高中数学2(必修)立体几何初步水平检测题
(压轴题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)(3)
三、解答题
21.如图,在四棱锥 中, 平面 ,四边形 是直角梯形, , , , .
(1)证明:平面 平面 ;
(2)求三棱锥 的体积.
22.如图(1)在 中, , 、 、 分别是 、 、 边的中点,现将 沿 翻折,使得平面 平面 .如图(2)
故选:A.
【点睛】
本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.
5.D
解析:D
【分析】
先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.
【详解】
由三视图可知几何体为图中的四棱锥 ,
由题得 ,所以几何体的高为 .
【详解】
如图, 是 的外心, 是球心, 平面 ,当 是 的延长线与球面交点时, 到平面 距离最大,
由 , ,得 ,则 ,
, ,
, ,
又 ,
所以最大的 .
故选:A.
【点睛】
本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时 点在球面上的位置,根据球的性质易得结论.当底面 固定, 是 外心,当 平面 ,且球心 在线段 上时, 到平面 距离最大.
圆锥的体积 .
当且仅当 ,即 时取等号.
该圆锥体积的最小值为 .
内切球体积为 .
该圆锥体积与其内切球体积比 .
故选:A.
【点睛】
方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.古代数学名著《数学九章》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈即10尺)( ) A .30尺 B .32尺 C .34尺 D .36尺 3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 4.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+5.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β6.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM的距离为( )A .6aB .6aC .2aD .12a 7.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.3P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( )A .73 B 287 C 1919 D .193π 9.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 10.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622+. 其中正确结论的个数是( )A .1B .2C .3D .412.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B .455C 5D .2513.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m 14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个 二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线116.如图所示的四棱锥E-ABCD中,底面ABCD为矩形,AE=EB=BC=2,AD⊥平面ABE,且CE上的点F满足BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥C-AEB的体积.17.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=∠=,ADC︒C,105 ==,现将四边形ABCD沿BD折起,使得平面ABD⊥平面BDC (如图乙),设2AB BD点E,F分别是棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)求三棱锥A BEF -的体积.18.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.19.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.20.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 21.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.24.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.C解析:C【分析】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长,画出图形,即可求出葛藤长.【详解】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长. 如图所示矩形ABCD 中,30AD =尺,2816AB =⨯=尺, 所以葛藤长2222301634AC AD AB =+=+=尺.故选:C .【点睛】本题考查圆柱的侧面展开图,考查学生的空间想象能力,属于基础题. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN . 在1H C G 中,2212222C G =+=2212222C H =+=22GH =,所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】 本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.5.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.6.A解析:A 【分析】根据等体积法有11A CDM C A DM V V --=得解. 【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h , 在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为3a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.7.D解析:D 【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出11222HI CD a == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上, 正方体1111ABCD A B C D -中的棱长为a , 1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题.8.B解析:B 【分析】根据三棱锥的体积求出S △ABC 33,在三角形ABC 中,根据余弦定理和正弦定理求出△ABC 外接圆的半径r 的最小值,从而可求出外接球半径的最小值和外接球体积的最小值. 【详解】设AB =c ,BC =a ,AC =b 313×S △ABC ×2,解得S △ABC 33. 因为∠ABC =120°,S △ABC 3312ac sin 120°,所以ac =6, 由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =2.设△ABC 外接圆的半径为r ,则sin120b=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6.如图,设O 1为△ABC 外接圆的圆心,D 为PA 的中点,R 为球的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,易得OO 1=1,R 2=r 2+OO =r 2+1,当r min =6时,2min R =6+1=7,R min =7,故球O 体积的最小值为43π3min R =437)3287. 故选:B 【点睛】本题考查了三棱锥的体积公式,考查了球的体积公式,考查了正弦定理,考查了余弦定理,属于中档题.9.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=6R =, 故截面面积的最大值为2263πππ2R ==⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,122OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.10.C解析:C 【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果. 【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误; 对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C . 【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD =+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.12.C解析:C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.13.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.B解析:B 【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假. 【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①. 所以一共两个命题正确. 故选:B 【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2)85【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果. 【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =, 所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN , 所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅17554417252+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解. 【详解】 (1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG , ∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点, ∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又BF ⊥平面ACE ,则AE ⊥BF , ∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△.【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). 17.(1)证明见解析;(2)312. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ; (2)利用等体积法进行转化计算即可. 【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥,图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =, ∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥, 又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=, 又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ; (2)因为点E ,F 分别是棱AC ,AD 的中点, 所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.18.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =,由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.19.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.20.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又tan tan AD BC ABD BAC AB AB∠==∠== ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()(),,0,2,0,0,0,B C D P t ,则()BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =, 则00n BD n DP ⎧⋅=⎨⋅=⎩,即2020y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为1,3,n t ⎛= ⎪ ⎪⎝⎭,所以cos ,48PC n PC n PC n⋅==因为22144515175t t +++=≥,当且仅当t = 所以5c 3353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题21.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.22.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案;【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA .∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥,又二面角E GH B --的大小为90°,∴90AOE ∠=︒,即EO AO ⊥,∴EO ⊥平面ABCD ,∴EO BD ⊥,又AB BC =,∴AO BD ⊥, AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF ,由(1)知BD ⊥平面EOA ,∴BD QF ⊥,∴QF ⊥平面EBD ,∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,10EB =,2BM =,6EM =,30AE =, 由()222222(2)22QB AE AB BE QB +=+⇒=, 62QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形,所以//AG MN .又因为22213PM PA AM =+=+=22123MC MB BC =+=+= 所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥.又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD .(2)设点B 到平面MNC 的距离为h ,因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】 关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键.24.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 ,又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中121,2C C OC ==∴在1Rt C OC ∆中,11tan 2C C C OC OC∠== 故二面角1C BD C --的正切值为2 .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题. 25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(3)
19.若三棱锥 的底面是以 为斜边的等腰直角三角形, , ,则该三棱锥的外接球的表面积为__________.
20.水平放置的 的斜二测直观图如图所示,已知 ,则 中 边上的中线的长度为_______ .
A.点 在某个定球面上运动;
B. 与水平地面所成锐角记为 ,直线 与水平地面所成角记为 ,则 为定值;
C.可能在某个时刻, ;
D.直线 与平面 所成角的正弦值的最大值为 .
2.已知三棱柱 的所有顶点都在球O的表面上,侧棱 底面 ,底面 是正三角形, 与底面 所成的角是45°.若正三棱柱 的体积是 ,则球O的表面积是()
一、选择题
1.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点 处,“大摆锤”启动后,主轴 在平面 内绕点 左右摆动,平面 与水平地面垂直, 摆动的过程中,点 在平面 内绕点 作圆周运动,并且始终保持 , .设 ,在“大摆锤”启动后,下列结论错误的是()
【详解】
由三视图可知原几何体是三棱锥:
底面 是等腰直角三角形,底 ,高 ,平面 平面 , ,
由三视图知 中, , 是等腰直角三角形,所以 ,
是等腰直角三角形, , ,
,
所以等腰直角三角形 的面积为 ,
等腰直角三角形 的面积为 ,
等边 的面积为 ,
等边 的面积为 ,
所以该几何体的表面积是 ,
故选:A.
