2019年成人高考专升本数学一复习考试大纲

合集下载

2019年成人高考专升本考试大纲—高等数学(一)共8页

2019年成人高考专升本考试大纲—高等数学(一)共8页

2019年成人高考专升本考试大纲高等数学(一)注意:本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。

总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

复习考试内容一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。

会求函数的表达式、定义域及函数值。

会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。

2019年四川成人高考专升本-《高等数学(一)》考试真题及答案!

2019年四川成人高考专升本-《高等数学(一)》考试真题及答案!

2019年四川成人高考专升本-《高等数学(一)》考试真题及答案!本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,x+x²+x³+x⁴为x的【A】A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小【考情点拨】本题考查了等价无穷小的知识点.【考情点拨】,故x+x²+x³+x⁴是的等价无穷小.2. 【D】A.-e²B.-eC.eD.e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】3.设函数y=cos2x,则y'=【B】A.2sin2xB.-2sin2xC.sin2xD.-sin2x【考情点拨】本题考查了复合函数的导数的知识点.【应试指导】y'=(cos2x)'=-sin2x·(2x)'=-2sin2x.4.设函数f(x)在[a,b]上连续,在(a,b)可导,f'(x)>0,f(a)f(b)<0,则f(x)在(a,b)内零点的个数为【C】A.3B.2C.1D.0【考情点拨】本题考查了零点存在定理的知识点.【应试指导】由零点存在定理可知,f(x)在(a,b)上必有零点,且函数是单调函数,故其在(a,b)上只有一个零点.5.设2x为f(x)的一个原函数,则f(x)=【B】A.0B.2C.x²D.x²+C【考情点拨】本题考查了函数的原函数的知识点.【应试指导】由题可知∫f(x)dx=2x+C,故f(x)=(∫f(x)dr)'=(2x+C)'=2.6.设函数f(x) =arctan x,则∫f'(x)dx=【C】A.-arctanx+CB.-(1/(1+x²))+CC.arctanx+CD.(1/(1+x²))+C【考情点拨】本题考查了不定积分的性质的知识点.【应试指导】∫f'(x)dx=f(x) +C=arctanx+C7.设则【A】A.I₁>I₂>I₃B.I₂>I₃>I₁C.I₃>I₂>I₁D.I₁>I₃>I₂【考情点拨】本题考查了定积分的性质的知识点.【应试指导】在区间(0,1)内,有x²>x³>x⁴,由积分的性质可知。

2019年数学一考试大纲(最新版)

2019年数学一考试大纲(最新版)

2019年数学一考试大纲(最新版)考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green )公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss )公式 斯托克斯(Stokes )公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace )定理 列维-林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2019年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.【解题指导】计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.【解题指导】28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

