哈工大机械原理大作业1-31
(完整word版)哈工大机械原理大作业3齿轮传动设计
4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算
4.1滑移齿轮5和齿轮6
序号
项目
代号
计算公式及计算结果
1
齿数
齿轮5
17
齿轮6
39
2
模数
2
3
压力角
20°
4
齿顶高系数
1
5
令 =4
则可得定轴齿轮传动部分的传动比为 = =6.4667
滑移齿轮传动的传动比 = =2.308
= =2.857
定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为
3、齿轮齿数的确定
根据滑移齿轮变速传动系统中对齿轮齿数的要求,选择齿轮5、6为标准齿轮,7、8、9和10为角度变位齿轮。设 17, = 39满足传动比,由于是标准齿轮,可得中心距a=76mm ,h*a=1, =17,因此不会发生根切,开始设计下面的角度变位。
顶隙系数
0.25
6
标准中心距
= ( )/2=56
7
实际中心距
56
8
啮合角
9
变位系数
齿轮5
0
齿轮6
0
10
齿顶高
齿轮5
2mm
齿轮6
2mm
11
齿根高
齿轮5
2.5mm
齿轮6
2.5mm
12
分度圆直径
齿轮5
34mm
齿轮6
78mm
13
齿顶圆直径
齿轮5
38mm
齿轮6
82mm
14
齿根圆直径
机械原理大作业
function [ v_Nx,v_Ny ] =v_crank(s,v_Ax,v_Ay,omiga,theta,phi) v_Nx=v_Ax-s*omiga.*sin(theta+phi); v_Ny=v_Ay+s*omiga.*cos(theta+phi); end
3>加速度计算
function [ a_Nx,a_Ny ]=a_crank(s,a_Ax,a_Ay,alph,omiga,theta,phi) a_Nx=a_Ax-alph.*s.*sin(theta+phi)-omiga.^2.*s.*cos(theta+phi);
。
1) 位置分析
将已知 P1P2 两点的坐标差表示为:
u=x2-x1,v=y2-y1
(1)
杆 l1 及 l2 投影方程式为:
l1cosθ1-l2cosθ2=u
l1sinθ1-l2sinθ2=v
(2)
消去θ1 得:vsinθ2+ucosθ2+c=0
(3)
其中: 解式(3)可得:
t(4) 式中+号和-号分别对应图 2 中 m=+1 和 m=-1 两位置。
由式(2)可得:
(5) 2) 速度分析
对 式 (2) 求 导 一 次 得 :
(6)
其中:
解式(6)可得:
(7)
其中: 3) 加速度分析
对式(6)求导一次得:
(8)
其中:
'.
解式(8)可得:
由上述式子可设计出 RRR 杆组运动分析子程序:
1>位置分析:
function[cx,cy,phi2,phi3]=s_RRR(bx,by,dx,dy,l2,l3,m,phi) d=sqrt((dx-bx).^2+(dy-by).^2); if(d>(l2+l3))|(d<abs(l2-l3))
哈工大机械原理大作业
H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业一课程名称:机械原理设计题目:连杆机构运动分析院系:机电学院班级: 1208105分析者:殷琪学号:指导教师:丁刚设计时间:哈尔滨工业大学设计说明书1 、题目如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=4.28AB,CE=4.86AB,BE=8.4AB,CD=2.14AB,AD=4.55AB,AF=7AB,DF=3.32AB,∠BCE=139?。
构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。
2、机构结构分析该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR基本杆组,4和5组成Ⅱ级RPR 基本杆组。
如图建立坐标系3、各基本杆组的运动分析数学模型1) 位置分析2) 速度和加速度分析 将上式对时间t 求导,可得速度方程:将上式对时间t 求导,可得加速度方程:RRR Ⅱ级杆组的运动分析如下图所示 当已知RRR 杆组中两杆长L BC 、L CD 和两外副B 、D 的位置和运动时,求内副C的位置、两杆的角位置、角运动以及E 点的运动。
1) 位置方程由移项消去j ϕ后可求得i ϕ:式中,可求得j ϕ:E 点坐标方程:其中2) 速度方程两杆角速度方程为式中,点E 速度方程为3) 加速度方程两杆角加速度为式中,点E 加速度方程为RPR Ⅱ级杆组的运动分析(1) 位移方程(2)速度方程其中(3)加速度方程4、 计算编程利用MATLAB 软件进行编程,程序如下:% 点B 和AB 杆运动状态分析>>r=pi/180;w 1=10;e 1=0;l 1=100;Xa=0;Ya=0;Vax=0;Vay=0;aax=0;aay=0;f1=0:1: 360;% B 点位置Xb=Xa+l1*cos(r*f1);Yb=Ya+l1*sin(r*f1);% B点速度Vbx=Vax-w1*l1*sin(r*f1);Vby=Vay+w1*l1*cos(r*f1);% B点加速度abx=aax-l1*w1.^2.*cos(r*f1);aby=aay-l1*w1.^2.*sin(r*f1);% RRR2级杆组运动分析% 输入D点参数l2=428;l3=214;Xd=455;Yd=0;Vdx=0;Vdy=0;adx=0;ady=0;% 计算E点、2杆、3杆运动参数lbe=840;lce=486;a0=2*l2*(Xd-Xb);b0=2*l2*(Yd-Yb);c0=l2^2+(Xb-Xd).^2+(Yb-Yd).^2-l3^2;f2=2*atan((b0+sqrt(a0.^2+b0.^2-c0.^2))./(a0+c0)); % C点位置Xc=Xb+l2*cos(f2);Yc=Yb+l2*sin(f2);% 2杆、3杆运动参数计算dX=Xc-Xd;dY=Yc-Yd;for n=1:length(dX)if dX(n)>0&dY(n)>=0f3(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f3(n)=pi/2;elseif dX(n)<0&dY(n)>=0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f3(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f3(n)=2*pi+atan(dY(n)/dX(n));endendC2=l2*cos(f2);C3=l3*cos(f3);S2=l2*sin(f2);S3=l3*sin(f3);G1=C2.*S3-C3.*S2;w2=(C3.*(Vdx-Vbx)+S3.*(Vdy-Vby))./G1;w3=(C2.*(Vdx-Vbx)+S2.*(Vdy-Vby))./G1;G2=adx-abx+(w2.^2).*C2-(w3.^2).*C3;G3=ady-aby+(w2.