七年级上第六章平面图形的认识(一)单元拓展试题含答案
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,点A位于点O的()方向上A.北偏西65°B.南偏东35°C.北偏东65°D.南偏西65°2、下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离3、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是()A.互余B.对顶角C.互补D.相等4、在图中,不同的线段的条数是()A.3B.4C.5D.65、在数轴上表示数-1和2019的两点分别为点A和点B,则A、B两点之间的距离为()A.2018B.2019C.2020D.20216、若一个三角形的两个外角分别是135º、125º,则这个三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定形状7、如图,点在直线上移动,是直线上的两个定点,且直线.对于下列各值:①点到直线的距离;②的周长;③的面积;④的大小.其中不会随点的移动而变化的是()A.①②B.①③C.②④D.③④8、下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A. B. C. D.9、如图,直线,则的度数为()A.150°B.140°C.130°D.120°10、下列说法中正确的是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段,则M是线段AB的中点D.射线和射线不是同一条射线11、如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°12、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为()A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小13、若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cmB.大于3 cm而小于4 cm ;C.不大于3cm D.小于3 cm14、下列四个图中,∠1和∠2是对顶角的图的个数是()A.0个B.1个C.2个D.3个15、已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°二、填空题(共10题,共计30分)16、如图,CD,BE相交于点A,若∠B=70°,∠DAE=60°,则∠C=________°.17、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________18、如图,已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3________∠1+∠2=180________∴∠3+∠2=180°________∴a∥b________19、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.20、52.42°=________°________′________″.21、在同一平面内,有直线a1, a2, a3, a4,…,a100,若a1⊥a2,a 2∥a3, a3⊥a4, a4∥a5,…,按此规律下去,则a1与a100的位置关系是________.22、已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于________23、在直线AB上任取一点O,过点O作射线OC,OD,使,当时,的度数是________.24、如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=________ 度.25、如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为________ cm.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的2倍还多45°,求这个角的度数.27、如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,点D,E分别在BC,AB上,求线段DE的长.28、如图,已知,相交于点O,,,平分,平分,求.29、如图点P是∠ABC内一点画图:①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F.30、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.参考答案一、单选题(共15题,共计45分)1、A2、B4、D5、C6、A7、B8、D9、D10、D11、C12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是()A.可以缩短路程B.可以节省资金C.可以方便行驶D.可以增加速度2、如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线().A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M →B3、下列说法正确的是( )A.直线一定比射线长B.过一点能作已知直线的一条垂线C.射线AB 的端点是A和BD.角的两边越长,角度越大4、如图:有两条平行小路,这两条小路分别与一条公路在两处相交,并且相交的角度,现在想经过处修一条水渠,使水渠与公路平行,那的度数应该是()A.120°B.30°C.60°D.80°5、下列说法正确的有()个①连接两点的线段叫两点之间的距离;②直线比线段长;③若AM=BM,则M为AB的中点;④钝角与锐角的差为锐角.A.0B.1C.2D.36、如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于()A.52°B.38°C.62°D.43°7、若锐角的补角是140°,则锐角的余角是()A.30°B.40°C.50°D.60°8、下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行9、钟表上6时整,钟表的时针和分针构成多少度的角?()A.180°B.150°C.120°D.90°10、下列语句中表述正确的是()A.延长直线ABB.延长射线OCC.作直线AB=BCD.延长线段AB11、如图,CO⊥AB于点O , DE经过点O ,∠COD=50°,则∠AOE为()A.30°B.40°C.50°D.60°12、下列说法中,是真命题的有( )A.射线和射线是同一条射线B.两直线平行,同旁内角相等 C.一个角的补角一定大于这个角 D.两点确定一条直线13、如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条14、下列说法:①倒数等于它本身的数为0,;②单项式的次数是5;③同角的补角相等;④连接两点的线段就是两点之间的距离,其中正确的个数有()A.1个B.2个C.3个D.4个15、如图,中,,利用尺规在,上分别截取,,使;分别以D,E为圆心、以大于为长的半径作弧,两弧在内交于点F;作射线交于点G,若,P为上一动点,则的最小值为()A.无法确定B.C.1D.2二、填空题(共10题,共计30分)16、如果,那么的补角的度数是________.17、已知:如图直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于________度.18、下列说法中:①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④连结两点的线段叫做两点之间的距离.⑤40°50′=40.5°.⑥互余且相等的两个角都是45°,那么,其中正确的是________(把你认为正确的序号都填上)19、若一个角的补角等于它的余角4倍,则这个角的度数是________度.20、如图,已知直线AB与CD相交于点O,且∠DOB=∠ODB,若∠ODB=50°,则∠AOC的度数为________;∠CAO________(填“是”或“不是”)∠AOC的同旁内角.21、如图,射线的方向是北偏西,射线的方向是南偏东,则________°.22、上午8点20分时,钟表上的时针与分针所组成的小于平角的角的度数为________.23、若角α是锐角,则角α的补角比角α的余角大________度.24、如果,那么的余角的度数为________.25、已知AB平行于轴,A点的坐标为(-2,-1),并且AB=3,则B点的坐标为________.三、解答题(共5题,共计25分)26、计算:(1)﹣22÷﹣(﹣)×(﹣3)2(2)16°51′+38°27′×3﹣35°29′.27、知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?28、如图,已知,.求证:∠B=∠3.29、如图,直线,射线与直线a相交于点C,过点D作于点E,已知,求的度数.30、如图∠BOA=800, ∠BOC=200,OD平分∠AOC,求∠COD的度数。
苏科版七年级上《第6章平面图形的认识(一)》单元测试题含答案
第6章平面图形的认识(一)一、选择题(每小题3分,共21分)1、下列说法正确的是()A、过一点P只能作一条直线B、射线AB和射线BA表示同一条射线C、直线AB和直线BA表示同一条直线D、射线a比直线b短2、如图5-Z-1,由点O测点A的方向是()图5-Z-1A、北偏南60°B、南偏西60°C、南偏西30°D、西偏南30°3. 如图5-Z-2,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()图5-Z-2A、40°B、60°C、20°D、30°4、若直线l上一点P和直线l外一点Q的距离为8 cm,则点Q到直线l的距离是()A、等于8 cmB、小于或等于8 cmC、大于8 cmD、以上三种都有可能5、如图5-Z-3所示,OC⊥AB,∠COD=45°,则图中互为补角的角共有()图5-Z-3A、1对B、2对C、3对D、4对6、在图5-Z-4中,线段的条数为()图5-Z-4A、9B、10C、13D、157、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值为()A、45°B、60°C、90°D、180°二、填空题(每小题3分,共24分)8、已知∠A=40°,则∠A的余角的度数是________、9、工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直、运用的数学原理:________________________、10、9:30时,钟表的时针和分针构成的角的度数是________、11、如图5-Z-5,已知BC=4,BD=7,D是线段AC的中点,则AB=________、图5-Z-512、把16°15′化为度是________、13、若∠α与∠β是对顶角,∠α的补角是35°,则∠β的度数为________、14、如图5-Z-6,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由:______________________、图5-Z-615、如图5-Z-7所示,AB⊥CD,垂足为B,直线EF过点B,且BE平分∠ABD,则∠CBF的度数为________、图5-Z-7三、解答题(共55分)16、(10分)已知点C在线段AB上,点D在线段AB的延长线上,若AC=5,BC=3,BD=AB,求CD的长、17、(10分)如图5-Z-8,已知∠AOB, 用三角尺和量角器画图、(1)画∠AOB的平分线OC,并在OC上任取一点P;(2)过点P画一条平行于OB的直线;(3)过点P画PD⊥OA,PE⊥OB,垂足分别为D,E.