2019年数学一考试大纲

2019年数学一考试大纲

2019年數學一考試大綱考試科目:高等數學、線性代數、概率論與數理統計考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內容結構高等數學 約56%線性代數 約22%概率論與數理統計 約22%四、試卷題型結構單選題 8小題,每小題4分,共32分填空題 6小題,每小題4分,共24分解答題(包括證明題) 9小題,共94分高等數學一、函數、極限、連續考試內容函數の概念及表示法 函數の有界性、單調性、周期性和奇偶性 複合函數、反函數、分段函數和隱函數 基本初等函數の性質及其圖形 初等函數 函數關系の建立數列極限與函數極限の定義及其性質 函數の左極限和右極限 無窮小量和無窮大量の概念及其關系 無窮小量の性質及無窮小量の比較 極限の四則運算 極限存在の兩個准則:單調有界准則和夾逼准則 兩個重要極限:0sin lim 1x x x →= 1lim 1x x e x →∞⎛⎫+= ⎪⎝⎭函數連續の概念 函數間斷點の類型 初等函數の連續性 閉區間上連續函數の性質 考試要求1.理解函數の概念,掌握函數の表示法,會建立應用問題の函數關系.2.了解函數の有界性、單調性、周期性和奇偶性.3.理解複合函數及分段函數の概念,了解反函數及隱函數の概念.4.掌握基本初等函數の性質及其圖形,了解初等函數の概念.5.理解極限の概念,理解函數左極限與右極限の概念以及函數極限存在與左極限、右極限之間の關系.6.掌握極限の性質及四則運算法則.7.掌握極限存在の兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限の方法.8.理解無窮小量、無窮大量の概念,掌握無窮小量の比較方法,會用等價無窮小量求極限.9.理解函數連續性の概念(含左連續與右連續),會判別函數間斷點の類型.10.了解連續函數の性質和初等函數の連續性,理解閉區間上連續函數の性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質.二、一元函數微分學考試內容導數和微分の概念 導數の幾何意義和物理意義 函數の可導性與連續性之間の關系 平面曲線の切線和法線 導數和微分の四則運算 基本初等函數の導數 複合函數、反函數、隱函數以及參數方程所確定の函數の微分法 高階導數 一階微分形式の不變性 微分中值定理 洛必達法則 函數單調性の判別 函數の極值 函數圖形の凹凸性、拐點及漸近線 函數圖形の描繪 函數の最大值與最小值 弧微分 曲率の概念 曲率圓與曲率半徑考試要求1.理解導數和微分の概念,理解導數與微分の關系,理解導數の幾何意義,會求平面曲線の切線方程和法線方程,了解導數の物理意義,會用導數描述一些物理量,理解函數の可導性與連續性之間の關系.2.掌握導數の四則運算法則和複合函數の求導法則,掌握基本初等函數の導數公式.了解微分の四則運算法則和一階微分形式の不變性,會求函數の微分.3.了解高階導數の概念,會求簡單函數の高階導數.4.會求分段函數の導數,會求隱函數和由參數方程所確定の函數以及反函數の導數.5.理解並會用羅爾定理、拉格朗日中值定理和泰勒定理,了解並會用柯西中值定理.6.掌握用洛必達法則求未定式極限の方法.7.理解函數の極值概念,掌握用導數判斷函數の單調性和求函數極值の方法,掌握函數最大值和最小值の求法及其應用8.會用導數判斷函數圖形の凹凸性(注:在區間(,)a b 內,設函數()f x 具有二階導數.當()0f x ''>時,()f x の圖形是凹の;當()0f x ''<時,()f x の圖形是凸の),會求函數圖形の拐點以及水平、鉛直和斜漸近線,會描繪函數の圖形.9.了解曲率、曲率圓與曲率半徑の概念,會計算曲率和曲率半徑.三、一元函數積分學考試內容原函數和不定積分の概念 不定積分の基本性質 基本積分公式 定積分の概念和基本性質 定積分中值定理 積分上限の函數及其導數 牛頓-萊布尼茨(Newton-Leibniz )公式 不定積分和定積分の換元積分法與分部積分法 有理函數、三角函數の有理式和簡單無理函數の積分 反常(廣義)積分 定積分の應用考試要求1.理解原函數の概念,理解不定積分和定積分の概念.2.掌握不定積分の基本公式,掌握不定積分和定積分の性質及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函數、三角函數有理式和簡單無理函數の積分.4.理解積分上限の函數,會求它の導數,掌握牛頓-萊布尼茨公式.5.了解反常積分の概念,會計算反常積分.6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形の面積、平面曲線の弧長、旋轉體の體積及側面積、平行截面面積為已知の立體體積、功、引力、壓力、質心、形心等)及函數の平均值.四、向量代數和空間解析幾何考試內容向量の概念向量の線性運算向量の數量積和向量積向量の混合積兩向量垂直、平行の條件兩向量の夾角向量の坐標表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程の概念平面方程直線方程平面與平面、平面與直線、直線與直線の夾角以及平行、點到平面和點到直線の距離球面柱面旋轉曲面常用の二次曲面方程及其圖形空間曲線の參數方程和一般方程空間曲線在坐標面上の投影曲線方程考試要求1.理解空間直角坐標系,理解向量の概念及其表示.2.掌握向量の運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行の條件.3.理解單位向量、方向數與方向餘弦、向量の坐標表達式,掌握用坐標表達式進行向量運算の方法.4.掌握平面方程和直線方程及其求法.5.會求平面與平面、平面與直線、直線與直線之間の夾角,並會利用平面、直線の相互關系(平行、垂直、相交等))解決有關問題.6.會求點到直線以及點到平面の距離.7.了解曲面方程和空間曲線方程の概念.8.了解常用二次曲面方程及其圖形,會求柱面和旋轉曲面の方程.9.了解空間曲線の參數方程和一般方程.了解空間曲線在坐標平面上の投影,並會求該投影曲線の方程.五、多元函數微分學考試內容多元函數の概念,二元函數の幾何意義,二元函數の極限與連續の概念有界閉區域上多元連續函數の性質多元函數の偏導數和全微分,全微分存在の必要條件和充分條件,多元複合函數、隱函數の求導法 ,二階偏導數,方向導數和梯度,空間曲線の切線和法平面曲面の切平面和法線,二元函數の二階泰勒公式,多元函數の極值和條件極值,多元函數の最大值、最小值及其簡單應用.考試要求1.理解多元函數の概念,理解二元函數の幾何意義.2.了解二元函數の極限與連續の概念以及有界閉區域上連續函數の性質.3.理解多元函數偏導數和全微分の概念,會求全微分,了解全微分存在の必要條件和充分條件,了解全微分形式の不變性.4.理解方向導數與梯度の概念,並掌握其計算方法.5.掌握多元複合函數一階、二階偏導數の求法.6.了解隱函數存在定理,會求多元隱函數の偏導數.7.了解空間曲線の切線和法平面及曲面の切平面和法線の概念,會求它們の方程.8.了解二元函數の二階泰勒公式.六、多元函數積分學考試內容二重積分與三重積分の概念、性質、計算和應用兩類曲線積分の概念、性質及計算兩類曲線積分の關系格林(Green)公式平面曲線積分與路徑無關の條件二元函數全微分の原函數兩類曲面積分の概念、性質及計算兩類曲面積分の關系高斯(Gauss)公。

