五年级奥数.杂题.游戏与策略(ABC级).教师版
五年级奥数.行程 .发车问题 (ABC级 ).教师版

发车问题要注意的是两车之间的距离是不变的。
可以用线等距离连一些小物体来体会进车队的等距离前进。
还要理解参照物的概念有助于解题。
接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。
一、 常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。
(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。
用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s 全程=v ×t -结合植树问题数数。
(3) 当出现多次相遇和追及问题——柳卡知识框架发车问题【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【考点】行程问题之发车间隔 【难度】☆☆ 【题型】解答【解析】 这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【答案】15艘【巩固】 甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。
五年级奥数计数综合排列组合ABC级教师版

实用文档排列组合知识结构排列问题一、在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.nm?个不同元)个元素,按照一定的顺序排成一列,叫做从一般地,从个不同的元素中取出(nnm素中取出个元素的一个排列.m根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.nm?个不同的元素的排列中取出)个元素的所有排列的个数,叫做从从个不同的元素中取出(nnm m P个元素的排列数,我们把它记做.m n 个步骤完成:根据排列的定义,做一个元素的排列由mm1种方法;:从个不同的元素中任取一个元素排在第一位,有步骤nn2种方法;个元素中任取一个元素排在第二位,有(步骤):从剩下的()11n?n?……)(个位置,有种步骤:从剩下的个元素中任取一个元素排在第1)](m?[n?1n??mn?(m?1)?mm方法;,即个不同元素中取出个元素的排列数是由乘法原理,从)1mn??n?2)?(?n(?n?1)(?nm m)1m??2)(n?.P?(nn?1)(nn?m1,开始,后面每个因数比前一个因数小,这里,,且等号右边从n n共有个因数相乘.m排列数二、n(P12?n??)???n1)(n?2??3的情况,排列数公式变为一般地,对于.nm?n nnn 个排列全部取出的排列,叫表示从个不同元素中取个元素排成一列所构成排列的排列数.这种nn的乘积,开始,后面每一个因数比前一个因数小,一直乘到做个不同元素的全排列.式子右边是从11实用文档n nn?nP!Pn!?n(?3?2?n?n?1)(?n?2)?!1.还可以写为:,读做,其中的阶乘,则记为nn在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.m?n)个(元素组成一组不计较组内各元素的次序,叫做从个不一般地,从个不同元素中取出nnm 同元素中取出个元素的一个组合.m从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.m?n)的所有组合的个数,叫做从个不同元素中取出个不同元从个不同元素中取出个元素(nnmm m 素的组合数.记作.C nm可分成以下两步:个元素的排列数一般地,求从个不同元素中取出的P nm nm第一步:从个不同元素中取出个元素组成一组,共有种方法;C nm nm第二步:将每一个组合中的个元素进行全排列,共有种排法.P m mmmm.根据乘法原理,得到CP?P?nmnm Pn(?n?1)(?n?2)?(?n?m?1)mn.因此,组合数?C?nm m(?m?1)(?m?2)??3?2?1P m这个公式就是组合数公式.四、组合数的重要性质mn?m m?n)一般地,组合数有下面的重要性质:(C?C nnmn?m这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从CC nm nn个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法nnm?mn恰是从个元素中选个元素剩下的()个元素的分组方法.nmmn?322人不去开会的方法是一样多的,即.人中选例如,从人开会的方法和从人中选出CC?55355n0,.规定C?1C?1nn五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1实用文档个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的nm m?1C1)?(m(n?1).个空隙中放上个插板,所以分法的数目为1n?nam个.这个时候,我们先发给每个人个,还剩下⑵个东西,要求每个人至少有个人分1)?(a个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1)]?(a[n?m m?1C.11)?m(a?n?nmm个东西,每个人多发1个人分个,这个东西,允许有人没有分到.这个时候,我们不妨先借来⑶m?1样就和类型⑴一样了,不过这时候物品总数变成了,因此分法的数目为.C)mn?(个1?n?m例题精讲一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复,则通过“住店法”可顺利解题,在这类问题使用住店处理的的元素看作“客”,能重复的元素看作“店”策略中,关键是在正确判断哪个底数,哪个是指数 4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(1)有【例1】4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(2)有 4个不同的邮筒,则有多少种不同投法?)将3封不同的信投入(3433344()3:【解析】(1))(2 个车间实习共有多少种不同方法?把6名实习生分配到72【例】种不同方案,【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有767.依次类推,由分步计数原理知共有种不同方案第二步:将第二名实习生分配到车间也有7种不同方案,33CA8338 D )A、、 B、、 C3【例】 8名同学争夺3项冠军,获得冠军的可能性有(88 3项冠名学生看作8家“店”,【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8388种可能,因此共有种军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有A不同的结果。
五年级奥数—操作与策略(含解析)