图5-Z-818、(10分)如图5-Z-9,直线AB,CD相交于点O,OE平分∠AOC,∠AOD比∠AOE 大75°,求∠AOD的度数、图5-Z-919、(12分)如图5-Z-10,已知线段AB,请按要求完成下列问题、(1)用直尺和圆规作图:延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC.(2)如果AB=2 cm,①求CD的长;②设P是线段BD的中点,求线段CP的长、图5-Z-1020、(13分)如图5-Z-11,将长方形纸片的一角斜折过去,点B落在点D处,EF为折痕,再把FC折过去与FD重合,FH为折痕,问:(1)EF与FH有什么位置关系?(2)∠CFH与∠BEF有什么数量关系?图5-Z-111、C 2.C 3. D 4、B 5、C 6、D 7、C 8、50° 9、两点确定一条直线 10、105° 11、10 12、16.25° 13、145°14、过直线外一点有且只有一条直线和已知直线平行 15、45°16、解:∵点C 在线段AB 上,AC =5,BC =3, ∴AB =8.∵点D 在线段AB 的延长线上,BD =14AB ,∴BD =14AB =2,∴CD =BC +BD =3+2=5.17、略18、解:因为OE 平分∠AOC ,所以可设∠AOE =∠EOC =x °.因为∠AOD 比∠AOE 大75°,所以∠AOD =∠AOE +75°=(x +75)°.因为∠AOD +∠AOE +∠EOC =180°, 所以x +75+x +x =180, 解得x =35.所以∠AOD =35°+75°=110°.19、解:(1)如图所示,点C 和点D 即为所求、(2)①∵AB =2 cm ,BC =AB ,∴AC =2AB =4 cm.又∵AD =AC ,∴CD =2AC =8 cm. ②∵BD =AD +AB =4+2=6 (cm),P 是线段BD 的中点,∴BP =3 cm ,∴CP =BC +BP =2+3=5(cm)、20、解:(1)根据折叠的有关性质可知:∠DFH =∠CFH ,∠BFE =∠DFE . 因为∠BFE +∠DFE +∠DFH +∠CFH =180°, 即有∠EFD +∠DFH =12×180°=90°,即∠EFH =90°. 故EF ⊥FH .(2)因为∠BEF +∠BFE =90°,∠BFE +∠CFH =90°,所以∠CFH =∠BEF .。
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、已知直线,将一块含角的直角三角板按如图所示方式放置,若,则等于()A. B. C. D.2、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm3、如图,AB∥CD,CD⊥EF,若∠1=125°,则∠2=()A.25°B.35°C.55°D.65°4、下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;②把弯曲的公路改直,就能缩短路程;③用两个钉子就可以把木条固定在墙上;④植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①②B.①③C.②④D.③④5、下列说法中,正确的是()A.倒数等于它本身的数是1B.如果两条线段不相交,那么它们一定互相平行C.等角的余角相等D.任何有理数的平方都是正数6、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.60°B.50°C.40°D.30°7、如图,时针与分针的夹角是()A.75°B.65°C.55°D.45°8、如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥CD.若∠BOE=72°,则∠AOF的度数为()A.72°B.60°C.54°D.36°9、下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个10、如果点C在直线AB上,下列表达式:①AC=AB,②AB=2BC,③AC=BC,④AC+BC=AB中,能表示C是AB中点的有()A.1个B.2个C.3个D.4个11、如图,点在直线上,,那么下列说法错误的是()A. 与相等B. 与互余C. 与互补 D. 与互余12、已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或413、如图,有两种说法:①线段的长是点到点的距离;②线段的长是直线、之间的距离关于这两种说法,正确的是()A.①正确,②错误B.①正确,②正确C.①错误,②正确D.①错误,②错误14、下列图形中∠1与∠2是对顶角的是( )A. B. C. D.15、已知∠A=75°,则∠A的补角等于()A.125°B.105°C.15°D.95°二、填空题(共10题,共计30分)16、已知AB⊥CD,垂足为O,EF经过点O,∠AOE=35°,则∠DOF等于________ 。
苏科版数学七年级上册第六章《平面图形的认识(一)》单元拓展试题含答案
《平面图形的认识(一)》1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC的长.3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )A.8 B.9 C.10 D.114.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC=( )A.10°B.40°C.45°D.70°或10°8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( ) A.60°B.45° C.75° D.无法求出11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线的最短总长度应该是( )A.19.5 B.20.5 C.21.5 D.25.512.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和为( )A.5 B.6C.7 D.815.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB =5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?16.In the figure,Mon is a straight 1ive,If the angles α、β and γ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b 握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.A.1 B.2 C.3 D.418.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于( )A.1 B.2 C.3 D.419.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M 所花费的总时间最少,试找出M的位置.20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.22.钟面上从2点到4点有几次时针与分针成60°的角?分别是几时几分?23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为202X,求线段AC的长度.25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求∠A2OA1的度数.参考答案1.3cm或9cm2.1 3.C4.2 5.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°. 7.D8.40分钟.9.75°. 10.B11.B12.(1)6条,20;(2)36条,88.13.72°14.D15.87cm. 16.40°17.B18.B19.M应选在CD段(包括C、D)任意一点均可.20.41.621.405°22.共有四次23.a24.40221325.丙最先到达目的地,甲最后到达目的地.26.9°。
苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,∠α的度数是()A.10°B.20°C.30°D.40°2、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变 D.两条直线相交所成的四个角都相等,则这两条直线互相垂直3、如图,∠AOC 和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )A.30 ◦B.40 ◦C.50 ◦D. 60 ◦4、某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.85、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 D.利用圆规可以比较两条线段的大小关系6、下列哪种情况下,直线a与b不一定是平行线()A.a与b是不相交的两条直线B.a与b被直线c所截,且内错角互补 C.a与b都平行于直线c D.a与b被直线c所截,且同位角相等7、如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东50°B.北偏西50C.北偏东40°D.北偏西40°8、下列定理中没有逆定理的是()A.内错角相等,两直线平行B.直角三角形中,两锐角互余C.等腰三角形两底角相等D.相反数的绝对值相等9、下列说法中,正确的是( )A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行10、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线;B.两点确定一条直线;C.垂线段最短;D.两点之间,线段最短;11、如图,直线l与直线a、b相交,且a b,∠1=80°,则∠2的度数是()A.60°B.80°C.100°D.120°12、下列说法正确是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行; C.直线外一点与直线上各点连接的所有线中,垂线最短; D.平面内,过一点有且只有一条直线与已知直线垂直13、若数轴上点A表示的数是,则与它相距2个单位的点B表示的数是()A.±5B.-7或-3C.7D.-8或314、下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角15、下面4个图形中,∠1与∠2是对顶角的是( )A. B. C. D.二、填空题(共10题,共计30分)16、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________17、如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=________.18、已知∠A=55°,则∠A的余角等于________度.19、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.20、如图,已知平分平分,,则________°.21、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.22、如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=________°.23、已知一个角的余角为28°40′,则这个角的度数为________.24、直角三角形的一锐角为60°,则另一锐角为________25、如果一个角的补角是150°,那么这个角的余角的度数是________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.28、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.29、如图,是平角,,,,分别是,的平分线,求的度数.30、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的不符合题意指出,并给出你认为正确的解法.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D6、B7、D8、D9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】
苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷一、选择题1.如图所示,下列说法中正确的是( )A.∠ADE就是∠D B.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE是不同的两个角2.如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线3.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是( )A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.如图,遵义的红军烈士陵园集中了建国后在遵义各处找到的红军遗骨,故又称红军山,陵园正面是在纪念遵义会议五十周年时兴建的一座别具特色的纪念碑.从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .同一平面内垂直于同一条直线的两直线平行5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .①②④D .①③④6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若,123180∠+∠+∠= 则、、互为补角.其中正确的说法有( )1∠2∠3∠A .4个B .3个C .2个D .1个7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC128.点P 为直线外一点,点A ,B ,C 在直线l 上,若PA=4cm ,PB=5cm ,PC=6cm ,则点P 到直线l 的距离是( )A. 4cmB. 5cmC. 不大于4cm D. 6cm 9.如果线段AB=5cm ,BC=4cm ,且A ,B ,C 在同一条直线上,那么A 、C 两点的距离是( ) A. 1cm B. 9cm C. 1cm 或9cmD. 以上答案都不正确10.同一平面内,三条不同直线的交点个数可能是( )个.A. 1或3B. 0、1或3C. 0、1或2 D. 0、1、2或3二、填空题11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_____.12将30°15′36″换算成度:30°15′36″= °.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.15如图,点A位于点O的 方向上.16.从12点整开始到1点,经过____分钟,钟表上时针和分针的夹角恰好为99°.三、解答题17.如图,已知同一平面内的四个点A、B、C、D,根据要求用直尺画图.(1)画线段AB,∠ADC;(2)找一点P,使P点既在直线AD上,又在直线BC上;(3)找一点Q,使Q到A、B、C、D四个点的距离和最短.18线段AB依次被分为2:3:4三部分,已知第一部分和第三部分中点的距离是5.4 cm,求线段AB的长.19.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.20已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)21.如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.22.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.24.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=②如图1,若∠AOC=α,则∠DOE=(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE 的度数,(用含α的代数式表示)答案一、选择题1.B2.解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.3.解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.4.解:从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是:两点之间,线段最短.故选:B.5.A 6.D 7.C8. C【考点】点到直线的距离解:∵4<5<6,∴根据从直线外一点到这条直线上所有点连线中,垂线段最短,可知点P到直线l的距离是4cm或比4cm小的数,即不大于4cm,故选C.【分析】根据垂线段最短得出点P到直线l的距离是4cm或比4cm小的数,即可得出选项9. C【考点】两点间的距离解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.10. D【考点】点到直线的距离解:如图,三条直线的交点个数可能是0或1或2或3.故选D.【分析】根据两直线平行和相交的定义作出图形即可得解.二、填空题11.两点之间线段最短12将30°15′36″换算成度:30°15′36″= °.【考点】度分秒的换算.见试题解答内容【分析】先把36″除以60化为0.6′,再加上15′为15.6′,再除以60化为度,与30合并在一起即可.解:36″=36÷60=0.6′;30°15′36″=30+15.6÷60=30.26°.故30.26.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.【考点】角平分线的定义;垂线.见试题解答内容【分析】根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.解:∵AB⊥CD,∴∠ABD=90°,∵EF平分∠ABD,∴∠DBE=45°,∴∠CBF=45°.故45.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.【考点】角平分线的定义.见试题解答内容【分析】根据角平分线的定义求解.解:∵∠AOC=25°,OC平分∠AOB,∴∠AOB=2∠AOC=50°,故答案为50°.15如图,点A位于点O的 方向上.【考点】方向角.见试题解答内容【分析】根据方位角的概念直接解答即可.解:点A 位于点O 的北偏西30°方向上.16.18或52211三、解答题17.解:(1)如图所示,线段AB 、∠ADC 即为所求;(2)直线AD 与直线BC 交点P 即为所求;(3)如图所示,点Q即为所求.18.73°.19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=1220.解:AB=8.1 cm21.解:(1)若∠COE =40°,∵∠COD =90°,∴∠EOD =90°﹣40°=50°,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =100°,∴∠BOD =180°﹣100°=80°;(2)∵∠COE =α,∴∠EOD =90﹣α,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =2(90﹣α)=180﹣2α,∴∠BOD =180°﹣(180﹣2α)=2α;(3)如图2,∠BOD +2∠COE =360°,理由是:设∠BOD =β,则∠AOD =180°﹣β,∵OE 平分∠AOD ,∴∠EOD = ∠AOD = =90°﹣β,121802β︒-12∵∠COD =90°,∴∠COE =90°+(90°﹣β)=180°﹣β,1212即∠BOD +2∠COE =360°.故(1)80°;(2)2α;(3)∠BOD +2∠COE =360°,理由见详解.22.解:(1)如图中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°,故答案为120°;(2)如图中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE =165°,当D ′E ′∥AB 时,∠E ′CB =∠ECM =15°,∴当ED ∥AB 时,∠BCE 的度数为165°或15°;(3)存在.如图,①CD ∥AB 时,∠BCE =30°,②DE ∥BC 时,∠BCE =45°,③CE ∥AB 时,∠BCE =120°,④DE ∥AB 时,∠BCE =165°,⑤当AC ∥DE 时,∠BCE =135°综上所述,当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺存在一组边互相平行,∠BCE 的值为30°或45°或120°或165°或135°.23.(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).111PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).故BD =2PC.212BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).122PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).故BD =2PC.224BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以(cm).PC t =因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以(cm).故BD =2PC.2BD t =因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.13AP AB =13BQ AP AB ==故.因为AB =12cm ,所以(cm).13PQ AB AP BQ AB =--=1112433PQ AB ==⨯=(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.故.13AP AB =13BQ AP AB ==1433AQ AB BQ AB AB AB =+=+=因为AB =12cm ,所以(cm).411233PQ AQ AP AB AB AB =-=-==综上所述,PQ 的长为4cm 或12cm.24.解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=40°,∴∠BOD=50°,∴∠BOC=∠COD+∠BOD=90°+50°=140°,∵OE 平分∠BOC,∴∠BOE=∠BOC=70°,∴∠DOE=∠BOE-∠BOD=20°,12②如图1,由(1)知:∠AOC+∠BOD=90°,∵∠AOC=α,∴∠BOD=90°﹣α,∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,∵OE 平分∠BOC,∴∠BOE=∠BOC=90°﹣α,1212∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,1212(2)(1)中的结论还成立,理由是:如图2,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;1212(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.1212。