^2).*S2-(w3.^2).*S3;e2=(G2.*C3+G3.*S3)./G1;% E点位置w=acos((l2^2+lbe^2-lce^2)/(2*l2*lbe));Xe=Xb+lbe*cos(f2-w);Ye=Yb+lbe*sin(f2-w);Vex=Vbx-lbe*w2.*sin(f2-w);Vey=Vby+lbe*w2.*cos(f2-w);aex=abx-lbe*(e2.*sin(f2-w)+w2.^2.*cos(f2-w));aey=aby+lbe*(e2.*cos(f2-w)-w2.^2.*sin(f2-w));% 计算杆5运动参数Xf=646.2912088;Yf=-268.9008617;l5=sqrt((Xe-Xf).^2+(Ye-Yf).^2);dX=Xe-Xf;dY=Ye-Yf;for n=1:length(dX)if dX(n)>0&dY(n)>=0f5(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f5(n)=pi/2;elseif dX(n)<0&dY(n)>=0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f5(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f5(n)=2*pi+atan(dY(n)/dX(n));endendw5=(-Vex.*sin(f5)+Vey.*cos(f5))./l5;a5=(-aex.*sin(f5)+aey.*cos(f5))./l5;% 画出各参数曲线figure(1);plot(Xe,Ye,'k');xlabel('Xe/\mm');ylabel('Ye/mm');grid on;title('E点位置');figure(2);plot(f1,f5,'k');xlabel('f/\circ');ylabel('f5/\circ');grid on;title('5杆角位移');figure(3);plot(f1,w5,'k');xlabel('f/\circ');ylabel('w5/rad/s');grid on;title('5杆角速度');figure(4);plot(f1,a5,'k');xlabel('f/\circ');ylabel('a5/rad/s2');gridon;title('5杆角加速度');Warning: Unable to interpret TeX string "Xe/\mm"5、计算结果图一:E点的运动轨迹图二:5杆角位移图三:5杆角速度图四:5杆角加速度6、计算结果分析由E点位置图像可看出,构件4做周期往复运动,由图二、三、四可看出,构件5的角位移、角速度、角加速度均成周期性变化。
哈工大机械原理大作业连杆
Harbin Institute of Technology机械原理大作业一课程名称: 机械原理 设计题目: 连杆机构运动分析 院 系: 机电工程学院 班 级: 设 计 者: 学 号: 指导教师: 设计时间:1.运动分析题目(11)在图所示的六杆机构中,已知:AB l =150mm, AC l =550mm, BD l =80mm, DE l =500mm,曲柄以等角速度1w =10rad/s 沿逆时针方向回转,求构件3的角速度、角加速度和构件5的位移、速度、加速度。
2.机构的结构分析2.1建立以点A 为原点的固定平面直角坐标系A-x, y,如下图: 2.2机构结构分析该机构由Ⅰ级杆组RR (原动件1)、Ⅱ级杆组RPR (杆2及滑块3)和Ⅱ级杆组RRP (杆4及滑块5)组成。
3.建立组成机构的各基本杆组的运动分析数学模型3.1原动件1(Ⅰ级杆组RR )由图所示,原动件杆1的转角a=0-360°,角速度1w =10rad/s ,角加速度1a =0,运动副A 的位置坐标A x =A y =0,速度(A ,A),加速度(A ,A ),原动件1的长度AB l =150mm 。
求出运动副B 的位置坐标(B x , B y )、速度(B ,B )和加速度(B ,B )。
3.2杆2、滑块3杆组(RPR Ⅱ级杆组)已出运动副B 的位置(B x , B y )、速度(B ,B )和加速度(B ,B ),已知运动副C 的位置坐标C x =0, C y =550mm,速度,加速度,杆长AC l =550mm 。
求出构件2的转角b,角速度2w 和角加速度2a . 3.3构件二上点D 的运动已知运动副B 的位置(B x , B y )、速度(B ,B )、加速度(B ,B ),已经求出构件2的转角b ,角速度2w 和角加速度2a ,杆BD 的长度BD l =80mm 。
根据Ⅰ级杆组RR 的运动分析数学模型求出点D 的位置坐标(D x ,D y )、速度(D ,D )和加速度(D ,D )。
哈工大机械原理大作业331
Harbin Institute of Technology大作业设计说明书课程名称:机械原理设计题目:齿轮传动设计院系:机械设计制造及其自动化班级:设计者:学号:指导教师:丁刚设计时间:2014.5.21哈尔滨工业大学一、设计题目机构运动简图机械传动系统原始参数序号电机转速(r/min)输出轴转速(r/min)带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数圆柱齿轮圆锥齿轮一对齿轮最大传动比模数一对齿轮最大传动比模数121450 44 49 57 ≤2.5 ≤4 2 ≤4 3 ≤4 3 二、传动比的分配计算电动机转速n=1450r/min,输出转速n1=44 r/min,n2=49 r/min,n3=57 r/min,带传动的最大传动比=2.5,滑移齿轮传动的最大传动比=4,定轴齿轮传动的最大传动比=4。
有传动系统原始参数可知:112233145032.9544145029.9549145025.4357ioioioninninnin=========传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。
设带传动的传动比为m ax p i ,滑移齿轮的传动比为321v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比fv p f v p f v p i i i i i i i i i i i i 3max 32max 21max 1=== 其中令max 1v v i i ==4则可得定轴齿轮传动部分的传动比为1max max 32.953.2952.54f p v i i i i ===⨯滑移齿轮传动的传动比22max 29.953.642.53.295v p fi i i i ===⨯33max 25.433.092.53.295v p fi i i i ===⨯定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为1.49d i =三.齿轮齿数的确定101982763543.593.09v v v z i z z i z z i z ======令9z =17,则10z =68,为了使传动质量更好,取10z =69.78277910v z z i z z z z +=+≈+,7z =19则取8z =67 56355910v z z i z z z z +=+≈+,5z =21则取6z =65齿顶高系数*a h =1,径向间隙系数*c =0.25,分度圆压力角α=20°,实际中心距'α=86mm 。