1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作和体会数学规律的过程中,设计最优的策略和方案实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因,因此在历届的杯赛中时常出现,尤其是在华杯、迎春杯中,常考查学生的动手能力【例 1】 (全国华罗庚杯少年数学邀请赛)如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?【分析】 一次操作后,层数由1变为4,若剪去所得小正方形左下角,展开后只有1个小洞孔,恰是大正方形的中心.连续两次操作后,折纸层数为24,剪去所得小正方形左下角,展开后在大正方形上留有211444-==(个)小洞孔.连续三次操作后,折纸层数为34,剪去所得小正方形左下角,展开后大正方形留有3124416-==(个)小洞孔.按上述规律不难断定:连续五次操作后,折纸层数为54,剪去所得小正方形左下角,展开后大正方形纸片上共留有51444256-==(个)小洞孔.[巩固] 向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后操作与优化设计探索与操作粘贴到该面上,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作次.[分析]每次操作页面上的字数就增加一倍,第一次操作后页面上有2个字,第2次操作后页面上有2=(个)字,…,则第10次操作后页面上有102个字,=(个)字,第3次操作后页面上有32824由于1011=<<=,因此使整个页面排满,至少需要操作11次.21024167722048【例 2】(第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k号白盒中恰有k个球,可将这k个球取出,并给0号、1号、…,(1)k-号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有个球.【分析】使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.[巩固](圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?[分析]解法1(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯.这就意味着在乘=⨯和217731以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法2(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.【例 3】(北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白)【分析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】(北大附中“资优博雅杯”数学竞赛)有一只小猴子在深山中发现了一片野香蕉园,它一共摘了300根香蕉,然后要走1000米才能到家,如果它每次最多只能背100根香蕉,并且它每走10米就要吃掉一根香蕉,那么,它最多可以把根香蕉带回家?【分析】首先,猴子背着100根香蕉直接回家,会怎样?在到家的时候,猴子刚好吃完最后一根香蕉,其他200根香蕉白白浪费了!折返,求最值问题,我们需要设计出一个最优方案.3001003÷=.猴子必然要折返3次来拿香蕉.我们为猴子想到一个绝妙的主意:在半路上储存一部分香蕉.猴子的路线:家y储存点B 储存点A野香蕉园x这两个储存点A 与B 就是猴子放置香蕉的地方,怎么选呢?最好的情况是:(一)当猴子第①③④次回去时,都能在这里拿到足够到野香蕉园的香蕉.(二)当猴子第②④次到达储存点时,都能将之前路上消耗的香蕉补充好(即身上还有100个)(三)B 点同上.XA 的距离为10x ,路上消耗x 个香蕉.AB 的距离为10y ,路上消耗y 个香蕉.猴子第一次到达A 点,还有(100)x -个香蕉,回去又要消耗x 个,只能留下1002x -个香蕉.这(1002)x -个香蕉将为猴子补充②③④次路过时的消耗和需求,每次都是x 个,则1002320x x x -=⇒=.200XA ⇒=米,猴子将在A 留下60个香蕉.那么当猴子②次到达A 时,身上又有了100个香蕉,到⑤时还有100y -个,从⑤回③需要y 个,可在B 留下(1002)y -个,用于⑥时补充从④到⑥的消耗y 个.则:10010023y y y -=⇒=. 至此,猴子到家时所剩的香蕉为:100013004253103x y ---=. 因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了23,所以还没有吃香蕉,应该还剩下54个香蕉.【例 5】 (武汉“明星奥数挑战赛”)设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【分析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).[拓展] (武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?[分析] 观察操作次数: 开始 第一次 第二次 第三次 …总 和: 7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为73100307+⨯=.【例 6】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是 与 .【分析】 由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.[铺垫] (武汉“明星奥数挑战赛”)对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是 .[分析] 操作如下:1234,4321→1234,3087→1234,1853→1234,619→615,619→615,44714243前一数每次减少→…→,4→3,4→3,1→2,1→1,1实际上按此法操作最后所得两相同的数为开始两数的最大公约数.即1234与4321的最大公约数为1.此法也称为辗转相减法求最大公约数.[拓展] (全国华罗庚金杯少年数学邀请赛)将两个不同的自然数中较大的数换成这两个数之差,称为一次操作.例如:对18和42连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,6.试给出和最小的两个五位数,按照以上操作,直到两数相同为止,如果最后得到的相同的数是15,这两个五位数是 与 .[分析] 观察题目中的例子,(18,42)=(18,24)=(18,6)=(12,6)=(6,6)=6,将会发现:将两个不同的自然数中较大的数换成这两个数之差会得到两个新的自然数,它们的最大公约数和初始的两个数的最大公约数相同,最后得到的是两个相同的自然数,是初始的两个数的最大公约数,所以,题目就是去求和最小的两个五位数,它们的最大公约数是15,即求两个能被3和5整除的和最小的两个五位数,1000566715=⨯和1002066815=⨯为所求.点评 题中操作的本质上是辗转相除法,最后所得到的相同的数是最初两个数的最大公约数,即(18,42)=6.实际上,这道试题是一个求最大公约数的反问题,即已知(X ,Y )=15,求X 和Y .但是,以15为最大公约数的数对有很多,应该选取哪一对呢?这就要求答案必须还满足其他的条件,本题要求解答最小的两个五位数.如果要求是最大的两个五位数,答案是什么?【例 7】 黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.【分析】 黑板上起初数是777…77,每次操作后就变出一个新数.不妨设这个数的末位数为b ,前面的数为a ,所以就是形为10a b +的数.每次操作后,黑板上就成为3a b +,它比原数少了7a .由此可知:⑴每次操作将使原数逐步变小;⑵如果原数能被7整除,那么所得新数仍能被7整除.所以黑板上最后必将变成7,例如当原数为777时,就有777→238→77→28→14→7.【例 8】 (北京“数学解题能力展示”读者评选活动)在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【分析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=L L .[拓展] (第六届“华杯赛”决赛)圆周上放有N 枚棋子,如右图所示,B 点的一枚棋子紧邻A 点的棋子。
小学奥数模块教程游戏策略(ABC级)

游戏策略知识框架实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
例题精讲一、游戏与策略【例 1】A、B、C、D、E五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A->C,B->E,C->A,D->B,E->D.开始A、B拿着福娃,C、D、E拿着福牛,传递完5轮时,拿着福娃的小朋友是().(A)C与D(B) A与D(C) C与E(D) A与B【巩固】下图是一座迷宫,请画出任意一条从A到B的通道。
A【例 2】请在5×5的棋盘中放入10个国际象棋中的皇后,使得标有数N的格子恰好受到N枚皇后的攻击.每个格最多一枚棋子,标有数的格子不能放棋子.如果有超过一枚皇后从同一方向攻击到某个格子,只计算最前方的那枚皇后(注:每只皇后可攻击同一行、同一列或同一斜线上的格子).1745【巩固】下图是常见的正方体,我们可以看到三面共有3 9=27个变成为1的正方体,在这三面上有三条蛇。
每条有5个连续的正方形(每两个连续正方形有一条公共边)组成,不全在一个面上,每两条蛇互不接触(两条蛇的方格不能有公共点),请将这三条蛇画出来。
(用阴影将蛇所在的正方形画出来)【例3】将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为.【巩固】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是.【例4】有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k号白盒中恰有k个球,可将这k个球取出,并给0号、1号、…,(1)k-号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有个球.【巩固】设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x的筹码时,另一个人必须选取标号为99x-的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩个筹码.【例5】今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的?【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?二、染色与操作【例6】六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【巩固】图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通.有一个人打算从A室开始依次而入,不重复地看过各室展览之后,仍回到A室,问他的目的能否达到,为什么?A【例7】右图是某套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?【巩固】 有一次车展共6636⨯=个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?【例 8】 右图是半张中国象棋盘,棋盘上放有一只马.众所周知,马是走“日”字的.请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?【巩固】 一只电动老鼠从右图的A 点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A 点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?【例 9】 能否用9个所示的卡片拼成一个66⨯的棋盘?马【巩固】 如右图,缺两格的88⨯方格有62个格,能否用31个图不重复地盖住它且不留空隙?【例 10】 在88⨯的网格正方形(如图1)中用图2形状的图形来覆盖,要求图2的分割线落在正方形的网格线上.为使所余部分不能再放下图2形状的图形,最少需用图2形状的图形 个.图1 图2【巩固】 用若干个22⨯和33⨯的小正方形能不能拼成一个1111⨯的大正方形?请说明理由.882211【例11】对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2,这算一次操作.现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?【巩固】小牛对小猴说:“对一个自然数n进行系列变换:当n是奇数时,则加上2007;当n是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么?课堂检测【随练1】你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?【随练2】右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方形?【随练3】 用9个14⨯的长方形能不能拼成一个66⨯的正方形?请说明理由.【随练4】 在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【作业1】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【作业2】 有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?家庭作业【作业3】 如右图,在55⨯方格的A 格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格中.那么它能否不重复地爬遍每个方格再回到A 格中?【作业4】 你能把下面的图形分成7个大小相同的长方形吗?动手画一画.【作业5】 用若干个22⨯和33⨯的小正方形能不能拼成一个1111⨯的大正方形?请说明理由.【作业6】 对于表⑴,每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为表⑵?为什么?A101000101(2)(1)987654321。
五年级奥数难题及答案-步步为营的战略