七年级数学上第六章平面图形的认识(一)单元测试题(苏科版含答案)
七年级数学上第六章平面图形的认识(一)单元测试题(苏科版含答案)第六章平面图形的认识(一)单元测试一、单选题(共10题;共30分) 1.如果和互补,且,则下列表示的余角的式子中正确的有()① ② ③ ④ A、①②③ B、①②④ C、①③④ D、②③④ 2.观察如图所示的长方体,与棱AB平行的棱有几条() A、4 B、3 C、2 D、1 3.下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其中正确的是() A.1个 B.2个 C.3个 D.4个 4.点P为线段MN上一点,点Q为NP中点.若MQ=6,则MP+MN=() A.10 B.8 C.12 D.以上答案都不对 5.已知数轴上三点A、B、C分别表示有理数x、1、�1,那么|x�1|表示() A.A、B两点的距离 B.A、C两点的距离 C.A、B两点到原点的距离之和 D.A、C两点到原点的距离之和 6.如果∠α与∠β是对顶角且互补,则他们两边所在的直线() A.互相垂直 B.互相平行 C.既不平行也不垂直 D.不能确定 7.往返于成都、重庆两地的高铁列车,若中途停靠简阳、内江和永川站,则有()种不同票价,要准备()种车票. A.7、14 B.8、16 C.9、18 D.10、20 8.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法() A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳 B.把两条绳子接在一起 C.把两条绳子重合,观察另一端情况 D.没有办法挑选 9.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有() A.1个 B.2 个 C.3个 D.4个 10.如图,点A在直线l1上,点B,C分别在直线l2上,AB⊥l2于点B,AC⊥l1于点A,AB=4,AC=5,则下列说法正确的是() A、点B到直线l1的距离等于4 B、点A到直线l2的距离等于5 C、点B到直线l1的距离等于5 D、点C到直线l1的距离等于5 二、填空题(共8题;共24分) 11.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________. 12.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为________ 13.在时刻10:10时,时钟上的时针与分针间的夹角是________ 14.一个角的补角是这个角余角的3倍,则这个角是________度. 15.已知∠α=36°14′25″,则∠α的余角的度数是________.16.56°24′=________°. 17.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山��济南��淄博��潍坊��青岛,那么要为这次列车制作的火车票有 ________种. 18.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=________.三、解答题(共6题;共46分) 19.3月12日,团支部书记小颖带领全体团员参加植树活动,有一任务是在长25米的公路段旁栽一排树苗,每棵树的间距为5米,可他们手中只有一圈长20米的皮尺,怎样栽才能保证树苗在一条直线上,请你帮忙出出主意.20.作图:如图,平面内有A,B,C,D四点.按下列语句画图:(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.21.尺规作图.如图,已知在平面上有三个点A,B,C,请按下列要求作图:(1)作直线AB;(2)作射线AC;(3)在射线AC上作线段AD,使AD=2AB. 22.如图,点C、D在线段AB上,D是线段AB 的中点,AC=13AD,CD=4,求线段AB的长.23.小明从A点出发向北偏东60°方向走了80m米到达B地,从B地他又向西走了160m到达C地.(1)用1:4000的比例尺(即图上1cm等于实际距离40m)画出示意图,并标上字母;(2)用刻度尺出AC的距离(精确到0.01cm),并求出C但距A点的实际距离(精确到1m);(3)用量角器测出C点相对于点A的方位角.24.如图,直线AB,CD相交于点O,OF平分∠AOE,OF⊥CD,垂足为O.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=120°,求∠BOD的度数.答案解析一、单选题 1、【答案】B 【考点】余角和补角【解析】【解答】因为∠α和∠β互补即∠α+∠β=180°,所以,所以∠β的余角为,所以④正确;根据余角的定义①正确;因为,所以②正确.【分析】互为补角的两个角有即∠β为锐角,因为只有直角和锐角有余角,钝角没有余角. 2、【答案】B 【考点】平行公理及推论【解析】【解答】图中与AB平行的棱有;EF、CD、GH.共有3条.故选B.【分析】根据长方体即平行线的性质解答. 3、【答案】C 【考点】垂线段最短【解析】【解答】解:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角,对;②直线延长可能有交点,错;③邻补角的两条角平分线构成一个直角,对;④直线外一点与直线上各点连接的所有线段中,垂线段最短,对.故选C.【分析】根据相关定义对各选项逐一进行判定,即可得出结论. 4、【答案】C 【考点】两点间的距离【解析】【解答】解:如图所示:∵点Q为NP中点,∴PQ=QN,∴MP+PQ=MP+QN,∴MN+MP=2MQ=12.故选:C.【分析】首先根据点Q为NP中点得出MP+PQ=MP+QN,则MN+MP=2MQ进而得出即可. 5、【答案】A 【考点】两点间的距离【解析】【解答】解:∵A、B、C三点分别表示有理数x、1、�1,∴|x�1|表示点A、B间的距离.故选A.【分析】根据两点间的距离的意义,绝对值的意义解答. 6、【答案】A 【考点】对顶角、邻补角,垂线【解析】【解答】解:∵∠α与∠β是对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选:A.【分析】∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直. 7、【答案】D 【考点】直线、射线、线段【解析】【解答】解:设成都、重庆、简阳、内江和永川站分别为A、B、C、D、E;根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,∴有10种不同的票价;∵车票需要考虑方向性,如,“A→C”与“C→A”票价相同,但车票不同,∴需要准备20种车票;故选:D.【分析】先求出线段的条数,再计算票价和车票的种数. 8、【答案】A 【考点】比较线段的长短【解析】【解答】解:利用叠合法即可判断.故选A.【分析】利用叠合法判断,判断哪个选项对叠合的步骤正确即可. 9、【答案】B 【考点】直线、射线、线段,线段的性质:两点之间线段最短,两点间的距离,角的概念【解析】【解答】解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选B.【分析】①根据直线的定义即可得出①正确;②根据角和直线的定义可知②错误;③根据“点B是线段AC的中点”可知③正确;④由A、B、C三点不一定共线,即可得出④错误.综上即可得出结论. 10、【答案】D 【考点】点到直线的距离【解析】【解答】解:∵AB⊥l2于点B,AC⊥l1于点A,AB=4,AC=5,∴点A到直线l2的距离等于4,点C到直线l1的距离等于5,故选:D.【分析】根据点到直线的距离求解即可.二、填空题 11、【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线【解析】【解答】由两点确定一条直线即可解答. 【分析】把最前和最后的课桌看做两点,由两点确定一条直线,再依次摆中间的课桌,即可摆放整齐. 12、【答案】45° 【考点】钟面角、方位角【解析】【解答】解:7点30分时,时针与分针相距1+3060=32份,在7点30分时,时针与分针所成角的大小为30×32=45° 故答案为:45°.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 13、【答案】115° 【考点】钟面角、方位角【解析】【解答】解:∵“10”至“2”的夹角为30°×4=120°,时针偏离“10”的度数为30°×16=5°,∴时针与分针的夹角应为120°�5°=115°;故答案为:115°.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可. 14、【答案】45 【考点】余角和补角【解析】【解答】解:设这个角为x,由题意得,180°�x=3(90°�x),解得x=45°,则这个角是45°,故答案为:45.【分析】设这个角为x,根据余角和补角的概念、结合题意列出方程,解方程即可. 15、【答案】53°45′35″ 【考点】度分秒的换算,余角和补角【解析】【解答】解:根据定义,∠α的余角的度数是90°�36°14′25″=53°45′35″.故答案为53°45′35″.【分析】本题考查互余的概念,和为90度的两个角互为余角. 16、【答案】56.4 【考点】度分秒的换算【解析】【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.【分析】把24′化成度,即可得出答案. 17、【答案】20 【考点】直线、射线、线段【解析】【解答】解:如图,设泰山��济南��淄博��潍坊��青岛五站分别用A、B、C、D、E表示,则共有线段:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条,所以,需要制作火车票10×2=20种.故答案为:20.【分析】设泰山��济南��淄博��潍坊��青岛五站分别用A、B、C、D、E表示,然后根据线段的定义求出线段的条数,再根据每一条线段根据起点站和终点站的不同需要两种车票解答. 