2019年数学一考试大纲

2019年数学一考试大纲

2019年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构【一】试卷总分值及考试时间试卷总分值为150分,考试时间为180分钟、【二】答题方式答题方式为闭卷、笔试、【三】试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%【四】试卷题型结构单项选择题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题〔包括证明题〕9小题,共94分高等数学【一】函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数差不多初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四那么运算极限存在的两个准那么:单调有界准那么和夹逼准那么两个重要极限:0sin lim 1x x x →=1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系、2、了解函数的有界性、单调性、周期性和奇偶性、3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念、4、掌握差不多初等函数的性质及其图形,了解初等函数的概念、5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系、6、掌握极限的性质及四那么运算法那么、7、掌握极限存在的两个准那么,并会利用它们求极限,掌握利用两个重要极限求极限的方法、8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限、9、理解函数连续性的概念〔含左连续与右连续〕,会判别函数间断点的类型、10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值和最小值定理、介值定理〕,并会应用这些性质、【二】一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四那么运算差不多初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达〔L ’Hospital 〕法那么函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系、2、掌握导数的四那么运算法那么和复合函数的求导法那么,掌握差不多初等函数的导数公式、了解微分的四那么运算法那么和一阶微分形式的不变性,会求函数的微分、3、了解高阶导数的概念,会求简单函数的高阶导数、4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数、5、理解并会用罗尔〔Rolle 〕定理、拉格朗日〔Lagrange 〕中值定理和泰勒〔Taylor 〕定理,了解并会用柯西〔Cauchy 〕中值定理、6、掌握用洛必达法那么求未定式极限的方法、7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用、8、会用导数判断函数图形的凹凸性〔注:在区间(,)a b 内,设函数()f x 具有二阶导数、当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的〕,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形、9、了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径、【三】一元函数积分学考试内容原函数和不定积分的概念不定积分的差不多性质差不多积分公式定积分的概念和差不多性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨〔Newton-Leibniz 〕公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常〔广义〕积分定积分的应用考试要求1、理解原函数的概念,理解不定积分和定积分的概念、2、掌握不定积分的差不多公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法、3、会求有理函数、三角函数有理式和简单无理函数的积分、4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式、5、了解反常积分的概念,会计算反常积分、6、掌握用定积分表达和计算一些几何量与物理量〔平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为的立体体积、功、引力、压力、质心、形心等〕及函数的平均值、【四】向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1、理解空间直角坐标系,理解向量的概念及其表示、2、掌握向量的运算〔线性运算、数量积、向量积、混合积〕,了解两个向量垂直、平行的条件、3、理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法、4、掌握平面方程和直线方程及其求法、5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系〔平行、垂直、相交等〕〕解决有关问题、6、会求点到直线以及点到平面的距离、7、了解曲面方程和空间曲线方程的概念、8、了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程、9、了解空间曲线的参数方程和一般方程、了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程、【五】多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1、理解多元函数的概念,理解二元函数的几何意义、2、了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质、3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性、4、理解方向导数与梯度的概念,并掌握其计算方法、5、掌握多元复合函数一阶、二阶偏导数的求法、6、了解隐函数存在定理,会求多元隐函数的偏导数、7、了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程、8、了解二元函数的二阶泰勒公式、9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题、六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林〔Green〕公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯〔Gauss〕公式斯托克斯〔Stokes〕公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1、理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理、2、掌握二重积分的计算方法〔直角坐标、极坐标〕,会计算三重积分〔直角坐标、柱面坐标、球面坐标〕、3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系、4、掌握计算两类曲线积分的方法、5、掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数、6、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分、7、了解散度与旋度的概念,并会计算、8、会用重积分、曲线积分及曲面积分求一些几何量与物理量〔平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等〕、七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的差不多性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间〔指开区间〕和收敛域幂级数的和函数幂级数在其收敛区间内的差不多性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶〔Fourier 〕系数与傅里叶级数狄利克雷〔Dirichlet 〕定理函数在[,]l l -上的傅里叶级数函数在[0,]l 上的正弦级数和余弦级数考试要求1、理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的差不多性质及收敛的必要条件、2、掌握几何级数与p 