五年级奥数难题及答案-步步为营的战略
编者小语:奥数题往往从结构到解法都充满着神奇的魅力,易于小学生尝到探索的乐趣,而在探索解题方法的过程中,小学生又亲身体验到数学思想的博大精深和数学方法的创造力。
下面是小编整理的五年级奥数题及参考答案:步步为营的战略。
一分耕耘一分收获,相信大家通过自己的努力,一定能够取得优异的成绩!!
由图中的左上角开始,走过一个方格到达1,再走两个方格到达2,然后再走3个方格到达3,以此类推。
行进过程中不得重复经过某一方格,最后要到达右下角的8。
只能直走或横走,不得沿对角线走。
请找出这样的路线。
分析与解答:
上面的答案是当初设计题目时的依据。
显然用这些数字还可以排出许多其他的路线。
利用不同方格的数字可以找到其他不同的答案,只不过这些答案绝非事先安排好的!
解这类问题的重要步骤,就是要以充分的耐心,由路线两端有系统地推敲。
要自行设计出一个类似的问题并不困难,而且很值得一试。
(小学奥数)游戏与策略

遊戲與策略教學目標1.通過實際操作尋找題目中蘊含的數學規律2.在操作過程中,體會數學規律的並且設計最優的策略和方案3.熟練掌握通過簡單操作、染色、數論等綜合知識解決策略問題知識點撥實際操作與策略問題這類題目能夠很好的提高學生思考問題的能力,激發學生探索數學規律的興趣,並通過尋找最佳策略過程,培養學生的創造性思維能力,這也是各類考試命題者青睞的這類題目的原因。
例題精講模組一、探索與操作【例 1】將1—13這13個自然數分別寫在13張卡片上,再將這13張卡片按一定的順序從左至右排好.然後進行如下操作:將從左數第一張和第二張依次放到最後,將第三張取出而這張卡片上的數是1;再將下麵的兩張依次放到最後並取出下一張,取出的卡片上面的數是2;繼續將下麵的兩張依次放到最後並取出下一張,取出的卡片上面的數是3……如此進行下去,直到取出最後一張是13為止.則13張卡片最初從左到右的順序為.【考點】遊戲與策略 【難度】3星 【題型】填空【關鍵字】北京奧校杯【解析】 這13張卡片依次是原來的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13張,所以原來的順序為11,5,1,8,10,2,6,12,3,9,7,4,13【答案】11,5,1,8,10,2,6,12,3,9,7,4,13【例 2】 在紙上寫著一列自然數1,2,…,98,99.一次操作是指將這列數中最前面的三個數劃去,然後把這三個數的和寫在數列的最後面.例如第一次操作後得到4,5,…,98,99,6;而第二次操作後得到7,8,…,98,99,6,15.這樣不斷進行下去,最後將只剩下一個數,則最後剩下的數是 .【考點】遊戲與策略 【難度】3星 【題型】填空【關鍵字】迎春杯【解析】 第一輪:分33次劃1~9,後面寫上6,15,24,…,294共33個數.第二輪:分11次劃去這33個數,後面寫上45,126,207,…,855,共11個數.之後的操作一次減少2個數,故還需操作5次.設這11個數為:1a ,2a ,…,11a .則接下去的數是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最後一數為:1231112994950a a a a ++++=+++=.【答案】4950【巩固】 在1,9,8,9後面寫一串這樣的數字:先計算原來這4個數的後兩個之和8+9=17,取個位數字7寫在1,9,8,9的後面成為1,9,8,9,7;再計算這5個數的後兩個之和9+7=16;取個位數字6寫在1,9,8,9,7的後面成為1,9,8,9,7,6;再計算這6個數的後兩個之和7+6=13,取個位數字3寫在1,9,8,9,7,6的後面成為1,9,8,9,7,6,3. 繼續這樣求和,這樣添寫,成為數串1,9,8,9,7,6,3,9,2,1,3,4…那麼這個數串的前398個數字的和是________.【考點】遊戲與策略 【難度】3星 【題型】填空【關鍵字】迎春杯,決賽【解析】 前16個數字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可見除去前2個數字1、9後,每12個數字一組重複出現.因此前398個數字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990【答案】1990【例 3】圓周上放有N枚棋子,如圖所示,B點的那枚棋子緊鄰A點的棋子.小洪首先拿走B點處的1枚棋子,然後沿順時針方向每隔1枚拿走2枚棋子,這樣連續轉了10周,9次越過A.當將要第10次越過A處棋子取走其他棋子時,小洪發現圓周上餘下20多枚棋子.若N是14的倍數,請精確算出圓周上現在還有多少枚棋子?【考點】遊戲與策略【難度】3星【題型】解答【解析】設圓周上餘a枚棋子,從第9次越過A處拿走2枚棋子到第10次將要越過A處棋子時,小洪拿了2a枚棋子,所以在第9次將要越過A處棋子時,圓周上有3a枚棋子.依次類推,在第8次將要越過A處棋子時,圓周上有23a枚棋子,…,在第1次將要越過A處棋子時,圓周上有93a枚棋子,在第1次將要越過A處棋子之間,小洪拿走了()92311a-+枚棋子,所以99102(31)1331N a a a=-++=-.1031590491N a a=-=-是14的倍數,N是2和7的公倍數,所以a必須是奇數;又()78435417843541N a a a=⨯+-=⨯+-,所以41a-必須是7的倍數.當21a=,25,27,29時,41a-不是7的倍數,當23a=時,4191a-=是7的倍數.所以,圓周上還有23枚棋子.【答案】23【例 4】有足夠多的盒子依次編號0,1,2,…,只有0號是黑盒,其餘的都是白盒.開始時把10個球放入白盒中,允許進行這樣的操作:如果k號白盒中恰有k個球,可將這k個球取出,並給0號、1號、…,(1)k-號盒中各放1個.如果經過有限次這樣的操作後,最終把10個球全放入黑盒中,那麼4號盒中原有 個球.【考點】遊戲與策略 【難度】3星 【題型】填空【關鍵字】兩岸四地,華杯賽【解析】 使用倒推法.最終各盒中依次有球(10,0,0,0,…),前一次必然分的是1號盒中的球,否則1號盒中最終至少有1個球.所以,倒數第一次分前盒中依次有球(9,1,0,0,…).依次倒推,為:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0號盒中此時為0個球,不能再倒推.所以,4號盒中原有3個球.【答案】3【例 5】 一個數列有如下規則:當數n 是奇數時,下一個數是1n +;當數n 是偶數時,下一個數是2n .如果這列數的第一個數是奇數,第四個數是11,則這列數的第一個數是 .【考點】遊戲與策略 【難度】3星 【題型】填空【解析】 本題可以進行倒推.11的前一個數只能是偶數22,22的前一個數可以是偶數44或奇數21,44的前一個是可以是偶數88或奇數43,而21的前一個只能是偶數42.由於這列數的第一個是奇數,所以只有43滿足.故這列數的第一個數是43.也可以順著進行分析.假設第一個數是a ,由於a 是奇數,所以第二個數是1a +,是個偶數,那麼第三個數是12a +,第四個數是11,11只能由偶數22得來,所以1222a +=,得到43a =,即這列數的第一個數是43. 【答案】43【巩固】 在資訊時代資訊安全十分重要,往往需要對資訊進行加密,若按照“乘3加1取個位”的方式逐位加密,明碼“16”加密之後的密碼為“49”,若某個四位明碼按照上述加密方式,經過兩次加密得到的密碼是“2445”,則明碼是 .【考點】遊戲與策略 【難度】3星 【題型】填空【關鍵字】走美杯,初賽,六年級【解析】0~9這10個數字乘以3所得的數的個位數字互不相同是本題可以進行判斷的基礎.採用倒推法,可以得到經過一次加密之後的密碼是“7118”,再進行倒推,可以得到原來的明碼是2009.【答案】2009【例 6】設有25個標號籌碼,其中每個籌碼都標有從1到49中的一個不同的奇數,兩個人輪流選取籌碼.當一個人選取了標號為x的籌碼時,另一個人必須選取標號為99x-的最大奇因數的籌碼.如果第一個被選取的籌碼的編號為5,那麼當遊戲結束時還剩個籌碼.【考點】遊戲與策略【難度】3星【題型】解答【關鍵字】武漢,明星奧數挑戰賽【解析】解若x99x-5 4747 1313 4343 77 2323 1919 5當一個人拿到19時,下一個人就要拿5了,故遊戲結束,拿了7個.剩25718-=(個).【答案】18【例 7】一個盒子裏有400枚棋子,其中黑色和白色的棋子各200枚,我們對這些棋子做如下操作:每次拿出2枚棋子,如果顏色相同,就補1枚黑色棋子回去;如果顏色不同,就補1枚白色的棋子回去.這樣的操作,實際上就是每次都少了1枚棋子,那麼,經過399次操作後,最後剩下的棋子是顏色(填黑或者白)【考點】遊戲與策略【難度】3星【題型】填空【關鍵字】北大附中,資優博雅杯【解析】由於起初白子200枚是偶數,若同色,補黑子1枚,白子仍為偶數;若異色,補白子1枚,白子仍為偶數.因此最後1枚不可能是白子,故應是黑子.【答案】黑【巩固】30粒珠子依8粒紅色、2粒黑色、8粒紅色、2粒黑色、的次序串成一圈.一只蚱蜢從第2粒黑珠子起跳,每次跳過6粒珠子落在下一粒珠子上.這只蚱蜢至少要跳幾次才能再次落在黑珠子上.【考點】遊戲與策略【難度】3星【題型】解答【關鍵字】走美杯,試題【解析】這些珠子按8粒紅色、2粒黑色、8粒紅色、2粒黑色、的次序串成一圈,那麼每10粒珠子一個週期,我們可以推斷出這30粒珠子數到第9和10、19和20、29和30、39和40、49和50粒的時候,會是黑珠子.剛才是從第10粒珠子開始跳,中間隔6粒,跳到第17粒,接下來是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的時候會是黑珠子,所以至少要跳7次.【答案】7次【巩固】在黑板上寫上1、2、3、4、……、2008,按下列規定進行“操怍”:每次擦去其中的任意兩個數a和b,然後寫上它們的差(大數減小數),直到黑板上剩下一個數為止.問黑板上剩下的數是奇數還是偶數?為什麼?【考點】遊戲與策略【難度】3星【題型】解答【解析】根據等差數列求和公式,可知開始時黑板上所有數的和為123200820091004++++=⨯是一個偶數,而每一次“操作”,將a、b兩個數變成了()-,它們的和減少了2b,即減少了一個偶數.那麼從整體上看,a b總和減少了一個偶數,其奇偶性不變,還是一個偶數.所以每次操作後黑板上剩下的數的和都是偶數,那麼最後黑板上剩下一個數時,這個數是個偶數.【答案】偶數【例 8】桌上有一堆石子共1001粒。
小学奥数操作与策略题库版