18、【答案】35° 【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOC=70°,OA 平分∠EOC,∴∠AOC= ∠EOC= ×70°=35°,∴∠BOD=∠AOC=35°.故答案为:35°.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.三、解答题 19、【答案】解:首先确定两个点,然后过两点画直线,再在直线上每隔5米栽一棵树苗即可,根据是两点确定一条直线.【考点】直线的性质:两点确定一条直线【解析】【分析】根据两点确定一条直线,然后确定两点,然后画直线即可. 20、【答案】解:如图,【考点】直线、射线、线段【解析】【分析】利用作射线,直线和线段的方法作图. 21、【答案】解:(1)连接AB,并延长AB、BA,得到直线AB;(2)连接AC,延长AC,得到射线AC;(3)以A点为圆心,线段AB长为半径作圆,交射线AC于点E,再以E点为圆心,线段AB长为半径作圆,交射线AC与点D,线段AD即是所求.图形如下:【考点】直线、射线、线段【解析】【分析】(1)连接AB,双向延长,得出直线AB;(2)连接AC,单向延长,得出射线AC;(3)以A为圆心,AB长为半径作圆,交AC于点E,再以E为圆心重复刚才操作,即可得到线段AD. 22、【答案】解:∵AC=13AD,CD=4,∴CD=AD�AC=AD�13AD=23AD,∴AD=23CD=6,∵D是线段AB的中点,∴AB=2AD=12;【考点】两点间的距离【解析】【分析】根据AC=13AD,CD=4,求出CD与AD,再根据D是线段AB的中点,即可得出答案. 23、【答案】解:(1)如图;(2)AC=3.46cm,则C距A的实际距离是:3.46×40=138(m);(3)C点相对于A的方向角是:北偏西75°.【考点】钟面角、方位角【解析】【分析】(1)根据叙述,利用方向角的定义即可作出图形;(2)利用刻度尺测量,然后根据图上1cm等于实际距离40m即可求得实际距离;(3)利用量角器测量即可. 24、【答案】解:(1)∵直线AB,CD相交于点O,∴∠AOC和∠BOD与∠AOD互补,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠ACO,∴∠DO E也是∠AOD的补角,∴与∠AOD互补的角有∠AOC,∠BOD,∠DOE;(2)∵OF平分∠AOE,∴∠AOF=12∠AOE=60°,∵OF⊥CD,∴∠COF=90°,∴∠AOC=∠COF�∠AOF=90°�60°=30°,∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=30°.【考点】余角和补角【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠ACO,从而最后得解;(2)根据角平分线的定义求出∠AOF,再根据余角的定义求出∠AOC,然后根据对顶角相等解答.。
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、一副三角板按如下四种位置放置,其中对应的∠α与∠β的说法中不一定正确的是()A.①中的∠α与∠β互余B.②中的∠α与∠β互补C.③中的∠α与∠β互余D.④中的∠α与∠β相等2、下面四个图形中∠1与∠2是对顶角的是()A. B. C. D.3、∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°4、如图,直线l1, l2被直线l3所截,且l1∥l2,若∠1=72°,∠2=58°,则∠3=()A.45°B.50°C.60°D.58°5、如图,若点A在点O北偏西60°的方向上,点B在点O的南偏东25°的方向上,则∠AOB(小于平角)的度数等于()A.55°B.95°C.125°D.145°6、如图,a∥b,∠1=72°,则∠3的度数是()A.72°B.80°C.82°D.108°7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°8、下列说法正确是()A.相等的角是对顶角B.一个角的补角必是钝角C.同位角相等 D.一个角的补角比它的余角大90°9、生活中处处有数学,下列原理运用错误的是()A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C.测量跳远的成绩是运用“垂线段最短”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”原理10、如图OC⊥AB于O点,∠1=∠2,则图中互余的角共有()A.2对B.3对C.4对D.5对11、一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是()A.30°B.35°C.40°D.45°12、下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0B.1C.2D.313、如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.914、如图,OA⊥OB,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是()A.25°B.35°C.45°D.65°15、下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′ D.35.5°>35°5′二、填空题(共10题,共计30分)16、一副三角板按如下图方式摆放,若,则的度数为________.只用度表示的补角为________.17、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________.18、将两个正方形与直角三角板的一个直角顶点重合放置如图所示,则∠1的度数为________。
七年级上册数学单元测试卷-第6章 平面图形的认识(一)-苏科版(含答案)
七年级上册数学单元测试卷-第6章平面图形的认识(一)-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,从点O出发的5条射线,可以组成的角的个数是().A.4B.6C.8D.102、下列说法正确的是()A.若,则点C是线段的中点B.C.射线和射线是同一条射线D.钟表上的时间是11点10分,此时时针与分针所成的夹角是3、如图,公园A在公园B的北偏东50°方向,公园C在公园B的北偏西25°方向,若A,B两公园到公园C的两直线的夹角∠C为35°,那么公园C在公园A的()A.西北方向B.北偏西60°方向C.北偏西70°方向D.南偏东75°方向4、若∠AOB=45°,∠BOC=30°,则∠AOC的度数是()A.15°B.30°C.75°D.15°或75°5、如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°6、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个7、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.8、时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是()A.30°B.60°C.90°D.9°9、如图,已知CO⊥AB于点O,∠AOD=5∠DOB+6°,则∠COD的度数()A.58°B.59°C.60°D.61°10、如图,直线a∥b,直线c与直线a,b分别交于A,B两点,AC⊥AB于点A,交直线b 于点C,如果∠1=58°,那么∠2的度数为()A.32°B.42°C.58°D.122°11、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB =6,EF=2,则BC的长为( )A.8B.10C.12D.1412、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC的度数为()A.30ºB.45ºC.50ºD.60º13、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个14、如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°15、如果线段AB=5cm,BC=4cm,且A,B,C,D,在同一条直线上,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不正确二、填空题(共10题,共计30分)16、数轴上A、B表示的数分别是 -2 和5,则A、B之间的距离是________个单位长度.17、当时钟的时间为8:20分时,时针与分针的夹角为________度.18、如图,从A地到B地共有五条路,人们常常选择第③条,请用几何知识解释原因________.19、在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点。
苏科版七年级数学上册第6章 平面图形的认识(一) 单元综合练习题【含答案】
苏科版七年级数学上册第6章平面图形的认识(一)单元综合练习题一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C.D.5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是()A.86°B.76°C.48°D.24°7、如图,线段21AD cm=,点B在线段AD上,C为BD的中点,且13AB CD=,则BC的长度()A.8cm B.9cm C.6cm D.7cm 8、如图,C是AB的中点,D是BC的中点,则下列等式中正确的是()①32DB AD AB=-;②13CD AB=;③2DB AD AB=-;④CD AD CB=-.A.①②B.③④C.①④D.②③9、如图,直线AB,CD相交于点O,OE⊥AB于O,OF平分∠DOE,若∠AOC=32°,则∠AOF的度数为()A.119°B.121°C.122°D.124°10、下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个二、填空题11、用度、分、秒表示:37.68︒=______.12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.(12题) (14题)13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___(17题) (18题)18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013. 三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A 、B 、C 均在格点上,按下述要求画图并标注相关字母.