无限脉冲响应滤波器的设计
数字信号处理第三版西科大课后答案第6章
λp=1,
s
s p
4
(4) 求阶数N和ε。
N arch k 1
arch s
k 1
100.1as 1 100.1ap 1 1456.65
N arch 1456.65 3.8659 arch 4
为了满足指标要求, 取N=4。
100.1ap 1 0.2171
(3) 求归一化系统函数G(p)
3.2361p 1
或
G( p)
1
( p2 0.618 p 1)( p2 1.618 p 1)( p 1)
当然, 也可以先按教材(6.2.13)式计算出极点:
p ejπ
1 2
2k 1 2N
k
k 0,1, 2,3, 4
再由教材(6.2.12)式写出G(p)表达式为
G( p) 4 1
( p pk )
p1
ch0.5580 sin
π 8
j
ch0.5580 cos
π 8
0.4438
j1.0715
3π
3π
p2 ch0.5580sin 8 j ch0.5580 cos 8 1.0715 j0.4438
p3
ch0.5580 sin
5π 8
j
ch0.5580 cos
5π 8
1.0715
j0.4438
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到
6无限脉冲响应数字滤波器的设计
p=2fp=104(rad/s), α p=2dB
s=2fs=2.4×104(rad/s), α s=30dB
(2Nk) ss确pp 定22滤l11gll00g波g0ff00ps...101k器aa2pssspp4的k2N2=s.s11pp4阶数022l.N11g000l20fgf004ps...10212aa2.ps4422k.N114sspp40.2.220l511g2,00l40fgf002ps...取1021Naa2.ps4N422为.1145540.2.052, 42N 5
N
4.25, N 5
lg 2.4
(3) 求极点
j 3 j 3
s0 sP00e5e ,5 ,
p e s s e e , , j 12k1 20 20N
j 3j 3 55
k
sP11
j 4
s1e5e
j 45s2Ps22
eje,j
,
s1 s1
j 4j 4
e e5 5
s2
e j ,
j 6j 6
FIR滤波器设计方法 (1)采用的是窗函数设计法和频率采样法, (2)用计算机辅助的切比雪夫最佳一致逼近法设计。
6.2 模拟滤波器的设计
理论和设计方法相当成熟,有若干典型的模拟滤波器可以选
择。如:巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤
波器、椭圆(Kllipse)滤波器、贝塞尔(Bessel)滤波器等,这些滤波 器都有严格的设计公式、现成的曲线Ha和H(jΩa (图)jΩ)表供设计人HH员aa (j使ΩΩ)) 用。
j 1 2 k1
p e 归一化极点 k
2 2N
第5章无限长单位脉冲响应(IIR)数字滤波器的设计方法
|ω|≤ωp
在阻带内,幅度响应以误差小于δ2而逼近于零,即
| H ( e jω ) |≤ δ 2
ωs≤|ω|≤π
式中,ωp, ωs分别为通带截止频率和阻带截止频率,它们都是 数字域频率。幅度响应在过渡带(ωs-ωp)中从通带平滑地下降 到阻带,过渡带的频率响应不作规定。
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
5.1.2 滤波器的技术指标 理想滤波器(如理想低通滤波器)是非因果的, 其单位脉冲响 应从-∞延伸到+∞, 因此,无论用递归还是非递归方法, 理想滤 波器是不能实现的, 但在概念上极为重要。 一般来说,滤波器的性能要求往往以频率响应的幅度特性的 允许误差来表征。以低通滤波器为例,如图5-2(称容限图)所 示, 频率响应有通带、 过渡带及阻带三个范围(而不是理想的 陡截止的通带、阻带两个范围)。图中δ1为通带的容限,δ2为阻 带的容限。
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
无限长单位脉冲响应(IIR) 第5章 无限长单位脉冲响应(IIR) 数字滤波器的设计方法
5.1 基本概念 5.2 IIR滤波器设计的特点 滤波器设计的特点 5.3 常用模拟低通滤波器的设计方法 5.4 用脉冲响应不变法设计 用脉冲响应不变法设计IIR数字滤波器 数字滤波器 5.5 用双线性变换法设计IIR数字滤波器 用双线性变换法设计 数字滤波器 5.6 设计 设计IIR滤波器的频率变换法 滤波器的频率变换法 5.7 Z平面变换法 平面变换法
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
5.1.3 FIR型滤波器和 型滤波器 型滤波器和IIR型滤波器 型滤波器和 数字滤波器按单位脉冲响应h(n)的时域特性可分为无限长脉 冲响应IIR(Infinite Impulse Response)滤波器和有限长脉冲响应 FIR(Finite Impulse Response)滤波器。 IIR滤波器一般采用递归型的实现结构。其N阶递归型数字滤 波器的差分方程为
第3章 无限长单位脉冲响应(IIR)滤波器的设计方法
ˆ H a ( s)
[ha (t ) (t nT )]e
n
st
dt
n
h
ha (t ) (t nT )e st dt
nsT
n
a
(nT )e
n
h(n )e nsT
H ( z)
ut e e u nT e u n e u n
nT 3nT
T n 3T n
1 1 H ( z) 1 T 1 z e 1 z 1e 3T
z (e e ) 1 z 1 (e T e 3T ) e 4T z 2
数字滤波器的设计步骤: 1)按照实际需要确定滤波器的性能要求。 2)用一个因果稳定系统的 H(z) 或 h(n) 去逼近这个 性能要求,即求 h(n) 的表达式。 确定系数 a i 、 bi 或零极点 c i 、 d,以使滤波器 i 满足给定的性能要求——第三章、四章讨论 3)用一个有限精度的运算去实现这个系统函数。包 括 选择运算结构:如级联型、并联型、卷积型、频 率采样型以及快速卷积(FFT)型等; 选择合适的字长和有效数字的处理方法等(第五 章)。
这时数字滤波器的频响才能不失真地重现模拟滤 波器的频响(存在于折叠频率ΩS/2以内)
H (e
j
1 ) Ha ( j ) T T
但任何一个实际的模拟滤波器,其频响都不可能 是真正带限的,因此不可避免地存在频谱的交叠, 即混淆,如图,这时,数字滤波器的频响将不同于 原模拟滤波器的频响而带有一定的失真。模拟滤波 器频响在折叠频率以上衰减越大,失真则越小,这 时,采用脉冲响应不变法设计的数字滤波器才能得 到良好的效果。
iir数字滤波器的设计matlab
iir数字滤波器的设计matlab摘要:1.IIR数字滤波器简介2.MATLAB在IIR数字滤波器设计中的应用3.设计实例与分析4.结论正文:一、IIR数字滤波器简介IIR(无限脉冲响应)数字滤波器是数字信号处理中的重要组成部分,其设计方法与模拟滤波器设计密切相关。
在设计IIR数字滤波器时,需要确定采样间隔或采样频率,将数字滤波器的指标转化为模拟滤波器的指标,然后根据模拟滤波器的指标设计模拟滤波器。
最后,通过冲激响应不变法和双线性变换法,将模拟滤波器的冲激响应转化为数字滤波器的冲激响应。
二、MATLAB在IIR数字滤波器设计中的应用MATLAB以其强大的计算和仿真能力,在数字滤波器设计中得到了广泛的应用。
设计师可以利用MATLAB的函数和工具箱,方便地实现IIR数字滤波器的设计、仿真和分析。
三、设计实例与分析以下是一个基于MATLAB的IIR数字滤波器设计实例:1.确定设计指标:通带截止频率为1kHz,阻带截止频率为2kHz,通带波纹小于1dB,阻带衰减大于40dB。
2.利用MATLAB的函数,如freqz、butter等,设计模拟低通滤波器。
3.将模拟滤波器的参数转化为数字滤波器的参数,如采样频率、阶数等。
4.利用MATLAB的函数,如impulse、bode等,对数字滤波器进行仿真和分析。
四、结论通过以上实例,可以看出MATLAB在IIR数字滤波器设计中的重要作用。
它不仅提供了方便的设计工具,还能实时地展示滤波器的性能,大大提高了设计效率和精度。
此外,IIR数字滤波器的设计方法和MATLAB的应用也可以推广到其他数字信号处理领域,如音频处理、图像处理等。
数字信号处理 第6章
H ( z ) h( n) z n
n 0
N 1
(6.1.2)
(6.1.1)式中的H(z)称为N阶IIR数字滤波器系统函数; (6.1.2) 式中的H(z)称为N-1阶FIR数字滤波器系统函数。这两种 数字滤波器的设计方法有很大区别,因此下面分成两章分 别进行学习。
第6章 无限脉冲响应数字滤波器的设计
s 20 lg
| H (e j0 ) |
j s
dB
(6.1.4b)
p 20 lg | H (e
j p
) | dB
(6.1.5)
s 20 lg | H (e js ) | dB
(6.1.6)
第6章 无限脉冲响应数字滤波器的设计
当幅度下降到 2 / 2 时,标记ω=ωc,此时 p 3dB,称 ωc为3 dB通带截止频率。ωp、ωc和ωs统称为边界频率, 它们是滤波器设计中所涉及到的很重要的参数。对其他 类型的滤波器,(6.1.3b)式和(6.1.4b)式中的H(ej0)应改 成
拟滤波器得到系统函数Ha (s),然后将Ha(s)按某种方法转
换成数字滤波器的系统函数H(z)。这是因为模拟滤波器的 设计方法已经很成熟,不仅有完整的设计公式,还有完善
的图表和曲线供查阅; 另外,还有一些典型的优良滤波
器类型可供我们使用。直接法直接在频域或者时域中设计 数字滤波器,由于要解联立方程,设计时需要计算机辅助 设计。FIR滤波器不能采用间接法,常用的设计方法有窗 函数法、频率采样法和切比雪夫等波纹逼近法。
第6章 无限脉冲响应数字滤波器的设计
图6.1.3所示的单调下降幅频特性,p和s别可以表
示为
p 20 lg
| H (e j0 ) | | H (e
iir数字滤波
iir数字滤波摘要:1.IIR数字滤波器简介2.IIR数字滤波器的设计方法a.模拟滤波器转换为数字滤波器的主要方法b.脉冲响应不变法3.IIR数字滤波器的应用a.语音信号处理b.音频采样与重构4.MATLAB实现IIR数字滤波器设计5.总结与展望正文:一、IIR数字滤波器简介IIR(无限脉冲响应)数字滤波器是一种具有反馈结构的数字滤波器。
它以其较少的计算量和较高的性能优势在数字信号处理领域得到广泛应用。
IIR数字滤波器的设计主要依赖于模拟滤波器的设计,通过将模拟滤波器转换为数字滤波器,可以实现对数字信号的滤波处理。
二、IIR数字滤波器的设计方法1.模拟滤波器转换为数字滤波器的主要方法从模拟滤波器转换为数字滤波器主要有以下几种方法:(1)脉冲响应不变法:这种方法适用于系统函数可以用部分分式分解成单阶极点和滤波器是一个带限系统的情况。
它使数字滤波器的冲击响应等于模拟滤波器的单位冲击响应的采样值,数字滤波器的脉冲响应与模拟滤波器的脉冲响应相似。
2.脉冲响应不变法的设计过程(1)以时间间隔t对模拟滤波器的单位冲击响应进行采样,得到数字滤波器的冲击响应h(n)。
(2)通过Z变换映射,将s平面的左半平面映射为z平面的单位圆内。
因此,一个因果的和稳定的模拟滤波器可以映射成因果的和稳定的数字滤波器。
三、IIR数字滤波器的应用1.语音信号处理:IIR数字滤波器在语音信号处理中具有广泛应用,可以用于去除噪声、增强语音信号等方面的处理。
2.音频采样与重构:在音频采样与重构领域,IIR数字滤波器可以用于对音频信号进行滤波处理,提高音频信号的质量。
四、MATLAB实现IIR数字滤波器设计MATLAB是一款强大的数学计算软件,可以用于实现IIR数字滤波器的设计。
在MATLAB中,可以使用现有的函数和工具箱方便地设计IIR数字滤波器,如zp2tf()、lp2lp()等。
五、总结与展望IIR数字滤波器作为一种重要的数字滤波技术,在实际应用中具有广泛的前景。
无限脉冲响应滤波器的设计
它可写为
sk 1 CN ( )j j p r
切比雪夫多项式的任一定义都可求解分母的 根。现在选第一个公式求解分母的根。先设
3
模拟滤波器的幅频特性|H(Ω)|用分贝表示 时叫衰减函数,
| H ( ) | 2 max A( ) 10lg (分贝) | H ( ) | 2
如果|H(Ω)|max=1,则衰减函数变为
A( ) 20lg | H ( ) | (分贝)
幅频特性的平方|H(Ω)|2 叫做幅度平方响应, 也是描述模拟滤波器的方法。因h(t)是实数, 故H*(Ω)=H(-Ω)。
N决定幅频特性的波动密度和过渡带宽度,r 决定幅频特性波动的幅度。 将s=jΩ代入幅度平方函数,得
H ( )
2
( j p ) 2 N r 2 2 2( N 1) ( s s1 )(s s 2 ) ( s s 2 N )
14
其分母有2N个根。求解的依据是
sk 1 r C ( ) 0 (k 1 ~ N ) j p
2N
( j c ) 2 N 2N s ( j c ) 2 N
s 1 j c ( j c ) 2 N ( s s1 )(s s2 ) ( s s2 N )
s 2 N ( jc ) 2 N 0 求解的依据是:
6
因-1= ej(2πk-π),k=1~2N,故极点
12
7.1.3 切比雪夫滤波器的设计 切比雪夫滤波器有两种类型:
切比雪夫1型滤波器的幅度平方函数
| H ( ) | 2 1 1 [rC N ( / p )]2
13
切比雪夫多项式的定义
cos[N arccos(x)] (| x | 1) C N ( x) (| x | 1) ch[ Narch( x)]
河海大学-通信工程-DSP实验4
实验四无限长单位脉冲响应滤波器设计班级:姓名:学号:一、实验目的1、掌握双线形变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线形变换法及脉冲响应不变法设计低通,高通和带通IIR数字滤波器的计算机编程。
2、观察双线形变换法及脉冲响应不变法设计的滤波器的频域特性,了解双线形变换法及脉冲响应不变法的特点。
3、熟悉巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器的频率特性。
;二、实验原理1、将模拟滤波器的参数指标通过频率变换转换为原型模拟低通滤波器的参数指标,设计满足指标要求的原型模拟低通滤波器,通过频率变换将原型模拟低通滤波器的系统函数变换为其他类型的模拟滤波器2、脉冲响应不变法是使数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应hs(t),让h(n)正好等于hs(t)的采样值。
3、双线性变换法使得s平面与z平面是一一映射关系,消除了多值变换性,克服了脉冲响应不变法产生的频响的混叠失真。
4、巴特沃思滤波器通带内有最大平坦的幅度特性且随着频率的升高而单调的下降和切比雪夫滤波器逼近误差峰值在一个规定的频段上位最小。
三、实验内容1、fc=0.3kHz,δ=0.8dB,fr=0.2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
2、fc=0.2kHz, δ=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
比较这两种方法的优缺点。
3、利用双线性变换法分别设计满足下列指标的巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器,并作图验证设计结果:fc=1.2kHz, δ<=0.5dB,fr=2kHz,At>=40dB,fs=8kHz。
4、分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字带通滤波器,已知fs=3kHz,其等效的模拟滤波器指标为δ<3kHz, 2kHz<f<=3kHz, At>=5dB, f>=6kHz, At>=20dB,f<=1.5kHz。
滤波器设计中的自适应无限脉冲响应滤波器
滤波器设计中的自适应无限脉冲响应滤波器滤波器在信号处理中起着至关重要的作用,能够去除信号中的噪声和干扰,提取出我们所关注的有用信息。
而自适应无限脉冲响应滤波器(Adaptive Infinite Impulse Response Filter,AIIR Filter)作为一种常用的滤波器设计方法,具有很高的灵活性和适应性。
本文将探讨自适应无限脉冲响应滤波器的设计原理和应用。
一、自适应无限脉冲响应滤波器概述自适应无限脉冲响应滤波器是一种根据输入信号自动调整滤波器参数的滤波器。
其核心原理是根据输入信号与期望输出信号之间的误差来迭代调整滤波器的系数,使得输出信号尽可能接近期望输出信号。
自适应无限脉冲响应滤波器通常采用递归系统结构,具有无限冲击响应(IIR)的特点。
二、自适应无限脉冲响应滤波器设计方法自适应无限脉冲响应滤波器的设计方法主要包括以下几个步骤:1. 确定滤波器类型:根据具体应用需求,选择适合的滤波器类型,如低通滤波器、高通滤波器、带通滤波器等。
2. 确定滤波器阶数:滤波器阶数决定了滤波器的复杂程度和性能,需要根据实际情况进行选择。
3. 选择自适应算法:自适应无限脉冲响应滤波器的核心是自适应算法,常见的算法有LMS算法、RLS算法等,需要根据不同应用场景选择合适的算法。
4. 初始化滤波器系数:在开始滤波之前,需要对滤波器的系数进行初始化。
一般可以选择随机初始化或者根据经验值进行设置。
5. 迭代调整滤波器系数:根据输入信号与期望输出信号之间的误差,使用自适应算法迭代调整滤波器的系数。
迭代的次数取决于滤波器的收敛速度和性能要求。
6. 验证滤波器性能:在滤波器设计完成后,需要对滤波器进行性能验证,包括幅频响应、相频响应等。
三、自适应无限脉冲响应滤波器的应用自适应无限脉冲响应滤波器在许多领域都有广泛的应用,主要包括以下几个方面:1. 语音处理:自适应无限脉冲响应滤波器可以用于语音信号去噪、语音增强等应用,能够有效改善语音质量。
fir和iir滤波器原理
fir和iir滤波器原理FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器是两种常见的数字滤波器类型。
它们在信号处理中有着广泛的应用,如音频处理、图像处理、数据压缩等。
本篇文章将详细介绍FIR和IIR滤波器的原理,包括其基本概念、数学模型、设计方法以及应用。
一、基本概念FIR滤波器是一种线性时不变滤波器,其输出仅取决于当前的输入和过去的FIR滤波器系数。
IIR滤波器则不同,它的输出不仅取决于当前的输入,还取决于过去的输出和滤波器系数。
二、数学模型1.FIR滤波器:FIR滤波器的传递函数可以表示为系统单位冲击响应的有限长度。
其数学模型为H(z)=∑nx(n)*z(-n),其中x(n)是输入信号,H(z)是输出信号,z(-n)是z的逆,n是滤波器阶数,∑是求和。
2.IIR滤波器:IIR滤波器的传递函数通常表示为一个线性微分方程。
其数学模型为H(z,θ)=∑θ(n)*z(-n)+u(n),其中H(z,θ)是输出信号,u(n)是输入信号,θ(n)是滤波器系数,z(-n)和∑是同FIR滤波器一样。
三、设计方法1.FIR滤波器设计:通常采用窗函数法、频率采样法和等波纹设计法。
窗函数法通过选择合适的窗函数来减少滤波器的相位失真;频率采样法通过采样频率来设计滤波器;等波纹设计法通过调整滤波器系数来使滤波器输出与输入信号的频谱保持一致。
2.IIR滤波器设计:IIR滤波器的设计方法相对复杂,包括零极点配对、长项法和映射法等。
通常需要根据特定需求来选择合适的设计方法,同时注意系统的稳定性、频率响应和稳定性失真等指标。
四、应用FIR和IIR滤波器在各种领域都有广泛应用,包括音频处理、图像处理、通信、数据压缩等。
FIR滤波器在音频处理中常用于消除音频信号中的噪声,改善音质;在图像处理中常用于降噪和图像增强。
IIR滤波器在通信中常用于消除干扰信号,改善通信质量;在数据压缩中常用于降低数据冗余,提高数据传输效率。
五、总结FIR和IIR滤波器是数字信号处理中的重要工具,它们各自有其特点和适用范围。
Matlab中的滤波器设计和滤波器分析方法
Matlab中的滤波器设计和滤波器分析方法滤波器是数字信号处理中非常重要的工具,用于对信号进行去噪、频率调整等操作。
Matlab作为一种强大的数值计算软件,提供了多种滤波器设计和分析的方法,使得滤波器的应用变得相对简单而高效。
本文将介绍Matlab中的滤波器设计和滤波器分析方法,并进行深入的讨论。
1. 滤波器设计方法滤波器设计的目标是根据信号的特性和需求,选择合适的滤波器类型,并确定滤波器的参数。
Matlab中提供了多种滤波器设计方法,包括FIR和IIR滤波器设计。
FIR滤波器设计是指有限脉冲响应滤波器的设计。
FIR滤波器具有线性相位和稳定性的特点,适用于需要高阶滤波器的场合。
Matlab中常用的FIR滤波器设计函数有fir1和fir2,它们可以根据设计参数生成滤波器的系数。
IIR滤波器设计是指无限脉冲响应滤波器的设计。
IIR滤波器具有低阶滤波器实现高阶滤波器的能力,但其相位响应不是线性的,设计较为复杂。
Matlab中常用的IIR滤波器设计函数有butter、cheby1、cheby2和ellip,它们可以根据设计参数生成滤波器的系数。
2. 滤波器分析方法滤波器设计完成后,需要对滤波器的性能进行分析,以验证其是否符合预期要求。
Matlab提供了多种滤波器分析方法,包括时域分析、频域分析和频率响应分析。
时域分析是指对滤波器的输入输出信号进行时域波形和功率谱的分析。
Matlab中的时域分析函数有filter和conv,它们可以对滤波器的输入信号进行卷积运算,得到输出信号的时域波形。
频域分析是指对滤波器的输入输出信号进行频谱分析,以研究信号的频率特性。
Matlab中的频域分析函数有fft和ifft,它们可以分别对信号进行快速傅里叶变换和傅里叶逆变换,得到信号的频谱。
频率响应分析是指对滤波器的幅频特性和相频特性进行分析。
Matlab中的频率响应分析函数有freqz和grpdelay,它们可以分别计算滤波器的幅度响应和相位响应,并可可视化显示。
无限脉冲响应数字滤波器的设计
a
27
只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即:
Ha(j)0
| |
T
s 2
才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响 应,而不产生混叠失真,即
H(ej)Haj T ,||<