1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3. 让孩子掌握各种趣题的不同思考方式.实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、制胜策略【例 1】 (圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数? 【解析】 解法一:(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯和217731=⨯.这就意味着在乘以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法二:(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.例题精讲知识点拨教学目标第十四讲:操作与策略【巩固】 (2008年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球. 【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【例 2】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子. 依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数. 所以,圆周上还有23枚棋子.【例 3】 (2008年北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白) 【解析】 由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】 今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的? 【解析】 101枚硬币,如果进行称重的话应该保证天平两边的硬币数相等.因此应该首先拿掉一个,把剩下的100枚硬币在天平两边各放50个.如果这时天平两边重量相等的话,就说明剩下的那个是伪币.只要任意拿出一个真币和这个伪币再称一次就可以知道真币和伪币那种比较重了.如果天平两边重量不相等的话,就是说伪币还在这100个硬币中.可以拿出其中比较轻的50个.这时同样还是把他们分成两个25枚,分到天平两边称重.如果两边重量相等,说明这50个硬币都是真的.伪币在比较重的那50个中,因此伪币就应该比真币重.如果两边重量不相等,说明伪币就在这50个比较轻的硬币中,显然伪币就应该比真币轻.同样道理,也可以把比较重的那50个硬币分成两个25进行称重,同样也可以得出结论【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)? 【解析】第一次在左右两托盘各放置3个:(一)如果不平衡,那么较轻的一侧的3个中有一个是假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的一个是假的;(二)如果平衡,剩下的三个中必有一个为假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的那个是假的.这类称量找假币的问题,一定要会分类,并尽量是每一类对应天平称量时的不同状态(轻,重,平),所以分成3堆是很常见的分法.【例5】有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?【解析】通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:1.大瓶往中瓶中倒满水.2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.3.小瓶中水倒回大瓶.4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记.5.小瓶中水倒回大瓶.6.中瓶中100克水倒入小瓶,标记.所以最少要倒6次水.本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.【例6】 (第七届“华杯赛”决赛)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?【分析】可以先尝试一下,得出下面的图:其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的有8个,即11,24,10,28,13,30,64,31.于是,经1、2、…次操作变为1的数的个数依次为1,1,2,3,5,8,…①这一串数中有个特点:自第三个开始,每一个等于前两个的和,即 2=1+1,3=2+1,5=3+2,8=5+3,… 如果这个规律正确,那么8后面的数依次是 8+5=13,13+8=21,21+13=34,… 即经过9次操作变为1的数有34个. 为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,…【巩固】 对于任意一个自然数n ,当n 为奇数时,加上121;当n 为偶数时,除以2,这算一次操作.现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么? 【解析】 同学们碰到这种题,可能会“具体操作”一下,得到这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100.当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100.因为这一过程很长,所以这不是好方法.我们可以从另一个方面来考虑,因为231和121都是11的倍数,而2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数.100不是11的倍数,所以不可能出现.【巩固】 小牛对小猴说:“对一个自然数n 进行系列变换:当n 是奇数时,则加上2007;当n 是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么? 【解析】 试着按照规则进行变换,得到的结果依次如下:2004,1002,501,2508,1254,627,2634,1317,3324,1662,831,2838,……从中发现不了什么规律,所以应该从另外的角度进行分析.观察可知2004和2007都是3的倍数,那么不论变换多少次,得到的数也还是3的倍数.而2008不是3的倍数,所以不可能出现2008.【例 7】 (2005年武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【解析】观察操作次数:开始第一次第二次第三次…总和:7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为+⨯=.73100307【巩固】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是与.【解析】由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.【例8】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【巩固】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:6 2 8 1 0 1 1 2 3 ……则这个整数的数字之和是()。
六年级奥数.杂题.游戏与策略(ABC级).教师版

