数学作业本答案 九年级全册北师大版
数学九年级上册课本答案北师大版
数学九年级上册课本答案北师大版这篇关于数学九年级上册课本答案北师大版的文章,是特地为大家整理的,希望对大家有所帮助!数学习题1.1答案1.证明:∵四边形ABCD是菱形,∴BC=AB,BC//AD,∴∠B+∠BAD=180°两直线平行,同旁内角互补).∵∠BAD=2∠B,∴∠B+2∠B=180°,∴∠B=60°.∵BC=AB,∴△ABC是等边三角形.2.解:∵四边形ABCD是菱形,∴AD=DC=CB=BA,∴AC±BD,AO=1/2AC=1/2×8=4,DO=1/2BD=1/2×6=3.在Rt△AOD中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5.∴菱形ABCD 的周长为4AD=4×5=20.3.证明:∵四边形ABCD是菱形,∴AD=AB,AC±BD,DO=BO,∴△ABD是等腰三角形,∴AO是等腰△ABD低边BD上的高,中线,也是∠DAB的平分线,∴AC平分∠BAD.同理可证AC平分∠BCD,BD平分∠ABC和∠ADC.4.解:有4个等腰三角形和4个直角三角形.数学习题1.2答案1.证明:在□ABCD中,AD//BC,∴∠EAO=∠FCO.∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF.∵AE//CF,∴四边形AFCE是平行四边形.∵EF±AC,∴四边形AFCE是菱形.2.证明:∵四边形ABCD是菱形,∴AC±BD,OA=OC,OB=OD.又∵点E,F,G,H,分别是OA,OB,OC,OD的中点,∴OE=1/2OA,数学习题1.3答案1.证明:∵四边形ABCD是菱形,∴AD=CD,AB=CB,∠A=∠C.∵BE=BF,∴AB-BE=CB-BF,即AE=CF.在△ADE和CDF中,.∵△ADE≌△CDF,∴DE=DF,∴∠DEF=∠DFE.2.已知:如图1-1-35所示,四边形ABCD是菱形,AC和BD是对角线.求证:S菱形ABCD=1/2AC∙BD.证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴S△AOB=S△AOD=S△BOC=S△COD=1/2AO.BO.∴S菱形ABCD=4×1/2AO∙BO=1/2×2AO∙2BO=1/2AC∙BD.3.解:在菱形ABCD中,AC⊥BD,∴∠AOB=90°,AO=1/2AC=1/2×16=8,BO=1/2BD=1/2×12=6.在Rt△AOB中,由勾股定理,得AB=√(AO +BO )=√(8 +6 )=10.∵S菱形ABCD=1/2AC∙BD=1/2×16×12=96,又∵DH⊥AB,∴S菱形ABCD=AB∙DH,∴96=AB∙DH,即96=10DH,DH=9.6.∴菱形ABCD的高DH为9.6.4.证明:∵点E,F,G,H分别是AB,CD,AC,BD,的中点,∴GF是△ADC的中位线,EH是△ABD的中位线,∴GF//AD,GF=1/2AD,EH//AD,EH=1/2AD,∴GF//EH,GF=EH,∴四边形EGFH是平行四边形,又∵FH是△BDC的中位线,∴FH=1/2BC.又∵AD=BC,∴GF=FH,∴平行四边形EGFH是菱形.5.请自己动手折叠试一试.。
北师大版本九年级全一册数学作业本作业上册视图(1)
C.3 个
D.4 个
B
4.(2019 广州模拟)如图,几何体的俯视图是( )
5.“父亲节”时,小明送给父亲一个礼盒(如图),该礼盒的
A
主视图是( )
D
6.如图是某个几何体的三视图,则该几何体的形状是( )
A.长方体 C.圆柱
B.圆锥 D.三棱柱
7.如图是由 6 个同样大小的正方体摆成的几何体.将正方体 ①移走后,所得几何体( D )
A.主视图改变,左视图改变 B.俯视图不变,左视图不变 C.俯视图改变,左视图改变 D.主视图改变,左视图不变
二、解答题(每题15分,共30分) 8.画出如图所示的几何体的三视图.
解:如图:
9.画出如图所示的几何体的三视图.
解:如图:
第五章 投影与视图
第3课时 视图(1)
一、选择或填空题(每题 10 分,共 70 分)
B
1.下列立体图形中,俯视图是正方形的是( )
2.下列四个几何体中,左视图与主视图不相同的几何体是
B
()
பைடு நூலகம் 3.下列四个几何体:
①正方体 ②球 ③圆锥 ④圆柱
B
其中左视图与俯视图相同的几何体共有( )
A.1 个
B.2 个
九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版
九年级数学上册全一册同步练习(打包52套350页)(新版)北师大版1 第1课时菱形的概念及其性质知识点 1 菱形的定义及对称性1.如图1-1-1,在?ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使?ABCD成为菱形的有( )图1-1-1A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( ) A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)1-1-2 1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB 于点E,PE=4 cm,则点P到BC的距离是________cm.知识点 2 菱形的边的性质4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是( )A.25 B.20C.15 D.101-1-4 1-1-5 5.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.图1-1-6知识点 3 菱形的对角线的性质7.教材习题1.1第2题变式题如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为( )A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是( )A.4 cm B.2 3 cmC. 3 cm D.3 cm1-1-7 1-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )图1-1-9A.(-5,4) B.(-5,5)C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E 在AB上,且BE=BO,则∠EOA=________°.1-1-10 1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.图1-1-1215.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.图1-1-1316.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BA O的度数.图1-1-15第2课时菱形的判定知识点 1 由菱形的定义作判定1.如图1-1-16,要使?ABCD成为菱形,则需添加的一个条件是( )图1-1-16A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-17知识点 2 根据菱形的对角线作判定3.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在?ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.教材例2变式题如图1-1-19,在?ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-19知识点 3 根据菱形的边作判定6.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是( )图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠FAC,∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-218.如图1-1-22所示,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线1-1-22 1-1-239.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )A.AB⊥AC B.AB=ACC.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE 并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用知识点 1 菱形的面积1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是( )A.6 B.12C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-29知识点 2 菱形的性质与判定的应用4.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )A.4 B.6 C.8 D.121-1-30 1-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BCC.AB=CD,AD=BCD.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC 互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1 B.2 C.3 D.41-1-3 1-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-3 1-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.图1-1-36图1-1-3711.如图1-1-37,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为( )A.52 cm B.40 cmC.39 cm D.26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .甲错误,乙正确C .甲、乙均正确D .甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________cm 2.14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .(1)求证:∠APD =∠CBE ;(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的14,为什么?图1-1-4015.2017·贺州如图1-1-41,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为O .(1)求证:四边形ABCD 是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.图1-1-422 第1课时矩形的概念及其性质知识点 1 矩形边、角的性质1.若矩形ABCD的两邻边长分别是1,2,则其对角线BD的长是( )A. 3 B.3 C. 5 D.2 52.如图1-2-1所示,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.51-2-1 1-2-23.如图1-2-2,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC 的度数是( )A.30° B.22.5° C.15° D.10°4.如图1-2-3,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=BO.图1-2-3知识点 2 矩形对角线的性质5.如图1-2-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°1-2-4 1-2-56.教材例1变式题如图1-2-5,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB =60°,AC=6 cm,则AB的长是( )A .3 cmB .6 cmC .10 cmD .12 cm图1-2-67.如图1-2-6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则EF =________ cm.8.如图1-2-7,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于点E .求证:BE =BD .图1-2-7知识点 3 直角三角形斜边上的中线的性质9.若直角三角形两条直角边的长分别为6和8,则斜边上的中线的长是( ) A .5 B .10 C.245 D.125图1-2-810.如图1-2-8,△ABC 中,∠ACB =90°,∠B =55°,D 是斜边AB 的中点,那么∠ACD 的度数为( )A.15° B.25°C.35° D.45°11.如图1-2-9,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E 为AB的中点.求证:CE=DE.图1-2-912.如图1-2-10,已知矩形ABCD沿着直线BD折叠,使点C 落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.61-2-10 1-2-1113.如图1-2-11,在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.2014.如图1-2-12,在矩形ABCD中,两条对角线相交于点O,折叠矩形,使顶点D与对角线交点O重合,折痕为CE,已知△CDE的周长是10 cm,则矩形ABCD的周长为( )A.15 cm B.18 cm C.19 cm D.20 cm1-2-121-2-1315.如图1-2-13,在Rt△ABC中,∠ACB=90°,D,E,F分别是边AB,BC,CA的中点,若CD=6 cm,则EF=________ cm.16.2017·荆州如图1-2-14,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC 方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.图1-2-1417.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图1-2-15①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图1-2-15②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,。
九年级数学作业本答案 (2)
九年级数学作业本答案1. 问题解答1.1. 第一题问题:请计算下列算式的值:2 + 3 * 4 - 5 ÷ 2。
答案:使用运算顺序: 1. 执行乘法运算:3 * 4 = 12。
2. 执行除法运算:5 ÷ 2 = 2.5。
3. 执行加法运算:2 + 12 = 14。
4. 执行减法运算:14 - 2.5 = 11.5。
所以,2 + 3 * 4 - 5 ÷ 2 = 11.5。
1.2. 第二题问题:请将下列百分数化为小数:42%、125%、0.5%。
答案:百分数转化为小数,需要除以100。
所以: - 42% = 42 ÷ 100 = 0.42, - 125% = 125 ÷ 100 = 1.25, - 0.5% = 0.5 ÷ 100 = 0.005。
所以,42% = 0.42,125% = 1.25,0.5% = 0.005。
1.3. 第三题问题:请将下列分数化为小数:3/4、2/5、7/8。
答案:分数转化为小数,需要进行除法运算。
所以: - 3/4 = 3 ÷ 4 = 0.75, - 2/5 = 2 ÷ 5 = 0.4, - 7/8 = 7 ÷ 8 = 0.875。
所以,3/4 = 0.75,2/5 = 0.4,7/8 = 0.875。
1.4. 第四题问题:请计算下列算式的值:(4 + 5) * (8 - 3)。
答案:根据括号内的计算优先级最高,首先计算括号内的值: - (4 + 5) = 9, - (8 - 3) = 5。
然后计算乘法运算:9 * 5 = 45。
所以,(4 + 5) * (8 - 3) = 45。
1.5. 第五题问题:请计算下列算式的值:7 - 2 * (6 + 2).答案:根据括号内的计算优先级最高,首先计算括号内的值: - (6 + 2) = 8。
然后计算乘法运算:2 * 8 = 16。
2019九年级下册数学练习册答案北师大版
2019九年级下册数学练习册答案北师大版26.1 圆的确定(1课时)1.教学目标(1)知道点与圆的三种位置关系,了解三角形外心、外接圆、圆的内接三角形以及多边形的外接圆和圆的内接多边形等概念.(2)理解点与圆的位置关系的判定方法,并能初步使用点与圆位置关系的判定方法解决相关数学问题.(3)会画三角形的外接圆.在教学中,要注意以下几点:(1)关于圆的半径,本节明确指出它是“联结圆心和圆上一点的线段”。
要将半径与半径长区分开来,而以前的课本中有混用的情况,需要修改.(2)对于点与圆的位置关系的研究,可先实行定性讨论,再实行定量分析.在实行定量分析时,由点与圆的位置关系推出相对应的“点与圆心的距离”和“圆的半径”之间的大小关系,能够理解为这是点与圆的位置关系的性质.反过来,由“点与圆心的距离”和“圆的半径”的大小关系推出相对应的点与圆的位置关系,能够理解为这是点与圆的位置关系的判定.这也是“边款”中关于符号“”的说明的真正含义.(3)例题1是对点与圆位置关系判定方法的初步使用。
教学时,要让学生理解每个小问中哪条线段的长能够看作是⊙C的半径.这是解决问题的关键.(4)“思考”是为接下来的“问题”研究作好准备。
通过思考,既让学生知道“在平面上,经过给定两点的圆有无数个”这样一个结论,又知道经过平面内给定两个点作圆的方法.(5)在“问题”研究时,学生可能不会想到三个点在同一直线上的情况,直接得出“在平面上,经过三点的圆只有一个”错误的结论。
在教学时,应指导学生仔细分析问题,对问题实行分类讨论.让学生真正理解为什么在定理中强调三个点“不在同一直线上”的条件,同时注意到经过同一直线上的三点的圆不存有.(6)例题2是让学生学会画给定三角形的外接圆.例题有意识地安排学生画一个钝角三角形的外接圆.“边款”中也指出这个钝角三角形外接圆的圆心在这个三角形的外部.而课本中图26-5(1)的A、B、C三点其实是一个锐角三角形的顶点,所确定的圆心O是这个锐角三角形外接圆的圆心,这个圆心在三角形的内部.在练习26.1中,又安排学生画出给定的一个直角三角形的外接圆,并要指出这个外接圆圆心的位置.这种安排,是要让学生在会画出各种给定三角形的外接圆的同时,总结出不同类型的三角形的外接圆圆心的位置特点,知道“锐角三角形外接圆的圆心在这个三角形的内部”、“直角三角形外接圆的圆心是这个直角三角形斜边中点”、“钝角三角形外接圆的圆心在这个三角形的外部”这三个几何事实.。
北师大版九年级数学下册全册同步练习含答案最新版
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
北师大版9年级数学寒假作业答案
北师大版9年级数学寒假作业答案
【导语】以下是xx为您整理的北师大版9年级数学寒假作业答案,供大家学习参考。
一.帮你学习
(1)-1(2)b
二.双基导航
1-5ccdab
(6)1;-6;7(7)k≤2(8)①③(9)3/4(10)
(11)解:设应降价x元.
(40-x)(20+2x)=1200
解得x1=10(舍去)
x2=20
∵为了尽快减少库存
∴答:每件衬衫应降价20元.
(12)解:①∵方程有两个不相等的实数根
∴b -4ac>0∴(-3) -4(m-1)>0
∴m0
2(x +2x)>-3
2(x +2x+1)>-3+2
2(x+1) >-1
(x+1) >-1/2
∵(x+1) ≥0
∴无论x为任意实数,总有2x +4x+3>0
②3x -5x-1>2x -4x-7
3x -2x -5x+4x-1+7>0
x -x+6>0
x -x>-6
(x-1/2) >-23/4
∵(x-1/2) ≥0
∴无论x为任意实数,总有3x -5x-1>2x -4x-7
(16)(6,4)
三.知识拓展
1-4ccda
(5)6或12(6)1:1
(8)①pa=1/6pb=2/6=1/3pc=2/6=1/3pd=1/6
②不公平,因为棋子移动到每个点的概率不同
若想尽可能获胜,应选b点或c点
③pa=8/36=2/9
(9)①如果一个四边形的对角线相互垂直,那么这个四边形的面积等于对角线乘积的一半。
九年级上册数学练习册答案北师大版
九年级上册数学练习册答案北师大版一、整数与有理数1. 整数的概念和表示整数是指正整数、0和负整数的集合,用符号“+”表示正数,“-”表示负数。
整数的表示方法有三种:数轴表示、有符号数表示和温度表示。
2. 整数的加法与减法整数的加法规则:正数与正数相加、负数与负数相加,结果仍为整数。
正数与负数相加,取绝对值大的数的符号作为结果的符号。
整数的减法规则:正数与正数相减,结果为正数;负数与负数相减,结果为负数;正数与负数相减,相当于加上相反数。
具体计算时需先化简,再根据题目要求减法或加法。
3. 整数的乘法与除法整数的乘法规则:正数与正数相乘为正数,负数与负数相乘为正数,正数与负数相乘为负数。
整数的除法规则:正数除以正数为正数,负数除以负数为正数,正数除以负数为负数,负数除以正数为负数。
4. 有理数的乘方与开方有理数的乘方规则:正数的乘方结果仍为正数,负数的乘方结果为正数或负数,零的非零次方结果为0。
有理数的开方规则:非负数的算术平方根为非负数,负数的算术平方根为虚数。
5. 相反数与倒数相反数是指绝对值相等而符号相反的两个数。
例如,2的相反数为-2。
倒数是指一个数除以1的结果。
例如,2的倒数为1/2。
二、方程式与方程式的应用1. 一元一次方程式一元一次方程式是指形如ax + b = 0的方程式。
解一元一次方程式需要使用逆运算来消去系数。
例如,若方程式为2x + 3 = 0,则可通过将3移到右侧,再除以2来解得x = -3/2。
2. 一元一次方程式组一元一次方程式组是指多个一元一次方程式的集合。
解一元一次方程式组需要使用消元法或代入法。
消元法是通过逐步消去未知数,并得到最后的解。
代入法是将一元一次方程式的解带入另一个方程式中,从而求得其他未知数的值。
3. 二元一次方程式组二元一次方程式组是指两个未知数的一次方程式组。
解二元一次方程式组需要使用消元法、代入法或加减法。
消元法是通过逐步消去一个未知数,从而得到另一个未知数的值。
九年级上册数学练习册答案北师大版
九年级上册数学练习册答案北师大版1. 引言本文档提供了九年级上册数学练习册的答案,适用于北师大版。
九年级上册是学生在初中阶段的最后一学期,数学课程内容较为全面和深入。
掌握好数学基础知识对接下来的学习和应试非常重要。
通过参考本文档中的答案,学生可以更好地理解和掌握九年级上册数学练习册的知识点。
2. 答案列表下面列出了九年级上册数学练习册的各个章节的答案:第一章:有理数• 1.1 有理数的概念和表示• 1.2 有理数的比较和顺数、逆数• 1.3 相反数和绝对值• 1.4 加减法的计算• 1.5 乘法的计算• 1.6 除法的计算• 1.7 有理数的应用第二章:整式与分式• 2.1 整式与多项式• 2.2 整式的加法与减法• 2.3 整式的乘法• 2.4 分式的概念与计算• 2.5 分式的乘法与除法• 2.6 有理数的加减混合运算第三章:一次函数与一次方程• 3.1 一次函数的概念与表达式• 3.2 一次函数的图像• 3.3 一次函数的性质与应用• 3.4 一次方程的解及表示• 3.5 解一次方程• 3.6 一次方程及其应用第四章:平面图形的性质与计算• 4.1 角• 4.2 三角形的性质与分类• 4.3 三角形的计算• 4.4 三角形的面积• 4.5 四边形及其面积• 4.6 多边形的面积• 4.7 圆的概念与计算第五章:比例与倍数• 5.1 比例的概念与性质• 5.2 倍数与最小公倍数• 5.3 带分数与比例• 5.4 比例的应用第六章:百分数• 6.1 百分数• 6.2 百分比的运算• 6.3 增减百分之几• 6.4 利率与利息• 6.5 百分数的应用第七章:一元二次方程•7.1 一元二次方程及其基础性质•7.2 一元二次方程的解•7.3 一元二次方程及其应用第八章:数据的图表表示与分析•8.1 统计图•8.2 平均数与中位数•8.3 频数分布表与频率分布图•8.4 直方图•8.5 折线图•8.6 树状图•8.7 散点图3. 结论通过本文档,我们提供了九年级上册数学练习册的答案,涵盖了各个章节的内容。
九下数学全品作业本答案2020北师大版
九下数学全品作业本答案2020北师大版选择题(共5题)1. 下列各数中最大的是哪一个?A. √13B. √7C. √16D. √102. 小明爬山,第一天爬了山的 (1/5) ,第二天爬了 (1/4) ,第三天爬了 (1/3) ,第四天爬了 (4/15) ,他共爬了整座山的几分之几?A. (4/5)B. (1/2)C. (7/12)D. (3/4)3. (x/3)-(3/x)=1,则 x=A. -3B. 3C. -(1/3)D. (1/3)4. 抽象ABCD四边形,欲把它切成三角形,每个三角形面积都相等,需要切几刀?A. 1B. 2C. 3D. 45. 某公司向纽约的客户订了某数量的商品并支付了运费,其中每件商品是120美元,运费每件商品是7美元,现公司要减少一半数量的商品,则每件商品按原来的价格计算,运费每件应调整为多少美元?A. 3.5美元 B. 4.5美元 C. 5美元 D. 5.5美元选择题答案:1. C2. A3. B4. C5. D填空题(共5题)1. 若(a/4)=(11/16),则a= ____}。
2. 化简√8\div√2= ____}。
3. x\div(4/5)=12,则x= ____}。
4. (2/3)+(1/4)-(3/8)= ____}。
5. 在一个\triangle ABC中,\angle A=25^{\circ},\angleB=70^{\circ},\angle C=____}。
填空题答案:1. (11/4)2. 2√23. 154. (1/24)5. 85^{\circ}解答题(共5题)1. 如图,在梯形\text{ABCD}中,\angle \text{DAB}=60^{\circ},AD=1,BC=2,AB+CD=2+√3,弦段EF长为 x,则 x= ____}。
2. 若 a>0 ,b>0 ,ab=16,则 a+b 的最小值为 ____}。
3. 已知函数f(x)=√x+1(x-a)+a,当 x 取何值时, f(x) 最小?它的最小值是多少?4. 梯形 \text{ABCD}(AD\parallel BC)中,AD=2,BC=4,\angleB=60^{\circ},BE\bot AC,交于点 E。
九年级数学作业本答案北师大版2020
九年级数学作业本答案北师大版20201、第一章基本知识和技能1.1 四则运算1(1)∵3 − 4 = −1,故3 + (−1) = 42(2)∵2x + 3y = 6,故2x + 3(−2x) = 6,即−x = 6,故x = −63(3)∵2x − 3y = 0,故2(x + 1) − 3y = 2,即3y = 2 − 2x,故y = (2 − 2x)/34(4)2(3 − 2x)(3 + x) = 2(3 − 2x)(x + 3),故9 − 6x + x2 − 6x2 − 3x2 = 0,即x2 + 3x − 6 = 0,故x = [−3 ± √(32 − 4〖・〗〖・〗(3)(-6))]/(2) = [−3 ± √57]/22、第二章练习2.1 填空1. (2)2. (−6)3. (2-2x)/34. [−3±√57]/23、第三章习题3.1 习题一(1)解:设A=(x1,y1),B=(x2,y2),则AB的距离为d=√(x2−x1)2+(y2−y1)2(2)解:∵满足〖〖〖〖〖2(x-2)〗〗〗〗〗^2+(y+3)^2=9,①将两边同平方2x2-4x+4+y2+6y+9=9②把变量都放在一边,其他的放在另一边y2+6y+2x2-4x+13=0③求出y的值y=(-6±√(-6)^2-4(1)(13))/2(1)= [-6±√(-36-52)]/2= [-6±√(-88)]/2= [-6±√88]/2= [-6±2√11]/24、第四章应用题4.1 题型一(1)解:因为六边形外围的圆心角都一样,所以6×θ = 360° θ = 360°/6 = 60°(2)解:由给出的信息可知:R=5,C=4θ=60°因此,外接圆的面积=π×R2=π×52=25π∴内接正六边形的面积=25π/4=6.25π(3)解:设正五边形外径为a,内径为b,原来正六边形面积为S 内接正五边形的面积=2×S=[2ab×cos 30°]/2=ab/2=25π/4∴5b×cos30°=25π∴b=25π/(5×cos30°)令a=4b,则a=4×25π/5×cos30°∴外接正五边形的面积=5a2×cos30°/4=5×(4×25π/5×cos30°)2×cos30°/4=25π2/cos 30°。
北师大版数学九年级上册课本答案
北师大版数学九年级上册课本答案【篇一:北师版九年级数学上册第一章测试卷(含答案)】卷满分120分考试时间120分钟)一、选择题(共10小题,每小题3分,计30分)1、下列各组图形中,是全等三角形的一组是()a.底边长都为15cm的两个等腰三角形b.腰长都为15cm的两个等腰三角形d.边长为12cm的两个等边三角形2、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为()a.7b.3c.7或3d.53、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()a.等腰三角形b.等边三角形c.直角三角形d.等腰直角三角形4、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()a.有两个角是直角b.有两个角是钝角c.有两个角是锐角d.一个角是钝角,一个角是直角6、如图1-2,在一次强台风中一棵大树在离地面5m处折断倒下,倒a.10mb.15mc.25md.30mcba d 图1-1图1-27、下列命题①对顶角相等②如果三角形中有一个角是钝角,那么另外两个角是锐角③若两直线平行,则内错角相等④三边都相等的三角形是等边三角形。
其中逆命题正确的有()a.①③b.②④c.①②d.③④8、如图1-3(1)在△abc中,d、e分别是ab,ac的中点,将△ade沿线段de向下折叠,得到图形1-3(2),下列关于图(2)的四个结论中,一定不成立的是()c.△dba是等腰三角形d.de∥bce c 图1-3 b c (2)(1) aa.1b.2c.3d.4be aa c图1-4图1-5二、填空题(共6小题,每小题3分,计18分)11、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果③如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c 其中属于真命题的是(填写所有真命题的序号)12、一个三角形三边之比为2:5:3,这个三角形的形状是13、把“同角的余交相等”改写成“如果??,那么??”的形式为cd=3,则ab的长度为15、如图1-7,p是正方形abcd内一点,将△abp绕点b顺时针方向旋转能与△cbp?重合,若pb=3,则pp?的长度为a p dbd b cc n c a b ?图1-6 图1-7图1-8三、解答题(共6小题,计72分,解答应写过程)ad图1-918、(10分)已知:如图1-10,de为△abc的边ab的垂直平分线,m d cd为△abc的外角平分线,与de交于点d,dm⊥bc的延长线于点m,dn⊥ac于点n,求证:an=bm。
北师大版九年级上册数学课后答案
北师大版九年级上册数学第4页练习答案解:因为在菱形ABCD中,AC±BD于点O,所以∠AOB=90°.在Rt△ABO中,OB=√(AB^2-AO^2 )=√(5^2-4^2 )=3(cm).因为在菱形ABCD中,对角线AC,BD互相平分,所以BD=2OB=6cm.1.11.证明:∵四边形ABCD是菱形,∴BC=AB,BC//AD,∴∠B+∠BAD=180°(两直线平行,同旁内角互补).∵∠BAD=2∠B,∴∠B+2∠B=180°,∴∠B=60°.∵BC=AB,∴△ABC是等边三角形(有一个角为60°的等腰三角形的等边三角形).2.解:∵四边形ABCD是菱形,∴AD=DC=CB=BA,∴AC±BD,AO=1/2 AC= 1/2×8=4,DO= 1/2 BD= 1/2×6=3.在Rt△AOD中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5.∴菱形ABCD的周长为4AD=4×5=20.3.证明:∵四边形ABCD是菱形,∴AD=AB,AC±BD,DO=BO,∴△ABD是等腰三角形,∴AO是等腰△ABD低边BD上的高,中线,也是∠DAB的平分线,∴AC平分∠BAD.同理可证AC平分∠BCD,BD平分∠ABC和∠ADC.4.解:有4个等腰三角形和4个直角三角形.第7页练习答案解,所画菱形AB-CD如图1-1-32所示,使对角线AC=6cm,BD=4cm.1.21.证明:在□ABCD中,AD//BC,∴∠EAO=∠FCO(两直线平行,内错角相等).∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.∵AE//CF,∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形).∵EF±AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).2.证明:∵四边形ABCD是菱形,∴AC±BD,OA=OC,OB=OD.又∵点E,F,G,H,分别是OA,OB,OC,OD 的中点,∴OE=1/2OA,OG=1/2 OG,OF= 1/2 OB,OH= 1/2 OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).∵AC⊥BD,即EG⊥HF,∴平行四边形EFGH是菱形(对角线互相垂直的平行四边形是菱形).3.解:四边形CDC′E是菱形.证明如下:由题意得,△C′DE≌△CDE.所以∠C′DE=∠CDE,C^' D=CD,CE=C^' E.又因为AD//BC,所以∠C′DE=∠CED,所以∠CDE=∠CED,所以CD=CE(等角对等边),所以CD=CE=C′E=C′D,所以四边形CDC′E是菱形(四边相等的四边形是菱形).第9页练习答案1.解:(1)如图1-1-33所示.∵四边形AB-CD是菱形,∴AB=BC=CD=DA=1/4×40=10(cm).∵对角线AC=10cm,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°.∵AD//BC,∴∠BAD+∠B=180°,∴∠BAD=180°-∠B=180°-60°=120°,∴∠BCD=∠BAD=120°,∠D=∠B=60°.(2)如图1-1-34所示,连接BD,交AC于点O,∴AO=1/2 AC= 1/2×10=5(cm).在Rt△AOB中,∠AOB=90°,由勾股定理,得BO=√(AB^2-AO^2 )=√(〖10〗^2-5^2 )=5√3 (cm),∴BD=2BO=2×5√3=10√3 (cm),∴这个菱形另一条对角线的长为10√3 cm.2.证明:在Rt△ABC中,∠ACB=90°,∠BAC=60°,∴∠B=90°-∠BAC=90°-60°=30°.∵FD是BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=30°(等边对等角).∴∠ECA=∠ACB-∠ECB=90°-30°=60°.在△AEC中,∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-∠EAC-∠ECA=180°-60°-60°=60°.∴△AEC是等边三角形,∴AC=CE.在Rt△BDE中,∠BDE=90°,∴∠BED=90°-∠B=90°-30°=60°.∴∠AEF=∠BED=60°(对顶角相等).∵AE=CF,AF=CE,∴AF=AE,∴△AEF是等边三角形(有一个角等于60°的等腰三角形是等边三角形).∴AF=EF,∴AF=EF=CE=AC,∴四边形ACEF是菱形(四边相等的四边形是菱形).1.31.证明:(1)∵四边形ABCD是菱形,∴AD=CD,AB=CB,∠A=∠C.∵BE=BF,∴AB-BE=CB-BF,即AE=CF.在△ADE和CDF中,.(2)∵△ADE≌△CDF,∴DE=DF,∴∠DEF=∠DFE(等边对等角).2.已知:如图1-1-35所示,四边形ABCD是菱形,AC和BD是对角线.求证:S菱形ABCD=1/2 AC∙BD.证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴S△AOB=S△AOD=S△BOC=S△COD=1/2 AO.BO.∴S菱形ABCD=4×1/2 AO∙BO= 1/2×2AO∙2BO=1/2 AC∙BD.3.解:在菱形ABCD中,AC⊥BD,∴∠AOB=90°,AO= 1/2 AC= 1/2×16=8,BO= 1/2 BD= 1/2×12=6. 在Rt△AOB中,由勾股定理,得AB=√(AO^2+BO^2 )=√(8^2+6^2 )=10.∵S菱形ABCD=1/2 AC∙BD= 1/2×16×12=96,又∵DH⊥AB,∴S菱形ABCD=AB∙DH,∴96=AB∙DH,即96=10DH,DH=9.6.∴菱形ABCD的高DH为9.6.4.证明:∵点E,F,G,H分别是AB,CD,AC,BD,的中点,∴GF是△ADC的中位线,EH是△ABD的中位线,∴GF//AD,GF=1/2 AD,EH//AD,EH=1/2AD,∴GF//EH,GF=EH,∴四边形EGFH是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵FH是△BDC的中位线,∴FH=1/2 BC.又∵AD=BC,∴GF=FH,∴平行四边形EGFH是菱形(一组邻边相等的平行四边形是菱形).5.略第13页练习答案解:在矩形ABCD中,AO=4,BD=AC=2AO=8.因为∠BA=90°,所以在Rt△BAD中,由勾股定理,得AD=√(BD^2-AB^2 )=√(8^2-6^2 )=2√7.所以BD与AD的长分别为8与2√7.1.41.解:如图1-2-33所示,设这个矩形为ABCD,两条对角线相交于点O,OA=OB=3.在△AOB中,∠OAB=∠OBA=45°,于是∠AOB=90°,AB=√(OB^2+OA^2 )=3√2,同理AD=3√2,所以BC=AD=3√2 AB=DC=3√2所以这个矩形的各边长都是3√2.2.解:如图1-2-34所示,设这个矩形AB-CD两条对角线相交于点O,∠AOB=60°,AC=BD=15,∴AO=1/2AC=7.5,BO=1/2 BD=7.5,∴OA=OB,∴△AOB是等边三角形,∴AB=7.5.3.解:四边形ADCE是菱形.证明如下:在Rt△ABC中,∠ACB=90°,D为AB的中点,∴CD=1/2 AB,AD= 1/2 AB,∴AD=CD.∵AE//CD,CE//AD,∴四边形ADCE是平行四边形.又∵AD=CD,∴平行四边形ADCE是菱形(一组邻边相等的平行四边形是菱形)4.已知:如图1-2-35所示,在△ABC中,BO为AC边上的中线,BO=1/2 AC.求证:△ABC是直角三角形.证明:如图1-2-35所示,延长BO到D,使BO=DO,连接AD,CD.∵AO=CO,BO=DO,∴四边形ABCD是矩形.∴∠ABC=90°.∴△ABC是直角三角形.第16页练习答案证明:∵四边形ABCDS是平行四边形,∴AB=DC.∵M是AD的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS),∴∠A=∠D.又∵AB//DC,∴∠A+∠D=180°,∴∠A=∠D=90°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).1.51.解:(1)四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).(2)当△ABC是直角三角形,即∠BAC=90°时,四边形ABEC是矩形.2.解:四边形ACBD是矩形.证明如下:如图1-2-36所示.∵CD//MN,∴∠2=∠4.∵BD平分∠ABN,∴∠1=∠4,∴∠1=∠2,∴OB=OD(等角对等边).同理可证OB=OC,∴OC=OD.∵O是AB的中点,∴OA=OB,∴四边形ACBD是平行四边形(对角线互相平分的四边形是平行四边形).又∵BC平分∠ABM,∴∠3=1/2∠ABM.∵BD平分∠ABN,∴∠1= 1/2∠ABN.∵∠ABM+∠ABN=180°,∴2∠3+2∠1=180°,∴∠3+∠1=90°,即∠CBD=90°.∴平行四边形ACBD是矩形(有一个角是直角的平行四边形是矩形)3.解:做法如下:如图1-2-37所示,(1)连接AC,BD;(2)过A,C两点分别作EF//BD,GH//BD;(3)同法作FG//AC,EH//AH,与EF,GH交于四个点E,F,G,H,则矩形EFGH即为所求,且S矩形EFGH=2S菱形ABCD.第18页练习答案证明:∵四边形ABCD是由两个全等的等边三角形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABCD是菱形.∵M,N分别是BC和AD的中点,∴DN=1/2 AD,BM= 1/2 BC,∴DN=BM.∵BN=DM,∴四边形BMDN是平行四边形.∴∠DBN=1/2∠ABD= 1/2×60°=30°,∠DBM=60°,∴∠NBM=∠DBN+∠DBM=30°+60°=90.∴平行四边形BMDN是矩形(有一个角是直角的平行四边形是矩形).1.61.解:在矩形ABCD中,AC=BD=4,∠ABC=90°,∠ACB=30°,∴AB= 1/2 AC= 1/2×4=2.在Rt△ABC中,由勾股定理,得BC=√(AC^2-AB^2 )=√(4^2-2^2 )=2√3.∴S矩形ABCD=BC∙AB=2√3×2=4√3.2.解:在矩形ABCD中,∠BAD=90°,即∠BAE+∠EAD=90°.∵∠EAD=3∠BAE,∴∠BAE+3∠BAE=90°,∠BAE=22.5°.∴∠EAD=3∠BAE=3×22.5°=67.5°.∵AE⊥BO,∴∠AEB=90°,∴∠BAE+∠ABE=90°,即22.5°+∠ABE=90°,∴∠ABE=67.5°.∵AC=BC,OA=1/2 AC,OB= 1/2 BD,∴OA=OB,∴∠OAB=∠ABE=67.5°.∵∠EAO+∠BAE=∠OAB,∴∠EAO=∠OAB-∠BAE=67.5°-22.5°=45°.3.证明:∵D是BC的中点,∴BD=CD.∵四边形ABDE是平行四边形,∴AE//BC,AE=BD,ED=AB(平行四边形的性质).∴AE=CD.∵AE//CD,∴四边形ADCE是平行四边形(一组对边平行且相等的平行四边形是矩形).∵AB=AC,∴ED=AC,∴平行四边形ADCE是矩形(一组对边平行且相等的四边形是平行四边形). ※4.解:将矩形纸片ABCD折叠,使点C与点A重合得到的图形如图1-2-38所示.折痕为EF,则AE=CE,EF垂直平分AC,连接AC交EF于点O,在矩形ABCD中,∠B=90°,BC=8cm,设CE=x cm,则AE=x cm,BE=BC-CE=(8-x)cm.在Rt△ABE中,由勾股定理,得AE²=AB²+BE²,X²=6²+(8-x)²,解得x=25/2,即EC=25/4cm.在Rt△ABC中,由勾股定理,得AC=√(AB^2+BC^2 )=√(6^2+8^2 )=10cm.∴OC=1/2=AC=1/2×10=5cm.∵EF⊥AC,∴∠EOC=90°.在Rt△EOC中,由勾股定理,得EO²=EC²-OC²,EO=√(EO^2-OC^2 )=√((25/4)^2-5^2 )=15/4 cm,∴折痕EF=2EO=2× 15/4=15/2 cm. ※5.解:如图1-2-39所示,连接PO.S矩形ABCD=AB.BC=3×4=12.在Rt△ABC中,AC=B√(AB²+BC²)=√(3²+4²)=5.又因为AC=BD,AO= 1/2 AC,DC= 1/2 BD,所以AO=DO=5/2.所以S△AOD=S△APO+S△POD= 1/2 AO.PE+ 1/2 DO∙PE= 1/2 AO(PE+PE)=1/2×5/2 (PE+PE)=5/4 (PE+PE).又因为S△AOD= 1/4 S矩形ABCD= 1/4×12=3,所以5/4 (PE+PE)=3,解得PE+PE= 12/5.第21页练习答案1.解:以正方形的四个顶点为直角顶点的等腰直角三角形共有四个,以正方形的两条对角线的交点为顶点的等腰直角三角形也有四个,所以共有八个等腰直角三角形.2.:△ADF≌△ABF,△DCF≌△BCF,△ADC≌△ABC.以△ADF≌ABF为例加以证明:∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠BAF.∵AF=AF,∴△ADF≌ABF(SAS).1.71.解:设正方形的边长为为想x cm,则x²+x²=2²,解得x=√2,即正方形的边长为√2 cm.2.解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°,AB=BC=DC.∵△CBE是等边三角形,∴BE=EC=CB,∠EBC=∠ECB=60°.∴∠ABE=30°.∴AB=BE,∴∠AEB=BAE=(180°-∠ABE)/2=(180°-30°)/2=75°.3.证明:如图1-3-24所示,∵四边形ABCD是正方形,∴AD=D,∠BAD=∠D=90°,AB=DA.∵PD=QC,∴AP=DQ∴△ABP≌△DAQ.∴BP=AQ,∠1=∠2.∵∠2+∠3=90°,∴∠1+∠3=90°,即BP⊥AQ.※4.解:过正方形两条对角线的交点任意做两条互相垂直的直线,即可将正方形分成大小,形状完全相同的四部分.答案不唯一,如图1-3-25所以方法仅供参考.第24页练习答案答案:满足对角线垂直的矩形是正方形或有一组邻边相等的矩形是正方形.满足对角线相等的菱形是正方形或有一个角是直角的菱形是正方形证明结论如下:(1)对角线垂直的矩形是正方形.(2)已知:如图1-3-7(1)多事,四边形ABCD是矩形,AC,BD是对角线,且AC⊥BD.求证:四边形ABCD是正方形.证明:∵四边形ABCD是矩形,∴AC平分BD.又∵AC⊥BD,∴AC是BD的垂直平分线.∴AB=AD.∴四边形ABCD是正方形.(4)有一个角是直角的菱形是正方形.已知,如图1-3-7(4)所示,四边形ABCD是菱形,∠A=90°.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.又AB=BC,∴矩形ABCD是正方形.1.81.答案:对角线相等的菱形是正方形.已知:如图1-3-7(3)所示,四边形ABCD是菱形,AC,BD是对角线,且AC=DC.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴AD=BC.又∵AB=BA,BD=AC,∴△ABD≌△BAC(SSS).∴∠DAB=∠CBA.又∵AD//bc,∴∠dab+∠cba=180°.∴∠DAB=∠CBA=90°.∴四边形ABCD是正方形.2.证明:∵四边形ABCD是正方形,∴AD=CB,AD//CB,∴∠ADF=∠CBE.在△ADF和=∠CBE中,∴△ADF≌△CBE(SAS),∴AF=CF,∠AFD=∠CEB.∵∠AFD+∠AFE=180°,∠CEB+∠CEF=180°,∴∠AFE=∠CEF(等角的补角相等).∴AF//CE(内错角相等,两直线平行).∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形).∵AD=AB,∴∠ADF=∠ABE.在△AFD和AEB中,∴△AFD≌△AEB(SAS).∴AF=AE,∴四边形AECF是菱形(一组邻边相等的平行四边形是菱形).3.解:四边形EFGH是正方形.在正方形ABCD中,AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°.因为AE=BF=CG=DH,所以AB-AE=BC-BF=CD-CG=AD-DH,即BE=CF=DG=AH.所以△AEH≌△BFE≌△CGF≌△DHG(SAS),所以∠AEH,HE=EF=FG=GH.所以四边形EFGH 是菱形.因为∠AEH+∠AHE=90°,所以∠DHG+∠AHE=90°,所以∠EHG=90°,所以菱形EFGH是正方形.4.解:重叠部分的面积等于正方形ABCD面积的1/4.证明如下:重叠部分为等腰直角三角形时,重叠部分为面积为正方形ABCD面积的1/4,即S△AOB=S△BOC=S△COD=S△AOD= 1/4S正方形ABCD.重叠部分为四边形是,如图1-3-26所示.设OA′与AB相交于点E,OC′与BC相交于点F.∵四边形ABCD是正方形,∴OA=OB,∠EAO=∠FBO=45°,AO⊥BD.又∵∠AOE=90°-∠EOB,∠BOF=90°-∠EOB,∴∠AOE=∠BOF,∴△AOE≌△BOF.∴S△AOE+S△BOE=S△BOE+S△BOE,∴S△AOB=S四边形EBFO.又∵S△AOB=1/4 S正方形EBFO.∴S四边形EBFO=1/4 S正方形ABCD.第一章复习题1.解:设该菱形为菱形ABCD,两对角线交于点O,则△AOB为直角三角形,直角边长分别为2cm 和4cm,则有勾股定理,得AB=√(OA^2+OB^2 )=√(2^2+4^2 )=2√5 (cm),即林习惯的边长为2√5 cm.2.解:由OA=OB=√2/2 AB,可知OA^2+OB^2=AB^2,则∠AOB=90°.因为OA=OB=OC=OD,所以AC,BD互相垂直平分且相等,故四边形ABCD必是正方形.3.解:不一定是菱形,因为也可能是矩形.4.已知:如图1-4-20所示,菱形BACD中,对角线AC,BD相交于点O,AC=60cm,周长为200cm.求(1)BD的长;(2)菱形的面积.解:(1)因为菱形四边相等,对角线互相垂直平分,所以AB=1/4×200=50(cm),AC⊥BD且OA=OC= 1/2 AC= 1/2×60=30(cm),OB=OD.在Rt△AOB中,OB=√(AB²-AO²)=√(50²-30²)=40(cm).所以BD=2OB=80cm.(2)S菱形ABCD=1/2 AC∙BD= 1/2×60×80=2 400(cm^2 ).5.已知:如图1-4-21所示,在四边形AB-CD,对角线AC⊥BD,E,F,P,Q分别为边AB,BC,CD,DA的中点.求证:四边形EFPQ为正方形.证明:∵E,Q分别为B,AD的中点,∴四边形EFPQ为平行四边形.∵AC=BD,∴EF=EQ.∴□EFPQ为菱形.∵AC⊥BD,∴EF⊥EQ.∴∠QEF=90°.∴菱形EFPQ是正方形.6.解∵AC=EC,∴∠CEA=∠CAE.由四边形ABCD是正方形.得AD//BE, ∴∠DAE=∠CEA=∠CAE.又∠DAC=∠DAE+∠CAE=45°,∴∠DAE=1/2∠DAC= 1/2×45°=22.5°.7.解:(1)是正方形,因为对角线相等的菱形必为正方形.(2)是正方形,因为这个四边形的对角线相等,四条边也相等.8.证明:如图1-4-22所示,∵AD平分∠BAC,∴∠1=∠2.∵DE//AC,∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE//AC,DF//AB,∴四边形AEDF是平行四边形.又AE=DE,∴□AEDF是菱形.9.证明:如图1-4-23所示,∵BE⊥AC,ME为Rt△BEC的中线,∴ME=1/2BC.同理MF=1/2BC,∴ME=MF.10.已知:四边形ABCD是正方形,对角线AC=BD=l.求正方形的周长和面积.解:正方形ABCD中,AB=BC,∠B=90°.在Rt△ABC中,AB²+BC²=AC²,2AB²=l²,所以AB=√2/2l.所以正方形的周长=4AB=4×√2/2 l=2√2 l,S四边形ABCD=AB^2=(√2/2 l)^2=1/2 l^2.11.证明:∵CP//BD,DP//AC,∴四边形CODP是平行四边形.∵四边形ABCD是矩形,∴AC=BD.∵OC=1/2 AC,OD= 1/2 BD,∴OC=OD∴四边形CODP是菱形(一组邻边相等的平行四边形是菱形).12.证明:∵四边形ABCD是矩形,∴AC=BD.∵OA=OC,OB=OD,又∵AM=BP=CN=DQ,∴OA-AM=OC-CN,即OM=ON,OB-BP=OD-DQ,即OP=OQ,∴四边形MPNQ是平行四边形(对角线互相平分的四边形是平行四边形).∵AM+MN+NC=AC,BP+PQ+DQ=BD,∴MN=PQ,∴四边形MPNQ是矩形(对角线相等的平行四边形是矩形).13.证明:在Rt△ABC中,∠ACB=90°,CD平分∠ACB,∴∠FCD=1/2∠ACB=45°.∵DF⊥AC,∴∠DFC=90°.在Rt△FCD中,∠FDC=90°-∠FCD=90°-45°=45°,∴∠FCD=∠FDC,∴FC=FD.∵DE⊥BC,∴∠DEC=90°.∴∠DFC=∠FCE=∠DEC=90°.∴四边形DFCE是矩形(有个三角是直角的四边形是矩形).∵FC=FD,∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).14.解:由AP=4t cm,CQ=l cm,∵四边形ABCD是矩形,∴AB=DC-CQ=(20-t)cm.∴DQ=DC-CQ=(20-t)cm.当四边形APQD是矩形时,则有DQ=AP,∴20-t=4t,解得t=4∴当t为4时,三角形APQD是矩形.15解:△BFD是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AD//BC,∴∠ADB=∠DBC.∵∠FBD=∠DBC,∵∠FBD=∠ADB,∴BF=DF.∴△BFD是等腰三角形.16.解由题意知,矩形ABCD≌矩形GCDF,∴AB=FG,BC=GC,AC=FC,∴△ABC≌△FGC,∴∠ACB=∠FCG.∵∠ACB+∠ACD=90°,∴∠FCG+∠ACD=90°,即∠ACF=90°.∵AC=CF,∴△ACF是等腰直角三角形.∴∠AFC=45°.17.解不一定,因为还可能是菱形,若要判断这块纱巾是否为正方形,还需要检验对角线是否相等.18.证明:∵四边形ABCD是平行四边形,∴BC//DA.∴∠DAB+∠ABC=180°.∵AH平分∠DAB,BH,平分∠ABC,∴∠HAB=1/2∠DAB,∠HBA= 1/2∠ABC.∴∠HAB+∠HBA=90°.∴∠H=90°.同理可证∠F=90°,∠HEF=90°.∴四边形EFGH是矩形.19.解:略.提示:如图1-4-24所示图形仅供参考.第32页练习答案1.解:设直角三角形的三边长分别为m-1,n,n+1(n>1,且n为整数,)则(n-1)²+n²=(n+1)².2.解:∵(3x+2)²=4(x-3)²,∴9x²+12x+4-4x²+24x-36=0,∴5x²+36x-32=0.其中二次项系数为5,一次项系数为36,常数项为-32.(答案不唯一)3.解:设竹竿长为x尺,则门框宽为(x-4)尺,高为(x-2)尺.由勾股定理,得(x-4)²+(x-2)^2=x²,即x²-12x+20=0. 2.11.解:(1)设这个正方形的边长是xm,根据题意,得(x+5)(x+2)=54,即x²+7x-44=0.设这三个连续整数依次为x,x+1,x+2,根据题意,得x(x+1)+x(x+2)+(x+1)(x+2)=242,即x²+2x-80=0.2.(答案不唯一)根据题意,得x(8-x)=15.整理,得x²-8x+15=0. 列表:由表格知x=5.(当x=3时,也满足方程,但不符合实际,故舍去)答:可用16m长的绳子围城一个15m²的矩形,其次为5m,宽为3m.3.解:根据题意,得10+2.5t-5t2=5,即2t²-t-2=0. 列表:所以1<t<2. 进一步列表:所以1.2<t<1.3.答:他完成规定动作的事假最多不超过1.3s.第34页练习答案解:设这五个连续整数第一个数为x,则另外四个数分别为x+1,x+2,x+3,x+4.根据题意,得(x+1)²+(x+2)²+x²=(x+3)²+(x+4)².整理,得x²-8x-20=0. 列表:∴x=-2或x=10.因此这五个连续整数依次为-2,-1,0,1,2或10,11,12,13,14.2.2 1.解:设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120,即x²+2x-120=0.列表:由表格知x=10.(当x=-12时,也满足方程,但不符合实际情况,故舍去)答:苗圃的宽为10m,长为12m.2.解:能.设矩形的长为xm,则宽为(8-x)m.第37页练习答案(1)x_1=5+√7,x_2=5-√7.(2)x_1=7+√57,x_2=7-√57.(3)x_1=(√13-3)/2,x_2=-(√3+3)/2.(4)x_1=3+√11,x_2=3-√11.2.3 1.解:(1)移项,得x²+12x=-25.配方,得x²+12x+6²=-25+36,(x+6)²=11,即x+6=√11或x+6=-√11.∴x_1=√11-6,x_2=-√11-6.(2)配方,得x²+4x+2²=10+2²,(x+2)²=14,即x+2=√14 或x2=-√14.∴x_1=√14-2,x_2=-√14-2.(3)配方,得x²-6x+(-3)²=11+(-3)²,(x-3)²=20,即x-3=2√5 或x-3=-2√5.∴x_1=2√5+3,x_2=-2√5+3.(4)化简,得x²-9x=-19,配方,得x²-9x+(-9/2)^2=-19+(-9/2)^2,(x-9/2)^2=5/4,即x-9/2=√5/2 或x- 9/2=-√5/2,∴x_1=(9+√5)/2,x_2=(9-√5)/2.2.解:设道路的宽为xm,根据题意,得(35-x)(26-x)=850.整理,得x²-61x+(-61/2)²=-60+(-61/2)².∴(x-61/2)^2=(3 481)/4.开平方,得x- 61/2=±59/2.解得x_1=1,x_2=60(不合题意,舍去).答:道路的宽应为1m.3.解:设增加69人后,增加的行数,列数都是x,则(x+8)(x+12)=69+8×12. 整理,得x²+20x=69.配方.得x²+20x+10²=69+10².∴(x+10)²=169.开平方,得x+10=±13.解得x_1=3,x_2=-23(不合题意,舍去)答:增加的行数,列数都是3.第39页练习答案解(1)移项,得3x²-9x=-2. 两边同除以3,得x²-3x=-2/3.配方,得(x-3/2)²=19/12. 开平方,得x-3/2=±√57/6.∴x_1=(9+√57)/6,x_2=(9-√57)/6.(2)移项,得2x²-7x=-6. 两边同除以2,得x²-7/2 x=-3.配方,得(x-7/4)²=1/16. 开平方,得x-7/4=±1/4.∴x_1=2,x_2=3/2.(3)移项,得4x²-8x=3. 两边同除以4,得x²-2x=3/4.配方,得(x-1)²=7/4. 开平方,得x-1=±√7/2.∴x_1=(2+√7)/2,x_2=(2-√7)/2.2.4 1.(1)x_1=1,x_2=1/6.(2)x_1=3,x_2=-6/5.(3)x_1=4,x_2=-13/4.(4)x_1=(-1+√21)/5,x_2=(-1-√21)/5.2.解:设共有x只猴子,根据题意,得x=(1/8 x)²+12.解得x1=16,x_2=48. 答:共有16只或48只猴子.3.解:如图2-2-4所示,过点Q作QH⊥AB,垂足为H. 设经过ts时,点P和点Q的距离是10cm. 则CQ=2tcm,AP=3tcm.∵四边形ABCD是矩形,∴∠B=∠C=90°.∵∠QHB=90°,∴四边形QHBC是矩形,∴BH=CQ=2t,HQ=BQ=BC=6cm,∴PH=AB-AP-BH=16-3t-2t=(16-5t)cm.在Rt△PHQ中,∠PHQ=90°,由勾股定理,得PQ²=PH²+HQ².当PQ=10cm时,10²=(16-5t)²+6². ∴(16-5t)²=64,解得t_1=8/5,t_2=24/5,经检验:t_1=8/5s, t_2=24/5 s时都符合题意,所以当t_1=8/5 s和t_2=24/5 s时,点P和点Q 的距离是10cm.第43页练习答案1.解:(1)原方程变形为2x²-7x+5=0,这里a=2,b=-7,c=5,∵b²-4ab=(-7)^2-4×2×5=9>0,∴原方程变形为4x²-4x+3=0,这里a=4,b=-4,c=3,∵b²=-32<0,∴原方程没有实数根.(3)原方程变形为4y²-2.4y+0.36=0,这里a=4,b=-2,.4,c=0.36,∵b²-4ac=(-2.4)²-4×4×0.36=5.76-5.76=0,∴原方程有两个相等的实数根.2.解:(1)∵a=2,b=-9,c=8,∴b²-4ac=(-9)²-4×2×8=17>0,∴x=(9+√17)/4,即x_1=(9+√17)/4,x_2=(9-√17)/4.(2)∵a=9,b=6,c=1,∴b²-4ab=36-4×9×1=0,∴x=(-6±0)/18=-1/3,即x_1=x_2=-1/2.(3)∵a=16,b=8,c=-3,∴b²-4ac=64-4×16×(-3)=256,∴x=(-8±√256)/32=(-8±16)/32,即x_1=1/4,x_2=-3/4.(4)原方程化为x²-3x+5=0.∵a=1,b=-3,c=5,∴b²-4ac=(-3)²-4×1×5=-11<0,∴原方程没有实数根.3.解:设中间的一条边长为n,则另两条边长分别为n-2和n+2.由勾股定理,得n²+(n-2)²=(n+2)²,解得n_1=8,n_2=0(不合题意,舍去).∴这个三角形的三条边分别为6,8,10.2.5 1.解:(1)原方程变形为5x²+x-7=0,这里a=5,b=1,c=-7,因为b²-4ac=1²-4×5×(-7)=141>0,所以原方程有两个不相等的实数根.(2)这里a=25,b=20,c=4.因为b²-4ac=20²-4×25×4=0,所以原方程有两个相等的实数根.(3)原方程变形为4x²+3x+1=0,这里a=4,b=3,c=1,因为b²-4ac=3²-4×4×1=-7<0,2.解:(1)∵a=2,b=-4,c=-1,∴b²-4ab=16-4×2×(-1)=24>0,∴x=(-b±√(b^2-4ac))/2a=(4±2√6)/4,∴x_1=(2+√6)/2,x_2=(2-√6)/2.(2)5x+2=3x²变形为3x²-5x-2=0.∵a=3,b-5,c=-2,∴b²-4ac=25-4×3×(-2)=49>0,∴x=(-b±√(b²-4ac))/2a=(5±7)/6,∴x_1=2,x_2=-1/3.(3)(x-2)(3x-5)=1变形为3x²-11x+9=0.∵a=3,b=-11,c=9,∴b²-4ac=121-108=13>0,∴x=(-b±√(b^2-4ab))/2a=(11±√13)/6.∴x_1=(11+√13)/6,x_2=(11-√13)/6.(4)0.2x²+5=3/2 x变形为0.2x²-3/2 x+5=0,∵a=0.2,b=-3/2,c=5,∴b²-4ac=(-3/2)²-4×0.2×5=-7/4<0,∴原方程没有实数根.3.解:设门的高为x尺,则宽为(x-6.8)尺.根据题意,得10²=x²+(x-6.8)²整理,得2x²-13.6x-53.76=0.解得x_1=9.6,x_2=-2.8(不合题意,舍去).∴x=9.6.∴x-6.8=2.8.答:门的高度为9尺6寸,宽为2尺8寸.4.解设木箱的长为x dm,则宽为(x-5)dm,于是有8x(x-5)=528,解得x_1=11,x_2=-6(不合题意,舍去).所以x=11.所以x-5=11-5=6.答:木箱的长为11dm,宽为6dm.第44页练习答案解:根据题意,得(16-x)(12-x)=1/2×16×12.解得x_1=24(不合题意,舍去),x_2=4.∴x=4,∴图中的x为4.2.6 1.解设金色纸边的宽是x cm,根据题意,得(90+2x)(40+2x)×72%= 90×40,即x²+65x-350=0,解得x_1=5,x_2=-70(不合题意,舍去).答:金色纸边的宽是50cm.2.解:设鸡场的一边(靠墙的一边)长为xm,则另外两边长均为(40-x)/2 m.(1)若x∙(40-x)/2=180,解得x_1=20+2√10(不合题意,舍去),x_2=20-2√10.∴鸡场的面积能达到180m².若x∙(40-x)/2=200,解得x_1=x_2=20.∴鸡场的面积能达到200m².(2)若x∙(40-x)/2=250,则x²-40x+500=0,方程无实数根.∴鸡场的面积不能达到250m².3.解:设圆柱底面半径为Rcm,则15∙2πR+2πR²=200π,解得R_1=5,R_2=-0(不合题意,舍去).∴圆柱底面半径为5 cm.※4.解:如图2-3-2所示,过点P做x轴的垂线,垂足为M,根据题意,得S△pab=S梯形pmob-S△boa-S△pma,即1/2 (1+a)×14-1/2 a²-1/2×1×(14-a)=18,解得a_1=3,a_2=12.所以a的值为3或12.第47页练习答案1.解:(1)(x+2)(x-4)=0,x+2=0,或x-4=0,∴x_1=-2,x_2=4.(2)解:移项的4x(2x+1)-3(2x+1)=0,∴(2x+1)(4x-3)=0,∴2x+1=0,或4x-3=0,∴x_1=-1/2,x_2=3/4.2.解:设这个数为n,则2n²-7n=0,解得n_1=0,n_2=7/2.2.71.解:(1)(4x-1)(5x+7)=0,4x-1=0,或5x+7=0,∴x_1=1/4,x_2=-7/5.(2)原方程可变形为3x(x-1)+2(x-1)=0,即(x-1)(3x+2)=0,X-1=0,或3x+2=0,∴x_1=1,x_2=-2/3.(3)原方程可变形为(2x+3)(2x+3-4)=0,2x+3=0,或2x-1=0,∴x_1=-3/2,x_2=1/2.(4)原方程可变形为2(2x-3)²-(x+3)(x-3)=0,(x-3)(2x-6-x-3)=0,X-3=0,或x-9=0,∴x_1=3,x_2=9.2.解:(1)5(x²-x)=3(x²+x).化简,得2x²-8x=0,2x(x-4)=0,∴2x=0或x-4=0,∴x_1=0,x_2=4.(2)(x-2)²=(2x+3)².移项,得(x-2)²-(2x+3)²=0,(x-2+2x+3)(x-2-2x-3)=0,(3x+1)(-x-5)=0,∴3x+1=0或-x-5=0.∴x_1=-1/3,x_2=-5.(3)(x-2)(x-3)=12.化简,得x²-5x-6=0,∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49,∴x=(-(-5)±√49)/(2×1)=(5±7)/2,∴x_1=6,x_2=-1.(4)2x+6=(x+3)²,移项,得(x+3)²-(2x+6)=0,(x+3)²-2(x+3)=0,(x+3)(x+3-2)=0,(x+3)(x+1)=0,x+3=0或x+1=0,∴x_1=-3,x_2=-1.(5)2y²+4y=y+2,化简,得2y²+3y-2=0.∵a=2,b=3,c=-2,∴b²-4ac=3²-4×2×(-2)=25.∴x=(-3±√25)/(2×2)=(-3±5)/4,∴x_1=1/2,x_2=-2.3.解:设原正方形空地上的边长为xm,则(x-1)(x-2)=12,解得x_1=5,x_2=-12,解得x_1=5,x_2=-2(不和题意,舍去).故原正方形空地上的边长为5m. 第50页练习答案1.解:(1)∵b²-4ac=(-3)²-4×1×(-1)=13>0.∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=3,x_1 x_2=-1.(2)∵b²-4ac=2²-4×3×(-5)=64>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,x_1,x_2=-5/3.2.解:它们的答案不确定.判断方法:∵b²-4ac=6²-4×9×(-1)=72>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,,x_1 x_2=-1/9.小明的答案中x_1+x_2=(-1/3)+(-1/3)=-2/3,x_1 x_2=(-1/3)×(-1/3)=1/9≠-1/9,∴小明的答案错误.笑话的答案中x_1+x_2=(-3+3√2)+(-3-3√2)=-6≠-2/3,x_1 x_2=(-3+3√2)(-3-3√2)=-9≠-1/9,∴小华的答案错误.3.解:设它的另一个根为x_1,根据一元二次方程根与系数的关系,得3x_1=-7,x_1=-7/3,∴它的另一个根是-7/3.2.81.解:(1)原方程变形为3x²-x-1=0,∵b²-4ac=(-1)²-4×3×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2,那么x_1+x_2=1/3,x_1 x_2=-1/3.(2)原方程化简,2x²+6x-2=0,即x²+3x-1=0.∵b²-4ac=3²-4×1×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根为x_1,x_2,那么x_1+x_2=-3,x_1 x_2=-1.2.解:(1)∵a=12,b=7,c=1,∴b²-4ac=7²-4×12×1=1,∴x=(-7±√1)/(2×12)=(-7±1)/24,∴x_1=-1/4,x_2=-1/3.(2)原方程变形为0.8x²+x-0.3=0,∵a=0.8,b=1,c=-0.3,∴b²-4ac=1²-4×0.8×(-0.3)=1.96,∴x=(-1±√1.96)/(2×0.8)=(-1±1.4)/1.6,∴x_1=1/4,x_2=-3/2.(3)原方程变形为3x²-2√3 x+1=0.∵a=3,b=-2√3,c=1,∴b²-4ac=(-2√3)²-4×3×1=0,∴x=(-(-2√3)±√0)/(2×3)=(2√3)/6=√3/3.∴x_1=x_2=√3/3.(4)原方程化简,得x²-4x-8=0,配方,得x²-4x+(-2)²-(-2)²-8=0,(x-2)²=12,∴x-2=±2√3.∴x_1=2+2√3,x_2=2-2√3.3.解:设方程5x²+kx-6=0的另一根为x_1,由根与系数的关系,得2x_1=-6/5,解得x_1=-3/5.当x_1=-3/5时,2+(-3/5)=-k/5.解得k=-7.所以它的另一个根为-3/5,k的值为-7.4.解:∵a=1,b=-17,c=66,∴b²-4ac=(-17)²-4×1×66=289-264=25>0,∴方程有两个不相等的实数根.设一元一次方程x²-17x+66=0的两个实数根分别为,x_1,x_2,由根与系数的关系,得x_1+x_2=17.∵17>20,不满足三角形的两边之和大于第三边,不能构成三角形,∴这个三角形的第三边的长不可能是20.第52页练习答案解:设相遇时所走的时间为x,则10²+(3x)²=(7x-10)².解得x_1=3.5,x_2=0(不合题意,舍去).∴x=3.5.∴甲走了3.5×7=24.5(步),乙走了3.5×3=10.5(步).答:甲走了24.5步,乙走了10.5步.1.解:设赛义得到的钱数为x,则少的一笔钱为20-x,根据题意,得x²-20x+96=0.解得x_1=12,x_(2=8) (不合题意,舍去).答:赛义德到的钱数为12.2.解:设经过x s△pcq的面积为Rt△ACB面积的一半,根据题意,得1/2 (8-x)(6-x)=1/2×1/2×8×6.整理,得x²-14x+24=0.解得x_1=12(不合题意,舍去),x_2=2.答:经过2 s△PCQ的面积为Rt△ACB面积的一半.3.解:设渠道深为x m,则渠低宽为(x+0.4)m,上口宽为(x+0.4+0.6)m.根据题意,得1/2 x【(x+0.4)+(x+0.4+0.6)】=0.78,整理,得x²+0.7x-0.78=0.解得x_1=0.6,x_2=-1.3(不合题意,舍去).答:渠深为0.6m.4.解:设经过ts后P,Q两点相距25cm,∴PC=2tcm,BQ=t cm,CQ=BC-BQ=25-t(cm).在Rt△PCQ中,∠C=90°,由古定理,得PQ²=PC²+CQ²,25²=(2t)²+(25-t)².解这个方程,得t_1=0(不合题意,舍去),t_2=10.∴经过10s后P,Q两点相距25cm.第55页练习答案解:设每张贺年卡应降价x元,根据题意,得(0.3-x)(500+x/0.05×200)=180,整理,得400x²-70x+3=0.解得x_1=0.1,x_2=0.075(不合题意,舍去).答:每张贺年卡应降价0.1元.2.10 1.解:设每件应降价x元,根据题意,得(44-x)(20+5x)=1600,整理,得x²-40x+144=0.解得x_1=4,x_2=36(不合题意,舍去).答:每件应降价4元.2.解设储藏x个星期出售这批农产品可获利122 000元.根据题意,得(80-2x)(1 200+200x)-1 600x-64 000=122 000,化简,得x²-30x+225=0.解得x_1=x_2=15,所以储藏15个星期出售这批农产品可获利122 000元.3.解:设该市这两年自然保护区面积的年均增长率为x,则4.85%∙(1+x)^2=8%.解这个方程,得x_1≈0.284=28.4%,x_2≈-2.284(舍去).4.解:设该商场11,12两个月营业额的月均增长率为x,根据题意,得2 500+2 500(1+x)+2 500(1+x)²=9 100.解得x_1=0.2=20%,x_2≈-3.2(不合题意,舍去)所以该商场11,12两个月营业额的月均增长率为20%.第二章复习题1.解:设其中一个数为x,则另一个数为x-4,则x(x-4)=45,解得x_1=9,x_2=-5.当x=9是时,x-4=5;当x=-5时,x-4=-9.答:这两个数为9和5,或-5和-9.2.解:(1)x(x-14)=0,x=0,或x-14=0,所以x_1=0,x_2=14.(2)x^2+12x+27=0,(x+3)(x+9)=0,X+3=0,或x+9=0,所以x_1=-3,x_2=-9.(3)x²=x+56,x²-x-56=0,(x+7)(x-8)=0,X+7=0,或x-8=0,所以x_1=-7,x_2=8.(4)x(5x+4)=5x+4,(5x+4)(x-1)=0,5x+4=0,或x-1=0,所以x_1=-4/5,x_2=1.(5)4x²-45=31x,4x²-31x-45=0,(4x+5)(x-9)=0,4x+5=0,或x-9=0,所以x_1=-5/4,x_2=9.(6)-3x²+22x-24=0,3x²-22x+24=0,(3x-4)(x-6)=0,所以x_1=4/3,x_2=6.(7)(x+8)(x+1)=-12,X²+9x+20=0,(x+4)(x+5)=0,X+4=0,或x+5=0,所以x_1=-4,x_2=-5.(8)(3x+2)(x+3)=x+14,3x²+10x-8=0,(3x-2)(x+4)=0,3x-2=0,或x+4=0,所以x_1=2/3,x_2=-4.3.(1)解法1:原方程可化为x²+9x+18=0,(x+3)(x+6)=0,所以x_1=-3,x_2=-6.(2)解:x²-2√5 x+2=0,X²-2√5x=-2,X²-2√5 x+5=-2+5,(x-√5)²=3,x-√5=±√3,所以x_1=√5+√3,x_2=√5-√3.(3)解:(x+1)²-3(x+1)+2=0,(x+1-1)(x+1-2)=0,(x-1)=0,所以x_1=0,x_2=1.4.解:(1)∵a=2,b=1,c=-1,∴b²-4ac=1²-4×4×2(-1)=9>0,∴方程有两个不相等的实数根.(2)原方程变形为4x²-4x+1=0,∵a=4,b=-4,c=1,∴b²-4ac=(-4)²-4×4×1=16-16=0,∴方程有两个相等的实数根.(3∵a=7,b=2,c=3,b²-4ac=2²-4×7×3=-80<0,∴方程没有实数根.*5.解:(1)∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2.由根与系数的关系,得x_1+x_2=-b/a=-5/3,x_1 x_2=c/a=1/3.6解:(1)根据题意,得x²-13x+12=0,所以x1=1,x_2=12,即当x=1或x=12时,代数式x²-13x+12的值等于0.(2)由题意,得x²-13x+12=42,所以x_1=15,x_2=-2,所以当x=15或x=-2时,代数式x²-13x+12的值等于42.(3)由题意,得x²-13x+12=-4x²+18,所以x_1=3,x_2=-2/5,所以当x=3或x=-2/5时,代数式x²-13x+12的值与代数式-4x²+18的值相等.7.解:设该公司这两年缴税的年均增长率为x,由题意,得40(1+x)²=48.4.解得x_1=0.1=10%,x_2=-2.1(舍去).答:该公司这两年缴税的年均增长率为10%.8.解:设原铁皮的边长为x cm,则4(x-8)²=400.解得x_1=18,x_2=-2(不合题意,舍去).答:原铁皮的边长应为18cm.9.解:如图2-7-3所示,设小路宽为xm,由题意,得2x(15+2x)+2×20x=246.整理,得2x²+35x-123=0.解得x_1=3,x_2=-20.5(舍去).答:小路的宽为3m.10.解:设每行的座位数为x,则总行数为x+16,依题意,得x(x+16)=1 161.(x-27)(x+43)=0.解得x_1=27,x_2=-43(舍去).答:每行的座位数为27.11.解:设其中一段长为x cm,则另一段长为(56-x)cm.(1)由(x/4)²+((56+x)/4)²=100,解得x_1=24,x_2=32,所以一段长为24cm,另一段长为32cm.(2)由(x/4)²+((56-x)/4)²=196,解得x_1=0,x_2=56,所以不能剪开.(3)由(x/4)²+((56-x)/4)^2=200,解得x_1=28+4√51>56(舍去),X_2=28-4√51<0(舍去).所以面积之和不可能等于200cm^2.12.解:令3x+5=y,原方程可化为y²-4y+3=0,(y-1)(y-3)=0,解得y_1=1,y_2=3.当y=1,即3x+5=1时,x=-4/3;当y=3,即3x+5=3时,x=-2/3.所以原方程的解为x_1=-4/3,x_2=-2/3.13.解:把2+√3 代入x^2-4x+c=0中,得(2+√3)^2-4(2+√3)+c0.解得c=1.原方程的另一个根为2-√3,c的值为1.14.解:当s=200时,200=10t+3t²,解得t_1=20/3,t_2=-10(不合题意,舍去),所以行驶200m需要的时间为20/3 s.15.解法1:设水渠宽为cm,根据题意,得(92-2x)(60-x)=885×6=92x+2×60x-2x²,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.解法2:设水渠宽为xm,根据题意,得(92-2x)(60-x)=885×6,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.16.解:设应多种x颗桃树,由题意,得(100+x)(1 000-2x)=1 000×100×(1+15.2%).整理,得x²-400x+7 600=0.解得x_1=380,x_2=20.又由题意知x=380不符合题意,故舍去,因此x只能为20.答:应多种20颗桃树,产量会增加15.2%.17.解:设其中一条直角边长为x cm,则另一条直角边长为(x+1)cm,所以x²+(x+1)²=7².解得X_1=(√97-1)/2,x_2=(-√97-1)/2 (舍去).所以x+1=(√97-1)/2+1=(√97+1)/2.答:这两条直角边长分别为(√97-1)/2cm和(√97+1)/2cm.18.解:设t时后侦察船可侦侦察到这艘军舰,根据题意,有(90-30t)²+(20t)²=50².整理得13t²-54t+56=0.因为b²-4ac=(-54)²-4×13×56=4>0,所以方程有实数根,即侦察船可侦察到军舰,解得t_1=2,t_2=28/13(不合题意,舍去).答:侦察船可侦察到军舰,最早在2时后可侦察到.19.解:设到会人数为x,则有x(x-1)/2=66.整数得x^2-1x-132=0.解得x_1=12,x_2=-11(不合题意,舍去).答:这次会议到会的人数为12.20.解:设点P(x,-2x+3),一次函数y=-2x+3的图象交x轴于点A(3/2,0),交y轴于点B(0,3). ∵点P在第一象限,∴x>0,-2x+3>0,∴PD=x,PC=-2x+3.根据题意,得S_矩形OCPD=PD∙PC=1,x(-2x+3)=1.化简,得-2x²+3x-1=0,解这个方程,得x_1=1,x_2=1/2.当x=1时,-2x+3=-2×1+3=1,∴点P_1 (1,1)当x=1/2 时,-2x+3=-2× 1/2+3=2,∴点P_2 (1/2,2).∴当点P_1 (1,1)或P_2(1/2,2)时,矩形OCPD的面积为1.21.分析:由于距台风中心200km的区域受影响,所以应考虑轮船与台风中心的距离是否超过200km,如果超过200km,则会进入台风影响区.解:(1)这艘轮船不改变航向,他会进入台风影响区.理由:如图2-7-4所示,在Rt△ABC中,∠BAC=90°,BC=500km,BA=300km,由勾股定理,得AC=√(BC^2-BA^2 )=√(〖500〗^2-〖300〗^2 )=400(km).当这艘轮船不改变航向时,轮船由C地到A地的时间为400/30=13(h),台风中心由B地到A的时间为300/20=15(h).故轮船到达A地时,台风中心距离A地为300-20×40/3=331/3 (km).而331/3 km<200km,所以这艘轮船不改变航向会进入台风影响区.(2)设从接到报警开始,经过th这艘轮船就会进入台风影响区,则CD=30t km,BE=20t km,AD=AC-CD=(400-30t)km,AE=AB-BE=(300-20t)km,DE=200km.在Rt△DAE中,由勾股定理,得AD²+AE²=DE²,即(400-30t)²+(300-20t)²=200².整理,得13t²-360t+2 100=0,解得t_1≈8.35,t_2≈19.34.所以从接到报警开始,经过8.35h它就会进入台风影响区.※22.解:设该银行一年定期存款的年利率是x,根据题意,得【2 000(1+x)-1 00】+【2 000(1+x)-1 000】x=1 107.45.化简,得(1 000+2 000x)(1+x)=1 107.45400x²+600x-21.49=0.解这个方程,得x_1=0.035=3.5%,x_2=-1.535(不合题意,舍去).所以该银行一年定期存款的年利率是3.5%.第61页练习答案解:列表如下:或画树状图如图3-1-13所示:由表或树状图可知总共有4中结果,每中结果出现的可能性相同,其中恰好是白色上衣和白色裤子的结果有一种,所以,P(白色上衣和白色裤子)=1/4.3.1 1.解:列表如下:(1)由表可知,一次实验中两张牌的牌面数字和有2,3,4.(2)两张牌的牌面数字和为3的概率最大.(3)P(和为3)=3/4=1/2.2.解:列表如下:由表可知:(1)两次都摸到红球的概率为1/4;(2)连词摸到不同颜色的去的概率为2/4=1/2.(3)解:可能性相同.因为掷一枚硬币正反面朝上的概率都是1/2.第64页练习答案解:设三张大小一样而画面不同的画片分别为A,B,C,将出现的可能结果列表如下:由表可知,出现的总结过有9种,能拼成原来的一幅画的结果有(A上,A下),(B上,B下,)(C上,C下)三种,所以P(两张恰好能拼成原来的一幅画)=3/9=1/3.3.2 1.解:将出现的可能结果列表如下:由表可知,(1)两张牌的牌面数字和等于1的概率为0;(2)两张牌的牌面数字和等于2的概率为1/9;(3)两张牌的牌面数字和为4的概率最大;(4)两张牌的牌面数字和大于3的概率是6/9=2/3.2.解:将出现的可能结果列表如下:由表可知,(1)两人都左拐左拐的概率为1/9;。
北师大版九年级数学 九年级数学(北师大版)上册校本作业:3.1用树状图或表格求概率(1)
北师大版九年级数学 3.1.1用树状图或表格求概率设计人:陈培
一、填空题:
用列表的方法求下列各事件发生的概率,并用所得的结果填空.
1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是;
2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三
2.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对小明、小芳公平吗?试说明理由.。