但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后 就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真。这时 数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。
17
a
18
a
19
例 已 知 通 带 截 止 频 率 fc=5kHz , 通 带 最 大 衰 减 Rp=2dB , 阻 带 截 止 频 率 fs=12kHz , 阻 带 最 小 衰 减 As=30dB,按照以上技术指标设计巴特沃斯低通滤波器。
解 (1) 求阶数N
Nlg(1 1 0 0 0 0 ..1 1 R A s p 1 1)/2lg( sp t)4.25 , 取 N5
c p / 2N 100.1Rp 1 c s / 2N 100.1As 1
总结以上,低通巴特沃斯滤波器的设计步骤如下: (1)根据技术指标Ωp,Rp,Ωst和As,求出滤波器的阶数N。 (2)确定滤波器极点。 (3)确定系统函数Ha(s)。
a
16
表 巴特沃斯归一化低通滤波器参数
查P370 表7.2 7.3a7.4
设计方法: 先设计模拟低通滤波器,再通过频率变换的方法将低通滤波 器转换为其它类型的滤波器。
a
7
H a (jΩ)
H a (jΩ)
低通
高通
0
Ω0
Ω
H a (jΩ)
H a (jΩ)
Matlab中的滤波器设计方法详解
Matlab中的滤波器设计方法详解滤波器在信号处理中起着至关重要的作用,能够对信号进行去噪、去除干扰、增强所需频谱等操作。
Matlab作为一种强大的数学计算工具,提供了丰富的滤波器设计方法。
本文将详细介绍Matlab中常用的滤波器设计方法,包括FIR和IIR滤波器的设计原理和实现步骤。
一、FIR滤波器的设计方法FIR滤波器全称为有限脉冲响应滤波器,其特点是具有线性相位和稳定性。
在Matlab中,常用的FIR滤波器设计方法有窗函数法、最小二乘法和频率抽取法。
1. 窗函数法窗函数法是最简单直观的FIR滤波器设计方法。
它的基本思想是,在频域上用一个窗函数乘以理想滤波器的频率响应,再进行频域到时域的转换,得到滤波器的冲激响应。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
Matlab中,我们可以使用fir1函数进行窗函数法滤波器设计。
该函数的输入参数包括滤波器阶数、归一化截止频率和窗函数类型。
通过设计不同阶数和不同窗函数的滤波器,可以得到不同性能的滤波器。
2. 最小二乘法最小二乘法是一种优化方法,通过最小化滤波器的输出与目标响应之间的均方误差来设计滤波器。
在Matlab中,我们可以使用fir2函数进行最小二乘法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量和响应向量。
通过调整频率向量和响应向量,可以实现对滤波器的精确控制。
3. 频率抽取法频率抽取法是一种有效的FIR滤波器设计方法,能够实现对特定频带的信号进行滤波。
在Matlab中,我们可以使用firpm函数进行频率抽取法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量、增益向量和权重向量。
通过调整频率向量、增益向量和权重向量,可以实现对滤波器的灵活控制。
二、IIR滤波器的设计方法IIR滤波器全称为无限脉冲响应滤波器,其特点是具有非线性相位和多项式系数。
在Matlab中,常用的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
1. 巴特沃斯滤波器巴特沃斯滤波器是一种最常用的IIR滤波器,其特点是具有最平滑的通带和最陡峭的阻带。
数字信号处理--第6章无限脉冲响应数字滤波器的设计
1 0 0.1a p 1 k sp 1 0 0.1as 1 0 .0 2 4 2
sp
2 2
fs fp
2.4
N lg 0.0242 4.25, N 5 lg 2.4
2019/10/17
数字信号处理
(2) 按照(6.2.12)式,其极点为
j3
s0 e 5 ,
滤波器幅频特性。其幅度平方函数用A2(Ω)表示:
A2()Ha(j)2 12C1N 2( p)
(6.2.19)
2019/10/17
数字信号处理
2019/10/17
图6.2.5 切比雪夫Ⅰ型滤波器幅频特性
数字信号处理
式中,ε为小于1的正数,表示通带内幅度波动的 程度,ε愈大,波动幅度也愈大。Ωp称为通带截止频率。 令λ=Ω/Ωp,称为对Ωp的归一化频率。CN(x)称为N阶切 比雪夫多项式,定义为
数字信号处理
2019/10/17
数字信号处理
2019/10/17
数字信号处理
例6.2.1 已知通带截止频率fp=5kHz,通带最大衰减 αp=2dB , 阻 带 截 止 频 率 fs=12kHz , 阻 带 最 小 衰 减 αs=30dB,按照以上技术指标设计巴特沃斯低通滤波器。
解 (1) 确定阶数N。
(6.2.3) (6.2.4)
以上技术指标用图6.2.2表示。图中Ωc称为3dB截止 频率,因 H a (j c ) 1 /2 , 2 0 lg H a (j c ) 3 d B
2019/10/17
数字信号处理
2019/10/17
图6.2.2 低通滤波器的幅度特性
数字信号处理
滤波器的技术指标给定后,需要设计一个传输函
butterworth滤波器 的matlab实现 -回复
butterworth滤波器的matlab实现-回复[butterworth滤波器的matlab实现]引言:滤波器在信号处理中起着至关重要的作用。
而butterworth滤波器是一种常用的滤波器设计方法,其具有平坦的幅频响应和相位特性。
本文将详细介绍如何使用MATLAB实现butterworth滤波器,并提供完整的代码示例。
第一步:了解butterworth滤波器设计原理butterworth滤波器是一种IIR(无限脉冲响应)滤波器,其特点是在通带具有平坦的幅频响应,同时在阻带具有Monotonic响应。
它的设计方法基于巴特沃斯极点的位置,这些极点分布在圆形轨迹上。
当设计一个butterworth滤波器时,我们需要指定滤波器的阶数和截止频率。
阶数决定了滤波器的陡峭度,而截止频率定义了通带和阻带之间的边界。
第二步:导入MATLAB信号处理工具箱在实现butterworth滤波器之前,我们需要导入MATLAB的信号处理工具箱。
通过执行以下语句,可以载入工具箱:matlab>> toolbox = 'Signal Processing Toolbox';>> if ~license('test', toolbox)>> disp('Signal Processing Toolbox is not available.');>> end如果工具箱已安装并可用,将显示一条消息来确认其可用性。
第三步:设计butterworth滤波器在MATLAB中,我们可以使用`butter`函数来设计butterworth滤波器。
此函数的语法如下:matlab[b, a] = butter(n, Wn, 'ftype')其中,`n`是滤波器的阶数,`Wn`是截止频率(以Nyquist频率标准化),`ftype`是滤波器类型(如`'low'`、`'high'`、`'bandpass'`等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可整理ppt
14
如此可得到系统函数
第六章 无限脉冲响应滤波器的设计
Ha(s)
(s
s0
1)(s
1 s1 1)(s
s2
1)
3c
j2
j2(sce 3 )(s来自)(sce 3 )可整理ppt
15
第六章 无限脉冲响应滤波器的设计
由于各滤波器的幅频特性不同,为使设计统一,
将所有的频率归一化。这里采用对3dB截止频率Ωc归
1
第六章 无限脉冲响应滤波器的设计
6.1 数字滤波器的基本概念
数字滤波器指用运算的方法改变数字信号的频率 分量的相对比例的器件。与模拟滤波器相比,数字滤 波器的精度高、稳定、体积小、重量轻、灵活、不要 求阻抗匹配?等优点。
1. 数字滤波器的分类
从网络结构或者单位脉冲响应分类:
无限脉冲响应(IIR)滤波器
3. 数字滤波器的设计方法 IIR滤波器设计方法是:
从模拟滤波器变到数字滤波器的设计, 直接在离散频域或时域中设计。 FIR滤波器的设计方法是: 窗函数法, 频率采样法。
可整理ppt
6
第六章 无限脉冲响应滤波器的设计
6.2 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟, 有若干典型的模拟滤波器供我们选择,如巴特沃斯 (Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、 椭圆(Ellipse)滤波器、贝塞尔(Bessel)滤波器等,这些 滤波器都有严格的设计公式、现成的曲线和图表供设 计人员使用。
图6.1.2 低通滤可整波理器ppt 的技术要求
4
第六章 无限脉冲响应滤波器的设计
通带和阻带内都允许有衰减误差。允许的衰减用
dB数表示。通带内允许的最大衰减用αp表示,阻带内
允许的最小衰减用αs表示。αp和αs分别定义为:
H (e j0 ) p 2 0 l g H ( e ) j p d B
(6.1.3)
H (e j0 ) s 2 0 l g H ( e ) j s d B
(6.1.4)
如将|H(ej0)|归一化为1,(6.1.3)和(6.1.4)式则表示成:
p 20lg H(e jp ) dB
s 20lg H(e js ) dB
可整理ppt
(6.1.5)
(6.1.6)
5
第六章 无限脉冲响应滤波器的设计
π
0
π
带通
H (e j )
π
0
π
带阻
H (e j )
π
0
π
可整理ppt
2π
2π
2π
2π
3
第六章 无限脉冲响应滤波器的设计
2 数字滤波器的技术要求 假设数字滤波器的传输函数H(ejω)用下式表示:
H(ej)H(ej)ej()
选频滤波器的技术指标只要求幅频特性。
线性相位滤波器的技术指标则两样都要求。
第六章 无限脉冲响应滤波器的设计
第6章 无限脉冲响应滤波器的设计
6.1 数字滤波器的基本概念 6.2 模拟滤波器的设计 6.3 用脉冲响应不变法设计IIR数字低通滤波器 6.4 用双线性变换法设计IIR数字低通滤波器 6.5 数字高通、带通和带阻滤波器的设计 6.6 IIR 数字滤波器的直接设计法
可整理ppt
1
j(12k 1)
sk( 1)2N(j c) ce 2 2N
它们均匀的分布在半径为Ωc的圆上,间隔是π/N弧度。
可整理ppt
13
第六章 无限脉冲响应滤波器的设计
例如N=3的三阶巴特沃斯滤波器,为形成稳定的滤波器, 在6个极点中取s平面左半平面的3个极点构成Ha(s),而右半 平面的3个极点构成Ha(-s)。三阶巴特沃斯滤波器的极点分 布如下:
16
第六章 无限脉冲响应滤波器的设计
式中,pk为归一化极点,用下式表示:
j(12k1)
1.模拟低通滤波器的指标和设计方法
模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。其 中Ωp和Ωs分别称为通带截止频率和阻带截止频率,αp 是通带Ω(=0~Ωp)中的最大衰减系数,αs是阻带Ω≥Ωs的 最小衰减系数,αp和αs一般用dB数表示。对于单调下 降的幅度特性,可表示成:
p 10 lg
H a( j0) 2
2
H a ( j p )
s 10 lg
H a( j0) 2 H a ( j s ) 2
可整理ppt
9
第六章 无限脉冲响应滤波器的设计
以上技术指标用低通滤波器的幅度特性图表示。图中 Ωc称为3dB截止频率?
可整理ppt
10
第六章 无限脉冲响应滤波器的设计
模拟低通滤波器的设计方法是:
设计模拟滤波器是先设计低通滤波器,再把低通 滤波器变换为希望的滤波器。
可整理ppt
7
H a (jΩ)
第六章 无限脉冲响应滤波器的设计 H a (jΩ)
低通
高通
0
Ω0
Ω
H a (jΩ)
H a (jΩ)
带通
c
Ω0
带阻 Ω
图6.2.1 各种理想滤波器的幅频特性
可整理ppt
8
第六章 无限脉冲响应滤波器的设计
(1)根据滤波器的技术指标设计传输函数Ha(s)的幅度平 方函数,它与系统函数有关系
Ha(j)2 Ha(s)Ha(s)|sj Ha(j)Ha*(j) 上式的关系从Ha(s)的因式相乘表达式推出。 (2)根据幅度平方函数和系统的极点应该在s的左半平面, 求出传递函数。
可整理ppt
11
第六章 无限脉冲响应滤波器的设计
有限脉冲响应(FIR)滤波器
可整理ppt
M
brzr
H (z)
r0 N
1
a k z k
k 1
N 1
H ( z ) h ( n ) z n
n0
2
从功能上来分类:
低通滤波器
2π
高通滤波器
2π
带通滤波器
2π
带阻滤波器
2π
第六章 无限脉冲响应滤波器的设计
低通
H (e j )
π
0
π
高通
H (e j )
一化,归一化后的Ha(s)表示为
Ha(s)
N 1
(
1 s
sk
)
k0 c c
(6.2.10)
式中,s/Ωc=jΩ/Ωc。
令λ=Ω/Ωc,λ称为归一化频率;令p=jλ,p称为归 一化复变量,这样归一化巴特沃斯的传输函数为
Ha ( p) N1 1
( p pk )
k 0
(6.2.11)
可整理ppt
2. 巴特沃斯低通滤波器的设计方法 巴特沃斯低通滤波器的幅度平方函数用下式和图表示。
想一想阶数N与幅频特性下降坡度的关系?
Ha(
j)
2
1(
1
)2N
c
可整理ppt
12
第六章 无限脉冲响应滤波器的设计
为了求出幅度平方函数,将|Ha(jΩ)|2写成s的函数:
Ha(s)Ha(s) 1(
1 s
)2N
此幅度平方函数有2N个极j点c ,极点