A. B. C. D.
3.已知 , 是两条直线, , 是两个平面,则下列命题中错误的是()
人教版高中数学必修第二册第三单元《立体几何初步》测试题(答案解析)(1)
一、选择题1.在下列四个正方体中,能得出直线AB 与CD 所成角为90︒的是( )A .B .C .D .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17]B .[2,3]C .6,22]D .[17,5] 4.如图,在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面AEF ,则线段1A P 长度的取值范围是( )A .[2,3]B .5,22⎡⎤⎢⎥⎣⎦C .325,42⎡⎤⎢⎥⎣⎦D .51,2⎡⎤⎢⎥⎣⎦ 5.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 6.如图,在长方体1111ABCD A B C D -中,若,,,E F G H 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 9.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .3B .2C .3D .310.在长方体1111ABCD A B C D -中,23AB AD ==12CC =1C BD C --的大小是( )A .30ºB .45ºC .60ºD .90º 11.αβ、是两个不同的平面,m n 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个12.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32 )A .75518πB .62516πC .36πD .34π13.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或514.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能二、解答题15.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为1515,试确定点E 的位置,并求三棱锥C-VDE 的体积. 16.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 17.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S .18.如图甲,平面四边形ABCD 中,已知45A ︒∠=,90︒∠=C ,105ADC ︒∠=,2AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.如图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的体积及表面积.20.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.21.如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16AC CC ==,M 是棱1CC 的中点.(1)求证:平面1AB M ⊥平面11ABB A ;(2)求1A M 与平面1AB M 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,1AC CC =,AC BC ⊥,D 为1BC 中点,1AC 与1A C 交于点O .(1)求证://OD 平面111A B C ;(2)求证:平面1AC B ⊥平面1A BC .23.如图,AB 是圆O 的直径,CA 垂直圆O 所在的平面,D 是圆周上一点.(1)求证:平面ADC ⊥平面CDB ;(2)若1AC =,12AD =,BD AD =,求二面角A BC D --的余弦值. 24.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .(1)求证://EF MN ;(2)求证:平面CDH ⊥平面ABC .25.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =,6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ;(2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线面垂直的性质以及判定定理判断A ,平移直线结合异面直线的定义,判断BCD.【详解】对于A ,如下图所示,连接,AE GB由于,CD BE CD BG ⊥⊥,根据线面垂直判定定理得CD ⊥平面AEBG ,再由线面垂直的性质得出AB CD ⊥,则A 正确;对于B ,如下图所示,连接,BF AF因为ABF 为正三角形,//CD AF ,所以直线AB 与CD 所成角为60︒,则B 错误; 对于C ,如图所示,连接HD因为在CDH △中,45HDC ∠=︒,//AB HD ,所以直线AB 与CD 所成角为45︒,则C 错误;对于D ,如下图所示,连接GB因为//AG CD ,所以直线AB 与CD 所成角为90GAB ∠≠︒,则D 错误;故选:A【点睛】本题主要考查了求异面直线的夹角,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.C解析:C【分析】分别取111,BB B C 的中点,N M ,可得平面1//A MN 平面AEF ,从而点P 的轨迹为线段MN ,然后计算出线段1A P 的范围.【详解】分别取111,BB B C 的中点,N M ,则1//A M AE ,1A M ⊄平面AEF ,AE ⊂平面AEF ,则1//A M 平面AEF . //EF NM ,MN ⊄平面AEF ,EF ⊂平面AEF ,则//MN 平面AEF又1MN A M M ⋂=,所以平面1//A MN 平面AEF又平面1A MN ⋂面11BCC B MN =所以点P 的轨迹为线段MN当P 为线段MN 的端点M (或N )时,1A P 最长,此时1122111522P M A B A BB A ⎛⎫==+= ⎪⎝⎭当P 为线段MN 的中点时,1A P 最短,此时22111322P A N MN A ⎛⎫=-= ⎪⎝⎭所以325,42AP ⎡⎤∈⎢⎥⎣⎦, 故选:C .【点睛】本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.5.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI , 得到1//B F 面1A BE ,则F 落在线段HI 上,求出1122HI CD ==【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 6.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 10.A解析:A【分析】取BD 中点为O ,1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,易知CO BD ⊥,再利用线面垂直证明1BD C O ⊥,得到1COC ∠即二面角1C BD C --,再计算二面角大小即可.【详解】由题意,作出长方体1111ABCD A B C D -的图象,取BD 中点为O ,连接CE 、1C E ,因为1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,又BD ⊂平面ABCD ,所以1CC BD ⊥, 因为23AB AD ==ABCD 是正方形,O 为BD 中点,所以CO BD ⊥,又1CO CC C =,所以BD ⊥平面1COC ,又1C O ⊂平面1COC ,所以1BD C O ⊥,1COC ∠即二面角1C BD C --, 又12CC =()()2223236CO +==所以123tan 36COC ∠==,130COC ∠=.故选:A【点睛】本题主要考查二面角的求法和线面垂直的判定定理和性质,考查学生空间想象能力,属于中档题.11.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.12.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =, ∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.13.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6,∴2AB =,22BC =,球O 的直径为4484++=;或26AB =,3BC =,球O 的直径为2424351++=.故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 14.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A AAD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.二、解答题15.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 22. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB 平面ABC ,所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.16.(1)证明见解析;(2)7【分析】(1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =, 所以1,3BC AB == 由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键.17.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA 1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,13h A E ∴==3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.18.(1)证明见解析;(2. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=, ()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.体积V ;表面积(21π+.【分析】由已知计算出圆柱的底面半径,代入圆柱表面积和体积公式,即可得到答案.【详解】解:设圆柱的底面半径为r ,高为'h ,圆锥的高h ='3h =,1'2h h ∴=,则122r =,1r ∴=. ∴圆柱的体积2V r h π'==;表面积(22221S r rh πππ=+='. 【点睛】本题考查的知识点求圆柱的表面积和体积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.20.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos AQ PAQ AP ∠==AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =,12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 2PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 21.(1)证明见解析;(210 【分析】(1)连接1A B 交1AB 于O ,连接MO ,证明1MO AB ⊥,1MO A B ⊥,然后得到MO ⊥平面11ABB A 即可;(2)首先证明1A O ⊥平面1AB M ,然后可得1A MO ∠即为1A M 与平面1AB M 所成的角,然后利用111sin A O MO MA A ∠=算出答案即可. 【详解】(1)证明:连接1A B 交1AB 于O ,连接MO ,易得O 为1A B ,1AB 的中点∵1CC ⊥平面ABC ,AC ⊂平面ABC∴1CC AC ⊥又M 为1CC 中点,16AC CC == ∴223635AM =+=同理可得135B M =∴1MO AB ⊥连接MB ,同理可得135A M BM ==1MO A B ∴⊥又11AB A B O ⋂=,1AB ,1A B ⊂平面11ABB A∴MO ⊥平面11ABB A又MO ⊂平面1AB M∴平面1AB M ⊥平面11ABB A(2)解:易得11A O AB ⊥又由(1)平面1AB M ⊥平面1ABB A平面1AB M 平面111ABB A AB =,1AO ⊂平面11ABB A ∴1A O ⊥平面1AB M∴1A MO ∠即为1A M 与平面1AB M 所成的角在11Rt AA B △中,22111663222AB AO ==+=在1Rt AOM 中,1113210sin 35AO MO A A M ∠=== 故1A M 与平面1AB M 10【点睛】方法点睛:几何法求线面角的步骤:(1)作:作出辅助线,构成三角形;(2)证:利用线面角的定义证明作出的角即为所求角;(3)求:在直角三角形中求解即可. 22.(1)证明见解析;(2)证明见解析.