华师大版七年级数学下册第9章多边形单元测试题及答案

合集下载

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)第9章多边形单元检测(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.一个多边形的边数增加2条,则它的内角和增加( ).A.180° B.90° C.360° D.540°2.在下列长度中的三条线段中,能组成三角形的是( ).A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.3 cm,5 cm,9 cm D.8 cm,4 cm,4 cm3.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是( ).A.两点之间线段最短 B.垂线段最短C.两定确定一条直线 D.三角形的稳定性4.多边形每一个内角都等于120°,则从此多边形一个顶点出发可引的对角线的条数是( ).A.5条 B.4条C.3条 D.2条5.张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是( ).6.n边形与m边形内角和度数的差为720°,则n与m的差为( ).A.2 B.3 C.4 D.57.如果两个三角形的两条边长分别是2和5,而第三边长为奇数,则第三边长是( ).A.3 B.5 C.7 D.3或5或78.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是( ).A.63° B.83° C.73° D.53°二、填空题(每小题4分,共16分)9.一个三角形的两个角分别为29°、61°,若按照边分类,它是______三角形;按照角分类,它是________三角形.10.如图所示,已知α=125°,γ=52°,则β=______.11.一个多边形的每一个外角都是36°,则这个多边形是______边形.12.五条线段长分别是1 cm,2 cm,3 cm,4 cm,5 cm,以其中的任意三条为边可构成____个三角形.三、解答题(共52分)13.(12分)一个多边形除一个内角外,其余内角之和是2 570°,求这个角.14.(12分)如图,已知∠ABC=31°,又∠BAC的平分线与∠FCB的平分线CE相交于E点,求∠AEC的度数.15.(14分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.16.(14分)如图,在△ABC中,∠ABC,∠ACB的平分线交于O点.1×30°; 21②当∠A=40°时,∠BOC=110°=90°+×40°; 21③当∠A=50°时,∠BOC=115°=90°+×50°;2①当∠A=30°时,∠BOC=105°=90°+当∠A=n°(n为已知数)时,猜测∠BOC的度数,并用所学的三角形的有关知识说明理由.参考答案1. 答案:C2. 解析:只有选项A满足两边之和大于第三边,两边之差小于第三边,故选A. 答案:A3. 答案:D4. 解析:根据多边形的内角等于120°,得该多边形为六边形,所以从一个顶点可引6-3=3条对角线,故选C.答案:C5. 答案:C6. 解析:由题意得(n-2)180°-(m-2)180°=720°,解得n-m=4,故选C. 答案:C7. 答案:B8. 答案:A9. 答案:不等边直角10. 答案:107°11. 答案:1012. 答案:313. 解:设这个多边形为n边形,则内角和为(n-2)·180°.根据题意有:2 570°<(n-2)·180°<2 570°+180°,解不等式得:1655<n<17; 1818从而n=17,(17-2)·180°-2 570°=130°.所以多边形的这个内角为130°.14. 解:因为CE和AE分别平分∠FCB和∠BAC,11∠FCB,∠2=∠BAC. 221所以∠1-∠2=(∠FCB-∠BAC). 2所以∠1=因为∠FCB是△ABC的一个外角,所以∠FCB=∠ABC+∠BAC.所以∠FCB-∠BAC=∠ABC=31°.所以∠1-∠2=15.5°.因为∠1=∠AEC+∠2,所以∠AEC=∠1-∠2=15.5°.15. 解:因为DF⊥AB,所以∠AFG=90°.在△AFG中,∠AGF=180°-∠A-∠AFG=180°-40°-90°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°. 16. 解:∠BOC=90°+1n°, 2理由是:∵OB,OC分别是∠ABC和∠ACB的平分线,∴∠OBC=11∠ABC,∠OCB=∠ACB. 22。

华东师大版七年级数学下册第九章 多边形练习包含答案

华东师大版七年级数学下册第九章 多边形练习包含答案

第九章多边形一、单选题42 1 )和,则第三边的长可能是(.一个三角形的两边长分别是1A42 D BC .7...2, 则图中他所作的线段.王老汉要将一块如图所示的三角形土地平均分配给两个儿子?ABC AD 的应该是DB CA .任意一条线.中线.角平分线.高BCABC? 3 )边上的高是(中,.如图,在CD BH B A EC CD..AF..∥B∥BCE53°∥E25°AB∥DE4)=的度数为(,=,则.如图,,33°C30°D28°25°A B....??ACBABCV ABC o?D5110?BDC角平分线的交点,若是和.如图,在中,点,?(?A)那么.oooo A40BD C.706050...6).下列图形中具有稳定性是(DC A B .直角三角形.平行四边形.正方形.梯形7540°)边形.,则该多边形为(.若一个多边形的内角和为 D A BC.七.四.六.五) 840°( ,则该正多边形的边数是.若正多边形的一个外角是6 C7DA9 B8 ....9).一个四边形截去一个角后,形成新的多边形的内角和是(540°180°360°C540°D A180°B360°540°或.或.或..10).能够铺满地面的正多边形组合是(B A.正方形和正六边形.正三角形和正五边形D C.正五边形和正十边形.正方形和正五边形二、填空题25___________∥ABC11.,则第三边长为的两边长分别为和.等腰24cmSCE ADBCFED∥ABC12=的中点,且、、、分别为、中,已知点.如图,在,∥ABC=_________S则∥BEF.”13__________________. “2??1、?A、排列.如图所示,请将用>∥280°EF∥A60°∥1∥ABC14的度数翻折,叠合后的图形如图.若==.如图,把沿,则,_______.为三、解答题15.如图:______(1)∥ABCBC;中,边上的高是在(2)∥AECAE______;在中,边上的高是CE∥AEC3cmAE2cmCDAB(3)的长.,求,=若==的面积及16∥ABCDBC∥1∥2∥3∥4∥BAC69°∥DAC,求.如图所示,在=中,是,边上一点==,的度数.1171.已知,一个多边形的每一个外角都是它相邻的内角的)这个多边形的(.试求出:2 2)求这个多边形的内角和.(每一个外角的度数;H.∥ABCBDCE18BDCE相交于点,是的两条高,直线.如图,已知,∥DHE(1)∥BAC100°的度数;=若,求____,直接写出∥BAC=50°∥DHE的度数是中若(2)∥ABC答案1C .2B .3D .4B .5A .6D .7B .8A .9D .10D .115 .121 .?2>?1>?A13 .40? 14.15(1)AB(2)CD(3)3cm .32°16.17160°2720°).(()130°或50°)2(80°=∥DHE)1(.18.。

华师大七年级下册《第9章多边形》单元测试卷(含答案)

华师大七年级下册《第9章多边形》单元测试卷(含答案)