级数的收敛与发散的条件、3、掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法、4、掌握交错级数的莱布尼茨判别法、5、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系、6、了解函数项级数的收敛域及和函数的概念、7、理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法、8、了解幂级数在其收敛区间内的差不多性质〔和函数的连续性、逐项求导和逐项积分〕,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和、9、了解函数展开为泰勒级数的充分必要条件、10、掌握xe ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林〔Maclaurin 〕展开式,会用它们将一些简单函数间接展开为幂级数、11、了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式、八、常微分方程考试内容常微分方程的差不多概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利〔Bernoulli 〕方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉〔Euler 〕方程微分方程的简单应用考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念、2、掌握变量可分离的微分方程及一阶线性微分方程的解法、3、会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程、4、会用降阶法解以下形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=、5、理解线性微分方程解的性质及解的结构、6、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程、7、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程、8、会解欧拉方程、9、会用微分方程解决一些简单的应用问题、线性代数【一】行列式考试内容行列式的概念和差不多性质行列式按行〔列〕展开定理考试要求1、了解行列式的概念,掌握行列式的性质、2、会应用行列式的性质和行列式按行〔列〕展开定理计算行列式、【二】矩阵考试内容式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质、2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质、3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵、4、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法、5、了解分块矩阵及其运算、【三】向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1、理解n维向量、向量的线性组合与线性表示的概念、2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法、3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩、4、理解向量组等价的概念,理解矩阵的秩与其行〔列〕向量组的秩之间的关系、5、了解n维向量空间、子空间、基底、维数、坐标等概念、6、了解基变换和坐标变换公式,会求过渡矩阵、7、了解内积的概念,掌握线性无关向量组正交规范化的施密特〔Schmidt〕方法、8、了解规范正交基、正交矩阵的概念以及它们的性质、【四】线性方程组考试内容线性方程组的克拉默〔Cramer〕法那么齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l、会用克拉默法那么、2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件、3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法、4、理解非齐次线性方程组解的结构及通解的概念、5、掌握用初等行变换求解线性方程组的方法、【五】矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量、2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法、3、掌握实对称矩阵的特征值和特征向量的性质、六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理、2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形、3、理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计【一】随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的差不多性质古典型概率几何型概率条件概率概率的差不多公式事件的独立性独立重复试验考试要求1、了解样本空间〔差不多事件空间〕的概念,理解随机事件的概念,掌握事件的关系及运算、2、理解概率、条件概率的概念,掌握概率的差不多性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯〔Bayes 〕公式、3、理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法、【二】随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率、2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松〔Poisson 〕分布()P λ及其应用、3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布、4、理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5、会求随机变量函数的分布、【三】多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率、2、理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件、3、掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义、4、会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布、【四】随机变量的数字特征考试内容随机变量的数学期望〔均值〕、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征〔数学期望、方差、标准差、矩、协方差、相关系数〕的概念,会运用数字特征的差不多性质,并掌握常用分布的数字特征、2、会求随机变量函数的数学期望、【五】大数定律和中心极限定理考试内容切比雪夫〔Chebyshev 〕不等式切比雪夫大数定律伯努利〔Bernoulli 〕大数定律辛钦〔Khinchine 〕大数定律棣莫弗-拉普拉斯〔DeMoivre-Laplace 〕定理列维-林德伯格〔Levy-Lindberg 〕定理考试要求1、了解切比雪夫不等式、2、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律〔独立同分布随机变量序列的大数定律〕、3、了解棣莫弗-拉普拉斯定理〔二项分布以正态分布为极限分布〕和列维-林德伯格定理〔独立同分布随机变量序列的中心极限定理〕、六、数理统计的差不多概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩2χ分布t 分布F 分布分位数正态总体的常用抽样分布考试要求1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==--∑ 2、了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算、3、了解正态总体的常用抽样分布、七、参数可能考试内容点可能的概念可能量与可能值矩可能法最大似然可能法可能量的评选标准区间可能的概念单个正态总体的均值和方差的区间可能两个正态总体的均值差和方差比的区间可能考试要求1、理解参数的点可能、可能量与可能值的概念、2、掌握矩可能法〔一阶矩、二阶矩〕和最大似然可能法、3、了解可能量的无偏性、有效性〔最小方差性〕和一致性〔相合性〕的概念,并会验证可能量的无偏性、4、理解区间可能的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间、八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1、理解显著性检验的差不多思想,掌握假设检验的差不多步骤,了解假设检验可能产生的两类错误、2、掌握单个及两个正态总体的均值和方差的假设检验、。

2019年年成人高考专升本高等数学一考试大纲.doc

2019年年成人高考专升本高等数学一考试大纲.doc

( 包括零点定理 )
(4) 初等函数的连续性
2. 要求
(1) 理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系, 掌握函数 ( 含分段函数 ) 在一点处的连续性的判断方法
(2) 会求函数的间断点
(3) 掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题 (4) 理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学
三、导数与微分
1 知识范围
(1) 导数概念
导数的定义, 左导数与右导数, 函数在一点处可导的充分必要条件, 物理意义,可导与连续的关系
导数的几何意义与
(2) 求导法则与导数的基本公式
导数的四则运算反函数的导数导数的基本公式
(3) 求导方法
复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法, 求分段函数的导数
本概念、基本理论和基奉方法正确地推理证明,准确地计算
; 能综合运用所学知识分析并解
决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次
;
对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次
.
复习考内容
一、极限
1. 知识范围
(1) 数列极限的概念与性质
数列极限的定义
(4) 两个重要极限
2. 要求
(1) 理解极限的概念 ( 对极限定义中
等形式的
描述不作要求 ) 会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必
要条件
(2) 了解极限的有关性质,掌握极限的四则运算法则
(3) 理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关 系会进行无穷小量的比较 ( 高阶、低阶、同阶和等价 ) 会运用等价无穷小量代换求极限

成人高考专升本高数一复习资料

成人高考专升本高数一复习资料

精品文档. 成人高考高数一复习资料第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容](一)数列的极限1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。

为数列的一般项或通项,例如(1)1,3,5,…,,…(2)(3)(4)1,0,1,0,…,…都是数列。

在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。

2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n 趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限靠近点A。

(二)数列极限的性质定理1.1(惟一性)若数列收敛,则其极限值必定惟一。

定理1.2(有界性)若数列收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

定理 1.3(两面夹定理)若数列,,满足不等式且。

定理1.4若数列单调有界,则它必有极限。

下面我们给出数列极限的四则运算定理。

定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。

专升本 成考数学必背知识点复习提纲

专升本 成考数学必背知识点复习提纲

专升本成考数学必背知识点复习提纲
1. 复数
- 复数的定义和表示方法
- 复数的四则运算
- 复数的共轭和模
2. 数列与数列极限
- 等差数列和等差数列的通项公式
- 等比数列和等比数列的通项公式
- 数列的极限和收敛性
3. 函数与极限
- 函数的定义和性质
- 函数的基本运算
- 无穷小和无穷大
- 极限的定义和性质
- 极限的计算方法
4. 导数与微分
- 导数的定义和性质
- 导数的基本运算法则
- 高阶导数
- 微分的定义和性质
5. 积分与定积分
- 定积分的定义和性质
- 定积分的计算方法
- 积分运算法则
6. 三角函数
- 弧度与角度的关系
- 正弦函数、余弦函数和正切函数的定义和性质- 三角函数的基本关系式
7. 平面几何
- 直线的方程和性质
- 圆的方程和性质
- 直线与圆的位置关系
8. 空间几何
- 空间中点、向量和坐标的表示方法
- 空间图形的性质和判定方法
9. 概率与统计
- 随机事件与概率的定义
- 计数原理
- 离散型随机变量和连续型随机变量的概念和性质
- 统计量和统计分布的概念和性质
备注:以上为必背知识点的复提纲,建议根据重要性和难度进行合理安排复时间。

成人高考专升本高数一复习资料

成人高考专升本高数一复习资料

成人高考高数一复习资料、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。

为数列的一般项或通项,例如(1)1,3,5,…,, (2)(3)(4)1,0,1,0,…,…都是数列。

在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。

2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点定理1.1(惟一性)若数列收敛,则其极限值必定惟一。

定理1.2(有界性)若数列收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

定理1.3(两面夹定理)若数列,,满足不等式且。

定理1.4若数列单调有界,则它必有极限。

下面我们给出数列极限的四则运算定理。

定理1.5(1)(2)(3)当1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作例如函数或当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。

2019《高等数学》考纲

2019《高等数学》考纲

浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。

考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。

考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

2.掌握函数的单调性、奇偶性、有界性和周期性。

3.理解函数y=ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。

4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。

5.掌握基本初等函数的性质及其图像。

6.理解初等函数的概念。

7.会建立一些简单实际问题的函数关系式。

(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。

理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。

会比较无穷小量的阶(高阶、低阶、同阶和等价)。

会运用等价无穷小量替换求极限。

4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。

(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。

会判断分段函数在分段点的连续性。

2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

2019数学大纲word精品文档8页

2019数学大纲word精品文档8页

2019年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(T aylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档