(1)画线段AB ,画射线BC ,画直线AC ;(2)过点B 画线段BD ⊥AC ,垂足为点D ;(3)取线段AB 的中点E ,过点E 画BD 的平行线,交AC 于点F .20、如图,C 为线段AD 上的一点,B 为线段CD 的中点,AD =12cm ,BD =3cm . (1)图中共有 条线段;(2)求线段AC 的长;(3)若点E 在线段AD 上,且BE =2cm ,求AE 的长.21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.22、将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.23、如图,已知C、D两点将线段AB分成2:3:4三段,点E是BD的中点,点F是线段CD上一点,且=,求AB的长.EF cmCF DF2=,1224、如图,直线AB、CD相交于点O,OE平分BOD∠=︒.BOF∠,OF CD⊥,垂足为O,若38(1)求AOC∠的度数;(2)过点O作射线OG,使GOE BOF∠的度数.∠=∠,求FOG25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.答案一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离A【分析】根据公理“两点确定一条直线”来解答即可.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.角还可以用一个希腊字母表示,或用阿拉伯数字表示.【详解】解:能用∠α,∠AOB,∠O三种方法表示同一个角的图形是选项D中的图,选项B,C,D中的图都不能用∠α,∠AOB,∠O三种方法表示同一个角的图形,故选:D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.C【分析】根据对顶角的定义解答即可.【详解】解:A. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意;B. 1∠和2∠没有公共顶点,不是对顶角,故不符合题意;C. 1∠和2∠是对顶角,符合题意;D. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意.故选C.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C. D.A【分析】根据点到直线的距离,垂足在直线上,据此分析即可【详解】A. AD表示的是点A到直线BC距离,故该选项正确,符合题意;B. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;C. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;D. AD不能表示点到直线距离,故该选项不正确,不符合题意;故选A5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x ,即可求出答案.【详解】解:设这个角为x ,则这个角的补角为180°-x ,这个角的补角为90°-x ,根据题意得:180°-x -(90°-x )=90°,故选:C .6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是( )A .86°B .76°C .48°D .24°C 【分析】由α,β是两个钝角可得180°<α+β<360°,进一步即可求得16(α+β)的范围,从而可得答案. 【详解】解:因为α,β是两个钝角,所以90°<α<180°,90°<β<180°,所以180°<α+β<360°,所以30°<16(α+β)<60°, 在上述四个选项中,只有选项C 中48°在上述范围中,故选:C .7、如图,线段21AD cm =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =,则BC 的长度( )A .8cmB .9cmC .6cmD .7cm【分析】设AB x =cm ,则3CD x =cm ,根据线段的中点可得3BC CD x ==cm ,再根据21AD cm =可得x ,进而可得答案.13AB CD =, ∴设AB x =cm ,则3CD x =cm ,C 为BD 的中点,3BC CD x ∴==cm ,3321x x x ∴++=,解得3x =,39BC x ∴==.故选:B .8、如图,C 是AB 的中点,D 是BC 的中点,则下列等式中正确的是( )①32DB AD AB =-;②13CD AB =;③2DB AD AB =-;④CD AD CB =-.A .①②B .③④C .①④D .②③【分析】根据线段中点的性质,可得1124CD BD BC AB ===,再根据线段的和差,可得答案.C 是AB 的中点,D 是BC 的中点,1124CD BD BC AB ∴===,288AB BD CD ∴==,44AB BD CD ==,39AD BD =,26AD BD =,3298AD AB BD BD BD ∴-=-=,故①正确,②不正确;642DB BD BD BD ∴≠-=,③不正确;32AD CB CD CD CD -=-=,④正确.正确的有:①④.故选:C .9、如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,OF 平分∠DOE ,若∠AOC =32°,则∠AOF 的度数为( )A .119°B .121°C .122°D .124°A 【分析】根据OE ⊥AB 于O ,即可得出∠BOE =∠AOE =90°,进而求出∠DOE =58°,再利用OF 平分∠DOE ,即可求出∠EOF 的度数,再由∠AOF =∠AOE +∠EOF 即可求出∠AOF 的度数.【详解】解:∵OE ⊥AB 于O ,∴∠BOE =∠AOE =90°,∵∠AOC =32°,∴∠AOC =∠BOD =32°,∴∠DOE =∠BOE ﹣∠BOD =90°﹣32°=58°,∵OF 平分∠DOE ,∴∠EOF 12=∠DOE 1582=⨯︒=29°,∠AOF =∠AOE +∠EOF =90°+29°=119°.故选:A .10、下列说法正确的个数有( )①射线AB 与射线BA 表示同一条射线. ②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3. ③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A .1个B .2个C .3个D .4个【分析】根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.解:①射线AB 与射线BA 不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选:B .二、填空题11、用度、分、秒表示:37.68︒=______.374048︒'"【分析】进行度、分、秒的转化运算,注意以60为进制.1=60'︒,1'=60''.【详解】解:'''''''37.6837+0.686037+40.837400.860374048374048'''︒=︒⨯=︒=︒++⨯=︒'=︒++故答案为374048︒'"12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.垂线段最短【分析】根据垂线段最短的定义求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴依据是垂线段最短,故垂线段最短.13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故45°.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.110【分析】先根据对顶角相等求出∠DOB ,进而结合275∠=︒即可求出∠EOB .【详解】解:∵∠1=35°,∴∠DOB =∠1=35°,又∵∠2=75°,∴∠EOB =∠2+∠DOB =110°.故110.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.3418CD AD AB BC cm =++=++=;E 是AD 中点,F 是CD 的中点,118422DF CD cm ∴==⨯=,113 1.522DE AD cm ==⨯=. 4 1.5 2.5EF DF DE cm ∴=-=-=,故2.5.16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 1cm 或2cm【分析】分两种情况考虑点M 是AB 的三等分点,求出AM 的长,由中点定义求出MN 即可.【详解】当M 是AB 的左三等分点,∵AB=6cm ,∴AM=11AB=6=233⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=2=122⨯,当M 是AB 的右三等分点,∵AB=6cm ,∴AM=22AB=6=433⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=4=222⨯,线段MN 的长度为1cm 或2cm .故1cm 或2cm .17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___150︒或30【分析】根据条件求得∠COB 的度数,然后根据∠BOE =∠COE -∠COB 即可求解.【详解】解:如图,∵:1:2BOC BOD ∠∠= ∴11806012BOC ∠=⨯︒=︒+ ∵OE CD ⊥∴90COE ∠=︒∴∠BOE =∠COE -∠COB =90°-60°=30°同理,如图,当点E ′在EO 的延长线上时,∠BOE ′=180°-30°=150°故答案是:30°或150°.18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013.【分析】①根据垂直的定义即可求解;②根据余角的性质即可求解;③根据点到直线的距离的定义即可求解;④根据三角形面积公式即可求解.①BD AC⊥,90ADB∴∠=︒,故①正确;②90ABD A∠+∠=︒,90ABD DBC∠+∠=︒,A DBC∴∠=∠,故②正确;③点C到直线BD的距离为线段CD的长度,故③错误;④点B到直线AC的距离为160512213213⨯⨯⨯÷=,故④正确.故①②④.三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A、B、C均在格点上,按下述要求画图并标注相关字母.(1)画线段AB,画射线BC,画直线AC;(2)过点B画线段BD⊥AC,垂足为点D;(3)取线段AB的中点E,过点E画BD的平行线,交AC于点F.(1)如图所示,线段AB,射线BC,直线AC即为所求;见解析;(2)线段BD即为所求;见解析;(3)直线EF即为所求.见解析.(1)连接AB、以B为端点,作射线BC、过点A、C作直线即可;(2)根据网格结构,作过点B所在的小正方形对角线与直线AC相交于点D,即为所求;(3)根据网格结构,作过点E所在的小正方形对角线所在的射线与直线AC相交于点F,即为所求.【详解】(1)如图所示,线段AB,射线BC,直线AC即为所求;(2)线段BD即为所求;(3)直线EF即为所求.20、如图,C为线段AD上的一点,B为线段CD的中点,AD =12cm,BD =3cm.(1)图中共有条线段;(2)求线段AC的长;(3)若点E在线段AD上,且BE =2cm,求AE的长.(1)6;(2)6cm;(3)11cm或7cm【分析】(1)根据线段的定义找出线段即可;(2)先根据点B为CD的中点,BD=3cm求出线段CD的长,再根据AC=AD−CD即可得出结论;(3)根据E点位置的不同分情况讨论即可求解.【详解】解:(1)图中的线段有AC、AB、AD、BC、CD、BD,共有6条线段.故6;(2)∵点B为CD的中点.∴CD=2BD.∵BD=3cm,∴CD=6cm,BC=3cm,∵AC=AD−CD且AD=12cm,CD=6cm,∴AC=6cm;(3)如图,点E在B点的左侧,BE =2cm,∴CE=BC-CE=1 cm,∴AE=AC+CE=7 cm,如图,点E在B点的右侧,BE =2cm,∴AE=AC+BC+BE=6+3+2=11cm,∴AE 的长为11cm 或7cm .21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.解:(1)∵OD 平分∠BOC ,∠BOC =70°,∴∠COD=21∠BOC=21×70°=35°, ∵∠BOC =70°,∴∠AOC =180°﹣∠BOC =180°﹣70°=110°,∵OE 平分∠AOC ,∴∠EOC=21∠AOC=21×110°=55°; (2)∠COD 与∠EOC 互余,理由如下:∵OD 平分∠BOC ,OE 平分∠AOC ,∴∠COD=21∠BOC ,∠EOC=21∠AOC , ∴∠COD+∠EOC=21(∠BOC+∠AOC )=21×180°=90°, ∴∠COD 与∠EOC 互余.22、将一副三角板叠放在一起,使直角顶点重合于点O .(1)如图1,若∠AOD =35°,求∠BOC 的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.【分析】(1)由于是两直角三角形板重叠,根据∠AOD的度数可得∠BOD,再根据∠DOC=90°可得∠BOC;(2)当分两种情况:∠AOB与∠DOC有重叠部分时和当∠AOB与∠DOC没有重叠部分时.【详解】解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.23、如图,已知C 、D 两点将线段AB 分成2:3:4三段,点E 是BD 的中点,点F 是线段CD 上一点,且2CF DF =,12EF cm =,求AB 的长.【分析】首先设2AC xcm =,则线段3CD xcm =,4DB xcm =,然后根据E 是线段BD 的中点,2CF DF =,分别用x 表示出DE 、EF ,根据12EF cm =,求出x 的值,即可求出线段AB 的长是多少. 设2AC x =, C 、D 两点将线段AB 分成2:3:4三段,3CD x ∴=,4BD x =,2CF DF =,CD CF DF =+,DF x ∴=,点E 是BD 的中点,2DE x ∴=,3EF DF DE x ∴=+=,12EF cm =,4x cm ∴=,8AC cm ∴=,12CD cm =,16BD cm =,36AB AC CD BD cm ∴=++=.24、如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF CD ⊥,垂足为O ,若38BOF ∠=︒.(1)求AOC ∠的度数;(2)过点O 作射线OG ,使GOE BOF ∠=∠,求FOG ∠的度数.【分析】(1)由垂直可得,90DOF ∠=︒,由互余得BOD ∠的度数,再由对顶角相等,可得AOC ∠的度数;(2)射线OG 的位置不确定,需要分类讨论,当射线OG 在射线OE 上方时,当射线OG 在射线OE 下方时,分别求解.(1)如图,OF CD ⊥,垂足为O ,90DOF ∴∠=︒,38BOF ∠=︒,903852BOD DOF BOD ∴∠=∠-∠=︒-︒=︒,52AOC BOD ∴∠=∠=︒.(2)由(1)知,52BOD ∠=︒, OE 平分BOD ∠, 1262BOE DOE BOD ∴∠=∠=∠=︒, 382664EOF FOG GOE ∴∠=∠+∠=︒+︒=︒,38BOF ∠=︒,38EOG BOF ∴∠=∠=︒.当射线OG 在射线OE 上方时,如图1,643826FOG EOF EOG ∠=∠-∠=︒-︒=︒;当射线OG 在射线OE 下方时,如图2,6438102FOG EOF EOG ∠=∠+∠=︒+︒=︒.综上可知,FOG ∠的度数为26︒或102︒.25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.(1)是;(2)AC=8cm或12cm或16cm.【分析】(1)根据“巧点”的定义即可求解;(2)分BC=2AC,AB=2AC,AC=2BC三种情况讨论,分别求解即可.【详解】解:(1)当M是线段AB的中点,则AB=2AM,∴线段的中点是这条线段的“巧点”.故是;(2)∵AB=24cm,点C是线段AB的巧点,①BC=2AC,则AC=13AB=13×24=8(cm);②AB=2AC,则AC=12AB=12×24=12(cm);③AC=2BC,则AC=23AB=23×24=16(cm).∴AC=8cm或AC=12cm或AC=16cm.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.(1)15°;(2)12α;(3)144°【分析】(1)根据补角的定义可得∠BOM=150°,再由∠MON是直角,OC平分∠BOM,即可求解;(2)根据补角的定义可得∠BOM=180°﹣α,再由∠MON是直角,OC平分∠BOM,即可求解;(3)设∠AOM=x,则∠BOM=180°﹣x,根据OC平分∠BOM,可得∠MOC=90°﹣12x,从而得到∠AOC=∠AOM+∠MOC=90°+12x,再由∠MON=90°,可得到∠BON=∠MON﹣∠BOM=x﹣90°,然后根据∠AOC=3∠BON,可得到关于x的方程,即可求解.【详解】解:(1)由已知得∠BOM=180°﹣∠AOM=150°,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×150°=15°;(2)由已知得∠BOM=180°﹣∠AOM=180°﹣α,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×(180°﹣α)=12α;(3)设∠AOM=x,则∠BOM=180°﹣x,∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°﹣x)=90°﹣12x,∴∠AOC=∠AOM+∠MOC=x+90°﹣12x=90°+12x,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣(180°﹣x)=x﹣90°,∵∠AOC=3∠BON,∴90°+1x=3(x﹣90°),解得x=144°,∴∠AOM=144°.2。
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、图中∠1、∠2、∠3都是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.42、下列命题的逆命题不正确的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等3、已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为( )A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交4、平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个5、下列说法中,正确的是()A.在同一平面内,两条直线的位置关系只有相交,平行两种B.在同一平面内,不相交的两条线段互相平行C.在同一平面内,不相交的两条直线互相平行D.在同一平面内,不相交的两条射线互相平行6、若数轴上点A表示的数是 -3, 则与点A相距6个单位长度的点表示的数是()A.±6B.±3C.-9或3D.-3或97、两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角8、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余. (4) 同位角相等。
其中真命题的个数()A.1个B.2个C.3个D.4个10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.512、已知,为的余角,则()A. B. C. D.13、如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°14、如图所示,,,平分,则图中与相等的角有()个.A. B. C. D.15、如果一个角的度数为28°14′,那么它的余角的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、68°30′的补角为________.17、如图,直线、交于点,于点,,则的度数为________.18、如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。
苏科版七年级上册数学第6章 平面图形的认识(一) 含答案
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、轮船航行到A处时,观测到小岛B的方向是北偏西65°,那么同时从B处观测到轮船的方向是()A.南偏西65°B.东偏西65°C.南偏东65°D.西偏东65°2、如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD= ()A.60°B.50°C.40°D.30°3、将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.4、如图,B处在 A的南偏西 38°方向,C处在 A处的南偏东 22°方向,C处在 B处的北偏东 78°方向,则∠ACB的度数是( )A.80°B.75°C.70°D.65°5、如图,AB∥CD,若∠2是∠1的3倍,则∠1的度数是( ).A.30°B.45°C.55°D.60°6、过平面上A,B,C三点中的任意两点作直线,可作直线的条数为()A.1条B.3条C.1条或3条D.无数条7、下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个8、如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q 四点中,满足到点O和点A的距离都小于2的点是()A.点P和QB.点P和MC.点P和ND.点M和N9、确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米 D.正北方向10、一个角的补角是它的余角的度数的3倍,则这个角的度数是()A.45°B.50°C.55°D.60°11、已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是()A.AB<ACB.AB=ACC.AB>ACD.无法判断12、已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中正确的是()A. B. C. D.13、把一条弯曲的公路改成直道,可以缩短路程,这其中蕴含的数学道理是()A.垂线段最短B.两点确定一条直线C.两点之间线段最短D.两点之间直线最短14、下列图形中,∠2>∠1的是()A. B. C. D.15、如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°二、填空题(共10题,共计30分)16、∠α=25°20′,则∠α的余角为________.17、钟面上 8 点 30 分时,时针与分针的夹角的度数是________ .18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,在利用量角器画一个 40°的∠AOB 的过程中,对于“先找点 B,再画射线OB.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是________.20、若∠α的补角为76°28′,则∠α=________.21、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点得出一条墨线,这是根据数学原理________.22、如图,直线,相交于点,,,则________度.23、如图,在中,,,,,,点在上,交于点,交于点,当时,________.24、如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB大小为________°25、若数轴上表示数的点位于-1与3之间,则________.三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?28、如图,AF、BD、CE是直线,点B在直线AC上,点E在直线DF上。
七年级上册数学单元测试卷-第6章 平面图形的认识(一)-苏科版(含答案)
七年级上册数学单元测试卷-第6章平面图形的认识(一)-苏科版(含答案)一、单选题(共15题,共计45分)1、将一长方形纸片,按图中的方式折叠,BC、BD为折痕,折叠后点E′刚好落在A′B上,则∠CBD的度数为()A.60°B.75°C.90°D.95°2、如图,已知P为直线外一点,点A、B、C、D在直线l上,,下列说法正确的是()A.线段PC可能是的高B.线段PD可能是△PBC的高C.线段PD的长是点P到直线l的距离D.线段PB可能是△PAC的高3、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°4、如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB 边上一动点,以PA,PC为边作□PAQC,则对角线PQ长度的最小值为( )A.6B.8C.2D.45、以下两条直线互相垂直的是()①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.A.①③B.①②③C.②③④D.①②③④6、下列语句中正确的是()A.两点之间直线的长度叫做这两点间的距离B.两点之间的线段叫做这两点之问的距离C.两点之间线的长度叫做这两点间的距离D.两点之间线段的长度叫做这两点问的距离7、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角8、如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)9、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.10、“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短11、如图,射线表示的方向是()A.北偏东35°B.北偏西65°C.南偏东65°D.南偏西35°12、下列说法中,错误的是()A.邻补角的角平分线互相垂直B.平行于同一直线的两条直线互相平行 C.在同一平面内不相交的两条直线一定平行 D.经过一点有且只有一条直线与已知直线平行13、如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短14、如图所示,从点O出发的5条射线,可以组成的角的个数是().A.4B.6C.8D.1015、如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是()A. B. C. D.二、填空题(共10题,共计30分)16、已知:在同一平面内,∠AOC = °,OB是过点O的一条射线,∠AOB:∠AOC = :则∠BOC =________.17、在同一平面内,,则锐角的度数为________.18、已知直线l上有三点A、B、C,且AB=6,BC=4,M、N分别是线段AB、BC的中点,则MN=________.19、已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40o,则此等腰三角形的顶角度数为________20、如图,直线,,那么________°.21、如图,直线AB、CD、EF相交于点O,则∠AOC的对顶角是________.22、一个角的补角比它的余角的3倍还多10°,则这个角的度数为________.23、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为________.24、一个角为,则它的补角的大小为________.25、如图,∠AOC=30°35′15″,∠BOC=80°15′28″,OC平分∠AOD,那么∠BOD等于________.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的4倍少,求这个角的度数.27、如图,货轮在航行过程中,发现灯塔在它北偏东的方向上,同时,在它南偏西、西北(即北偏西)方向上又分别发现了客轮和海岛,仿照表示灯塔方位的方法,画出表示客轮和海岛方向的射线.28、实践与探索:木工师傅为了充分利用材料,把两块等宽的长方形木板锯成图①和图②的形状,准备拼接成一块较长的无缝的长方形木板使用,他量得,,那么他应把和分别锯成多大的角才能拼成一块的无缝的长方形木板?为什么?29、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,求∠2的度数.30、如图,已知线段AB,反向延长AB到点C,使AC= AB,D是AC的中点,若CD=2,求AB的长.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、D6、D7、B8、D9、D10、D11、C12、D13、D14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面图形的认识(一)》
1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.
2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC的长.
3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )
A.8 B.9 C.10 D.11
4.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.
5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.
6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.
7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC=( )
A.10°B.40°C.45°D.70°或10°
8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?
9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.
10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( ) A.60°B.45° C.75° D.无法求出
11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个
村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图
所示(距离单位:公里),则能把电力输送到这四个村庄的输电
线的最短总长度应该是( )
A.19.5 B.20.5 C.21.5 D.25.5
12.已知线段AB=6.
(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;
(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.
13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.
14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以
O、A、B为端点的射线的条数总和为( )
A.5 B.6
C.7 D.8
15.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB
=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?
16.In the figure,Mon is a straight 1ive,If the angles α、β and γ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)
17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b 握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.
A.1 B.2 C.3 D.4
18.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于( )
A.1 B.2 C.3 D.4
19.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M 所花费的总时间最少,试找出M的位置.
20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.
21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.
22.钟面上从2点到4点有几次时针与分针成60°的角?分别是几时几分?
23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC 边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.
24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.
25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?
26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求∠A2OA1的度数.
参考答案
1.3cm或9cm2.1 3.C4.2 5.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°. 7.D8.40分钟.9.75°. 10.B11.B
12.(1)6条,20;(2)36条,88.13.72°14.D15.cm. 16.40°17.B
18.B19.M应选在CD段(包括C、D)任意一点均可.20.41.621.405°
22.共有四次23.a24.25.丙最先到达目的地,甲最后到达目的地.
26.9°。