2022年春华师版数学七年级下册单元测试卷班级姓名第9章多边形[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2022·黔东南]如图,∠ACD=120°,∠B=20°,则∠A 的度数是()A.120°B.90°C.100°D.30°2.[2022·乌鲁木齐]如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.73.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A B C D4.在下列条件中:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=∠B=12∠C.能确定△ABC为直角三角形的条件有()A.5个B.4个C.3个D.2个5.已知三角形的三边长分别为3、x、14.若x为正整数,则这样的三角形共有()A.2个B.3个C.5个D.7个6.如图,在△ABC中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M.若∠BAC=80°,∠C =60°,则∠M的大小为()A.20°B.25°C.30°D.35°7.如图,点P是△ABC三条角平分线的交点.若∠BPC =108°,则下列结论中正确的是()A.∠BAC=54°B.∠BAC=36°C.∠ABC+∠ACB=108°D.∠ABC+∠ACB=72°8.[2021·郴州校级期中]如图,在△ABC中,∠A=∠ACB,CD是△ABC的角平分线,CE是△ABC的高.若∠DCE=48°,则∠ACB的度数为()A.∠ACB=28°B.∠ACB=29°C.∠ACB=30°D.∠ACB=31°9.[2021·无棣模拟]如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10. 如图,AB∥CD,∠A=30°,则∠A+∠B+∠C+∠D +∠E=()A. 240°B. 270°C. 300°D.360°二、填空题(每题4分,共24分)11.已知三角形的三边长分别为2、a-1、4,那么a的取值范围是________.13.如图,以CD为高的三角形的个数是____.14.一个n边形的每个内角为108°,那么n=____.15.[2021春·单县期末]将一副三角板如图放置,使点A 在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为______.16.如图,在△ABC中,∠A=42°,∠ABC和∠ACB 的三等分线分别交于点D、E,则∠BDC=____.17.(8分)[2021春·迁安市期末]如图,把一副三角板摆放在△ABC中,点E在BC上,点D、F在AB上.(1)CD与EF平行吗?请说明理由;(2)如果∠GDC=∠FEB,且∠B=30°,∠A=45°,求∠AGD的度数.18.(8分)已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长;(2)若符合上述条件的三角形共有a个,求a的值.19.(8分)如图,在锐角△ABC中,若∠ABC=40°,∠ACB =70°,点D、E在边AB、AC上,CD与BE交于点H.(1)若BE⊥AC,CD⊥AB,求∠BHC的度数;(2)若BE,CD平分∠ABC和∠ACB,求∠BHC的度数.20.(8分)[2021春·兴化市期末]如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.21.(10分)[2021春·灵石县期末]如图,△ABC中,AD 平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)若∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β,求∠CFE的度数.(用α、β表示)22.(12分)如图,BE与CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线.(1)试探求∠F与∠B、∠D之间的关系;(2)若∠B∶∠D∶∠F=2∶4∶x,求x的值.23.(12分)(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.在△ABC中,∠A=30°,求∠ABC+∠ACB、∠XBC +∠XCB的值.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.图1图2参考答案1.C2.C【解析】设该正多边形的外角为x°,则相邻的内角为2x°.根据“外角与相邻的内角互补”,得x+2x=180,解得x=60.根据多边形的外角和是360°,有n=36060=6.3.C【解析】用一种正多边形瓷砖铺满地面的条件是:正多边形的一个内角是360°的约数.由此可判断正五边形瓷砖不能铺满地面.4.B5.C【解析】由题可得11<x<17.∵x为正整数,∴x的可能取值是12、13、14、15、16,共5个,故这样的三角形共有5个.6.C【解析】∵∠BAC=80°,∠C=60°,∴∠ABC=40°.∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=12×(180°-80°)=50°,∴∠M=180°-20°-50°-80°=30°.7.B【解析】设∠A为2x,则∠ACB=2x,∠ACD=x,∴∠CBE=∠A+∠ACB=4x,∠CDB=∠A+∠ACD=3x,∴∠CDB=3∠DCB.∵∠DCE=48°,∴∠CDB=90°-48°=42°,∴∠DCB=14°,∴∠ACB=28°.9.B【解析】2∠A=∠1+∠2.理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°-∠2+180°-∠1=360°,∴2∠A=∠1+∠2.10. A【解析】如答图,∵AB∥CD,∠A=30°,∴∠C=∠A =30°,∠B=∠1.又∵∠1+∠D+∠E=180°,∴∠A+∠B +∠C+∠D+∠E=30°+30°+180°=240°.11.3<a<7【解析】根据三角形的三边关系,有4-2<a-1<4+2,解得3<a<7.12.270°【解析】CD分别是△ABC,△CEB,△CDB,△ADC,△CED,△AEC的高,共6个三角形.14.5【解析】根据多边形的内角和公式可知(n-2)×180°=108°n,解得n=5.15.15°【解析】∵Rt△ABC中,∠C=45°,∴∠ABC=45°.∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°-30°=15°.16.88°【解析】∵∠A=42°,∴∠ABC+∠ACB=180°-42°=138°,∴∠DBC+∠DCB=23×138°=92°,∴∠BDC=180°-92°=88°.17.解:(1)CD∥EF.理由:∵∠CDF=∠EFB=90°,∴CD∥EF.(2)∵∠B=30°,∠A=45°,∴∠FEB=60°,∠ACD=45°.∵∠GDC=∠FEB,∴∠GDC=60°.∵∠AGD=∠GDC+∠ACD,∴∠AGD=60°+45°=105°.18.解:两边长分别为9和7,设第三边是n,则9-7<n<7+9,即2<n<16.(1)第三边长是4(答案不唯一).(2)∵2<n<16,且n为偶数,∴n的值为4、6、8、10、12、14,共6个,∴a=6. 19.解:(1)∵BE⊥AC,∠ACB=70°,∴∠EBC=90°-70°=20°.∵CD⊥AB,∠ABC=40°,∴∠DCB=90°-40°=50°,∴∠BHC=180°-20°-50°=110°.(2)∵BE平分∠ABC,∠ABC=40°,∴∠EBC=20°.∵DC平分∠ACB,∠ACB=70°,∴∠DCB=35°,∴∠BHC=180°-20°-35°=125°. 20.解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°.∵∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°. (2)∠BOC=∠A+∠B+∠C.证明:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C. 21.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°-∠B-∠ACB=80°.∵AD平分∠BAC,∴∠BAD=40°.∵AE⊥BC,∴∠AEB=90°,∴∠BAE=60°,∴∠DAE =∠BAE -∠BAD =60°-40°=20°. ∵CF ∥AD ,∴∠CFE =∠DAE =20°,(2)∵∠BAE =90°-∠B ,∠BAD =12∠BAC =12(180°-∠B -∠BCA ),∴∠CFE =∠DAE =∠BAE -∠BAD =90°-∠B -12(180°-∠B -∠BCA )=12(∠BCA -∠B )=12β-12α. 22.解:(1)如答图,∵CF 为∠BCD 的平分线, EF 为∠BED 的平分线,∴∠1=∠2,∠3=∠4.∵∠D +∠1=∠F +∠3,∠B +∠4=∠F +∠2,∴∠B +∠D +∠1+∠4=2∠F +∠3+∠2,∴∠F=12(∠B+∠D).(2)当∠B∶∠D∶∠F=2∶4∶x时,设∠B=2a(a≠0),则∠D=4a,∠F=ax.∵2∠F=∠B+∠D,∴2ax=2a+4a,∴2x=2+4,∴x=3.23.解:(1)∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.。

华东师大版七年级数学下册第九章多边形单元测试题【含答案】

华东师大版七年级数学下册第九章多边形单元测试题【含答案】

第九章多边形一、选择题1.下列图形为正多边形的是()图12.三角形的内角和等于()A.90°B.180°C.270°D.360°3.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cmB.3cm,6cm,6cmC.2cm,2cm,6cmD.5cm,6cm,7cm4.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.105.如图2,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()图2A.50°B.60°C.70°D.80°6.如图3,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E.若∠A=60°,则∠BEC的度数是()图3A.15°B.30°C.45°D.60°7.将一副三角尺按图4所示的方式放置,使含30°角的三角尺的一条直角边和含45°角的三角尺的一条直角边在同一条直线上,则∠α的度数是()图4A.45°B.60°C.75°D.85°8.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°9.将三角尺按图5所示的方式放置在一张长方形纸片上,∠EGF=90°,∠FEG=30°,∠1=130°,则∠BFG的度数为()图5A.130°B.120°C.110°D.100°二、填空题10.如图6,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)图611.如图7,直线MN∥PQ,点A,B分别在MN,PQ上,∠MAB=33°.过线段AB上的点C作CD⊥AB 交PQ于点D,则∠CDB的度数为.图712.如图8,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为.图813.若正多边形的一个外角是60°,则这个正多边形的内角和是.14.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.15.如图9,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=°.图916.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连结CD,若△ACD为直角三角形,则∠BCD 的度数为.三、解答题17.如图10,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,试说明:∠E=∠F.图1018.如图11,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.图1119.已知:如图12,△ABC是任意一个三角形.试说明:∠A+∠B+∠C=180°.图1220.如图13,在直角三角形ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.图13答案1.D2.B3.C4.C5.C6.B7.C8.C9.C10.0.611.57°12.100°13.720°14.515.6016.60°或10°17.解:∵CE∥DF,∴∠ACE=∠D.又∵∠A=∠1,∴180°-∠ACE-∠A=180°-∠D-∠1,即∠E=∠F.18.解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°.∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°.∵∠FHG是△EFH的外角,∴∠EFB=55°-35°=20°.19.解:如图,过点A作DE∥BC.∵DE∥BC,∴∠B=∠DAB,∠C=∠EAC.∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC+∠B+∠C=180°.20.解:(1)∵∠ACB=90°,∠A=40°,∴∠CBD=90°+40°=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=12×130°=65°.(2)在直角三角形CBE中,∠CBE=65°,∴∠CEB=90°-65°=25°.又∵DF∥BE,∴∠F=∠CEB=25°,即∠F=25°.。