(1)连接1B C ,可知点D 为1B C 的中点,利用中位线的性质可得出11//OD A B ,利用线面平行的判定定理可证得结论成立;(2)证明出四边形11AAC C 为菱形,可得出11AC AC ⊥,证明出BC ⊥平面11AAC C ,可得出1AC BC ⊥,利用线面垂直和面面垂直的判定定理可证得结论成立.【详解】(1)如下图所示,连接1B C ,在三棱柱111ABC A B C -中,11//BB CC 且11BB CC =,则四边形11BB C C 为平行四边形, D 为1BC 的中点,则D 为1B C 的中点,同理可知,点O 为1A C 的中点,11//OD A B ∴, OD ⊄平面111A B C ,11A B ⊂平面111A B C ,因此,//OD 平面111A B C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,11//AA CC 且11AA CC =, 所以四边形11AAC C 为平行四边形,1AC CC =,所以,平行四边形11AAC C 为菱形,则11AC AC ⊥,1CC ⊥平面ABC ,BC ⊂平面ABC ,1BC CC ∴⊥,BC AC ⊥,1AC CC C =,BC ∴⊥平面11AAC C ,1AC ⊂平面11AAC C ,1AC BC ∴⊥,1AC BC C =,1AC ∴⊥平面1A BC ,1AC ⊂平面1AC B ,因此,平面1AC B ⊥平面1A BC .【点睛】方法点睛:证明面面垂直的常用方法:(1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,可假设两个平面垂直成立,利用面面垂直的性质定理转化为线面垂直,即可找到所要证的线面垂直,然后组织论据证明即可.23.(1)证明见解析;(2)105.(1)证明,BD AC BD AD ⊥⊥后得BD ⊥平面ADC ,然后可得面面垂直;(2)连结OD ,作OE BC ⊥于E ,连结DE ,证得OED ∠为二面角A BC D --的平面角,在三角形中可得其余弦值.【详解】证明:(1)∵CA ⊥平面ADB ,BD ⊂平面ADB ,∴CA BD ⊥,.又D 是圆周上一点,AB 是圆O 的直径,DA DB ⊥,又CA ⊂平面CAD ,DA ⊂平面CAD ,ADCA A =,∴BD ⊥平面CAD ,而BD ⊂平面ACD ,∴平面ADC ⊥平面CDB ;(2)连结OD ,作OE BC ⊥于E ,连结DE ,∵CA ⊥平面ADB ,CA ⊂平面ABC ,∵平面ABC ⊥平面ADB ,∵BD AD =,∴⊥OD AB ,又∵OD ⊂平面ADB ,∵平面ABC平面ADB AB =, ∴OD ⊥平面ABC ,∵BC ⊂面ABC ,∴BC OD ⊥.又∵BC OE ⊥,OE DE E =,∴BC ⊥平面ODE ,∴BC DE ⊥,∴OED ∠为二面角A BC D --的平面角.又1AC =,12AD =,BD AD =, ∴2OD =,3OE =,30DE =,所以cos OE OED DE ∠==10所以二面角A BC D --的余弦值为105. 【点睛】方法点睛:本题考查证明面面垂直,求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角(并证明)然后在相应三角形中求角.(2)向量法:建立空间直角坐标系,用二面角的两个面的法向量的夹角与二面角相等或互补计算.24.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.25.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD 的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又3tan ,tan 33AD BC ABD BAC AB AB ∠==∠==, ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y 轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()()23,0,0,23,6,0,0,2,0,0,0,B C D P t ,则()23,2,0BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =,则00n BD n DP ⎧⋅=⎨⋅=⎩,即232020x y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为231,3,n t ⎛⎫= ⎪ ⎪⎝⎭, 所以22226333cos ,1214448451PC nPC n PC n t t t t ⋅===++++, 因为22221441445151275t t t t +++=≥,当且仅当23t =时等号成立, 所以5c 33353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点,点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB ,∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥.底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=,∴BC ⊥平面PDC ,∴DE BC ⊥,又PC BC C ⋂=,∴DE ⊥平面PBC ,∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。
高中数学必修二第八章立体几何初步专项训练题(带答案)
高中数学必修二第八章立体几何初步专项训练题单选题1、直角三角形的三边满足a<b<c,分别以a,b,c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,则()A.V c<V b<V a B.V a<V b<V c C.V c<V a<V b D.V b<V a<V c答案:A解析:求出V a=b×13abπ,V b=a×13abπ,V c=abc×13abπ,推导出abc<a<b,从而得到V c<V b<V a.∵直角三角形的三边满足a<b<c,分别以a、b、c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,∴V a=13×π×b2×a=13πab2=b×13abπ,V b=13×π×a2×b=13πa2b=a×13abπ,该直角三角形斜边上的高ℎ满足12ab=12cℎ,可得ℎ=abc,V c=13×π×(abc)2×c=13π⋅a2b2c=abc×13abπ,∵abc −a=ab−acc<0,abc−b=ab−bcc<0,∴abc<a<b,∴V c<V b<V a,故选:A.小提示:关键点点睛:本题考查旋转体体积的大小比较,解题的关键就是确定旋转体的形状,并据此求出对应的旋转体的体积,结合作差法比较即可.2、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD −BHC 及直三棱柱DGC −AEB 组成,作HM ⊥CB 于M ,如图,因为CH =BH =3,∠CHB =120∘,所以CM =BM =3√32,HM =32, 因为重叠后的底面为正方形,所以AB =BC =3√3,在直棱柱AFD −BHC 中,AB ⊥平面BHC ,则AB ⊥HM ,由AB ∩BC =B 可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 3、直三棱柱ABC −A 1B 1C 1中,若∠BAC =90°,AB =AA 1=1,AC =2,E 是棱A 1C 1上的中点,则点A 到平面BCE 的距离是( )A .1B .√23C .√63D .√33答案:C分析:作出草图,根据题意易证A 1C 1⊥平面AA 1BB 1,可得A 1C 1⊥BA 1,再根据勾股定理分别求出A 1B ,BE ,CE,BC的值,再根据V A−BCE=V E−ABC,即可求出点A到平面BCE的距离.如图,在直三棱柱ABC−A1B1C1中,连接BA1,CE,AE,BE,由题知,AA1⊥平面A1B1C1,AA1⊥A1C1,AA1⊥A1B1,又∠CAB=∠C1A1B1=90°,∴B1A1⊥A1C1又AA1∩B1A1=A1,所以A1C1⊥平面AA1BB1,所以A1C1⊥BA1,由于AB=AA1=CC1=1,A1C1=AC=2,E点是棱AC上的中点,根据勾股定理,A1B=√AB2+AA12=√12+12=√2,BE=√A1B2+A1E2=√(√2)2+12=√3 CE=√(C1C)2+(C1E)2=√12+12=√2,BC=√AB2+AC2=√12+22=√5,所以BE2+CE2=BC2,即BE⊥CE.设E到平面ABC的距离为d,则d=1,设点A到平面BCE的距离为ℎ,在四面体A−BCE中,V A−BCE=V E−ABC,V E−ABC=13×S△ABC×d=13×(12×1×2)×1=13V A−BCE=13×S△BCE×ℎ=13×(12×√3×√2)×ℎ=√66ℎ则√66ℎ=13,解得ℎ=√63.故选:C.4、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面PAD,得到△PAB为直角三角形,判定D正确;可证明平面PBC⊥平面PDC,若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC,矛盾,可判断A图1中AD⊥PC,则图2中PD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,则AB⊥PA,即△PAB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.由于BC⊥平面PDC,又BC⊂平面PBC∴平面PBC⊥平面PDC若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC由于AB//平面PDC ,则平面PAB 与平面PDC 的交线//AB显然AB 不与平面PBC 垂直,故A 错误故选:A5、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A −BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =4,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A .√32B .√34C .√33D .√24答案:C分析:画出图形,取AC 的中点N ,连接MN ,BN ,可得MN //CD ,则所求为∠BMN ,易证△BMN 是直角三角形,则可得BM ,进而求解.如图,取AC 的中点N ,连接MN ,BN ,由题,AB =BC =CD =4,M 为AD 的中点,所以MN //CD ,MN =2,则∠BMN 为所求,由AB ⊥平面BCD ,则AB ⊥CD ,又BC ⊥CD ,AB ∩BC =B ,所以CD ⊥平面ABC ,则MN ⊥平面ABC ,所以△BMN 是直角三角形,即∠MNB =90°,又BM =12AD =12√AB 2+BD 2=2√3,所以cos∠BMN =MN BM =2√3=√33, 故选:C6、若直线a //平面α,A ∉α,且直线a 与点A 位于α的两侧,B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF 的长为( )A .3B .32C .34D .23 答案:B分析:根据线面平行可得线线平行,从而可求EF =32. ∵BC //α,BC ⊂平面ABC ,平面ABC ∩α=EF ,∴EF //BC ,∴AF AC =EF BC ,即35+3=EF 4,∴EF =32. 故选:B.7、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .MN//平面ABEB .MN//平面ADEC .MN//平面BDHD .MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH的中点O,连接ON,BO,可以证明MN‖BO,利用BO与平面ABE的关系可以判定MN与平面ABE的关系,进而对选择支A作出判定;根据MN与平面BCF的关系,利用面面平行的性质可以判定MN与平面ADE的关系,进而对选择支B作出判定;利用线面平行的判定定理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE 的关系,进而对D作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.8、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.多选题9、如图,在菱形ABCD中,AB=2,∠BAD=60°,将△ABD沿对角线BD翻折到△PBD位置,连结PC,则在翻折过程中,下列说法正确的是()A.PC与平面BCD所成的最大角为45°B.存在某个位置,使得PB⊥CDC.当二面角P﹣BD﹣C的大小为90°时,PC=√6D.存在某个位置,使得B到平面PDC的距离为√3答案:BC分析:A,取BD的中点O,连接OP、OC,则OP=OC=√3.可得PC与平面BCD所成的角为∠PCO,当PC=√3时∠PCO=60°>45°,即可判断;B,当点P在平面BCD内的投影为△BCD的重心点Q时,可得PB⊂平面PBQPB⊥CD,即可判断;C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,即可得△POC为等腰直角三角形,即可判断;D,若B到平面PDC的距离为√3,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.