哈工大机械原理大作业
H a r b i n I n s t i t u t e o f T e c h n o l o g y大作业设计说明书课程名称:机械原理设计题目:凸轮机构院系:机电学院班级:姓名:学号:指导教师:丁刚设计时间:2014.5.29哈尔滨工业大学1.设计题目第31题:升程/mm 升程运动角/。
升程运动规律升程许用压力角/。
回程运动角/。
回程运动规律回程许用压力角/。
远休止角/。
近休止角/。
150 90 等加等减速40 80 余弦加速度70 40 1502.运动方程式及运动线图由题目要求凸轮逆时针旋转(1)确定凸轮机构推杆升程、回程运动方程,并绘制推杆位移、速度、加速度线图。
升程第一段:(0 <φ< pi /4)φ0=pi/2;s1 = 73*φ^2;v1=146*w*φ;a1 = 146*w^2;升程第二段:(pi/4 <φ< pi /2)s2 =90-73*(pi/2-φ)^2;v2=146*w*( pi/2-φ);a2 =-146*w.^2;远休止程:(pi/2 <φ< 10*pi/9)s3 = 90;v3 = 0;a3 = 0;回程:(10*pi/9)< φ< ( 14*pi/9)s4 =45*(1+cos(9/4*(φ-10*pi/9)));v4 =-101.25*w*sin(9/4*(φ-10*pi/9)) ;a4 =-227.8*w^2* cos(9/4*(φ-10*pi/9)); 近休止程:(14*pi/9)< φ < ( 2*pi);s5 =0;v5 =0;a5 =0;1.由上述公式通过编程得到位移、速度、加速度曲线如下:(编程见附录).基圆半径为r0 = (50^2+100^2)0.5=112mm,偏距e = 50mm。
3.凸轮实际轮廓,理论轮廓,基圆,偏距圆绘制4.整体图像附录1.求位移、速度、加速度的程序(matlab)w = input('请输入W=');x = 0:(pi/1000):(pi/4);s1 = 73*x.^2;v1=146*w*x;a1 = 146*w.^2;y = (pi/4):(pi/1000):(pi/2);s2 =90-73*(pi/2-y).^2;v2=146*w*( pi/2-y);a2 =-146*w.^2;z = (pi/2 ):(pi/1000):(10*pi/9);s3 = 90;v3 = 0;a3 = 0;c = (10*pi/9):(pi/1000):( 14*pi/9);s4 =45*(1+cos(9/4*(c-10*pi/9)));v4 =-101.25*w*sin(9/4*( c-10*pi/9)) ;a4 =-227.8*w.^2* cos(9/4*(c-10*pi/9));d=(14*pi/9):(pi/1000):( 2*pi);s5 =0; v5 =0; a5 =0;subplot (2,2,1)plot(x,s1,'b',y,s2,'b',z,s3,'b',c,s4,'b', d,s5,'b');xlabel('转角/rad')ylabel('位移/(mm/s)')title('位移与转角曲线')grid onsubplot (2,2,2)plot(x,v1,'g',y,v2,'g',z,v3,'g ',c,v4,'g', d,v5,'g')ds4 =45*9/4*sin(9/4*(c-10*pi/9));d=(14*pi/9):(pi/1000):( 2*pi);s5 =0;ds5 =0;plot(ds1,s1,'b',ds2,s2,'b',ds3,s3,'b',ds4,s4,'b',ds5,s5,'b'); xlabel('ds/dp');ylabel('(位移s/mm)')title('ds/dp 与位移s曲线')grid onhold onx3=-150:0.001:0;y3 = 0.577*x3;plot (x3,y3,'r');hold onx1=-150:0.001:150;for i=1:1:250;k1=(s1(i+1)-s1(i))/ (ds1(i+1)-ds1(i));if(k1>=-1.733 && k1<=-1.731)y1=k1*(x1-ds1(i))+s1(i);plot (x1,y1,'r');end3.确定滚子半径(1)先求凸轮理论轮廓曲线,程序如下:Clc;clear;w = input('请输入w=');s0 = 100;s = 90;e = 50; x = 0:(pi/100):(pi/4);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (pi/4):(pi/100):(pi/2);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi/2 ):(pi/100):(10*pi/9);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (10*pi/9):(pi/1000):( 14*pi/9);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);d=(14*pi/9):(pi/1000):( 2*pi);x5 = (s + s0)*cos(d)-e*sin(d);y5 = (s0 + s)*sin(d) - e*cos(d);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b',x5,y5,'b');xlabel('x/mm')ylabel('y/mm')title('理论轮廓曲线')grid on(2)理论轮廓线最小曲率半径编程代码:由下程序结果可知pmin =81.6667这里滚子半径为 r r < pmin-ΔΔ=3~5mm;取r r=10mm;clear;clc;v=[];syms x1 x2 x3 x4 x5s0 = 100;e = 50;s1 = 73*x1.^2;t1 = (s1 + s0)*cos(x1)-e*sin(x1);y1 = (s0 + s1)*sin(x1) - e*cos(x1);tx1=diff(t1,x1);txx1=diff(t1,x1,2);yx1=diff(y1,x1);yxx1=diff(y1,x1,2);for xx1= 0:(pi/100):(pi/4);k1=subs(abs((tx1*yxx1-txx1*yx1)/(tx1^2+yx1^2)^1.5),{x1},{xx1}); v=[v,1/k1];ends2 =90-73*(pi/2-x2).^2;t2 = (s2 + s0)*cos(x2)-e*sin(x2);y2 = (s0 + s2)*sin(x2) - e*cos(x2);tx2=diff(t2,x2);txx2=diff(t2,x2,2);yx2=diff(y2,x2);yxx2=diff(y2,x2,2);for xx2=(pi/4):(pi/100):(pi/2);k2=subs(abs((tx2*yxx2-txx2*yx2)/(tx2^2+yx2^2)^1.5),{x2},{xx2});k4=subs(abs((tx4*yxx4-txx4*yx4)/(tx4^2+yx4^2)^1.5),{x4},{xx4}); v=[v,1/k4];ends5 =0;t5 = (s5 + s0)*cos(x5)-e*sin(x5);y5 = (s0 + s5)*sin(x5) - e*cos(x5);tx5=diff(t5,x5);txx5=diff(t5,x5,2);yx5=diff(y5,x5);yxx5=diff(y5,x5,2);for xx5=(10*pi/9):(pi/100):( 4*pi/3);k5=subs(abs((tx5*yxx5-txx5*yx5)/(tx5^2+yx5^2)^1.5),{x5},{xx5}); v=[v,1/k5];endpmin=min(v)4.绘制凸轮轮廓曲线clear ;clc;syms x y z c dw= input('请输入w=');n3 = diff(x3);m3 = diff(y3);xt3= subs(x3 + (r*m3)./sqrt(m3.^2+n3.^2),z,zz);yt3 = subs(y3 - (r*n3)./sqrt(m3.^2+n3.^2),z,zz);cc= (10*pi/9):(pi/1000):( 14*pi/9);s4 =45*(1+cos(9/4*(c-10*pi/9)));x4 = (s4 + s0).*cos(c)-e*sin(c);y4 = (s0 +s4).*sin(c) - e*cos(c);n4 = diff(x4);m4 = diff(y4);xt4= subs(x4 + (r*m4)./sqrt(m4.^2+n4.^2),c,cc);yt4 =subs( y4 - (r*n4)./sqrt(m4.^2+n4.^2),c,cc);dd=(14*pi/9):(pi/1000):( 2*pi);s5 =0;x5 = (s5 + s0).*cos(d)-e*sin(d);y5 = (s0 +s5).*sin(d) - e*cos(d);n5 = diff(x5);m5 = diff(y5);xt5= subs(x5 + (r*m5)./sqrt(m5.^2+n5.^2),d,dd);yt5 =subs( y5 - (r*n5)./sqrt(m5.^2+n5.^2),d,dd);plot(xt1,yt1,'b',xt2,yt2,'b',xt3,yt3,'b',xt4,yt4,'b',xt5,yt5,'b')for i=1:3601if yy(1,i)<=y0/2s(1,i)=2*h*(yy(i)./y0).^2;v(1,i)=4*h*w*yy(i)./(y0.^2);a(1,i)=4*h*w.^2./(y0.^2);elseif yy(1,i)>y0/2 && yy(1,i)<y0s(1,i)=h-2*h./y0.^2.*(y0-yy(i)).^2;v(1,i)=4*h*w*(y0-yy(i))./(y0.^2);a(1,i)=-4*h*w.^2./(y0.^2);elseif yy(1,i)>=y0 && yy(1,i)<y0+yss(1,i)=h;v(1,i)=0;a(1,i)=0;elseif yy(1,i)>=y0+ys && yy(1,i)<y0+ys+y01s(1,i)=h/2*(1+cos(pi/y01*(yy(1,i)-y0-ys)));v(1,i)=-pi*h*w/2/y01*sin(pi/y01*(yy(1,i)-y0-ys));a(1,i)=-pi^2*h*w^2/2/y01^2*cos(pi/y01*(yy(1,i)-y0-ys)); elseif yy(1,i)>=y0+ys+y01 && yy(1,i)<=360s(1,i)=0;v(1,i)=0;a(1,i)=0;subplot(2,3,5) ;plot(x,y,'r',xt,yt,eex,eey,'g',r0x,r0y,'k')%画图title('实际理论轮廓线')axis equal%使坐标轴比例相等grid on%画网格线。
哈工大机械原理大作业3
Harbin Institute of Technology机械原理大作业三课程名称:设计题目:院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学大作业3 齿轮传动设计 1、设计题目1.1机构运动简图1.2机械传动系统原始参数2、传动比的分配计算由已知条件,电动机转速n=1450r/min ,输出转速n 1=27 r/min ,n 2=31 r/min ,n 3=37 r/min ,带传动最大传动比max p i =2.5,滑移齿轮传动最大传动比=4,定轴齿轮传动最大 传动比=4。
可求得:传动系统的总传动比为:11n ni == 1450/27=53.70322n ni == 1450/31=46.774 33n ni == 1450/37=39.189 传动系统的总传动比分别由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。
设带传的传送比为其最大传送比5.2max =p i ,滑移齿轮的传动比为321,,v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比由于1i > 2i > 3i ,故取1max 4v v i i ==则定轴齿轮传动部分的传动比为1max max5.37f p v i i i i ==滑移齿轮传动的传动比22max3.49v f p i i i i ==33m a x2.92v f p i i i i ==定轴齿轮传动由3对齿轮传动组成, 每对齿轮的传动比为:1.754d i ==≤3、齿轮齿数的确定滑移齿轮齿数3=v i 65622.9521z z == 2=v i 8766 3.4719z z ==1=v i 10967 3.9417z z ==齿轮7,齿轮8:719z = 866z =781()852a m z z =+=齿轮9,齿轮10:917z =1067z =此时已知条件为'a =85mm ,910211()842()ni i a m z z X X ==+=-∑mm ''arccos(cos )21.78a aαα==总变位系数:'910()0.552tan z z x inv inv ααα∑+=-=根据x ∑值和1093.94 3.0z uz ==>,按选择变位系数线图左部斜线⑤分配变位系数,得90.45x =齿轮5,齿轮6:5=21z662z =此时已知'a =85mm ,561()832a m z z =+= ''arccos(cos )23.42a a αα==100.10x =总变位系数:'65() 1.082tan z z x inv inv ααα∑+=-=根据x ∑值和652.953z u z ==>,按选择变位系数线图左部斜线④分配变位系数,得 50.5x =60.58x =定轴圆柱齿轮齿数=d i 1214111326 1.5317z z z z ===齿轮11,齿轮12:角度变位正传动。