精品试题华东师大版七年级数学下册第9章多边形章节测试试题(含答案解析)

精品试题华东师大版七年级数学下册第9章多边形章节测试试题(含答案解析)

七年级数学下册第9章多边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°2、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°3、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形4、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为()A.45°B.50°C.40°D.60°5、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,76、下列多边形中,内角和与外角和相等的是()A.B.C.D.7、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C.D.8、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm9、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,1010、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB ∥CD ,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数_____.2、若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.3、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.4、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.5、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______.三、解答题(5小题,每小题10分,共计50分)1、概念学习 :已知△ABC ,点P 为其内部一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形,其内角与△ABC 的三个内角分别相等,那么就称点P 为△ABC 的等角点. 理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写:“真命题”;反之,则写“假命题”①内角分别为30°、60°、90°的三角形存在等角点;②任意的三角形都存在等角点.(2)如图①中,点P 是锐角三角形△ABC 的等角点,若∠BAC =∠PBC ,探究图中么∠BPC 、∠ABC 、∠ACP 之间的数量关系,并说明理由.2、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a,填写下表:(2)是否存在正n边形使得∠a=12°?若存在,请求出n的值;若不存在,请说明理由.3、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.4、如图,∠MON=90°,点A,B分别在OM,ON上,AE平分∠MAB,BE平分∠NBA.当点A,B在OM,ON上的位置变化时,∠E的大小是否变化?若∠E的大小保持不变,请说明理由;若∠E的大小变化,求出变化范围.5、如图,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于D ,且AE 平分∠BAC ,求∠EAD 的度数.-参考答案-一、单选题1、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE ∥AF ,∴∠CAF =∠CED =45°,∵∠BAC =60°,∴∠BAF =60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.3、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.4、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.5、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.6、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.7、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.8、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.10、C【解析】【分析】设第三根木棒的长度为x cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm,则x9393,x612,所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.二、填空题1、110°【解析】【分析】过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.解:过点E作EH∥AB,如图所示,∵AB∥CD,∴AB∥EH∥CD,∴∠ABE=∠BEH,∠CDE=∠DEH,∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F,∴∠EBF+∠EDF=12(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.2、8【解析】【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:∵一个n边形的每个内角都等于135°,︒-︒=︒∴则这个n边形的每个外角等于18013545÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.3、76︒##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABC +∠ACB =2(∠OBC +∠OCB )=104°,∴∠A =180°﹣(∠ABC +∠ACB )=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180︒是解决本题的关键.4、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD 为△ABC 中线可得S △ABD =S △ACD ,根据E 为AD 中点,12BEC ABC S S ∆∆=,根据BF 为△BEC 中线,1124BEF BEF ABC S S S ∆∆∆==即可.【详解】解:∵AD 为△ABC 中线∴S △ABD =S △ACD ,又∵E 为AD 中点, 故1122ABE DBE ABD ACE DCE ACD S S S S S S ∆∆∆∆∆∆====,, ∴111222BEC BDE DCE ABD ACD ABC S S S S S S ∆∆∆∆∆∆=+=+=,∵BF 为△BEC 中线, ∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.5、19.2【解析】【分析】+>,当点P与点点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得PM PN MNB或点C重合时,P、M、N三点共线,MN最长,由轴对称可得BF AC=,再由三角形等面⊥,BF FN积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,+>,由图可得:PM PN MN当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线,MN最长,∴BF AC ⊥,BF FN =,∵等腰ABC 面积为48,10AB AC ==, ∴1·482AC BF =, 9.6BF =,∴219.2MN BF ==,故答案为:19.2.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.三、解答题1、(1)①真命题;②假命题;(2)∠BPC =∠ABC +∠ACP【解析】【分析】(1)①根据等角点的定义,可知内角分别为30°、60°、90°的三角形存在等角点,从而可作出判断;②等边三角形不存在等角点,故可作出判断;(2)根据∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC,即可得出三个角间的数量关系.【详解】(1)①作内角分别为30°、60°、90°的三角形斜边的中线,取中线的中点,则此点就是此直角三角形的等角点,故为真命题;故答案为:真命题;②任意三角形都存在等角点是假命题,如等边三角形不存在等角点,故为假命题;故答案为:假命题;(2)∠BPC=∠ABC+∠ACP理由如下:∵∠ABP+∠BAP=180°−∠BPA,∠ACP+∠CAP=180°−∠CPA∴∠ABP+∠BAP+∠ACP+∠CAP=180°−∠BPA+180°−∠CPA=360°−(∠BPA+∠CPA)即∠ABP+∠BAC+∠ACP=360°−(∠BPA+∠CPA)∴∠BPC=360°−(∠BPA+∠CPA)= ∠ABP+∠BAC+∠ACP∵∠BAC=∠PBC∴∠BPC=∠ABP+∠BAC+∠ACP=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP∴∠BPC=∠ABC+∠ACP【点睛】本题主要考查三角形内角和定理的应用,解决问题的关键是理解等角的定义,根据等角的定义及三角形的内角和得出角的关系.2、(1)18045,3630,(),n︒︒︒︒;(2)存在,15【解析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n︒︒-, 根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n ︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30 故答案为:18045,3630,(),n︒︒︒︒ (2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.3、69°【解析】利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.【详解】解:∵BD⊥AC,∴∠ADB=∠BDC=90°.∵∠1=∠2,∠C=66°,∠ADB=45°,∴∠1=∠2=12∠CBD=∠ADB﹣∠C=24°.∴∠ABC=∠2+∠CBD=45°+24°=69°.【点睛】本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.4、∠E的大小保持不变,等于45°【解析】【分析】根据∠MON=90°,可得∠OAB+∠EBA=90°,再由∠OAB+∠MAB=180°,∠OBA+∠ABN=180°,可得∠MAB+∠ABN=270°,从而得到∠EAB+∠EBA=135°,即可求解.【详解】解:∠E的大小保持不变,等于45°,理由如下:∵∠MON=90°,∴∠OAB+∠OBA=90°,∵∠OAB+∠MAB=180°,∠OBA+∠ABN=180°,∴∠MAB+∠ABN=270°,∵AE、EB分别平分∠MAB和∠NBA,∴∠EAB=12∠MAB,∠EBA=12∠ABN,∴∠EAB+∠EBA=135°,∴∠E=45°,∴∠E的大小保持不变,等于45°.【点睛】本题主要考查了直角三角形的两锐角关系,角平分线的定义,三角形的内角和定理,补角的性质,熟练掌握直角三角形的两锐角互余,角平分线的定义,三角形的内角和定理,补角的性质是解题的关键.5、20°【解析】【分析】根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAE的度数,然后根据直角三角形两锐角互余求出∠BAD,最后根据∠EAD=∠BAD-∠BAE代入数据进行计算即可得解.【详解】解:∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,∵AE平分∠BAC交BC于E,∴∠BAE=12∠BAC=12×60°=30°,∵∠B=40°,AD⊥BC,∴∠BAD=90°-∠B=90°-40°=50°,∴∠EAD=∠BAD-∠BAE=50°-30°=20°.【点睛】本题考查了三角形内角和定理,角平分线的定义,熟记定理并准确识图,观察出∠EAD=∠BAD-∠BAE 是解题的关键.。