解:选项A,取BD的中点O,连接OP、OC,则OP=OC=√3.由题可知,△ABD和△BCD均为等边三角形,由对称性可知,在翻折的过程中,PC与平面BCD所成的角为∠PCO,当PC=√3时,△OPC为等边三角形,此时∠PCO=60°>45°,即选项A错误;选项B,当点P在平面BCD内的投影为△BCD的重心点Q时,有PQ⊥平面BCD,BQ⊥CD,∴PQ⊥CD,又BQ∩PQ=Q,BQ、PQ⊂平面PBQ,∴CD⊥平面PBQ,∵PB⊂平面PBQ,∴PB⊥CD,即选项B正确;选项C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,∵PB=PD,∴OP⊥BD,∵平面PBD∩平面BCD=BD,∴OP⊥平面BCD,∴OP⊥OC,又OP=OC=√3,∴△POC为等腰直角三角形,∴PC=√2OP=√6,即选项C正确;选项D,∵点B到PD的距离为√3,点B到CD的距离为√3,∴若B到平面PDC的距离为√3,则平面PBD⊥平面PCD.平面CBD⊥平面PCD,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.故选:BC.10、如图是正方体的平面展开图,在这个正方体中,下列结论正确的是()A.BM与ED平行B.CN⊥AFC.CN与BM成60°D.四条直线AF、BM、CN、DE中任意两条都是异面直线答案:BCD分析:还原成正方体之后根据正方体性质分析线线位置关系.根据展开图还原正方体如图所示:BM与ED不平行,所以A错误;正方体中CN⊥DM,DM//FA,所以CN⊥AF,所以B正确;CN//EB,CN与BM成角就是∠EBM,△EBM是等边三角形,所以∠EBM=60°,所以C正确;由图可得四条直线AF、BM、CN、DE中任意两条既不想交也不平行,所以任意两条都是异面直线. 故选:BCD11、下图是一个正方体的平面展开图,则在该正方体中()A.AE//CD B.CH//BE C.DG⊥BH D.BG⊥DE答案:BCD分析:由平面展开图还原为正方体,根据正方体性质即可求解.由正方体的平面展开图还原正方体如图,由图形可知,AE⊥CD,故A错误;由HE//BC,HE=BC,四边形BCHE为平行四边形,所以CH//BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,所以DG⊥平面BHC,所以DG⊥BH,故C正确;因为BG//AH,而DE⊥AH,所以BG⊥DE,故D正确.故选:BCD填空题12、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④13、中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=√5,ED=√3,若鳖臑P−ADE 的外接球的体积为9√2π,则阳马P−ABCD的外接球的表面积等于______.答案:20π解析:求出鳖臑P−ADE的外接球的半径R1,可求出PA,然后求出正方形ABCD的外接圆半径r2,利用公式R2=√(PA2)2+r22可求出阳马P−ABCD的外接球半径R2,然后利用球体的表面积公式可得出答案.∵四边形ABCD是正方形,∴AD⊥CD,即AD⊥CE,且AD=√5,ED=√3,所以,ΔADE的外接圆半径为r1=AE2=√AD2+ED22=√2,设鳖臑P−ADE的外接球的半径R1,则43πR13=9√2π,解得R1=3√22.∵PA⊥平面ADE,∴R1=√(PA2)2+r12,可得PA2=√R12−r12=√102,∴PA=√10.正方形ABCD的外接圆直径为2r2=AC=√2AD=√10,∴r2=√102,∵PA⊥平面ABCD,所以,阳马P−ABCD的外接球半径R2=√(PA2)2+r22=√5,因此,阳马P−ABCD的外接球的表面积为4πR22=20π.所以答案是:20π.小提示:本题考查球体表面积和体积的计算,同时也涉及了多面体外接球问题,解题时要分析几何体的结构特征,考查分析问题和解决问题的能力,属于中等题.14、词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC,其中PA⊥平面ABC,PA=AC=2,BC=2√2,则四面体PABC的外接球的表面积为______.答案:16π分析:确定外接球球心求得球半径后可得表面积.由于PA⊥平面ABC,因此PA与底面上的直线AC,AB,BC都垂直,从而AC与AB不可能垂直,否则△PBC是锐角三角形,由于AC<BC,因此有AC⊥BC,而PA与AC是平面PAC内两相交直线,则BC⊥平面PAC,PC⊂平面PAC,所以BC⊥PC,所以PB的中点O到P,A,B,C四个点的距离相等,即为四面体PABC的外接球球心.PB2=PA2+AB2=PA2+AC2+BC2=22+22+(2√2)2=16,PB=4,)2=4π×22=16π.所以所求表面积为S=4π×(PB2所以答案是:16π.解答题15、如图,四边形ABCD是一个半圆柱的轴截面,E,F分别是弧DC,AB上的一点,EF//AD,点H为线段AD 的中点,且AB=AD=4,∠FAB=30°,点G为线段CE上一动点.(1)试确定点G的位置,使DG//平面CFH,并给予证明;(2)求三棱锥E−CFH的体积.答案:(1)点G为线段CE中点,证明见解析;.(2)8√33分析:(1)点G为线段CE中点,取CF中点M,证明DG//HM,再利用线面平行的判定推理作答.(2)根据给定条件,证得CE⊥平面ADEF,再结合等体积法即可求出三棱锥E−CFH的体积作答.(1)当点G为线段CE中点时,DG//平面CFH,取CF中点M,连接HM,GM,如图,则GM//EF,GM=12EF,因E,F分别是弧DC,AB上的一点,EF//AD,则EF是半圆柱的一条母线,即EF=AD,而点H为线段AD的中点,于是得GM//DH,GM=DH,即四边形DGMH为平行四边形,则DG//HM,而DG⊄平面CFH,HM⊂平面CFH,所以DG//平面CFH.(2)依题意,AB是半圆柱下底面半圆的直径,则∠AFB=90∘,而∠FAB=30°,有AF=√32AB=2√3,BF=12AB=2,显然CD是半圆柱上底面半圆的直径,则CE⊥DE,由(1)知EF是半圆柱的一条母线,则EF⊥平面CDE,而CE⊂平面CDE,即有CE⊥EF,DE∩EF=E,DE,EF⊂平面ADEF,因此,CE⊥平面ADEF,而EF//BC,EF=BC,即四边形BCEF是平行四边形,CE=BF=2,又点H为线段AD的中点,则S△EFH=12AD⋅AF=4√3,所以三棱锥E−CFH的体积V E−CFH=V C−EFH=13⋅S△EFH⋅CE=13×4√3×2=8√33.。
高中数学必修二立体几何测试
西安市第一中学高一年级第二次月考数学试题(立体几何初步)班级 姓名 考号一、选择题(共12个小题,每小题4分,共计48分)1.线段AB 在平面α内,则直线AB 与平面α的位置关系是( ) A 、ABα B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2.下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 4. 正方体////D C B A ABCD -中,下列几种说法正确的是( )A 、AD C A //⊥ B 、AB C D //⊥C 、/AC 与DC 成45°角D 、//C A 与C B /成60°角5. 若直线l ∥平面α,直线a α,则直线l 与直线a 的位置关系是( ) A 、直线l ∥直线a B 、直线l 与直线a 异面 C 、直线l 与直线a 相交 D 、直线l 与直线a 没有公共点6. 下列命题中,①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两个直线平行;④垂直于同一平面的两个平面平行。
其中正确的个数有( ) A 、 1 B 、 2 C 、 3 D 、47. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 能相交于P ,那么( )A 、点P 不在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外7题图 9题图8. 已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A 、22 B 、332 C 、324 D 、334 9. 正方体////D C B A ABCD -中,E 、F 、G 、H 分别为/AA 、AB 、/BB 、//C B 的中点,则异面 直线EF 与GH 所成的角等于( )A 、45°B 、60°C 、90°D 、120°10. a 、b 、c 表示直线,M 表示平面,给出下列四个命题:① 若a ∥M ,b ∥M ,则a ∥b ; ②若b M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b.其中正确命题的个数有( )A 、0个B 、1个C 、2个D 、3个 11. 已知m 、n 为直线,α、β为平面,有以下命题:①n n m m ⇒⎩⎨⎧⊥α⊥∥α; ②n n m ⇒⎩⎨⎧β⊥β⊥∥m ;③α⇒⎩⎨⎧β⊥α⊥m m ∥β; ④⇒⎪⎩⎪⎨⎧βαβ⊆α⊆平行n m m ∥n ; 其中正确命题的个数有( )A 、1个B 、2个C 、3个D 、4个 12. 如图直三棱柱111C B A ABC -的体积为V ,点P 、Q 分 别在侧棱1AA 和1CC 上,并且Q C AP 1=, 则四棱锥B-APQC 的体积为( ) A 、2V B 、3VC 、4V D 、5V 二、填空题(4个小题,每小题4分,共计16分)13. 正方体////D C B A ABCD -中,平面//D AB 和平面D BC /的位置关系为14.正方体的内切球和外接球的半径之比为15.一几何体的三视图如图所示,俯视图是边长为2的正方形,主视图和左视图是直角边长为2的等腰直角三角形, 则此几何体的体积为16.在直四棱柱1111D C B A ABCD -中,当底面四边形ABCD 满足条件 时,有111D B C A ⊥.(注:填上你认为正确的的一种条件即可,不必考虑所有可能的情形。
人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)(2)
C.平面 与平面 可能平行D.直线 与直线 可能不平行
11.如图为水平放置的 的直观图,则原三角形的面积为()
A.3B. C.6D.12
12.边长为2的正方形 沿对角线 折叠使得 垂直于底面 ,则点 到平面 的距离为()
A. B. C. D.
13.如图,正方体 的棱长为2,点 为底面 的中心,点 在侧面 的边界及其内部运动.若 ,则 面积的最大值为()
一、选择题
1.D
解析:D
【分析】
由线面和面面平行和垂直的判定定理和性质定理即可得解.
【详解】
解:对于①,由面面平行的判定定理可得,若 、 互为异面直线, , ,则 或相交,又因为 , ,则 ,故①正确;
对于②,若 , , ,则 或 , 相交,故②错误,
对于③,若 , ,则 ;故③正确,
对于④,若 , , ,则 或 ,故④错误,
, 平面 , 平面 ,则 平面
又 ,所以平面 平面
又平面 面
所以点 的轨迹为线段
当 为线段 的端点 (或 )时, 最长,此时
当 为线段 的中点时, 最短,此时
所以 ,
故选:C.
【点睛】
本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.
7.A
解析:A
当 时, 不一定成立,
即“ ”是“ ”的充分不必要条件,
故选:B.
【点睛】
本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.
6.C
解析:C
【分析】
分别取 的中点 ,可得平面 平面 ,从而点 的轨迹为线段 ,然后计算出线段 的范围.
人教版高中数学必修第二册第三单元《立体几何初步》检测题(包含答案解析)(1)
根据线面平行的判定定理可知,l∥β,正确;
对于C,过直线l上任意一点作直线m⊥γ,根据面面垂直的性质定理可知,
m既在平面α又在平面β内,所以直线l与直线m重合,即有l⊥γ,正确;
对于D,若α⊥β,l∥α,则l⊥β不一定成立,D错误.
【详解】
在正四面体 中,设棱长为2,
设 为底面三角形 是中心,则 平面 .
取 边的中点 ,连结 ,如图.
则易证 ,又 .
所以 平面 ,又 平面 ,
所以 .
所以异面直线 与 所成的角为 .
又 平面 .
所以直线 与平面 所成的角为
在 中, ,
所以 .
取边 的中点 ,连结 ,
则有 ,
所以二面角 的平面角为 ,
(1)证明: ;
(2)求二面角 的大小;
(3)求点 到平面 的距离.
19.如图,在四棱锥 中, 平面 , , , , .
(1)求证:平面 平面 ;
(2) 长为何值时,直线 与平面 所成角最大?并求此时该角的正弦值.
20.如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直, .
(1)求证: 平面BDE;
在 中,
由余弦定理有: ,
即 ,
所以 ,
故选:D.
【点睛】
本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题.
3.D
解析:D
【分析】
根据题意得到三棱柱的高是内切球的直径,也是底面三角形内切圆的直径,根据等边三角形的性质得到内切球和外接球的半径,计算表面积的比值.
A.若 , ,则 B.若 , ,则
新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)(4)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.已知三棱锥A BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为()A.13B.3C.33D.1163.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:3cm)为()A.43B.2C .4D .64.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .125.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .676.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2 B .255C .32D .2777.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .77D .211118.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .1479.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 10D .直线1AC 与平面BDM 相交10.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 11.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .312.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .3二、填空题13.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.14.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 16.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.17.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________. 18.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______19.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD20.将底面直径为8,高为23为______.三、解答题21.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.22.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ;(3)求三棱锥C AEF -的体积24.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,则253 23x x-=,解得3x=,则1AO=,底面边长为23,则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.B解析:B【分析】取AC中点F,连接,EF DF,证明FED∠是异面直线AB与DE所成角(或其补角),然后在三角形中求得其余弦值即可得.【详解】取AC中点F,连接,EF DF,∵E是BC中点,∴//EF AB,12EF AB=,则FED∠是异面直线AB与DE所成角(或其补角),设1AB=,则12EF=,32DE DF==,∴在等腰三角形DEF中,11324cos3EFFEDDE∠===.所以异面直线AB与DE3故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.4.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7. 所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而OP所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,AP ∴=, 又1212OA =⨯=,sin OAOPA OP∴∠===故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.7.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以PB==cos11BCPCBPC∠===,所以异面直线PC与AD所成角的余弦值为11.故选:D.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A【分析】利用正弦定理求出ABC的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC的外接圆的圆心为D,半径为r,在ABC中,cos ABC∠==sin4ABC∴∠=,由正弦定理可得28sinACrABC==∠,即4r=,则3OD==,11133324O ABC ABCV S OD-∴=⨯⨯=⨯⨯=故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.9.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =22BD =5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC =直线BM 与平面11BDD B 所成角为θ210sin 5d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为2R==R=,DE DF====EF=在DFE△中,222cos2DE EF DFDEFDE EF+-∠===⨯,所以DEF∠为锐角,所以sin DEF∠==,DEF的外接圆的半径为2sinDFrDEF===∠则球心到DEF23,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+23.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC,且2AD BC=,可得点,B C分别是,AG DG的中点,又点E是PD的中点,PC∴和GE是△PGD的中线,∴点F是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC +=②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+因为2210,因此,小虫爬行的最短路程为22 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PAAB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由23,2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===, 由3PE =,23PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确; 对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF ,易得1//,//GE AC EF BC根据线面平行判定定理证得平面1//AB C 平面EFG所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹, 因为1223GE EF GF ==== 所以动点P 的运动轨迹周长为232GE EF GF ++==2【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.16.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =8AC =,AB BC ⊥, 所以42AB =4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.17.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ;由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH ,所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥,所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角,所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+,当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛: 求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果. 18.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC 的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.19.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题. 20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423h r -=,解得323h =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ5 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).22.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.23.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案. 【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD = 又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG因为BG ⊂平面,ABP EF 不在平面ABP 内,所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====,所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥又因为,,AB AD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD .(3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△, 即三棱锥C AEF -的体积为98 【点睛】 关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .24.(1)证明见解析;(232211【分析】。
2019-2020学年高中数学北师大版必修2练习:第一章立体几何初步测评-附答案
第一章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.42.如图所示,△O'A'B'是水平放置的△OAB的直观图,则△OAB的面积是()B.3C.6D.12OAB是直角三角形,其两条直角边的长分别是4和6,则其面积是12.3.若三个球的半径之比是1∶2∶3,则半径最大的球的体积是其余两球的体积和的()A.4倍B.3倍C.2倍D.1倍a,2a,3a,V最大=π(3a)3=36πa3,V1+V2=πa3+π(2a)3=πa3=12πa3,最大=3.4.若一个圆台的上、下底面半径和高的比为1∶4∶4,圆台的侧面积为400π,则该圆台的母线长为()A.10B.20C.12D.24r,则下底面半径、高分别为4r,4r,于是其母线l=-=5r,又侧面积为400π,所以π(r+4r)·5r=400π,解得r=4,于是母线长为20.5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()根据题意,可得圆柱侧面展开图为矩形,长为2π×1=2π,宽为1,∴S=2π×1=2π.故选A.6.一个四面体的三视图如图所示,则该四面体的表面积是()该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD为全等的等腰直角三角形,AB=AD=BC=CD=.取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1,由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得,S△ABC=S△ACD=,S△ABD=S△BCD=1,所以2+.7.如图所示,在正方体ABCD-A1B1C1D1中,若点E为A1C1上的一点,则直线CE一定垂直于()B.BDC.A1DD.A1D1AC,由于BD⊥AC,BD⊥AA1,AC∩AA1=A,所以BD⊥平面ACC1A1.又因为CE⫋平面ACC1A1,所以CE⊥BD.8.已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()l B.m∥n C.n⊥l D.m⊥nA,∵α∩β=l,∴l⫋α,∵m∥α,∴m与l可能平行,也可能异面,故选项A不正确;对于选项B,D,∵α⊥β,m∥α,n⊥β,∴m与n可能平行,可能相交,也可能异面,故选项B,D不正确.对于选项C,∵α∩β=l,∴l⫋β.∵n⊥β,∴n⊥l.故选C.9.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.16π C.9π D.,R2=(4-R)2+2,∴R2=16-8R+R2+2,∴R=,∴S表=4πR2=4π×π,选A.10.设α,β是两个不同的平面,l是一条直线,给出下列说法:①若l⊥α,α⊥β,则l⫋β②若l∥α,α∥β,则l⫋β③若l⊥α,α∥β,则l⊥β④若l∥α,α⊥β,则l⊥β其中说法正确的个数为()B.2C.3D.0①,若l⊥α,α⊥β,则l∥β或l⫋β,故①错误;对于②,若l∥α,α∥β,则l⫋β或l∥β,故②错误;对于③,若l⊥α,α∥β,则l⊥β,故③正确;对于④,若l∥α,α⊥β,则l⫋β或l∥β或l⊥β或l与β斜交,故④错误.11.(2018全国Ⅰ卷,文9)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2,易知N为的中点,将圆柱的侧面沿母线MC剪开,展平为矩形MCC'M',易知CN=CC'=4,MC=2,从M到N的路程中最短路径为MN.在Rt△MCN中,MN==2.12.导学号91134033如图所示,在棱长均相等的三棱锥P-ABC中,D,E,F分别是AB,BC,CA 的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAEPDE⊥平面ABCBC∥DF,易得BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以结论B,C均成立;点ABC上的射影为△ABC的中心,不在中位线DE上,故结论D不成立.(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.6,设六棱锥的高为h,则V=Sh,∴×6h=2,解得h=1.设侧面高为h',则h2+()2=h'2,∴h'=2.∴正六棱锥的侧面积为6××2×2=12.14.某四棱柱的三视图如图所示,则该四棱柱的体积为.,四棱柱高h为1,底面为等腰梯形,且底面面积S=×(1+2)×1=,故四棱柱的体积V=S·h=.15.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°角;④AB与CD所成的角是60°.其中正确结论的序号是.如图,①取BD的中点E,连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD.故①正确.②设正方形的边长为a,则AE=CE= a.由①知∠AEC=90°是直二面角A-BD-C的平面角,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD所成的角,而∠ABE=45°,∴③不正确.④分别取BC,AC的中点M,N,连接ME,NE,MN,则MN∥AB,且MN=AB=a,ME∥CD,且EM=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a,∴△MEN是正三角形,∴∠EMN=60°,故④正确.16.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且,则的值是.r1,h1,r2,h2,则2πr1h1=2πr2h2,.又,所以,则.三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,四边形BCC1B1是圆柱的轴截面.AA1是圆柱的一条母线,已知AB=2,AC=2,AA1=3.(1)求证:AC⊥BA1;.AB⊥AC.因为AA1⊥平面ABC,所以AA1⊥AC.又AB∩AA1=A,所以AC⊥平面AA1B1B.因为BA1⫋平面AA1B1B,所以AC⊥BA1.Rt△ABC中,AB=2,AC=2,∠BAC=90°,所以BC=2.S侧=2π×3=6π.18.(本小题满分12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;:四边形EFGH是矩形.,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC.∴四面体体积V=×2×2×1=.BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH.∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG.∴四边形EFGH是平行四边形.又AD⊥平面BDC,∴AD⊥BC.∴EF⊥FG.∴四边形EFGH是矩形.19.(本小题满分12分)如图,已知四棱锥P-ABCD,底面四边形ABCD为菱形,AB=2,BD=2,M,N分别是线段PA,PC的中点.(1)求证:MN∥平面ABCD;MN与BC所成角的大小.AC,交BD于点O.因为M,N分别是PA,PC的中点,所以MN∥AC.因为MN⊈平面ABCD,AC⫋平面ABCD,所以MN∥平面ABCD.(1)知MN∥AC,故∠ACB为异面直线MN与BC所成的角.四边形ABCD为菱形,边长AB=2,对角线长BD=2,故△BOC为直角三角形,且sin∠ACB=,故∠ACB=60°.即异面直线MN与BC所成的角为60°.20.(本小题满分12分)(2018全国Ⅰ卷,文18)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积.由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⫋平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3.又BP=DQ=DA,所以BP=2.作QE⊥AC,垂足为E,则QE DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-APB的体积为V Q-ABP=×QE×S△ABP=×1××3×2sin 45°=1.21.(本小题满分12分)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;BC,AB⊥BC,求证:平面BCD⊥平面EGH.DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⫋平面FGH,BD⊈平面FGH,所以BD∥平面FGH.DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⫋平面ABED,所以BD∥平面FGH.HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⫋平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⫋平面BCD,所以平面BCD⊥平面EGH.22.导学号91134034(本小题满分12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线,所以AA1⊥平面ABC.因为直线BC⫋平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知,O为AC1的中点.连接MD,OE,则MD,OE分别为△ABC,△ACC1的中位线.所以,MD AC,OE AC,因此MDOE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE⊈平面A1MC,MO⫋平面A1MC,所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.。
高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷
人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A B 2C .3D .322.下列说法正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3.已知直角三角形的两直角边分别为1则该几何体的体积为( )A .4πB .3πC .2πD .π4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A .2B .1C .2D .87.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥P A B C D-的侧面积为()A .B .4C .D .10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 212.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π15.如图:正三棱锥A B C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 ,侧面积是 .17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是 .18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为 .19.已知正四面体SA B C-的棱长为16转动,则该长方体的长和宽形成的长方形的面积的最大值为 . 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 .21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 .22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 .23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C DA B C D -截成两部分,则截面与11B C C B 的交线段长为 . 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D 所成的角的正切值是 ,点D 到平面1A C D 的距离为 . 25.在三棱锥PA B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C∠=︒,则A B C ∠为 .三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )AB 2C .3D .32【分析】证明E FB C⊥,E FA D⊥,得出截面四边形与A D ,B C 都平行,从而截面为矩形,设Q 为截面与A C 的交点,A Q A Cλ=,用λ表示出截面的面积,根据二次函数性质求出最大值.【解答】解:连接A F ,D F ,2A B A C B D C D ====,F 是B C 的中点,B C A F∴⊥,B CD F⊥,又A FD F F=,B C ∴⊥平面A D F ,又E F⊂平面A D F ,A D ⊂平面A D F ,B C E F∴⊥,B CA D⊥,又B CA D ==2A F D F ∴==,F是A D 的中点,E F A D∴⊥,E F ⊥平面α,//B C α∴,//A D α,设α与棱锥的截面多边形为M N P Q , 则////B C P Q M N ,////A DM Q P N,又B CA D⊥,故P QM Q⊥,∴截面四边形M N P Q 是矩形,设(01)A Q A Cλλ=<<,则P Q B Cλ=,1M Q C Q A DA Cλ==-,P Q ∴=,)Q Mλ=-,∴截面矩形M N P Q 的面积为2136(1)6()22λλλ-=--+,∴当12λ=时,截面面积取得最大值32.故选:D .【点评】本题考查了平面的性质,考查线面平行与垂直的性质,属于中档题. 2.下列说法正确的是()A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【分析】举反例判断A ,B ,D 错误,根据棱锥侧棱交于一点判断C .【解答】解:对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确; 对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误. 故选:C .【点评】本题考查了空间几何体的结构特征,属于基础题.3.已知直角三角形的两直角边分别为1则该几何体的体积为()A .4πB .3πC .2πD .π【分析】几何体的体积是由上下两个圆锥的体积组成的,它们的底面半径相同,都是直角三角形斜边上的高,利用圆锥体积公式,即可求得结论.【解答】解:如图,1A C =,BC =2A B=,斜边的高为:122⨯÷=,以A C 为母线的圆锥体积213()32A Oπ=, 以B C 为母线的圆锥体积213()32B Oπ=,∴绕斜边旋转一周形成的几何体的体积等于213()322A B ππ=.故选:C .【点评】本小题主要考查圆锥的体积公式以及几何旋转体的知识等基础知识,考查运算求解能力,考查空间想象力,得到这个立体图形是由两个圆锥组成,以及圆锥体积公式求出是解决问题的关键.4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+【分析】设圆锥的母线为l ,底面半径为r ,高为h ;根据题意列方程求出r 的值,再计算圆柱和圆锥的侧面积之和.【解答】解:设圆锥的母线为l ,底面半径为r ,高为h ;所以4r lππ=,解得1r =,h ==又圆柱的侧面积为22r hπ⋅=,所以制作这样一个粮仓的用料面积为(4)π+.故选:D .【点评】本题考查了圆柱与圆锥的侧面积计算问题,也考查了空间想象能力,是基础题. 5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .【分析】结合S =原图直观图,可得答案.【解答】解:由已知直观图O A B C '''的面积为4,∴原来图形的面积4S=⨯=,故选:C .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S =原图观图,是解答的关键.6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A 2B .1C .2D .8【分析】求出直观图面积后,根据S S =原图直观图可得答案.【解答】解:三角形的直观图中点D 是B C 的中点,且2A B B C ==,A B ,B C 分别与y '轴、x '轴平行,122452A B C S s in ∴=⨯⨯⨯︒=直观图,又4S S ===原图直观图,A C D∴∆在原图中的对应三角形的面积为:122S =原图.故选:C .【点评】本题考查的知识点是平面图形的直观图,其中熟练掌握原图面积与直观图面积关系公式S S =原图直观图是解答本题的关键.7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .【分析】先确定直观图中的线段长,再确定平面图形中的线段长,从而求得平面图形的面积. 【解答】解:直观图中,45A D C∠=︒,2A BB C ==,D CB C⊥,A D ∴=4D C=,∴原来的平面图形上底长为2,下底为4,高为∴该平面图形的面积为1(24)12+⨯=.故选:C .【点评】本题考查了斜二测画法直观图与平面图形的面积计算问题,是基础题. 8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .【分析】根据斜二测画法所得的直观图是平面图形,原面积与直观图的面积比为1,由此求出直观图的面积.【解答】解:水平放置的正方形的面积与斜二测画法所得的直观图是一个四边形,两者面积之比为1,由边长为2的正方形的面积为4,所以这个四边形的直观图面积为4÷=.故选:B .【点评】本题考查了斜二测画法中水平放置的平面图形与原图形面积比问题,是基础题.9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥PA B C D-的侧面积为()A .B .4C .D .【分析】利用勾股定理计算侧面三角形的高,再计算侧面积.【解答】解:设P 在底面A B C D 上的射影为O ,则O 为底面正方形A B C D 的中心, 取C D 的中点E ,连接O E ,则112O EA B ==,P E ∴==,P C P D=,P E C D∴⊥,∴正四棱锥PA B C D-的侧面积为14422P C DS ∆=⨯⨯⨯=,故选:D .【点评】本题考查棱锥的结构特征与侧面积计算,属于基础题. 10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的母线长为5,高为4,底面半径是:3,则底面周长是6π, 则圆锥的侧面积是:165152ππ⨯⨯=,底面积为9π,则表面积为15924πππ+=.故选:B .【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 2【分析】过P 作P M ⊥底面A B C D E F ,取O 为球心,设A B a=,P Mh=,求解直角三角形可得226a h h=-,求出正六棱锥的底面积,代入棱锥体积公式,再由基本不等式求最值.【解答】解:如图,过P 作P M⊥底面A B C D E F ,取O 为球心,设A Ba=,P Mh=,在R t D O M ∆中,222(3)3ha-+=,226a h h∴=-,(06)h <<,∴正六棱锥的体积为2116322Vh=⨯⨯⨯23122(6)(122)()12443h h hh h h h ++-=-=⋅-=…当且仅当122hh=-,即4h=时上式等号成立.故该球名为如果获得六棱锥的体积的最大值为1.故选:C .【点评】本题考查球内接多面体体积最值的求法,考查空间中线线、线面、面面间的位置关系、训练利用基本不等式求最值等基础知识,是中档题.12.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m【分析】由题意可得正四棱锥的底面边长与高,代入棱锥体积公式求解. 【解答】解:如图, 四棱锥P A B C D-,P O⊥底面A B C D ,21P Om=,34A Bm=,则3134342180923P A B C DV m-=⨯⨯⨯=,故选:A .【点评】本题考查棱锥体积的求法,是基础的计算题.13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π【分析】扩展几何体为长方体,求解外接球的半径,然后求解该“鞠”的表面积. 【解答】解:因为A BC D=,B DA C=,A DB C=,所以可以把A ,B ,C ,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x ,y ,z , “鞠”的半径为R ,则2222(2)R x y z=++. 因为2225x y+=,2236x z+=,2249y z+=,所以21105584R ==,所以2455SR ππ==.故选:A .【点评】本题考查空间几何体的外接球的表面积的求法,考查转化思想以及计算能力. 14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π【分析】当此四棱锥体积取得最大值时,四棱锥为正四棱锥,根据该四棱锥的最大体积为6,确定球的半径为R ,从而可求球的体积.【解答】解:如图,可得A C =2A BA C ==,此四棱锥的体积最大值212(1)(1)(1)633A B C D V S R RR =+=-+= 整理可得:3219R RR +--=,即可得2(2)(35)0RRR -++=.解得2R=.则球O 的体积等于343233Rππ=,故选:A .【点评】本题考查球内接多面体,球的表面积,解题的关键是确定球的半径,再利用公式求解.15.如图:正三棱锥AB C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .【分析】首先,展开三棱锥,然后,两点间的连接线C C '即是截面周长的最小值,然后,求解其距离即可.【解答】解:把正三棱锥AB C D-的侧面展开,两点间的连接线C C '即是截面周长的最小值. 正三棱锥AB C D-中,30B A D∠=︒,所以A CA C ⊥',2A B=,C C ∴'=∴截面周长最小值是C C '=.故选:D .【点评】本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 2 ,侧面积是 .【分析】根据圆锥底面的周长等于扇形的弧长,列方程求出圆锥的底面半径. 利用扇形的面积求出圆锥的侧面积. 【解答】解:设圆锥底面的半径为r ,则120226360r ππ=⨯⨯,解得2r=,所以该圆锥的底面半径是2. 圆锥的侧面积是2120612360S ππ=⋅⋅=圆锥侧.故答案为:2,12π.【点评】本题考查了圆锥的侧面展开图是扇形的应用问题,是基础题. 17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是O D B D A B B O<<< .【分析】利用直观图,求出原图对应的边长,写出结果即可. 【解答】解:设22A D ''=,则直观图的平面图形为:A B =B O=4B D=,2O D=.原三角形中A B ,B O ,B D ,O D 由小到大的顺序O D B D A B B O<<<.故答案为:O DB D A B B O<<<.【点评】本题考查斜二测平面图形的直观图的画法,以及数据关系,基本知识的考查. 18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为4+【分析】根据题意画出图形,结合图形得出原来的平面图形的上底与下底、高和腰长,即可求出它的周长. 【解答】解:根据题意画出图形,如图所示;原来的平面图形是直角梯形,上底是1,下底是1+2=,所以它的周长是1214+++=++.故答案为:4+【点评】本题考查了平面图形的直观图的画法与应用问题,是基础题19.已知正四面体SA B C-的棱长为1,如果一个高为6的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为 124.【分析】计算棱锥内切球的半径,令长方体体对角线长小于或等于内切球的直径,根据基本不等式求出长方体底面积的最大值.【解答】解:设S 在平面A B C 上的射影为O ,则O 为A B C ∆的中心,延长A O 交B C 于D ,则D 为B C 的中点,正四面体棱长为1,2A D ∴=,233A OA D ==,3S O ∴==,∴正四面体的体积为11113322312S A B C A B C V S S O -∆==⨯⨯⨯=,表面积为144122A B C S S ∆==⨯⨯⨯=表,设正四面体SA B C-的内切球半径为R ,则1312R ⨯=,解得12R=设长方体的长和宽分别为x ,y ,=626R =,22112xy ∴+…,221224xy x y +∴剟,当且仅当12xy ==时取等号.故答案为:124【点评】本题考查棱锥与球的位置关系,考查基本不等式的应用,属于中档题. 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 3 .【分析】证明A BQ A⊥,C DQ D⊥,由C Q DB Q A∠=∠,结合C DB=,可得Q DA=,由平面解析几何知识求得Q 到A D 建立的最大值,再由棱锥体积公式求解. 【解答】解:底面A B C D 是直角梯形,//A B C D,A BA D⊥,C DA B∴⊥,又P A ⊥平面A B C D ,P A ⊂平面P A D ,∴平面P A D ⊥平面A B C D ,则A B⊥平面P A D ,C D⊥平面P A D , 连接Q A ,Q D ,则A B Q A⊥,C DQ D⊥,由C Q DB Q A∠=∠,得tan tan C Q DB Q A∠=∠,则A B C D Q AQ D=,2C D B=,Q D A=,2A D =,在平面P A D 内,以D A 所在直线为x 轴,D A 的垂直平分线为y 轴建立平面直角坐标系,则(1,0)D -,(1,0)A ,设(,)Q x y ,由Q DA=,得222Q D Q A=,即2222(1)2(1)2xyx y++=-+,整理得:22610x y x +-+=,取1x =,可得2y=,得Q 在P A D ∆内距离A D 的最大值为2,此时Q 在P A 上,11222A B C S A B A D ∆=⨯⨯=⨯⨯=,∴三棱锥QA B C -的体积最大值为1233V =⨯=.3【点评】本题考查多面体体积最值的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 92π .【分析】以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥P A B C-的外接球,由此能求出三棱锥PA B C-的外接球的体积.【解答】解:在三棱锥PA B C-中,P A⊥平面A B C ,A CB C⊥,∴以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥PA B C-的外接球,∴三棱锥P A B C-的外接球的半径1322R=⋅=,∴三棱锥PA B C-的外接球的体积为:334439()3322S Rπππ==⨯=.故答案为:92π.【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题. 22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α, 根据底面周长等于展开后扇形的弧长得,23πα=,解得:23πα=, 23A V A π∴∠'=,则13π∠=,过C 作C FV A⊥,C为V B 的三等分点,3B V =,1V C ∴=, 160∠=︒,30V C F ∴∠=︒,12F V ∴=,22234C FC V V F∴=-=,3A V =,12F V =,52A F ∴=,在R t A F C ∆中,利用勾股定理得:2227A C A FF C=+=,则A C=【点评】考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决. 23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C D A B C D -截成两部分,则截面与11B C C B 的交线段长为103.【分析】首先利用平行线的相交的应用和成比例问题的应用,求出C P 的长,进一步利用勾股定理的应用求出结果. 【解答】解:如图所示:过点F 作//F H A E交11A D 于H ,易知11D H=,所以点H 为11A D 的四等分点, 所以11114D H A D =过点E 作//E PA H交1C C 于点P ,则△1A A H P C E ∆∽, 所以11A A C P A HC E=,解得83C P=.所以截面与11B C C B的交线段长为103P E ==.故答案为:103.【点评】本题考查的知识要点:截面的交线,平行线成比例,主要考查学生的运算能力和转换能力及思维能力,属于基础题, 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D点D 到平面1A C D 的距离为 .【分析】以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B D 与C D 所成的角的正切值和点D 到平面1A C D 的距离.【解答】解:以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系, 则(2B ,2,0),1(0D ,0,2),(0C ,2,0),(0D ,0,0),1(2B D =-,2-,2),(0C D=,2-,0),设异面直线1B D 与C D 所成角为θ, 则11||c o s ||||1243B D CD B D C D θ===,sin θ∴==,s in ta n c o s θθθ==∴异面直线1B D 与C D(2A ,0,0),(2A C=-,2,0),1(2A D =-,0,2),(2A D=-,0,0),设平面1A C D 的法向量(n x=,y ,)z ,则1220220n A C x y n A D x z ⎧=-+=⎪⎨=-+=⎪⎩,取1x=,得(1n =,1,1),∴点D 到平面1A C D的距离为||2||33n A D dn ===.3【点评】本题考查异面直线所成角的正切值、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 25.在三棱锥P A B C-中,P A ⊥平面A B C ,45P B A ∠=︒,60P B C ∠=︒,则A B C ∠为4π.【分析】作P M B C⊥于点M ,连接A M ,设A Bx=,由已知可求P A x=,利用勾股定理可求P B =,利用三角函数的定义可求2B M =,由已知利用线面垂直的判定和性质可得B M A M⊥,进而可求c o s 2B M A B CA B∠==,结合A B C ∠为三角形内角,可求A B C∠的值.【解答】解:如图,作P M B C⊥于点M ,连接A M ,设A B x=,因为在三棱锥P A B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C ∠=︒,所以P Ax=,P B==,因为60P B C ∠=︒,P MB C⊥,所以12c o s 22B M P B P B C x=∠==,因为P A ⊥平面A B C ,B M⊂平面A B C ,所以B M A P⊥,又P MB C⊥,P MA P P=,所以B M ⊥平面P A M ,又AM⊂平面P A M,所以B M A M⊥,所以2c o s 2x B M A B CA Bx∠===,由于A B C ∠为三角形内角, 所以4A B C π∠=.故答案为:4π.【点评】本题主要考查了勾股定理,三角函数的定义,线面垂直的判定和性质在解三角形中的应用,考查了数形结合思想和转化思想,作辅助线P M B C⊥于点M 是解题的关键,属于中档题.三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.【分析】所得几何体为圆锥中挖去一个圆柱,然后利用公式求出即可. 【解答】解:所形成几何体是一个圆锥挖去一个圆柱,由题意可知圆柱的底面半径为322,圆锥底面半径为3,母线为6,所以32222S π=⨯⨯=圆柱侧,233627S πππ=⨯+⨯⨯=圆锥表,所以所求几何体的表面积为272SS S π=+=+圆锥表圆柱侧.【点评】本题主要考查旋转体的表面积计算,属于基础题. 27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.【分析】(1)取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,证明A M N G是平行四边形,//M N A G,推出//M N平面P A D ,得到//M NA G,证明A GP C⊥,A G P D⊥,推出A G⊥平面P D C ,得到M N⊥平面P D C ,然后证明平面M P C ⊥平面P C D ,(2)利用B M N CN M B CV V --=,转化求解点B 到平面M N C 的距离.【解答】(1)证明:取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,//N G C D∴,12N GC D=,//A MC D,12A MC D=,A M N G ∴是平行四边形,//M NA G,A G ⊂平面P A D ,M N ⊂/平面P A D ,//M N ∴平面P A D//M N A G∴,P M M C ==,N 为P C 中点,M N P C∴⊥,即A GP C⊥, G为P D 的中点,A P A D=,A G P D∴⊥,且P DPC P=,A G ⊥平面P D C ,M N ∴⊥平面P D C ,M N ⊂平面M P C ,∴平面M P C⊥平面P C D ,(2)解:1132B M N CN M B C M B CV V S P A--∆==,1222M B C S B C B M ∆==1222M N CS M N N C ∆==,则点B 到平面M N C 的距离为122hP A ==.【点评】本题考查平面与平面垂直以及直线与平面平行的判断定理的应用,空间点线面距离的求法,等体积法的应用,是中档题. 28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.【分析】(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.利用向量法能求出异面直线E F 与1A D 所成角的余弦值.(2)求出面D E F 的法向量,利用向量法能求出直线1A D 与平面D E F 所成角的正弦值. 【解答】解:(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则(1E ,1,0),(0F ,12,(1A ,0,0),1(0D ,0则(1E F=-,0,)2,1(1A D =-,0,直线E F 与1A D 所成角为θ,则115||c o s 14||||744EF A D E F A D θ===.故异面直线E F 与1A D 14.(2)(1D E=,1,0),(0D F=,12,1(1A D =-,0,设面D E F 的法向量为(nx=,y ,)z ,则0302D E n x y D F n y ⎧=+=⎪⎨=+=⎪⎩,令2z=,可得(3,2)n=-,设直线1A D与平面D E F 所成角为θ,则11||3s in 20||||410A D n A D n θ===,所以直线1A D 与平面D E F 20.【点评】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.【分析】根据线面垂直的判定定理证明m ⊥平面A B C ,再得出m A B⊥.【解答】证明:m A C⊥,mB C⊥,A C ⊂平面A B C ,B C⊂平面A B C ,且A C B CC =,m ∴⊥平面A B C ,又A B ⊂平面A B C , m A B∴⊥.【点评】本题考查了线面垂直的判定定理,线面垂直的性质,属于基础题.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.【分析】(1)由已知利用平面与平面垂直的性质可得E D A C⊥,再由四边形A B C D 是正方形,得A CB D⊥,利用直线与平面垂直的判定可得A C⊥平面B D E ;(2)取E B 中点G ,连接O G ,F G ,证明A O G F 为平行四边形,可得//A C F G,再由直线与平面平行的判定可得//A C 面E FB ;(3)证明A B⊥平面A D E F ,求出三棱锥B D E F-的体积,结合O 为B D 的中点,可得四面体B O E F 的体积.【解答】证明:(1)平面A B C D⊥平面A D E F ,平面A B C D ⋂平面A D E FA D=E D A D ⊥,E D⊂平面A D E F ,E D ∴⊥面A B C D ,得E D A C⊥,又四边形A B C D 是正方形,A C B D∴⊥,又B DE D D=,A C ∴⊥平面B D E ;证明:(2)取E B 中点G ,连接O G ,F G ,O,G 分别为B D ,B E 的中点,//O GD E∴,12O GD E=,又//A F D E,12A F D E=,//A F O G ∴且A FO G=,则四边形A O G F 为平行四边形,得//A CF G,A C ⊂/平面E F B ,F G ⊂平面E F B ,//A C ∴面E FB ;解:(3)平面A B C D⊥平面A D E F ,A B A D⊥,A B ∴⊥平面A D E F .//A F D E,90A D E ∠=︒,22D ED A A F ===,D E F∴∆的面积为122D E FS E D A D ∆=⨯⨯=,∴四面体B D E F 的体积11422333D E F VS A B ∆=⨯=⨯⨯=,又O 是B D 中点,∴12O D E F B D E FV V --=,则1223B O E FB D E F V V -==.【点评】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)
一、选择题1.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .26 2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 3.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC 323D .643π 4.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .25.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147 6.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 7.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交 8.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323πD .该四面体内切球的表面积为2π9.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43的体积为( )A .3πB 6πC .3πD .86π 10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.18.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.19.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________. 三、解答题21.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.22.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示);(2)若点E 在平面ABD 上的射影是三角形ABD 的重心G ,①求直线EB 与平面ABD 所成角的余弦值;②求点1A 到平面ABD 的距离25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 2.B解析:B【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C ,而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯, 因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 2541116+= 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 3.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案. 【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -, 其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4, 将四棱锥补成棱长为4的正方体, 则该几何体的外接球就是正方体的外接球, 外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.5.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.6.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =,2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .9.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确;对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C A D=⨯==,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.18.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,OE =EF =所以cos 3OE OEF EF ∠==..【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC。
上海西南位育中学必修二第一章《立体几何初步》检测题(含答案解析)
一、选择题1.如下图所示,在正方体1111ABCD A BC D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( ) A .2:1B .4:1C .8:1D .8:33.已知正方体1111ABCD A BC D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .904.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A 5B 25C 5D 255.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( )A .2217B .22121 C 47 D 476.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .96π B .93π C .96π D .93π 7.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是23,则球O 的表面积是( ) A .28π3B .14π3C .56π3D .7π 38.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .129.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( ) A .若//m α,n αβ=,则//m n B .若//m n ,m α⊥,则n α⊥ C .若m α⊥,m β⊥,则//αβD .若m α⊥,m β⊂,则αβ⊥10.如图,在矩形ABCD 中,1AB =,3BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .211.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263-12.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( )A .//BC 平面PDFB .DF ⊥平面PAE C .平面PDE ⊥平面ABC D .平面PAE ⊥平面ABC二、填空题13.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.14.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.15.已知三棱锥A BCD -中,2AB CD ==,3AC BC AD BD ====,则三棱锥A BCD -的体积是____________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.18.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.19.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.20.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 三、解答题21.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F =分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.22.如图,在正四棱柱1111ABCD A BC D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.23.如图,已知菱形ABCD 和菱形ACFE 所在的平面互相垂直,M 为BF 的中点.(1)求证://DF 平面ACM ; (2)若2AB =,ABC CAE ∠=∠=π3,求三棱锥F BDE -的体积. 24.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)证明://GH 平面ABCD ; (2)求H 到平面AEC 的距离.25.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.26.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设正方体1111ABCD A BC D -的棱长为2,利用正方体性质可求得2MN =3EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案.【详解】设正方体1111ABCD A BC D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=2222123EF EG GF =+=+以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.A解析:A 【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案. 【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--.当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1. 故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.3.C解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A BC D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.4.D解析:D 【分析】延长DA 至G ,使AG CE =,可证11//AG C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC AC , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//AG C E , 所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.5.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离.【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得1122==A B AC ,1A BC 为等腰三角形,所以1A BC 的高为7,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为112772=⨯⨯=A BC S △,12332ABC S =⨯⨯=,所以111233⨯⨯=⨯⨯A BC ABC S h S △△,即2322177h ==. 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.6.A解析:A【分析】先确定曲面面积占以点D 为顶点,DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,32CE CC AA BC AB ''=====22361832BE CE CB -=-=45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 6S rl CC DC πππ'==⨯⨯=⨯⨯,所以曲面面积为18⨯=. 故选:A.【点睛】 方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点,DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 7.A解析:A【分析】首先得到11AB A ∠是1AB 与底面111AB C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算.【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111AB C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =.设111AA A B a ==,则111312ABC A B C V a a -=⨯==三棱柱, 解得2a =.所以球O 的半径R ==所以球O 的表面积2228π4π4π3S R ==⨯=.故选:A .【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的. 8.C解析:C【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解.【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z =因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=,故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABC V V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S -=-=⋅⋅=故选:C【点睛】 关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.9.A解析:A【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误.【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面,由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确;对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.10.C解析:C【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC .【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD ,∴△MCA 为直角三角形.过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+= 所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM == 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+ ⎪ ⎪⎝⎭故选:C【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.A解析:A【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值.【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =,2241625DE DF AD AE ==+=+=2222EF BE BF =+在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos 10DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A.【点睛】 本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.12.C解析:C【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D.【详解】对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PE AE E =, BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE 平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意.故选:C.【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.二、填空题13.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的 解析:643π 【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =33GE OH ==,2222125AH AE EH +=+ 则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭故四棱锥P ABCD -外接球的表面积为2436443ππ⨯=⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 14.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 解析:224π 【分析】 设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积.【详解】 解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的体积342324V r ππ==. 故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15.【分析】取中点连接由条件可证明平面由此将三棱锥的体积表示为计算可得结果【详解】取中点连接如下图所示:因为所以平面平面所以平面又因为所以所以又因为故答案为:【点睛】关键点点睛:解答本题的关键是通过找的 解析:2 【分析】取AB 中点O ,连接,CO DO ,由条件可证明AB ⊥平面CDO ,由此将三棱锥A BCD -的体积表示为13CDO AB S⨯⨯,计算可得结果.【详解】取AB 中点O ,连接,CO DO ,如下图所示:因为AC BC AD BD ===,所以,AB CO AB DO ⊥⊥,CO DO O =,CO ⊂平面CDO ,DO ⊂平面CDO ,所以AB ⊥平面CDO , 又因为3AC BC AD BD ====,2AB CD ==()2221032CO DO ⎛⎫==-= ⎪ ⎪⎝⎭, 所以22110221222CDO S ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为1122133A BCD CDO V AB S -=⨯⨯==,故答案为:23. 【点睛】 关键点点睛:解答本题的关键是通过找AB 的中点,证明出线面垂直,从而将三棱锥的体积表示为13CDO AB S ⨯⨯,区别于常规的13⨯底面积⨯高的计算方法,本例实际可看成是两个三棱锥的体积之和. 16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π 【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,113333PO BO ==, 设球半径为R ,则()22211R CO R PO =+-,解得233R =,故21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.18.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的 解析:217【分析】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//lDE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,11322DE BC AB ===,227EF DE DF =+321cos 77DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,依题意://l BC ,//DE BC , 所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥, 又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG , 所以BC ⊥平面SAG ,所以BC SA ⊥. 因为F 、D 分别是SB 、AB 的中点, 所以//DF SA . 所以DEDF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB ===, 所以227EF DE DF +.所以321cos 7DE DEF EF ∠===. 故异面直线l 和EF 2121 【点睛】本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题.19.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面解析:3【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可. 【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE =323⨯=. 故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.20.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三 解析:23π 【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得2r ,最后计算体积即可. 【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =. 设内切球半径为r ﹐圆锥高为h ,则9122h =-= 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:2r , 故3442223383r V πππ==⨯=.故答案为:23π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.三、解答题21.(1)证明见解析;(26 【分析】(1)取PB 中点M ,连接,MF AM ,证出四边形AMFE 为平行四边形,利用线面平行的判定定理即可证明.(2)连接,PE BE ,可得PEB ∠为二面角P AD B --的平面角,求出22PE =用余弦定理可得PB ,再利用面面垂直的判定定理证明平面PBE ⊥平面PDA ,点B 作BO PE ⊥交PE 于点O ,在PEB △中即可求解.【详解】解:(1)证明:取PB 中点M ,连接,MF AM , 由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =, 故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB . (2)证明:连接,PE BE .由,PA PD BA BD ==,而E 为AD 中点, 所以,PE AD BE AD ