x - 2) 2. 分式的加、减、乘、除混淆运算要注意以下几点:(1) 一般按分式的运算次序法例进行计算,但合适地使用运算律会使运算简易.(2) 要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用 ,可防止运算烦 琐.(3) 注意括号的“添”或“去”、“变大”与“变小”.(4) 结果要化为最简分式.增强练习 ,指引学生实时纠正在例题中出现的错误 ,进一步提升运算能力.三、稳固练习x 21. (1)x - 1- x - 1;(2)(1 - 2)2÷x - 1;x +1 x + 12ab2bc(3)( a -b )( a - c ) + ( a - b )( c - a );(4)( 1 + 1 ) ÷2 xy2 .x - y x + y x - y 2. 教材第 142 页第 1, 2 题. 四、讲堂小结1.分式的混淆运算法例是先算 ( ),再算 () ,最后算 (),有括号先算 ()里的.2. 一些题应用运算律、公式能简易运算. 五、部署作业1. 教材第 146 页习题 15.2 第 6 题.1 - 1 x 2- 2x + 1,此中 x = 2-1.2. 先化简再求值 x + 1 x 2- 1· x + 1分式的混淆运算是分式这一章的要点和难点,波及到因式分解和通分这两个较难的知识点,可依据学生的详细状况,合适增添例题、习题,让学生娴熟掌握分式的运算法例并提升运算能力.15. 2.3整数指数幂1.知道负整数指数幂a-n=1n.(a≠ 0, n 是正整数 ) a2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于 1 的数.要点掌握整数指数幂的运算性质 ,会有科学记数法表示绝对值小于1 的数.难点负整数指数幂的性质的理解和应用.一、复习引入1. 回想正整数指数幂的运算性质:(1) 同底数的幂的乘法: a m · a n = a m +n (m , n 是正整数 ) ;(2) 幂的乘方: (a m )n = a mn (m , n 是正整数 ); (3) 积的乘方: (ab)n = a n b n (n 是正整数 );(4) 同底数的幂的除法: a m ÷ a n =a m -n (a ≠ 0, m , n 是正整数 , m >n) ;a n a n(5) 分式的乘方: ( ) =n (n 是正整数 ).bb2. 回想 0 指数幂的规定 ,即当 a ≠ 0 时, a 0= 1. 二、研究新知3 312,再假定正整数指数幂的运算性质am÷ a n( 一)1.计算当 a ≠ 0 时, a 3÷ a 5= a5=a =aa 3· a 2 a-- -2.于是= a m n (a ≠ 0, m , n 是正整数 , m > n)中的 m > n 这个条件去掉 ,那么 a 3÷ a 5= a 3 5= a - 2 1获得 a =2(a ≠ 0).a总结:负整数指数幂的运算性质:一般的 ,我们规定:当 n 是正整数时 ,a -n= 1n (a ≠ 0).a 2. 练习稳固: 填空:(1) - 22= ________, (2)( - 2)2= ________, (3)( - 2)0= ________,(4)20= ________,-3-3 =________. (5)2 = ________, (5)( - 2) 3.例 1 (教材例 9) 计算:-2 5 b 3- 2; (1)a÷ a ; (2)( 2)a(3)(a -1 b 2 )3; (4)a - 2b 2· (a 2b - 2)-3.解: (1)a -2÷ a 5= a -2- 5=a -7= a 17;b 3-6a 4 -b -(2)( 2) 2= - 4= a 4b 6 = 6; a ab 6(3)(a -1 b2 )3= a -3b6=ba 3;- - - - - -b 8 (4)a 2b 2· (a 2b 2) 3= a 2b 2· a 6 b 6= a 8b 8= 8.a[剖析 ] 本例题是应用推行后的整数指数幂的运算性质进行计算 ,与用正整数指数幂的 运算性质进行计算相同 ,但计算结果有负指数幂时 ,要写成分式形式.4. 练习:计算: (1)(x 3y - 2)2; (2)x 2y - 2· (x -2y)3;(3)(3x 2y -2 2 - 23) ÷ (x y) . 5.例 2 判断以下等式能否正确?(1)a m÷ a n= a m·a -n; (2)(ab)n = a n b -n .[ 剖析 ] 类比负数的引入使减法转变为加法 ,获得负指数幂的引入能够使除法转变为幂的乘法这个结论 ,从而使分式的运算与整式的运算一致同来 ,而后再判断等式能否正确.( 二)1.用科学记数法表示值较小的数因为 0.1= 1 = 10 - 110 ; 0.01=________= ________;0. 001= ________=________所以 0.000 025= 2.5× 0.000 01= 2.5×10-5.我们能够利用 10 的负整数次幂 ,用科学记数法表示一些绝对值较小的数,马上它们表示成 a ×10-n 的形式 ,此中 n 是正整数 ,1≤ |a|< 10.2. 例 3(教材例 10) 纳米是特别小的长度单位 , 1 纳米= 10-9米,把 1 纳米的物体放到 乒乓球上 ,就好像把乒乓球放到地球上 .1 立方毫米的空间能够放多少个1 立方纳米的物体?(物体之间的空隙忽视不计 )[ 剖析 ]这是一个介绍纳米的应用题,是应用科学记数法表示小于 1 的数.3.用科学记数法表示以下各数:0. 00 04,- 0.034,0.000 000 45, 0.003 009.4.计算:-8 3 -3 2 -3 3.(1)(3 × 10 )× (4× 10 ); (2)(2 ×10 ) ÷(10 )三、讲堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍旧成立.2.科学记数法不单能够表示一个值大于10 的数,也能够表示一些绝对值较小的数,在应用中,要注意 a 一定知足1≤ |a|< 10,此中 n 是正整数.四、部署作业教材第 147 页习题 15.2 第 7, 8, 9 题.本节课教课的主要内容是整数指数幂学设计上,教师要点发掘学生的潜伏能力,将从前所学的相关知识进行了扩大.在本节的教,让学生在讲堂上经过察看、考证、研究等活动,加深对新知识的理解.15.3分式方程(2课时)第 1 课时分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原由,并掌握解分式方程的验根方法.要点解分式方程的基本思路和解法.难点理解解分式方程时可能无解的原由.一、复习引入问题: 一艘轮船在静水中的最大航速为 30 km/h ,它以最大航速沿江顺流航行 90 km 所用时间 ,与以最大航速逆流航行 60 km 所用的时间相等 ,江水的流速为多少?90=60[ 剖析 ] 设江水的流速为 x 千米 /时,依据题意 ,得 30+ v 30- v .①方程①有何特色?[ 归纳 ] 方程①中含有分式 ,并且分母中含有未知数 ,像这样的方程叫做分式方程. 发问:你还可以举出一个分式方程的例子吗? 辨析:判断以下各式哪个是分式方程.x + 2= 2y - z ; (3)1; (4)y=0; (5)1+ 2x = 5.(1)x + y = 5; (2) 5 3 x x + 5 x依据定义可得: (1)(2) 是整式方程 , (3) 是分式 , (4)(5) 是分式方程.二、研究新知1. 思虑:如何解分式方程呢?为认识决本问题 ,请同学们先思虑并回答以下问题:(1) 回首一下解一元一次方程时是怎么去分母的,从中可否获得一点启迪?(2) 有没有方法能够去掉分式方程的分母把它转变为整式方程呢? [ 可先松手让学生自主研究 ,合作学习并进行总结]方程①能够解答以下:方程两边同乘以 (30+ v)(30 -v),约去分母 ,得 90(30- v)= 60(30 + v). 解这个整式方程 ,得 v = 6. 所以江水的流度为 6 千米 /时.[ 归纳 ]上述解分式方程的过程 ,实质上是将方程的两边乘以同一个整式 ,约去分母 ,把分式方程转变为整式方程来解.所乘的整式往常取方程中出现的各分式的最简公分母.2. 例 1 解方程:1 = 210.②x - 5 x - 25解:方程两边同乘 (x 2- 25),约去分母 ,得 x + 5= 10.解这个整式方程 ,得 x = 5.事实上 ,当 x = 5 时,原分式方程左侧和右侧的分母 (x - 5)与 (x 2- 25)都是 0,方程中出现的两个分式都没存心义 ,所以 ,x = 5 不是分式方程的根 ,应当舍去 ,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不合适原分式方程的解 (或根 ) ,这类根往常称为增根.所以,在解分式方程时一定进行查验.3.那么,可能产生“增根”的原由在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母 ).方程①两边乘 (30+ v)(30 - v),获得整式方程,它的解 v=6.当 v= 6 时, (30+ v)(30 - v)≠ 0,这就是说,去分母时,①两边乘了同一个不为 0 的式子,所以所得整式方程的解与①的解相同.方程②两边乘(x- 5)(x + 5),获得整式方程,它的解 x= 5.当 x= 5 时,(x -5)(x + 5)= 0,这就是说,去分母时,②两边乘了同一个等于0 的式子,这时所得整式方程的解使②出现分母为 0 的现象,所以这样的解不是②的解.4.验根的方法:解分式方程进行查验的要点是看所求得的整式方程的根能否使原分式方程中的分式的分母为零.有时为了简易起见,也可将它代入所乘的整式 (即最简公分母 ),看它的值能否为零.假如为零,即为增根.如例 1 中的 x= 5,代入 x2- 25=0,可知 x= 5 是原分式方程的增根.三、举例剖析例 2(教材例 1) 解方程 2 =3.x- 3 x解:方程两边乘x(x -3) ,得 2x = 3x- 9.解得 x= 9.查验:当x= 9 时, x(x - 3)≠ 0.所以,原分式方程的解为x=9.例 3(教材例 2) 解方程x - 1= 3.x- 1 (x- 1)( x+ 2)解:方程两边乘 (x- 1)(x +2),得x(x + 2)- (x- 1)(x + 2)= 3.解得 x= 1.查验:当x= 1 时, (x-1)(x + 2)= 0,所以 x= 1 不是原分式方程的解.所以,原分式方程无解.四、讲堂小结1.分式方程:分母中含有未知数的方程.2.解分式方程的一般步骤以下:。
人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计
人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计一. 教材分析人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》这一节主要介绍了分式的乘方运算以及乘方与乘除混合运算的法则。
学生需要掌握分式乘方的概念,了解分式乘方的运算规则,并能灵活运用到实际问题中。
教材通过具体的例题和练习,帮助学生理解和掌握分式乘方的运算方法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了分式的基本概念和运算规则,对分式的加减乘除有一定的了解。
但是,对于分式的乘方运算,学生可能还存在一定的困惑和难度。
因此,在教学过程中,需要引导学生将已知的分式运算规则与乘方运算相结合,通过实例和练习,让学生逐步理解和掌握分式的乘方运算方法。
三. 教学目标1.了解分式的乘方概念,掌握分式乘方的运算规则。
2.能够运用分式乘方的运算规则,解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.分式的乘方概念的理解和掌握。
2.分式乘方运算规则的应用和实际问题的解决。
五. 教学方法1.讲授法:通过讲解和解释,让学生理解和掌握分式的乘方概念和运算规则。
2.案例分析法:通过具体的例题和练习,让学生将分式乘方的运算规则应用到实际问题中,培养学生的解决问题的能力。
3.小组合作学习法:学生进行小组讨论和合作,共同解决问题,培养学生的团队合作能力和交流能力。
六. 教学准备1.教材和教案。
2.投影仪和幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考和讨论分式的乘方问题,激发学生的学习兴趣和思考能力。
2.呈现(10分钟)讲解和解释分式的乘方概念,引导学生理解和掌握分式乘方的运算规则。
通过具体的例题,让学生观察和分析分式乘方的运算过程,总结和归纳运算规则。
3.操练(10分钟)让学生进行一些分式乘方的练习题,巩固学生对分式乘方运算规则的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育基础课程初中教学资料
分式的运算
教学目标
1、使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算。
2、使学生理解并掌握分式乘方的运算性质,能运用分式的这一性质进行运算。
教学重点、难点
重点:分式的乘除混合运算和分式的乘方。
难点:对乘方运算性质的理解和运用。
教学方法:启发式教学
教学过程
复习提问:1、叙述分式的乘除法法则。
2、小学学习的乘除法运算法则是什么?
3、计算:()^2=___,()^3=___,
()^n=_________。
引言:我们在上节学习了分式的乘除法,对于分式乘除混合运算如何来进行计算呢?对于整式的乘方我们学习过,对分式来说如何计算呢?这就是我们这节要学习的内容。
新课:由复习提问3知:()^2==a^2b^2,
()^3=a^3b^3;
()^n=a^n b^n。
请同学们根据复习提问3总结出分式乘方的法则。
分式乘方,把分子、分母分别乘方。
()^n=a^n b^n。
例1计算:
(1)÷·
解:
原式=··
=
分式的乘除混合运算就是分子、分母先分解因式,然后把公因式约去。
例2计算:
(1) ( )^2 ; (2) ()^3÷·()^2
分析:这两题是分式乘方的运用。
(2)运算顺序是先乘方,然后是乘除。
解:
(1)原式=
(2)原式= - ··
=-
注意在解题时正确地利用幂的乘方及符号。