华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)

华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)

七年级数学下册第九章多边形单元检测试题姓名:__________班级:__________一、单项选择题〔共10题;共30分〕.△ABC中,∠B是∠A的2倍,∠C比∠A大20°,那么∠A等于()A.40°B.60C.80°D°.90°2.如图,在△ABC中,BC边上的高是〔〕A.CEB.ADC.CFD.AB3.假如一个正多边形的一个外角为30°,那么这个正多边形的边数是〔〕A.6B.11C.12D.184.〕如图,矩形 ABCD,一条直线将该矩形 ABCD切割成两个多边形,那么所得任一多边形内角和度数不行能是〔〕A.720°B.540°C.360°D.180°5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为〔〕A.5B.5或6C.5或7D.5或6或76.以下列图方格纸中的三角形是〔〕A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.如图,在△ABC中,E是BC上的一点,EC2BE D是AC的中点,设△ABC△ADF△BEF=,点,,的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF-S△BEF=()A.1B.2C.3D.4,BD是AC边上的高,8.如图,在△ABC中,AB=AC,∠A=36那么∠DBC的度数是〔〕°°°°9.AD是△ABC的中线,BE是△ABD的中线,假定△ABC的面积为20,那么△ABE的面积为〔〕A.5B.10C.15D.1810.如图,那么∠A+∠B+∠C+∠D+∠E=〔〕度A.90B.180C.200D.360二、填空题〔共8题;共24分〕11.如图,在△ABC中,AB=AC,AD⊥BC于点D,假定AB=6,CD=4,那么△ABC的周长是________12.如图,墙上钉了根木条,小明想查验这根木条能否水平,他拿来一个以下列图的测平仪,再这个测平仪中,AB=AC,BC边的中点D处有一个重锤,小明建BC边与木条重合,察看此重锤能否经过A点,如经过A点,那么是水平的,此中的道理是________.113.三角形片ABC中,∠A=55°,∠B=75°,将片的一角折叠,使点C落在△ABC内〔如〕,∠1+∠2的度数________度.14.在△ABC中,AB=13cm,AC=20cm,BC上的高12cm,△ABC的面________cm2.15.在△ABC中,AB=AC=17,BC=16,AD⊥BC于点D,AD=________.16.假定一个四形的四个内角度数的比3∶4∶5∶6,个四形的四个内角的度数分________.17.假定+=0,以的等腰三角形的周.18.如,∠MON=30°,点A1,A2,A3,⋯在射ON上,点B1,B2,B3,⋯在射OM上,△A1B1A2,△A2B2A3,△A3B3A4,⋯均等三角形,假定OA1=2,△A5B5A6的________.三、计算题〔共4题;共24分〕19.如,假定∠B=28°,∠C=22°,∠A=60°,求∠BDC.20.如,AB⊥BC,DC⊥BC,假定∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.如,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠A的度数.22.如所示,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.2((((((((((((((四、解答题〔共4题;共34分〕(23.以下列图,AD,AE是三角形A BC的高和角均分线,∠B=36°,∠C=76°,求∠DAE的度数.((((((((((((24.如图,在△ABC中,BD是∠ABC的均分线,CD是外角∠ACE的均分线.求证:∠D=∠A.(((((((((((((〔1〕等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;〔2〕等腰三角形的一边长等于6cm,周(长等于28cm,求其余两边的长.((((((((((((26.如图,AD为△ABC的中线,BE为△ABD的中线.(1〕∠ABE=15°,∠BAD=40°,求∠BED的度数;(2〕作图:在△BED中作出BD边上的高EF;BE边上的高DG;3〔3〕假定△ABC的面积为40,BD=5,那么△BDE中BD边上的高EF为多少?假定BE=6,求△BED中BE边上的高DG为多少?答案分析局部一、单项选择题1.【答案】A2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】B二、填空题2021.等腰三角形底边上的中线与底边上的高相互重合13.100 14.126或66 15.15 16.60o,80o,100o,18.32.三、计算题19.解:以下列图:连接BC.∵∠A=60°,∴∠ABC+ACB=120°.∵∠B=28°,∠C=22°,∴∠DBC+∠DCB=70°.∴∠BDC=180°﹣70°=110°.20.解:∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;AB⊥BC,DC⊥BC,∴AB∥CD,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.21.解:∵DF⊥BC,∴∠FDC=90°,∵∠AFD=152°,∴∠C=∠AFD﹣∠FDC=152°﹣90°=62°,4∵∠B=∠C,∴∠A=180°﹣∠B﹣∠C=180°﹣62°﹣62°=56°22.解:∠3=∠1+∠2,∠1=∠2,∴∠3=2∠1,∵∠3=∠4,∴∠4=2∠1,∴180°﹣4∠1+∠1=78°,解得,∠1=34°,∴∠DAC=78°﹣∠1=44°.四、解答题23.解:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE均分∠BAC∴∠EAC=68°÷2=34°∵AD是高线∴∠DAC=90°-76°=14°∴∠DAE=∠EAC-∠DAC=34°-14°=20°24证明:依据三角形外角性质有∠3+∠4=∠1+∠2+∠A.由于BD、CD是∠ABC和∠ACE的均分线,因此∠1=∠2,∠3=∠4.进而2∠4=2∠1+∠A,即∠4=∠1+∠A①在△BCD中,∠4是一个外角,因此∠4=∠1+∠D,②由①、②即得∠D=∠A.25.〔1〕解:8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,能构成三角形,周长=8+8+9=25cm,8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能构成三角形,周长=8+9+9=26cm,综上所述,周长为25cm或26cm〔2〕解:6cm是腰长时,其余两边分别为6cm,16cm,6+6=12<16,∴不可以构成三角形,6cm是底边时,腰长为〔28-6〕=11cm,三边分别为6cm、11cm、11cm,能构成三角形,因此,其余两边的长为11cm、11cm26.〔1〕解:∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°2〕解:绘图以下:3〕解:∵AD为△ABC的中线,BE为△ABD的中线,∴△ABD的面积=△ABC的面积=20,△BDE的面积=△ABD的面积=10,BD·EF=10,×5EF=10,解得EF=4,BE·DG=10,×6DG=10,5华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案) EF=6。

2020年春华东师大版 七年级数学下册 第9章《多边形》单元测试卷 含详解

2020年春华东师大版 七年级数学下册 第9章《多边形》单元测试卷  含详解

2020年华师大版第9章《多边形》单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下面四个图形中,线段BD是△ABC的高的图形是()A.B.C.D.2.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN3.如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.184.从十二边形的一个顶点出发,可引出对角线()条.A.9条B.10条C.11条D.12条5.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形6.如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()A.110°B.30°C.150°D.90°7.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条8.如图,点E在四边形ABCD的CD边的延长线上,若∠ADE=120°,则∠A+∠B+∠C 的度数为()A.240°B.260°C.300°D.320°9.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°10.如图,多边形ABCDEFG中,∠E=∠F=∠G=108°,∠C=∠D=72°,则∠A+∠B 的值为()A.108°B.72°C.54°D.36°二.填空题(共8小题,满分24分,每小题3分)11.三角形三条中线的交点叫做三角形的.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB,CD两根木条),这其中的数学原理是.13.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.14.如图,AD、CE、BF是△ABC的高,AB=5,BC=4,AD=3,则CE=.15.如图,小华从A点出发,沿直线前进5m后左转24°,再沿直线前进5m,又向左转24°,……照这样走下去,当他第一次回到出发地A点时,一共走过的路程是.16.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为.17.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD交于点D,若∠D=28°,则∠A=.18.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,…,依此递推,则第6层中含有正三角形个数是,第n层中含有正三角形个数是.三.解答题(共7小题,满分64分)19.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.20.正八边形地板砖,能铺满地面,既不留下一丝空白,又不相互重叠吗?请说明理由.21.如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.22.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+y=360,整理得:2x+3y=8,我们可以找到方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.23.如图1,AD、BC交于点O,得到的数学基本图形我们称之为‘8’字形ABCD.(1)试说明:∠A+∠B=∠C+∠D;(2)如图2,∠ABC和∠ADC的平分线相交于E,尝试用(1)中的数学基本图形和结论,猜想∠E与∠A、∠C之间的数量关系并说明理由.24.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)25.∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=°;(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=60°,则∠D=°;②随着点A,B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ 的平分线及其延长线相交于点E、F,在△AEF中,如果有一个角是另一个角的3倍,求∠ABO的度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:由三角形的高的定义可知,如果线段BD是△ABC的高,那么BD⊥AC,垂足是点D.四个选项中,只有D选项中BD⊥AC.故选:D.2.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.3.解:∵三角形的两边长分别为7和9,∴9﹣7<第三边的长<9+7,即2<第三边的长<16,选项中只有,13符合题意.故选:B.4.解:12﹣3=9,十二边形从一个顶点出发可引出9条对角线.故选:A.5.解:根据密铺的条件可知3个正六边形能密铺,故选:B.6.解:∵∠ACD是△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣20°=110°,故选:A.7.解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:C.8.解:因为∠ADE=120°,∠ADE+∠ADC=180°,所以∠ADC=180°﹣∠ADE=180°﹣120°=60°,因为∠ADC+∠A+∠B+∠C=360°,所以∠A+∠B+∠C=360°﹣∠ADC=360°﹣60°=300°,故选:C.9.解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣64°=26°,∴∠DAE=∠EAC﹣∠ACD=38°﹣26°=12°,故选:B.10.解:连接CD,五边形CDEFG的内角和为:(5﹣2)×180°=540°,∴∠CDE+∠DCG=540°﹣(∠E+∠F+∠G)=540°﹣108°×3=216°,∴∠ADC+∠BCD=∠CDE+∠DCG﹣(∠BCG+∠ADE)=216°﹣72°×2=72°,∴∠A+∠B=∠ADC+∠BCD=72°,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:三角形三条中线的交点叫做三角形的重心.故答案为:重心.12.解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.13.解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.14.解:∵,∴,故答案为:.15.解:由题意可知,当小华回到出发地A点时,行走的路线是正多边形,∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×5=75,故答案为:75m.16.解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.故答案为:6.17.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.18.解:第1层包括6个正三角形,第2层包括18个正三角形,…,每一层比上一层多12个,故第6层中含有正三角形的个数是6+12×5=66(个),第n层中含有正三角形个数是6+12(n﹣1)=12n﹣6,故答案为:66,12n﹣6.三.解答题(共7小题)19.解:设这个多边形是n边形,,解得:n=2,答:这个多边形是12边形.20.解:不能.∵正八边形每个内角是=135°,不能整除360°,∴不能密铺.21.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°=54°,又∵∠AED=108°,∴∠1=∠2=54,∴EF平分∠AED.22.解:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,方程的正整数解为,.所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.23.(1)证明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,又∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)解:结论:2∠E=∠A+∠C.理由:∵∠ABC和∠ADC的平分线相交于E,∴可以假设∠ABE=∠EBC=x,∠ADE=∠EDC=y,∵∠A+x=∠E+y,∠C+y=∠E+x,∴∠A+∠C=∠E+∠E,∴2∠E=∠A+∠C,24.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.25.解:(1)∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;故答案为:135°;(2)①∵∠AOB=90°,∠BAO=60°,∴∠ABO=30°,∴∠ABN=150°,∵BC是∠ABN的平分线,∴∠OBD=∠CBN=150°=75°,∵AD平分∠BAO,∴∠DAB=30°,∴∠D=180°﹣∠ABD﹣∠BAD﹣∠AOB=180°﹣75°﹣30°﹣30°=45°,故答案为:45;②∠D的度数不随A、B的移动而发生变化,设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=180°﹣∠ABO=∠AOB+∠BAO=90+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∵∠ABC=180°﹣∠ABD=∠D+∠BAD,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(3)∵∠BAO与∠BOQ的平分线交于点E,∴∠AOE=135°,∴,∵AE、AF分别是∠BAO和∠OAG的平分线,∴,在△AEF中,若有一个角是另一个角的3倍,则①当∠EAF=3∠E时,得∠E=30°,此时∠ABO=60°;②当∠EAF=3∠F时,得∠E=60°,此时∠ABO=120°>90°,舍去;③当∠F=3∠E时,得,此时∠ABO=45°;④当∠E=3∠F时,得,此时∠ABO=135°>90°,舍去.综上可知,∠ABO的度数为60°或45°.。

华师大版七年级下册数学第9章 多边形含答案(真题汇编)

华师大版七年级下册数学第9章 多边形含答案(真题汇编)

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°2、勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图①,以直角三角形的各边为边向外作等边三角形,再把较小的两个等边三角形按如图②的方式放置在最大等边三角形内.若知道图②中阴影部分的面积,则一定能求出图②中()A.最大等边三角形与直角三角形面积的和B.最大等边三角形的面积 C.较小两个等边三角形重叠部分的面积 D.直角三角形的面积3、已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A.5B.10C.15D.204、如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A. B. C. D.5、如图,己知点A是双曲线y=kx-1(k>0)上的一个动点,连AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C 的位置也不断变化,但点C始终在双曲线y=mx-1(m<0)上运动,则m与k的关系是()A.m= -kB.m= kC.m= -2kD.m= -3k6、如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A.36°B.72°C.120°D.44°7、我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. B.2 C. D.8、如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米9、如图,抛物线与轴交于,两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连结、则线段的最大值是()A. B.3 C. D.10、在下列正多边形中,中心角的度数等于它的一个内角的度数的是()A.正三边形B.正四边形C.正五边形D.正六边形11、如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2B.C.1D.12、如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.10B.11C.12D.1313、如图,在△ABC中,D是CA延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A.36°B.116°C.26°D.104°14、如图,平面直角坐标系中,等腰Rt△OAB沿x轴负方向向左平移后得到△O1A1B1,使点B的对应点B1落在双曲线y=(x<0)上,若点B(0,﹣4),则线段AB扫过的面积是(平方单位)()A.2B.2C.4D.415、内角和与外角和相等的多边形一定是()A.八边形B.六边形C.五边形D.四边形二、填空题(共10题,共计30分)16、已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可).17、直角三角形的两边长分别为5和4,则该三角形的第三边的长为________.18、如图,四边形ABCD的两条对角线AC、BD的长分别为5cm、4cm,点A1,B 1, C1, D1是四边形ABCD各边上的中点,则四边形A1B1C1D1的周长为________cm.19、如图,在中,,,则的度数为________.20、如图,在等腰中,,,分别以点A,B,C 为圆心,以的长为半径画弧分别与的边相交,则图中阴影部分的面积为________.(结果保留)21、已知三角形ABC的三边长分别是,化简的结果是________;22、如图,矩形ABCD中,AB=3,BC=4,点E是对角线AC上的动点,点F是边BC上的动点,点P是半径为1的⊙B上的动点,则PE+EF的最小值为________.23、如图,在一个由个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是________(结果需化简)24、如图,在△ABC中,∠A=60°,∠B=40°,点D在AC的延长线上,则∠BCD=________度.25、如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA= ,则CD的长等于________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C 的度数.28、如图,在△ABC中,AB=AC,D是BC中点,DE⊥AC,垂足为E,∠BAC=50°,求∠ADE的度数.29、如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.30、如图,欲用一块面积为800cm2的等腰梯形彩纸作风筝,用竹条作梯形的对角线且对角线恰好互相垂直,那么需要竹条多少厘米?参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、D5、D6、C7、C8、C9、C10、B11、C12、C13、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

华东师大版七年级数学下册第九章多边形单元测试题含答案

华东师大版七年级数学下册第九章多边形单元测试题含答案

华东师大版七年级数学下册第九章多边形单元测试一、选择题(本大题共8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项符合题意)1.下列各组线段中,能组成三角形的是()A.a=3 cm,b=8 cm,c=5 cmB.a=5 cm,b=5 cm,c=10 cmC.a=12 cm,b=5 cm,c=6 cmD.a=15 cm,b=10 cm,c=7 cm2.下列说法正确的是()A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形图13.如图1,若∠1=100°,∠C=70°,则∠A的度数是()A.10°B.20°C.30°D.80°4.在△ABC中,AD是BC边上的中线,下列五种说法:①AD把∠BAC分成相等的两部分;②AD 将线段BC分成相等的两部分;③AD把△ABC分成形状相同的两个三角形;④AD把△ABC分成周长相等的两个三角形;⑤AD把△ABC分成面积相等的两个三角形.其中正确的说法有() A.2个B.3个C.4个D.5个5.在△ABC中,若∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40°B.60°C.80°D.90°6.如图2中三角形的个数是()图2A.6 B.7 C.8 D.97.已知三角形两边的长分别是6和12,则此三角形第三边的长可能是()A.5 B.6 C.12 D.198.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6二、填空题(本大题共10题,每小题4分,共40分)9.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数为________.10.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|-|2b|的结果是________.11.如图3,自行车的三角形支架利用的是三角形的________.图3 图412.如图4,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________°.13.如图5,在△ABC中,AD是BC边上的中线,若AB=6 cm,AC=4 cm,则△ABD和△ACD 的周长之差为________.图5 图614.如图6,在△ABC中,P是△ABC三个内角平分线的交点,则∠PBC+∠PCA+∠P AB=________度.图715.如图7,直角三角形ABC的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.16.若等腰三角形的周长为16,其一边长为6,则另外两边长为________.17.用边长相等的正三角形和正六边形地砖拼地板,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a-b的值为________.18.如图8,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线相交于点A1,得∠A1;∠A1BC 和∠A1CD的平分线相交于点A2,得∠A2;…;∠A2018BC和∠A2018CD的平分线交于点A2019,则∠A2019=________度.图8三、解答题(本大题共3小题,共36分)19.(10分)用两种方法证明“三角形的外角和等于360°”.已知:如图9,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.图920.(12分)如图10,在△ABC中,BD是角平分线,CE是高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.图1021.(14分)如图11,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图①中,作∠BAC的平分线AD,分别交CB,BE于D,F两点,求证:∠EFD=∠ADC;(2)图②中,作△ABC的外角∠BAG的平分线AD,分别交CB,BE的延长线于D,F两点,试探究(1)中的结论是否仍成立?为什么?图11教师详解详析1.[解析] D根据三角形三边的关系:任意两边之和大于第三边.2.[解析] B等腰三角形的顶角可以是钝角,因此等腰三角形可以是钝角三角形;等边三角形属于等腰三角形,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形;有三个内角是锐角的三角形才是锐角三角形.3.[解析] C根据三角形外角的性质知∠1=∠A+∠C,∴100°=∠A+70°,∴∠A=30°.4.[解析] A D只是BC的中点,不平分角,故①错误;②正确;AD把△ABC分成的两个三角形的形状不一定相同,故③错误;AD把△ABC分成的两个三角形的周长不一定相等,面积相等,故④错误,⑤正确.5.[解析] A由题意得∠B=2∠A,∠C=∠A+20°,所以∠A+∠B+∠C=∠A+2∠A+∠A +20°=180°,解得∠A=40°.6.[解析] C确定两个顶点,找第三个顶点,比如:确定A,B,可找F,D,确定A,E,可找C,D,确定B,E,可找D,确定A,F,可找D,确定A,C,可找D,确定F,C,可找D.7.[答案] C8.[答案] C9.[答案] 10[解析] 设这个多边形的边数为n,根据题意,得(n-2)×180°=360°×4,解得n=10.10.[答案] -2c[解析] 根据三角形的三边关系得a+b>c,a+c>b,∴|a+b-c|-|b-a-c|-|2b|=|a+b-c|-|b-(a +c)|-|2b|=a+b-c-(a+c-b)-2b=a+b-c-a-c+b-2b=-2c.11.[答案] 稳定性12.[答案] 8013.[答案] 2 cm[解析] 根据三角形中线的定义可得BD=CD,△ABD和△ACD的周长的差就是AB和AC的差,计算即可.14.[答案] 90[解析] 因为P是△ABC三个内角平分线的交点,所以∠PBC+∠PCA+∠PAB的和是三角形内角和的一半.15.[答案] 190°[解析] 如图,正九边形的一个内角为(9-2)×180°9=140°,∠3+∠4=90°,两个正九边形的内角减去∠3+∠4即得∠1+∠2=280°-90°=190°.16.[答案] 6,4或5,5[解析] 当腰长是6时,则另外两边长是4,6,4+6>6,满足三边关系定理;当底边长是6时,另外两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另外两边长为6,4或5,5.17.[答案] 0或318.[答案]m22019 [解析] 利用角平分线性质、三角形外角性质,易证∠A 1=12∠A ,进而可求∠A 1,由于∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推,可知∠A 2019=122019∠A.19.解:∠BAE +∠1=∠CBF +∠2=∠ACD +∠3=180° ∠1+∠2+∠3=180° 证法2:如图,过点A 作射线AP ,使AP ∥BD.∵AP ∥BD ,∴∠CBF =∠PAB ,∠ACD =∠EAP. ∵∠BAE +∠PAB +∠EAP =360°, ∴∠BAE +∠CBF +∠ACD =360°. 20.解:∵∠ADB =∠DBC +∠ACB ,∴∠DBC =∠ADB -∠ACB =97°-60°=37°. ∵BD 是角平分线,∴∠ABC =74°, ∴∠A =180°-∠ABC -∠ACB =46°. ∵CE 是高,∴∠AEC =90°, ∴∠ACE =90°-∠A =44°.21.解:(1)证明:∵AD 平分∠BAC , ∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,∠AEB =∠ABC , ∴∠EFD =∠ADC.(2)(1)中的结论仍成立. 理由:∵AD 平分∠BAG , ∴∠BAD =∠GAD. ∵∠FAE =∠GAD , ∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,∠AEB =∠ABC , ∴∠EFD =∠ADC.。

华东师大版七年级数学下册 第九章 多边形 单元检测试题(有答案)

华东师大版七年级数学下册  第九章  多边形  单元检测试题(有答案)
17.如图,在 中, , ,图中与 互余的角有________个.
18.已知在 中, = , = ,如果边 的长为正整数,那么 的长可以是________(只需填写一个正确答案).
19.如图, 是 两个外角 与 平分线的交点, ,则 ________.
20.如图, 是 的外角 的平分线,若 , ,则 ________度.
②外角和大于内角和的多边形只有三角形,故正确;
③多边形外角和= ,
设这个多边形是 边形,根据题意得
= ,
解得 = .
故错误.
2.
【答案】
D
【解答】
解:设 ,
∴ , ,
∵ ,
∴ ,
∴ ,
∴ ,
∴该三角形是等腰直角三角形.
故选 .
3.
【答案】
B
【解答】
解:∵在 中, , ,
∴ ,
解得 ,
∴ 是直角三角形.
B.任意五边形、任意六边形
C.任意三角形、任意六边形
D.任意四边形、任意六边形
6.已知直角三角形一个内角 ,则另一个内角是()
A. B. C. D.
7.下列叙述中错误的一项是 .
A.三角形的中线、角平分线、高都是线段.
B.三角形的三条高线中至少存在一条在三角形内部.
C.只有一条高在三角形内部的三角形一定是钝角三角形.
故选 .
4.
【答案】
C
【解答】
解:如图,根据三角板的特点可知:

故选: .
5.
【答案】
A
【解答】
解:任意三角形的内角和是 ,放在同一顶点处 个即能密铺;
任意四边形的内角和是 ,放在同一顶点处 个即能密铺;

综合解析华东师大版七年级数学下册第9章多边形专题测评试题(含答案解析)

综合解析华东师大版七年级数学下册第9章多边形专题测评试题(含答案解析)

七年级数学下册第9章多边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°2、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C.D.3、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.104、七边形的内角和为()A.720°B.900°C.1080°D.1440°5、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是()A.∠FBA B.∠DBC C.∠CDB D.∠BDG6、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm和5cm,那么第三根小木棒的长度不可能是()A.5cm B.8cm C.10cm D.13cm∠的度数为()7、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3A.80︒B.70︒C.45︒D.308、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是()A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:59、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,1010、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为()A.9 B.10 C.11 D.12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和为1080°,则它是______边形.2、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________3、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.4、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.5、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.三、解答题(5小题,每小题10分,共计50分)1、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数. 2、如图,在ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.3、如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上一点,PE ⊥AD 交BC 的延长线于点E ,若∠B =35°,∠ACB =75°,求∠E 的度数.4、如图,在△ABC 中,∠ABC =30°,∠C =80°,AD 是△ABC 的角平分线,BE 是△ABD 中AD 边上的高,求∠ABE 的度数.5、如图,在ABC中,AD是角平分线,54C∠=︒.∠=︒,76B(1)求BAD∠的度数;(2)若DE AC⊥,求EDC∠的度数.-参考答案-一、单选题1、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解. 【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.2、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.3、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4、B【解析】【分析】根据多边形内角和公式即可求解.【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B.【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键.5、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.6、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.7、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】⨯︒=︒,解:3180540⨯︒=︒,360180∴︒-︒-︒=︒,540180180180123180∴∠+∠+∠=︒,12100∠+∠=︒,380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.8、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A 、设∠C=2x ,则∠B =3x ,∠A =6x ,∵180A B C ∠+∠+∠=︒,∴632180x x x ++=°, 解得18011x =︒, ∴∠A =6x =108011︒, ∴△ABC 不是直角三角形,故该选项不符合题意;B 、当∠C =20°,∠B=10°时符合题意,但是无法判断△ABC 是直角三角形,故该选项不符合题意;C 、∵∠A +∠B =∠C ,180A B C ∠+∠+∠=︒,∴90C ∠=︒,即△ABC 是直角三角形,故该选项符合题意;D 、设∠A =3x ,∠B =4x ,∠C =5x ,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴575C x ∠==︒,∴△ABC 不是直角三角形,故该选项不符合题意;故选:C .【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.9、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A 、1+2=3,不能组成三角形,不符合题意;B 、3+4=7,不能组成三角形,不符合题意;C 、2+3>4,能组成三角形,符合题意;D 、4+5<10,不能组成三角形,不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.10、D【解析】【分析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n-2)•180°=1800°,解得n=12.故选:D.【点睛】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.二、填空题1、八【解析】【分析】n-⨯︒ (n大于等于3且n为整根据多边形的内角和公式求解即可.n边形的内角的和等于:()2180数).【详解】解:设该多边形的边数为n,根据题意,得()18021080n ︒-=︒,解得8n =,∴这个多边形为八边形,故答案为:八.【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.2、5【解析】【分析】根据三角形三边关系及三角形面积相等即可求出要求高的整数值.【详解】解:因为不等边△ABC 的两条高的长度分别为4和12,根据面积相等可设 △ABC 的两边长为3x ,x ;因为 3x ×4=12×x (2倍的面积),面积S =6x ,因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x <第三边长度<4x ,因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,S =12×第三边的长×高,6x >12×2x ×高,6x <12×4x ×高,∴6>高>3,∵是不等边三角形,且高为整数,∴高的最大值为5,故答案为:5.【点睛】本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.3、59°##59度【解析】【分析】先利用三角形内角和定理求出∠CAB +∠CBA =180°-∠C =118°,从而利用三角形外角的性质求出∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,再由角平分线的定义求出11==12122GAB GBA DAB EBA ++︒∠∠∠∠,由此求解即可. 【详解】解:∵∠C =62°,∴∠CAB +∠CBA =180°-∠C =118°,∵∠DAB =∠C +∠CBA ,∠EBA =∠C +∠CAB ,∴∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,∵△ABC 两个外角的角平分线相交于G , ∴1=2GAB DAB ∠∠,12GBA EBA ∠=∠, ∴11==12122GAB GBA DAB EBA ++︒∠∠∠∠, ∴∠G =180°-∠GAB -∠GBA =59°,故答案为:59°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.4、12【解析】【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5、5【解析】【分析】n解方程求解,n结合从n边形的一个顶点出发设这个正多边形有n条边,再建立方程21801080,n-条对角线,从而可得答案.可以引()3【详解】解:设这个正多边形有n条边,则n21801080,∴-=n26,n=解得:8,所以从一个正八边形的一个顶点出发可以引835-=条对角线,故答案为:5【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为()2180,n-条对角线”是解本题的关键.n-︒从n边形的一个顶点出发可以引()3三、解答题1、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点M作MI∥AB交EF于点I,可得∠AGM=∠GMI,再由AB∥CD,可得MI∥CD,从而得到∠CHM=∠HMI,即可求证;(2)过点M作MP∥AB交EF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠=∠,可得∠HGQ=∠GMP,从而得∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由AGM HGQ到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒-,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解.(1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI ∥AB ,∴∠AGM =∠GMI ,∵AB ∥CD ,∴MI ∥CD ,∴∠CHM =∠HMI ,∴∠GMH =∠HMI +∠GMI = ∠AGM +∠CHM ;(2)解:∠GQH +∠GMH =180°,理由如下:如图,过点M 作MP ∥AB 交EF 于点P ,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒-, ∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠, ∴12HGN αβαβ∠=+-=,即2HGN β∠=,∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.2、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABC S AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.3、20︒【解析】【分析】根据三角形内角和的性质求得BAC ∠的度数,再根据角平分线求得BAD ∠的度数,利用三角形外角性质求得ADE ∠的度数,从而求得E ∠的度数.【详解】解:∵35B ∠=︒,75ACB ∠=︒,∴70BAC ∠=︒,∵AD 平分∠BAC , ∴1=352BAD BAC ∠=∠︒,∴70ADE B BAD ∠=∠+∠=︒,∵PE ⊥AD ,∴90DPE ∠=︒,∴9020E ADE ∠=︒-∠=︒.【点睛】此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.4、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD 度数,由AE ⊥BE 可求出∠AEB =90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC =30°,∠C =80°,∴∠BAC =180°-30°-80°=70°,∵AD 是∠BAC 的平分线,∴∠BAD=12×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5、 (1)25BAD∠=︒;(2)14EDC∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50BAC∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614∠=︒-∠-∠=︒-︒-︒=︒,EDC AED C∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.。

(黄金题型)华师大版七年级下册数学第9章 多边形含答案

(黄金题型)华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、如图,用尺规作斜边的垂直平分线,其中,现有以下结论:① ;② ;③ ;④.其中正确的是()A.①②B.①②③C.①③④D.①④2、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A. B. C. D.3、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形4、一个多边形的每一个外角都是45°,那么这个多边形是()A.八边形B.九边形C.十边形D.十二边形5、如图,在中,, . , 是的内心,则线段的值为()A. B. C. D.6、如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处7、如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2B.3C.4D.8、如图,BM是△ABC的角平分线,D是BC边上的一点,连接AD,使AD=DC,且∠BAD=120°,则∠AMB=()A.30°B.25°C.22.5°D.20°9、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°10、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.11、如图,已知在△ABC中,,将线段AC绕点A顺时针旋转得到AD,且,连接CD,且△ACD的面积为()A.24B.30C.36D.4012、如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为()A.18B.20C.22D.2413、如图所示,D,E分别是△ABC的边AC ,BC 的中点则下列说法不正确的是()A.DE是△BDC的中线B.BD是△ABC的中线C.AD=DC,BE=EC, D.图中∠C的对边是 DE14、如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°15、若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()。