(1) 通过实际操作寻找题目中蕴含的数学规律(2) 在操作过程中,体会数学规律的并且设计最优的策略和方案 (3) 熟练掌握通过简单操作、染色、数论等综合知识解决策略问题实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
一、 探索与操作【例 1】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【考点】游戏与策略 【难度】3星 【题型】填空 【关键词】2008年,迎春杯【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=.例题精讲重难点知识框架游戏与策略【答案】4950【巩固】在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【考点】游戏与策略【难度】3星【题型】填空【关键词】第六届,迎春杯,决赛【解析】前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990【答案】1990【例2】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白)【考点】游戏与策略【难度】3星【题型】填空【关键词】2008年,北大附中,资优博雅杯【解析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【答案】黑【巩固】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】游戏与策略【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()-,它们的和减少了2b,即减少了一个偶数.那a b么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例3】有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有石子1990粒,另一堆石子数在2080到2100之间.这一堆石子有粒.【考点】操作找规律【难度】2星【题型】填空【关键词】2005年,第4届,走美杯,5年级,决赛【解析】根据题意可以得出,某一堆石子,如果被取一次,则数量减少1,如果被放入一次,则数量增加19。
小学奥数- 游戏与策略

【例 9】 今有 101 枚硬币,其中有 100 枚同样的真币和 1 枚伪币,伪币和真币的重量不同.现需弄清楚 伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达 到目的?
【巩固】 9 个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?
【巩固】 你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量 一次,如何判断哪个罐子的药被污染了?
【例 15】如右图,在 5 5 方格的 A 格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格 中.那么它能否不重复地爬遍每个方格再回到 A 格中? A
【例 16】右图是半张中国象棋盘,棋盘上放有一只马.众所周知,马是走“日”字的.请问:这只马能否 不重复地走遍这半张棋盘上的每一个点,然后回到出发点?
A
【例 14】右图是某套房子的平面图,共12 个房间,每相邻两房间都有门相通.请问:你能从某个房间出 发,不重复地走完每个房间吗?
【巩固】 有一次车展共 6 6 36 个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图 所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?
图不重复地盖住它且不留空隙?
【巩固】 用11个
和5个
能否盖住 8 8 的大正方形?
【例 21】在 8 8 的网格正方形(如图 1)中用图 2 形状的图形来覆盖,要求图 2 的分割线落在正方形的网格 线上.为使所余部分不能再放下图 2 形状的图形,最少需用图 2 形状的图形 个.
8
1
2 1
8
2
图1
模块二、染色与操作(证明)
【例 12】六年级一班全班有 35 名同学,共分成 5 排,每排 7 人,坐在教室里,每个座位的前后左右四个 位置都叫作它的邻座.如果要让这 35 名同学各人都恰好坐到他的邻座上去,能办到吗?为什 么?
五年级奥数游戏与对策二——数论类游戏

例6(★★★★) 甲先乙后两人轮流在黑板上写3~8之间的正整数, 规定每次在黑板上写的数要满足以下条件:它的任 何因数都不能是黑板上已写的数。最后不能写的人 为失败者。如果甲第一个写数,那么谁能胜?质与不互质的转化 三、对称—利于不败之地 重点例题:例1,例2,例4,例6
例1答案:甲有必胜策略 例2答案:乙有必胜策略 例3答案:乙有必胜策略 例4答案:甲有必胜策略 例5答案:甲有必胜策略 例6答案: 3~8时乙有必胜策略; 3~9时甲有必胜策略
2
游戏与对策(二)——数论类游戏
加油站
整除特征: 末位系:2,5,4,25,8,125
和系:3,9,99 差系:7,11,13
例1(★★★) 甲先乙后二人轮流把1~9中的某个数字填入□□□□□ 的某个□中(每个□只能填入一个数字)。若最后组成 的五位数是9的倍数,则甲胜,否则乙胜。那么谁有必 胜策略?
例2(★★★) 甲先乙后二人轮流把1~9中的某个数字填入□□□□□ 的某个□中(每个□只能填入一个数字)。若最后组成 的五位数是4的倍数,则甲胜,否则乙胜。那么谁有必 胜策略?
例3(★★★★) 甲先乙后二人轮流把1~9中的某个数字填入 □□□□□□□□的某个□中(每个□只能填入一 个数字)。若最后组成的八位数是11的倍数,则乙 胜,否则甲胜。那么谁有必胜策略?
例4(★★★) 黑板上写有2~100共99个自然数,甲先乙后二人轮流, 每次擦去其中的一个数。若最后剩下的两个数互质, 则甲胜,若不互质,则乙胜。甲有没有必胜策略?
例5(★★★) 黑板上写有2~1000共999个自然数,甲先乙后二人轮 流,每次擦去其中的一个数。若最后剩下的两个数 互质,则乙胜,若不互质,则甲胜。甲有没有必胜 策略?
小学五年级奥数——统筹安排和最佳策略

【知识要点】科学的安排时间,合理地设计工作步骤使工作时间最短、需要的人数最少、路线最短、费用最 省等等的方法,叫做统筹法,也叫做最佳选择。
游戏当中的统筹安排可以让你,运筹帷幄,决胜千里,把它叫做“最佳策略”是研究具有竞争 或者利益对抗活动战术(取胜方法)的一门数学分支,比如我们常玩的游戏“石头、剪子、布”就 是策略问题的典型例子,历史上最著名的以弱胜强,凭借智谋与策略决胜的例子是“田忌赛马”的 故事。
在我们数学竞赛中,也有这一类很有趣味的智力游戏题,利用数学中的原理和方法,正确、合 理地选择“战术”策略,那你就能战无不胜,做一名“常胜将军”。
解决策略问题,我们通常采用的方法是:倒推法、对称法、配对法和归纳法。
【例题】例1、【时间最短】现在有一个铁锅,一次只能烤2个饼,每烤一面要3分钟,芳芳要烤3个饼,最少要多少时间?如 果要烤1个、5个、10个、n 个呢?3 个:3X3=9 分*1 个:3+3=6 分5 个:3X5=15 分10 个:3X10=30 分n 个:当n=1时,需6分当n>1时,需3n 分例2、【费用最省】A 、B 两个粮站分别有大米90吨、80吨,甲、乙、丙三个 居民点分别需要大米40吨、50吨、60吨。
从A 、B 两粮 站每运1吨大米到三个居民点的运费如下表所示。
如何调 运才能使运费最少?运费是多少? 650 (元)例3、【人数最少】 山区有一个工厂.它的十个车间分散在一条环行的铁道上. 车在铁道上转圈运送货物。
货车到了某一车间,就要有装卸工人装 上或卸下货物.各车间由于工作量不同,所需装卸工人数也不同, 各车间所需装卸工人数如图所示。
当然,装卸工可以固定在车间等 车;也可以坐在货车上跟车到各车间去干活;也可以一部分装卸工 固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人 数,才能使装卸工的总人数最少?最少需多少名工人?小学五年级奥数统筹安排和最佳策略 范配 舌工占 X 甲 乙5. 3 7 :: 二’ 5 1D四列货如跟车人数为57,则各车间都不用安排人,但这样在需要人数少的车间,浪费人力,不行;为此找出各车间人数的平均数,后再调整。
苏教版五年级数学有趣经典的奥数题及答案解析

五年级数学有趣经典的奥数题及答案解析一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
小学奥数讲义5年级5操作与策略难版

小学奥数讲义5年级5操作与策略难版【小学奥数讲义5年级5操作与策略难版】奥数,即奥林匹克数学竞赛,是全球范围内备受重视的数学竞赛之一。
通过参与奥数训练,学生能够提高解题能力、培养逻辑思维和创造性思维。
作为小学5年级学生,掌握一些奥数操作与策略对于充实数学知识和培养数学兴趣都有着积极的作用。
本文将介绍一些5年级难度的奥数操作与策略,帮助学生们更好地迈向奥数竞赛的舞台。
一、扩展与归纳法扩展与归纳法是数学思维中常用的方法之一。
例如,在求1+3+5+...+99的和时,我们可以通过找规律进行简化计算。
可以观察到,这是一个公差为2的等差数列,可转化为求平均数的方法。
首项1,末项99,共有50个数。
因此,1+3+5+...+99=50×(1+99)÷2=2500。
二、图形角度解题法在解决一些几何问题时,采用图形角度解题法可以起到事半功倍的效果。
例如,在求一个平行四边形的内角和时,我们可以利用平行四边形对角线互补的特性。
由于对角线互补,所以平行四边形的内角和必然是180°。
利用这个特性,我们可以轻松解决类似问题。
三、递推与逆推法递推和逆推法是一种列举和推理结合的方法。
递推是由已知条件出发,依次得到下一个结果;而逆推是由给定结果出发,逐步推导出前面的条件。
例如,在一个数列中,已知首项是2,公比是3,求第5项的解。
我们可以用递推法,依次计算得出第5项为162。
而逆推法则是从结果出发,通过反向计算得到前面的项数。
四、反证法反证法在解决一些逻辑问题时,常常能够起到事半功倍的效果。
它通过假设某个结论不成立,推导出矛盾的结果,从而证明了最初的假设是错误的。
例如,在证明根号2是一个无理数时,我们可以采用反证法。
假设根号2是有理数,可以表示为a/b(a、b互质),则将其平方得到2=a²/b²。
如果这个等式成立,那么a²必定是偶数,那么a也必定是偶数。
设a=2k,则原始等式可化简为b²=2k²。
五年级奥数.计数综合.概率(ABC级).教师版

一、概率的古典定义如果一个试验满足两条:⑴试验只有有限个基本结果;⑵试验的每个基本结果出现的可能性是一样的.这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()mP A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中所涉及的概率都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件 如果事件A 和B 为对立事件(互斥事件),那么A 或B 中之一发生的概率等于事件A 发生的概率与事件B 发生的概率之和,为1,即:()()1P A P B +=.三、相互独立事件事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即:()()()P A B P A P B ⋅=⋅.【例 1】 约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否则记0分.若汤姆连续两次掷得的结果中至少有1次硬币的正面向上,则记1分,否则记0分.谁先记满10分谁就赢. 赢的可能性较大(请填汤姆或约翰).例题精讲知识结构概率【考点】概率的意义【难度】2星【题型】填空【关键词】2005年,第4届,走美杯,5年级,决赛,第7题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。
约翰扔的话,两种情况记1分,两种情况记0分;汤姆扔的话三种情况记1分,一种情况记0分。
所以汤姆赢得的可能性大。
【答案】汤姆【巩固】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.【考点】概率的意义【难度】2星【题型】填空【解析】因为2、3、5、6、7、9中奇数有4个,偶数只有2个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大.【答案】小亮得分高的可能性较大【例 2】一个骰子六个面上的数字分别为0,1,2,3,4,5,现在来掷这个骰子,把每次掷出的点数依次求和,当总点数超过12时就停止不再掷了,这种掷法最有可能出现的总点数是____.【考点】概率的意义【难度】4星【题型】填空【解析】掷的总点数在8至12之间时,再掷一次,总点数才有可能超过12(至多是17).当总点数是8时,再掷一次,总点数是13的可能性比总点数超过13的可能性大.当总点数在9至12之间时,再掷一次,总点数是13的可能性不比总点数是14,15,16,17的可能性小.例如,总点数是11时,再掷一次,出现05的可能性相同,所以总点数是1116的可能性相同,即总数是13的可能性不比总数点数分别是14,15,16的可能性小,综上所述,总点数是13的可能性最大.【答案】总点数是13的可能性最大.【巩固】有两个骰子A和B,骰子的六个面分别标有1,2,3,4,5,6掷出的两枚骰子朝上的数字之和不是12的可能性是___。
五年级奥数试题-第九讲 游戏中的数学问题(含答案)全国通用

第九讲游戏中的数学问题一、计算大闯关(1)1+2-3+4+5-6+7+8-9+…+97+98-99(2)1000+999-998+997+996-995+…+106+105-104+103+102-101 (3)(2005+2006+2007+2008+2009+2010+2011)÷2008(4)1+22+333+4444+5555+666+77+8(5)1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9(6)1-2+3-4+5-6+…-96+97-98+99-100+101二、强化提高篇1、在下图中有一个孤独的小方格,没有任何一个箭头指着它,它在第几行第几列?2、如图是一个3×3 的方格表,每个方格(除了最后一个方格)都包含了 1~9 中某个数字和一个箭头,每个方格中的箭头都正好指向了下一个数字所在方格的方向,如果 1 号方格的箭头指向右方,代表 2 号方格在 1 号方格右方,2 号方格指向左下,代表 3 号方格在 2 号左下方,3 号方格指向上方,代表 4 号方格在 3 号方格上方,……(指向方格可以不相邻),这样正好从 1 到 9 走完整个方格表。
图 2 是一个只标了箭头和数字 1、9 的方格表,如果按照上述要求也能从 1 到 9 走完整个方格表。
那么 A 所在的方格应该标数字。
3、方格中标记“*”表示有雷,“×”表示无雷,数字表示和该方格周围的 8 个方格中共有多少个雷,没有标记代表不知是否有雷。
下面的 25 个方格中已经填了一部分标记。
则下图中共有多少个雷?4、下图是一块6×6的区域,种有 7 棵树,现在要求在不种树的空地上搭帐篷,而且要求帐篷必须搭在树边,任意两个帐篷所占方格没有公共点,且每行帐篷数如最右边所示,每列帐篷数如最下边所示。
请画出帐篷的位置。
5、已知 B 比 A 少 1,C=三、超常挑战篇1、六个逃犯被警察包围了,并知道如下情形:(1)包围每个逃犯的人数都各不相同;(2)每个逃犯身边不少于 3 名警察;(3)围住 E 的人数最多,围住 B 的最少,包围 D 的人数是 E 是一半,围住 A 的是 B 的 2 倍;(4)B 被围在 F 的左边,F 被围在 E 的上边;(5)A 被围在 E 的下边,围住 C 的比 A 的还多;请标出六名逃犯和警察(用 X 表示)的位置。
【教师版】小学奥数8-7 游戏与策略.专项练习及答案解析

1.通过实际操作寻找题目中蕴含的数学规律 2.在操作过程中,体会数学规律的并且设计最优的策略和方案 3.熟练掌握通过简单操作、染色、数论等综合知识解决策略问题实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、探索与操作 【例 1】 将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】北京奥校杯【解析】 这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张,所以原来的顺序为11,5,1,8,10,2,6,12,3,9,7,4,13【答案】11,5,1,8,10,2,6,12,3,9,7,4,13【例 2】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作例题精讲知识点拨教学目标游戏与策略一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=.【答案】4950【巩固】 在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】迎春杯,决赛【解析】 前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990 【答案】1990【例 3】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以992(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【答案】23【例 4】 有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【考点】游戏与策略 【难度】3星 【题型】填空【关键词】两岸四地,华杯赛【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【答案】3【例 5】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n .如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 本题可以进行倒推.11的前一个数只能是偶数22,22的前一个数可以是偶数44或奇数21,44的前一个是可以是偶数88或奇数43,而21的前一个只能是偶数42. 由于这列数的第一个是奇数,所以只有43满足.故这列数的第一个数是43.也可以顺着进行分析.假设第一个数是a ,由于a 是奇数,所以第二个数是1a +,是个偶数,那么第三个数是12a +,第四个数是11,11只能由偶数22得来,所以1222a +=,得到43a =,即这列数的第一个数是43.【答案】43【巩固】 在信息时代信息安全十分重要,往往需要对信息进行加密,若按照“乘3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”,若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是 .【考点】游戏与策略 【难度】3星 【题型】填空【关键词】走美杯,初赛,六年级【解析】 0~9这10个数字乘以3所得的数的个位数字互不相同是本题可以进行判断的基础.采用倒推法,可以得到经过一次加密之后的密码是“7118”,再进行倒推,可以得到原来的明码是2009.【答案】2009【例 6】 设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【考点】游戏与策略 【难度】3星 【题型】解答【关键词】武汉,明星奥数挑战赛【解析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).【答案】18【例7】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白) 【考点】游戏与策略【难度】3星【题型】填空【关键词】北大附中,资优博雅杯【解析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【答案】黑【巩固】30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.【考点】游戏与策略【难度】3星【题型】解答【关键词】走美杯,试题【解析】这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的时候会是黑珠子,所以至少要跳7次.【答案】7次【巩固】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】游戏与策略【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为++++=⨯是一个偶数,而每一次“操作”,将a、b两个数12320082009变成了()-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和a b减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例8】桌上有一堆石子共1001粒。
小学五年级奥数 游戏与对策(二)——数论类游戏

游戏与对策(二)——数论类游戏本讲主线1.取火柴游戏.2.天平称量问题.版块一:取火柴游戏【例1】(★★)桌子上放着55根火柴, 甲、乙二人轮流每次取走1~3根, 规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法, 甲先取, 那么谁将获胜1. 关于逆推法⑴从后往前:由小数开始⑵寻找循环节.2. 关于“组和法”⑴组和=首+尾⑵总数÷组和=组数…余数⑶有余, 自己先取走余数无余, 让对方先取.不论对方取几, 自己都取(组和-几) 【巩固】(★★★)有100枚硬币, 甲乙两人轮流取, 每次取1、2、3、4枚, 规定最后一次取完的人获胜. 请问: 甲先取, 谁有必胜策略?【例2】(★★)桌子上放着60根火柴, 甲、乙二人轮流每次取走2, 4, 6根, 规定谁取走最后一根火柴谁获胜. 问怎样才能确保获胜?【拓展】(★★★)有100枚硬币, 甲乙两人轮流取, 每次取1~8枚, 规定取到最后一枚的人算输. 请问: 甲先取, 谁有必胜策略?【例3】(★★)有100枚硬币, 甲乙两人轮流取, 每次取1~8枚, 规定取到最后一枚的人获胜. 请问: 甲先取, 谁有必胜策略? 【例4】(★★★★)两人做取火柴的游戏:桌上放有500根火柴, 两人轮流取, 每一次可以取走1, 2, 4, 8, …(2的任何次方)根火柴.谁先没火柴可取谁输.试问: 在正确的玩法之下, 谁会取胜?是先动手取的, 还是其对手?1【例5】(★★★★☆)桌上有111根火柴, 甲乙两人轮流取火柴, 每人每次可以取一根或质数根, 取到最后一根者为胜方, 问甲应如何取才能取得胜利?版块二:天平称重问题【例6】(★★★★)有10箱钢珠, 每个钢珠重10克, 每箱600个. 如果这10箱钢珠中有1箱次品, 次品钢珠每个重9克, 那么, 要找出这箱次品最少要称几次?【拓展】(★★★)99张卡片上分别写着1~99. 甲先从中抽走一张, 然后乙再从中抽走一张,如此轮流下去.若最后的两张上的数是互质数, 则甲胜;若最后剩下的两个数不是互质数, 则乙胜.问:甲要想获胜应该怎样抽取卡片?【超常大挑战】(★★★★★)有10箱钢珠, 每个钢珠重10克, 每箱600个. 如果只知道这10箱钢珠中有次品, 具体几箱不清楚, 次品钢珠每个重9克, 那么只称一次, 能否找出这些次品?知识大总结【今日讲题】1. 关于逆推法⑴从后往前:小数开始.例1,例4,例6,超常大挑战【讲题心得】逆推法_____________________________________________________________________________________.2. 关于“组和法”3. 天平称重,制造差别,利用差别锁定次品箱.【家长评价】_________________________________________________________________________________.2。
游戏与策略-答案

游戏与策略-答案游戏与策略-答案游戏与策略巩固篇知识点总结:⼀取余制胜(取棋⼦,报数游戏)1.每次取1~n个棋⼦,总数,取最后⼀个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对⼿凑成1+n 即可⽆余则后,总与对⼿凑成1+n即可2. 每次取1~n个棋⼦,总数,取最后⼀个输策略:最狠的做法就是留给对⽅⼀枚棋⼦,对⽅不取也得取。
所以想赢的关键就在于能不能取到倒数第⼆枚棋⼦。
问题转化为:每次取1~n个棋⼦,总数,取倒数第⼆枚棋⼦赢。
(总数-1)÷(1+n),之后同1中做法。
⼆.抢占制胜点(倒推法)1. 能⼀步到棋⼦的位置均是不能⾛的地⽅即负位2. 处处为别⼈着想。
⾃⼰不能⾛的地⽅逼别⼈⾛进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对⽅步骤可以达到制胜⽬的。
2. 不同等情况下,创造对等局⾯⽅可制胜。
1.桌⼦上放着100根⽕柴,甲、⼄⼆⼈轮流每次取⾛1~5根。
规定谁取⾛最后⼀根⽕柴谁获胜。
如果双⽅都采⽤最佳⽅法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)⼄拿a个,甲就拿6-a个2.甲⼄两⼈轮流报数,报出的数只能是1~7的⾃然数。
同时把所报数⼀⼀累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10⽆余数,后拿必胜。
甲拿a个,⼄就拿8-a个必胜3.1000个空格排成⼀⾏,最左端空格中放有⼀枚棋⼦,甲先⼄后轮流向右移动棋⼦,每次移动1~7格。
规定将棋⼦移到最后⼀格者谁赢。
甲为了获胜,第⼀步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先⾛必胜。
(1)甲先⾛7格(2)⼄⾛a格,甲就拿8-a个必胜4.5张扑克牌,每⼈每次只能拿1张到4张。
谁取最后⼀张谁输。
必胜的策略是什么?分析:先拿4张,留给别⼈1张就⾏。
5.现有1000根⽕柴,甲⼄两⼈轮流去拿,每⼈每次最少拿1根,最多拿7根,谁取最后⼀根谁输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、探索与操作【例 1】 将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张,所以原来的顺序为11,5,1,8,10,2,6,12,3,9,7,4,13【答案】11,5,1,8,10,2,6,12,3,9,7,4,13【巩固】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33例题精讲知识框架游戏与策略个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=.【答案】4950。
【例 2】 在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【考点】游戏与策略 【难度】3星 【题型】填空【解析】 前16个数字是1,9,8,9,7,6,3,9,2,1,3,4,7,1,8,9可见除去前2个数字1、9后,每12个数字一组重复出现.因此前398个数字的和是1+9+(8+9+7+6+3+9+2+1+3+4+7+1)⨯398212-=10+60⨯33=1990 【答案】1990。
【巩固】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【考点】游戏与策略 【难度】3星 【题型】解答【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子.依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数.所以,圆周上还有23枚棋子.【答案】23。
【例 3】 有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球.【考点】游戏与策略 【难度】3星 【题型】填空【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【答案】3。
【巩固】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n .如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是 .【考点】游戏与策略 【难度】3星 【题型】填空【解析】 本题可以进行倒推.11的前一个数只能是偶数22,22的前一个数可以是偶数44或奇数21,44的前一个是可以是偶数88或奇数43,而21的前一个只能是偶数42.由于这列数的第一个是奇数,所以只有43满足.故这列数的第一个数是43.也可以顺着进行分析.假设第一个数是a ,由于a 是奇数,所以第二个数是1a +,是个偶数,那么第三个数是12a+,第四个数是11,11只能由偶数22得来,所以1222a+=,得到43a=,即这列数的第一个数是43.【答案】43。
模块二、染色与操作(证明)【例4】六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【考点】游戏与策略【难度】3星【题型】解答【解析】建议建议教师在本讲可以以游戏的形式激发学生自主解决问题.划一个57⨯的方格表,其中每一个方格表示一个座位.将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座.因此每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格坐到白格.但实际上图中有17个黑格,18个白格,黑格与白格的个数不相等,故不能办到.【答案】不能【巩固】图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通.有一个人打算从A 室开始依次而入,不重复地看过各室展览之后,仍回到A室,问他的目的能否达到,为什么?A【考点】游戏与策略【难度】3星【题型】解答【解析】采用染色法.如右图,共有9个展览室,对这9个展览室,黑白相间地进行染色,从白室A出发走过第1扇门必至黑室,再由黑室走过第2扇门至白室,由于不重复地走遍每一间展览室,因此将走过黑白相间的8个展览室,再回到白室A,共走过9扇门.由于走过奇数次门至黑室,走过偶数次门至白室.现在,走过9扇门,必至黑室,所以无法回到原来的白室A.【答案】无法回到【例5】右图是某套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?【考点】游戏与策略【难度】3星【题型】解答【解析】如图所示,将房间黑白相间染色,发现有5个白格,7个黑格.因为每次只能由黑格到白格或由白格到黑格,路线必然黑白相间,这样白格数目与黑格数目之差最多为1才能不重复,但图中黑格比白格多2个,所以无法实现不重复走遍.【答案】无法实现。
【巩固】有一次车展共6636⨯=个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?【考点】游戏与策略【难度】3星【题型】解答【解析】如右图,对每个展室黑白相间染色,那么每次只能从黑格到白格或从白格到黑格.由于入口处和出口处都是白格,而路线黑白相间,首尾都是白格,于是应该白格比黑格多1个,而实际上白格、黑格都是18个,故不可能做到不重复走遍每个展室.【答案】不可能【例6】如右图,在55⨯方格的A格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格中.那么它能否不重复地爬遍每个方格再回到A格中?A【考点】游戏与策略【难度】3星【题型】解答【解析】由小虫的爬法,仍可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或由白格爬到黑格.所以,它由A出发回到A,即黑格爬到黑格,必须经过偶数步.而小方格为5525⨯=个,每格爬过一次,就应该为25步,不是偶数.于是这只爬虫不可能不重复地爬遍每格再回到A格.【答案】不可能模块三、染色与操作(剪拼)【例7】有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?【考点】游戏与策略【难度】3星【题型】解答【解析】显然每人应该分712=412+312=13+14.于是,拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分.【答案】拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分【巩固】右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方形?【考点】游戏与策略【难度】3星【题型】解答【解析】将这14个小方格黑白相间染色(见右下图),有8个黑格,6个白格.相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成7个由相邻两个方格组成的长方形.【答案】不能【例8】你能把下面的图形分成7个大小相同的长方形吗?动手画一画.【考点】游戏与策略【难度】3星【题型】解答【解析】可以通过染色发现黑白方格个数相同,可以按一黑一白分成7块含有2个小方格的长方形,答案如下(答案不唯一):【答案】【巩固】有6张电影票(如右图) ,想撕成相连的3张,共有________种不同的撕法.【考点】游戏与策略【难度】3星【题型】填空【解析】形如的有2种,形如的有8种.所以共有2810+=(种)【答案】10种。