哈工大机械原理连杆和凸轮大作业24题
班级学号机械原理大作业说明书题目 1、连杆机构运动分析2、凸轮机构设计学生姓名1连杆机构运动分析1.设计题目:一、先建立如下坐标系:二、划分杆组如下,进行结构分析:该机构由I级杆组RR(如图1)、II级杆组RPR(如图2、3)和II级杆组RRP(如图4)组成。
(1)(2)(3)(4)三、运动分析数学模型:(1)同一构件上点的运动分析:如右图所示的原动件1,已知杆1的角速度=10/rad s ω,杆长1l =170mm,A y =0,A x =110mm 。
可求得下图中B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。
θcos 1l xB =,θsin 1l yB =θωυsin 1l xB -=,θωυcos 1l yB =,222B2==-cos =-BxB i d x a l x dt ωϕω2222==-sin =-B yB i B d y a l y dtωϕω。
(2)RPRII 级杆组的运动分析:a. 如右图所示是由2个回转副和1个移动副组成的II 级组。
已知两个外运动副C 、B 的位置(B x 、B y 、c x =110mm 、C y =0)、速度(xB υ,yB υ,xC υ=0,yC υ=0)和加速度(0,0,,==yC xC yB xB a a a a )。
可确定下图中D 点的位置、速度和加速度。
确定构件3的角位移1ϕ、角速度1ω、角加速度1α。
1sin 31..ϕϕl x dt dx C B -= 1s i n 131c o s 13.....2ϕϕϕϕl l x dt x d C B --= 1cos 31..ϕϕl y dt dy C B += 1c o s 131s i n 13.....2ϕϕϕϕl l y dty d C B +-= 根据关系:1111d 122..11.αϕϕωϕϕ====dtd dt , 故可得出: D x =)1cos(4βϕ++l x CD y =)1sin(4βϕ++l y Cb. 如右图所示是由2个回转副和1个移动副组成的II级组。
哈工大-机械原理大作业-连杆机构运动分析
机械原理大作业(一)作业名称:连杆机构运动分析设计题目: 20院系:英才学院班级: XXXXXXX设计者:邵广斌学号: XXXXXXXXXX指导教师:林琳设计时间: 2013年05月19日哈尔滨工业大学机械设计1.运动分析题目如图所示机构,已知机构各构件的尺寸为150AB mm =,97β=︒,400BC mm =,300CD mm =,320AD mm =,100BE mm =,230EF mm =,400FG mm =,构件1的角速度为110/rad s ω=,试求构件2上点F 的轨迹及构件5上点G 的位移、速度和加速度,并对计算结果进行分析。
2. 机构分析该机构由原动件AB (Ⅰ级杆组)、BCD (RRR Ⅱ级杆组)和FG (RRP Ⅱ级杆组)组成。
3. 建立坐标系如图3,建立以定点A 为原点的平面直角坐标系A-xy 。
图1 运动机构结构图4. 运动分析数学模型4.1 原动件AB原动件AB 的转角: 10~2ψπ= 原动件AB 的角速度:110/rad s ω=原动件AB 的角加速度: 10α= 运动副A 的位置坐标: 0A x = 0A y =运动副A 的速度: 0xA v = 0yA v = 运动副A 的加速度: 0xA a = 0yA a =原动件AB 长度:150AB l mm =运动副B 的位置坐标: 1B A AB x x l cos ψ=+1B A AB y x l sin ψ=+运动副B 的速度: 11 xB xA AB v v l sin ωψ=-11 yB yA AB v v l cos ωψ=+运动副B 的加速度: 2 1111 xBxA AB AB a a l cos l sin ωψαψ=--21111yB yA AB AB a a l sin l cos ωψαψ=-+4.2 RRR Ⅱ级杆组BCD运动副D 的位置坐标: 320D x mm = 0D y = 运动副D 的速度: 0xD v = 0yD v = 运动副D 的加速度: 0xD a = 0yD a = 杆BC 长度: 400BC l mm = 杆CD 长度:300CD l mm =BC 相对于x 轴转角:200ψ=其中02BC D B A l x x =-() 0 2 BC D B B l y y =-()2220B B C C l C l D l D =+- 222())(BDD B D B l x x y y =-+- CD 相对于x 轴转角: 3C DC Dy y arctanx x ψ-=-求导可得BC 角速度2ω、角加速度2α以及CD 角速度3ω、角加速度3α。
哈工大机械原理大作业——齿轮——1号
Harbin Institute of Technology机械原理大作业3课程名称:机械原理设计题目:齿轮传动设计哈尔滨工业大学一、设计题目:如下图一个机械传动系统,运动运动由电动机1输入,经过机械传动系变速后由圆锥齿轮16输出三种不同转速。
选择一组传动系统的原始参数,据此设计该传动系统。
序号电机转速〔r/min〕输出轴转速〔r/min〕带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数圆柱齿轮圆锥齿轮一对齿轮最大传动比模数一对齿轮最大传动比模数7 1450 17 23 30 ≤2.8 ≤4.5 2 ≤4.5 3 ≤4 3二、传动比的分配计算:电动机转速n=1450r/min,输出转速n1=17r/min,n2=23 r/min,n3=30 r/min,带传动的最大传动比=2.8,滑移齿轮传动的最大传动比=4.5,圆柱齿轮传动的最大传动比=4.5,圆锥齿轮最大传动比=4。
根据传动系统的原始参数可知,传动系统的总传动比为:i1=1450/30=48.333i2=1450/23=63.043i3=1450/17=85.294传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三局部实现。
设带传动的传动比为ipmax =2.8,滑移齿轮的传动比为iv1,iv2和iv3,令iv3=ivmax=4.5,那么定轴的传动比为if =85.294/(4.5*2.8)=6.769,从而iv1=48.333/〔6.769*2.8〕=2.550,iv2=3.326。
定轴齿轮每对的传动比为id==1.89。
三、滑移齿轮变速传动中每对齿轮的几何尺寸及重合度:经过计算、比拟,确定出三对滑移齿轮的齿数,其分别为:z5=17,z6=44,z 7=14,z8=47,z9=11,z10=50。
变位系数确实定:x5=x6=0; x7≥ha*(17-14)/17=0.176,取x7=0.18,x8=-0.18;x9≥ha*(17-11)/17=0.353,取x9=0.36;x10=-0.36。
哈工大机械原理大作业齿轮传动设计(word文档良心出品)
机械原理大作业(三)课程名称:设计题目:院系:姓名:学号:指导教师:设计时间:哈尔滨工业大学(威海)设计说明书1.设计题目 (2)2.传动比的分配计算 (3)3. 计算滑移齿轮变速传动中每对齿轮的基本几何尺寸 (3)(1)齿轮5、齿轮6 (4)(2)齿轮7、齿轮8 (4)(3)齿轮9、齿轮10 (5)4.计算定轴齿轮传动中每对齿轮的基本几何尺寸。
(5)(1)齿轮11、齿轮12 (5)(2)齿轮13、齿轮14 (6)(3)齿轮15、齿轮16 (6)5.每对齿轮的几何尺寸及重合度。
(6)7.实际设计参数 (14)1.设计题目如图所示一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的转速。
根据表中的传动系统原始参数设计该传动系统。
1.15,16.圆锥齿轮表机械传动系统原始参数2.传动比的分配计算电动机转速ni=1450r/min,输出转速n1=12r/min,n2=17r/min,n3=23r/min,带传动的最大传动比idmax=2.5,滑移齿轮传动的最大传动比ihmax=4,定轴齿轮传动的最大传动比ifmax=4。
根据传动系统的原始参数可知,传动系统的总传动比为i1=nin1=1450÷12=120.833i2=nin2=1450÷17=85.294i3=nin3=1450÷23=63.043传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。
设带传动的传动比为id,滑移齿轮的传动比为ih1、ih2和ih3,定轴齿轮传动的传动比为if,则总传动比i1=id*ih1*ifi2=id*ih2*ifi3=id*ih3*if令=ih1=ihmax=4则可得:定轴齿轮传动部分的传动比为if=i1/(id*ih1)=120.833/(2.5*4)=12.083滑移齿轮传动的传动比ih2=i2/(id*if)=85.294/(2.5*12.083)=2.824Ih3=i3/(id*if)=63.043/(2.5*12.083)=2.087定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为iv*iv*iv=if=12.083,iv=2.2953.计算滑移齿轮变速传动中每对齿轮的基本几何尺寸根据滑移齿轮变速传动系统中对齿轮齿数的要求,选择齿轮5、6、7、8、9和10为角度变位齿轮。
哈工大机械原理大作业一连杆-15题
Harbin Institute of Technology机械原理大作业一课程名称:机械原理设计题目:连杆传动设计院系:船舶与海洋工程学院班级:1513102班分析者:刘康哲学号:*********指导教师:***设计时间:2017.06.051.题目:如图所示机构,已知机构各构件的的尺寸为l AB=100mm,l BD=400mm,l AE=400mm,l BC=200mm,曲柄AB的角速度为w1=10rad/s,试求构件2上点D的轨迹,构件5的角位移、角速度和角加速度,并对结果进行分析。
(题中构件尺寸满足l BD-l AB<l AE<l BD+l AB)。
2.机构的结构分析及基本杆组划分机构各构件都在同一平面内运动,可拆分成一个原动件(构件1),一个RRPⅡ级基本杆组(构件2、3)和一个RPR Ⅱ级基本杆组(构件4、5)。
活动构件数n=5,P L,P H,因此,机构的自由度为F=3*n-2* P L- P H =3*5-2*7=1原动件:RRPⅡ级基本杆组:RPR Ⅱ级基本杆组:3.坐标系的建立以A点为坐标原点,AE方向为x轴正方向,建立平面直角坐标系。
4.各基本杆组的运动分析数学模型(1)原动件:位置分析: X B = X A + L AB * cos(wt) Y B = Y A + L AB * sin(wt) 其中,X A = Y A = 0 ,w = 10rad/s , L AB = 100 mm 速度分析:将上式分别对时间求导,可得速度方程,V XB = V XA – w*L AB *sin(wt)V YB = V YA + w*L AB *cos(wt)其中,V XA = V YA = 0 加速度分析:将上式分别对时间求导,可得速度方程,a XA = a XA – α* L AB * sin(wt) – w*w*L AB *cos(wt)a YA = a YA + α* L AB * cos(wt) – w*w*L AB *sin(wt)其中,a XA = a YA = 0 α= dw/dt(2)RRP Ⅱ级基本杆组:位置分析: X C = LAB*cos(wt)+wt Lab Lbc 222sin *Y C = 0 可求得,β= arcsin (Y B / L BC ) 速度分析:将上式分别对时间求导,可得速度方程,V XC =-w* LAB*cos(wt) – (wt Lab Lbc 222sin * )-1/2 * sin(wt)*wV YC = 0加速度分析:将上式分别对时间求导,可得加速度方程, (3)RPR Ⅱ级基本杆组位置分析: X D = X C + L CD * cos βY D = - L CD * sin β可求得, θ = arctan (-YD / (LAE -XD) ) 速度分析:将上式分别对时间求导,可得速度方程,5.计算编程在MATLAB 中编写如下程序:function [ XD,YD,Q,Q1,Q2] = calculate(t) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here Lab=100; Lbc=200; Lcd=200; Lae=400; w=10;XB=Lab*cos(w.*t); YB=Lab*sin(w.*t); P=asin(YB./Lbc); XC=sqrt(Lbc.^2-YB.^2)+XB; XD=Lcd.*cos(P)+XC; YD=-Lcd.*sin(P); Q=atan(YD./(Lae-XD)); Q1=diff(Q); Q2=diff(Q1); end5.计算结果t 时间 XD D 点横坐标YD D 点纵坐标Q构件5角度Q1 构件5角速度 Q2构件5角加速度5000.10050.003008D点运动轨迹:构件5的角位移线图:构件5的角速度图:构件5的角加速度线图:6.计算结果分析原动件1可做整周回转,同时构件5也可做整周运动。
(完整word版)哈工大机械原理大作业凸轮DOC
H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业二课程名称:机械原理设计题目: 凸轮机构设计院系:班级:设计者:学号:指导教师:哈尔滨工业大学一、设计题目如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数,据此设计该凸轮机构。
凸轮机构原始参数序号升程(mm)升程运动角升程运动规律升程许用压力角27130150正弦加速度30°回程运动角回程运动规律回程许用压力角远休止角近休止角100°余弦加速度60°30°80°二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图凸轮推杆升程运动方程:)]512sin(2156[130s ϕππϕ-= )512sin(4.374)]512cos(1[156v 211ϕπϕπωω=-=a% t 表示转角,s 表示位移t=0:0.01:5*pi/6;%升程阶段s= [(6*t)/(5*pi )- 1/(2*pi )*sin(12*t/5)]*130; hold on plot(t ,s ); t= 5*pi/6:0。
01:pi; %远休止阶段s=130; hold on plot(t,s );t=pi :0.01:14*pi/9;%回程阶段s=65*[1+cos(9*(t-pi )/5)]; hold on plot(t ,s );t=14*pi/9:0.01:2*pi ;s=0;hold onplot(t,s);grid onhold off%t表示转角,令ω1=1t=0:0。
01:5*pi/6;%升程阶段v=156*1*[1-cos(12*t/5)]/pi hold onplot(t,v);t= 5*pi/6:0。
01:pi;v=0hold onplot(t,v);t=pi:0.01:14*pi/9;%回程阶段v=—117*1*sin(9*(t—pi)/5) hold onplot(t,v);t=14*pi/9:0。
哈工大机械原理大作业1
420.636249
198
-25.780027
-7.408008
448.711622
19
17.496096
11.511568
389.280068
199
-27.066134
-7.329197
454.399338
20
19.511173
11.576658
356.588380
200
-28.338399
-6.837081
484.309157
26
31.792111
11.837106
133.586249
206
-35.672384
-6.752179
488.602299
27
33.860111
11.856813
92.240035
207
-36.843419
-6.666544
492.701606
28
35.930920
(4)利用导数的定义与其物理意义
利用上述公式,选取适当的步长h,利用F点位移就可以得出速度与加速度
5、用VC编程
#include <stdio.h>
#include <math.h>
#define pi 3.14159265358979323846
//定义全局变量
double Lab,Lbc,Lcd,Xf,Xd,Yd;//定义已知位置量
11.079883
-670.906136
223
-53.471235
-5.223053
533.839546
44
68.312705
10.958430
哈工大机械原理大作业(连杆机构)
建立坐标系:以C为原点,水平方向为X轴,CA所在直线为Y轴建立直角坐标系(如图4)。
取曲柄1水平且位于A点右侧为初始时刻,设曲柄1角速度为w,由题意知w= =8.5π rad/s………………(1)
设曲柄1转角为θ,则B点坐标:
xB=ιABcosθ=ιABcoswt
yB=H1+ιABsinθ=H1+ιABsinwt………………(2)
form=1:length(t)-1
ddxF(m)=(dxF(m+1)-dxF(m))/0.0001;
end
ddxF(length(t))=ddxF(length(t)-1);
figure
plot(t,ddxF)
title('¼ÓËÙ¶ÈͼÏñ');
xlabel('t /s'),ylabel('v /(m/s^2)');
输出图像:
xE(m)=yE(m)/k(m);
xF(m)=xE(m)-(-H^2+lEF^2-yE(m)^2+2*yE(m)*H)^(1/2)+0.1142;
end
form=1:length(t)-1
dxF(m)=(xF(m+1)-xF(m))/0.0001;
end
dxF(length(t))=dxF(length(t)-1);
∵ιEF+ιCE>H且ιCE<H
∴E点始终在F点的右下方
∴xF<xE,所以x2舍去,只取xF=x1……………(8)
∴点F坐标为(xF,H)
当t=0时,可得F点初始位置坐标,不妨设为(xo,H)。
则F点位移(通过计算,t=0时,得xo=-0.1142)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology大作业设计说明书课程名称:机械原理设计题目:连杆机构运动分析院系:机械设计制造及其自动化班级:设计者:学号:指导教师:丁刚设计时间:2014.5.12哈尔滨工业大学一、运动分析题目二、建立坐标系建立以A点为原点的固定平面直角坐标系A—x,y,如图所示三、机构的结构分析,组成机构的基本杆组划分该机构由Ⅰ级杆组RR(原动件1)、Ⅱ级杆组RRR(杆2、3)、Ⅱ级杆组RRR (杆4、杆5)和Ⅱ级杆组RRP(杆6、杆7)组成。
四、各基本杆组的运动分析数学模型(1)原动件杆1(Ⅰ级杆组RR)的运动分析已知原动件杆1的转角φ=0~360°δ=0°原动件杆1的角速度ω1=10rad/s原动件杆1的角加速度ε=0运动副A的位置坐标运动副A的速度运动副A的加速度原动件杆1的长度l AB=200mm求出运动副B的位置坐标(x B,y B)、速度()和加速度()。
(2)构件2、3杆组(Ⅱ级杆组RRR)的运动分析已求出运动副B的位置坐标(x B,y B)、速度()和加速度(),已知运动副D 的位置坐标运动副D的速度运动副D的加速度杆长l CD=350mm l BC=670mm求出构件2的转角φ2,角速度,角加速度。
(3)已知运动副B的位置坐标(x B,y B)、速度()和加速度(),已求出构件2的转角φ2,角速度,角加速度。
杆BE的长度l BE=335mm。
求出运动副E的位置坐标(x E,y E)、速度()和加速度()。
(4)构件4、5杆组(Ⅱ级杆组RRR)已求出运动副E的位置坐标(x E,y E)、速度()和加速度(),已知运动副G 的位置坐标运动副G的速度运动副G的加速度杆长l EF=380mm l FG=130mm求出构件5的转角φ5,角速度,角加速度。
(5)已知运动副G的位置坐标(x G,y G)、速度()和加速度(),已求出构件5的角位移φ5,角速度,角加速度,求出运动副H的位置坐标(x H,y H)、速度()和加速度()。
(6)构件6、7杆组(RRPⅡ级杆组)的运动分析已知运动副H的位置坐标(x H,y H)、速度()和加速度(),已知滑块7导路参考点P的位置坐标参考点P的位置角φj=π/2参考点P的速度参考点P的加速度杆长l HK=486mm l j=0求出构件6的角位移、角速度和角加速度。
五、用VB计算编程(关键部分代码如下)Private Sub RR1()xB = xA + lab * Cos(fab + delt)yB = yA + lab * Sin(fab + delt)vxB = vxA - wab * lab * Sin(fab + delt)vyB = vyA + wab * lab * Cos(fab + delt)axB = axA - wab ^ 2 * lab * Cos(fab + delt) - eab * lab * Sin(fab + delt)ayB = ayA - wab ^ 2 * lab * Sin(fab + delt) + eab * lab * Cos(fab + delt)End SubPrivate Sub RRR1()lbd = Sqr((xD - xB) ^ 2 + (yD - yB) ^ 2)val1 = (lbc ^ 2 + lbd ^ 2 - lcd ^ 2) / (2 * lbc * lbd)jcbd = Atn(Sqr(-val1 * val1 + 1) / val1)If yB > yD Thenfbd = Atn((yD - yB) / (xD - xB)) + 2 * piElseEnd IfIf yB <= yD Thenfbd = Atn((yD - yB) / (xD - xB))ElseEnd Iffbc = fbd + jcbdxC = xB + lbc * Cos(fbc)yC = yB + lbc * Sin(fbc)If xC > xD Thenfcd = Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC = xD Thenfcd = pi / 2ElseEnd IfIf xC < xD Thenfcd = Atn((yC - yD) / (xC - xD)) + piElseEnd IfCbc = lbc * Cos(fbc)Sbc = lbc * Sin(fbc)Ccd = lcd * Cos(fcd)Scd = lcd * Sin(fcd)g11 = Cbc * Scd - Ccd * Sbcwbc = (Ccd * (vxD - vxB) + Scd * (vyD - vyB)) / g11 wcd = (Cbc * (vxD - vxB) + Sbc * (vyD - vyB)) / g11 g12 = axD - axB + wbc ^ 2 * Cbc - wcd ^ 2 * Ccd g13 = ayD - ayB + wbc ^ 2 * Sbc - wcd ^ 2 * Scd ebc = (g12 * Ccd + g13 * Scd) / g11End SubPrivate Sub RR2() 'Ⅰ级杆组RR2xE = xB + lbe * Cos(fbc)yE = yB + lbe * Sin(fbc)vxE = vxB - wbc * lbe * Sin(fbc)vyE = vyB + wbc * lbe * Cos(fbc)axE = axB - wbc ^ 2 * lbe * Cos(fbc) - ebc * lbe * Sin(fbc) ayE = ayB - wbc ^ 2 * lbe * Sin(fbc) + ebc * lbe * Cos(fbc) End SubPrivate Sub RRR2()leg = Sqr((xG - xE) ^ 2 + (yG - yE) ^ 2)val2 = (lef ^ 2 + leg ^ 2 - lfg ^ 2) / (2 * lef * leg)jfeg = Atn(Sqr(1 - val2 * val2) / val2)If xE > xG Thenfeg = Atn((yE - yG) / (xE - xG)) + piElseEnd IfIf xE = xG Thenfeg = pi * 1.5ElseEnd IfIf xE < xG Thenfeg = Atn((yE - yG) / (xE - xG)) + 2 * piElseEnd Iffef = feg - jfegxF = xE + lef * Cos(fef)yF = yE + lef * Sin(fef)ffg = Atn((yF - yG) / (xF - xG)) + piCef = lef * Cos(fef)Sef = lef * Sin(fef)Cfg = lfg * Cos(ffg)Sfg = lfg * Sin(ffg)g21 = Cef * Sfg - Cfg * Sefwef = (Cfg * (vxG - vxE) + Sfg * (vyG - vyE)) / g21wfg = (Cef * (vxG - vxE) + Sef * (vyG - vyE)) / g21g22 = axG - axE + wef ^ 2 * Cef - wfg ^ 2 * Cfgg23 = ayG - ayE + wef ^ 2 * Sef - wfg ^ 2 * Sfgeef = (g22 * Cfg + g23 * Sfg) / g21efg = (g22 * Cef + g23 * Sef) / g21End SubPrivate Sub RR3()fgh = ffg - 124 / 180 * piwgh = wfgegh = efgxH = xG + lgh * Cos(fgh)yH = yG + lgh * Sin(fgh)vxH = vxG - wgh * lgh * Sin(fgh)vyH = vyG + wgh * lgh * Cos(fgh)axH = axG - wgh ^ 2 * lgh * Cos(fgh) - egh * lgh * Sin(fgh)ayH = ayG - wgh ^ 2 * lgh * Sin(fgh) + egh * lgh * Cos(fgh)End SubPrivate Sub RRP() 'Ⅱ级杆组RRP(杆6、滑块7)val3 = (xK - xH) / lhkIf xH < xK Thenfhk = Atn(Sqr(1 - val3 * val3) / val3)ElseEnd IfIf xH = xK Thenfhk = 0.5 * piElseEnd IfIf xH > xK Thenfhk = Atn(Sqr(1 - val3 * val3) / val3) + piElseEnd IfQ1 = vxK - vxHQ2 = vyK - vyHQ3 = lhk * Sin(fhk)whk = -Q1 / Q3Q4 = axK - axH + whk ^ 2 * lhk * Cos(fhk)Q5 = ayK - ayH + whk ^ 2 * lhk * Sin(fhk)ehk = -Q4 / Q3End Sub五、计算结果该题目要求计算构件5的各项参数,但是据题分析应该是计算构件6 的参数,故而计算构件6的各项参数,否则多以结构且分析构件5的意义不大。
E点轨迹图,构件6角位移,角速度,角加速度图如下所示:1、E点的轨迹1.构件6的角位移2.构件6的角速度3. 构件6的角加速度五、计算结果分析从原动件的起始位置起逆时针旋转一周内,构件6先逆时针旋转,再顺时针旋转,最后逆时针旋转。
构件6的角速度先为正,逐渐减为0后反向增大,然后减小至0后再反向增大,之后又减小至0再反向增大,最后又减小;构件6的角加速度先为负,再为正,后为负。
角加速度图像第一象限与横轴所围成的面积等于第四象限与横轴所围成的面积,说明主动件转过一圈后6构件的角速度回到初值,与实际符合。
构件的角加速度图像为角速度图像的导函数图像;角速度图像为角位移图像的导函数图像。