华东师大版七年级下册第9章《多边形》单元测试卷(含答案)

华东师大版七年级下册第9章《多边形》单元测试卷(含答案)

华东师大版七年级下册第9章《多边形》单元测试卷(含答案)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1 2 3 4 5 6 7 8 9 10 11 121、下列几种不同形状的瓷砖中,只有一种不能铺满地面的是( )A 、正六边形B 、正五边形C 、正方形D 、正三角形2、若某三角形的两边长分别为5和9,则该三角形第三边的长可能是( )A 、4B 、5C 、14D 、153、若一个三角形的三个内角的度数之比为4:3:1,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等边三角形4、若一个正边形的每个内角为144°,则这个正n 边形的边数为( )A 、8B 、9C 、10D 、115、将一把直尺与一块三角板如图放置,若︒=∠1301,则2∠的度数为( )A 、︒40B 、︒35C 、︒50D 、︒456、如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则1∠与2∠的和为( )A 、60°B 、108°C 、120°D 、240°7、如图,直线PQ MN //,点A 是MN 上一点,MAC ∠的角平分线交PQ 于点B ,若︒=∠201,︒=∠1162,则3∠的大小为( )A 、136°B 、148°C 、146°D 、138°12 第5题图FEAB CD12 第6题图3 Q PCABNM12 第7题图8、在ABC ∆中,已知点D 、E 、F 分别是BC 、AD 、CE 的中点,且24cm S ABC =∆,则=∆BEF S ( )A 、22cmB 、21cmC 、25.0cm D、225.0cm9、如图,PQ MN //,BCP ∠的角平分线CD 的反向延长线交BAN ∠的角平分线于点E ,︒=∠-∠36E B ,则B ∠为( )A 、︒82B 、︒84C 、︒86D 、︒9610、一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )A 、10B 、11C 、12D 、10或11或1211、如图,在五边形ABCDE 中,︒=∠+∠+∠280E B A ,EDC ∠,BCD ∠的平分线DP 、CP 相交于P 点,则P ∠的度数是( )A 、︒40B 、︒45C 、︒50D 、︒5512、如图,七边形ABCDEFG 中,AB 、CD 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于︒230,则BOD ∠的度数是( )A 、︒50B 、︒55C 、︒40D 、︒45二、填空题(本大题共4个小题,每小题4分,共16分)13、科技小组制作了一个机器人,它能根据指令要求行走和旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: 学号: 得分:
一、填空题(20分)
1、三角形三个内角的比为1:3:5,则最大的内角是__100度
2、如图 1所示,写出321∠∠∠、、的度数为.____3,_____2,_____1000=∠=∠=∠
3、如图2,在∆ABC 中,,C ABC ∠=∠BD 平分ABC ∠,如果036=∠A ,那么
0._____=∠ADB
4、按图3所示的条件,则._____,____00=∠=∠CBD BAE
5、两根木棒的长分别为cm 3和cm 5,要选择第三根木棒,将它钉成一个三角
形,若第三根木棒的长为偶数,则第三根木棒的长是._____cm
6、若等腰三角形的两边长分别是cm 3和cm 7;则这个三角形的周长是._____cm
7、工人师傅在做完门框后.为防小变形常常像图4中所示的那样上两条斜拉 的木条(即图4中的AB ,CD 两根木条),这样做根据的数学道理是_____. 8、如图5,根据题中条件,则.____2,_____100=∠=∠
9、图6是三个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是正_____边形
10、若一个多边形的每一个内角都等于0135,则这个多边形是____边形,它的
内角和等于____.
二、选择题(30分)
1、如图7,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于C ,D ,
E : 下列说法中不正确的是( )
A 、AC 是∆ABC 的高
B 、DE 是∆BCD 的高
C 、DE 是∆ABE 的高
D 、AD 是∆ACD 的高
2、如图8,BE ,CF 是∆ABC 的角平分线,065=∠A 那么BOC 等于( ) A 、05.122 B 、05.187 C 、05.178 D 、0115
3、三角形三条高的交点一定在( )
A 、三角形的内部
B 、三角形的外部
C 、三角形的内部或外部.
D 、三角形的内部、外部或顶点
4、适合条件C B A ∠=∠=∠2
1
的∆ABC 是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、不能确定 5、 D 、
E 是△ABC 的边AB 、AC 上一点,把△ABC 沿DE 折叠,当点A 落在四边形BCED 内部时,如图(10)。

则∠A 与∠1+∠2之间的数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A 、2∠A=∠1+∠2
B 、∠A=∠1+∠2
C 、3∠A=2∠1+∠2
D 、3∠A=2(∠1+∠2)
图10 图9
2
1
A
E
D
C
B
A
C
B
6、有下列长度的三条线段,能组成三角形的是( ) A 、cm cm cm 843、、 B 、cm cm cm 844、、 C 、cm cm cm 1065、、 D 、cm cm cm 1052、、
7、若多边形的边数由3增加到n (n 为正整数),则其外角和的度数( ) A 、增加 B 、减少 C 、不变 D 、不能确定
8、一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )
A 、5条
B 、6条
C 、 7条
D 、8条 9、在∆ABC 中,B A ∠=∠,055比C ∠大025,则B ∠等于( ) A 、050 B 、075 C 、0100 D 、0125
10、下列说法错误的个数: ( )
(1)、任意一个三角形的三条高至少有一条在此三角形内部;(2)、若线段a 、b 、c 满足c b a >+,以c b a ,,为边能构成一个三角形;(3)、一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形(4)、多边形中内角最多有2个是锐角;(5)、一个三角形中,至少有一个角不小于060(6)、以a 为底的等腰三角形其腰长一定大于
2
a
(7)、一个多边形增加一条边,那它的外均增加0180。

A 、1个 B 、2个 C 、3个 D 、4个 三、解答题:(50分)
1、已知∆ABC 中,A ∠比B ∠大040,B ∠比C ∠少20°,求各角的度数.(6分)
2、如图,求F E D C B A ∠+∠+∠+∠+∠+∠的度数和。

(7分)
3、如图,四边形ABCD 中,∠BAF ,∠DAE 是与∠BAD 相邻的外角,
且∠BAD :∠BAF=4:5,求∠BAD ,∠DAE 的度数( 6分)
4、如图,在六边形ABCDEF 中,AF//CD ,AB//DE ,且0080120=∠=∠B A ,,求C ∠ 和D ∠的度数(8分)
5、如图,在四边形ABCD 中,∠A=∠C=90°,BE 平分∠ABC ,DF 平分∠ADC ,试问BE ∥DF 吗?为什么?(8分)
6、已知:如图,AE 是△ABC 的角平分线,AD 是△ABC 的高,试判断∠DAE 与∠B 、
∠ACB 之间的关系,并说明理由。

(8分)
D C B
7、把一副三角板的直角顶点O 重叠在一起, 1)如图(1),当OB 平分∠COD 时,则∠AOD 和∠BOC 的和是多少度? 2)如图(2),当OB 不平分∠COD 时,则∠AOD 和∠BOC 的和是多少度?(8分)
B
A
图(2)
图(1)
A
一、100°;2、65、70、110;3、108;4、138、36;5.4或6;6.17;7.三角形的稳定性;8.70、110
;9、6;10、8、1080°
二、选择题;
1-10、CADBACCCBC
三、解答题
1、80°,40°,60°;
2、360°;
3、80°,100°;160°,120°;5、平行,理由(略)
6、∠DAE=,理由(略);
7、解:1)∵OB平分∠COD∴∠COB=∠BOD=45°∴∠COA=90°-45°=45°∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°
2)∵∠AOC+∠BOC=90°∠BOD+∠BOC=90°∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°。

相关文档
最新文档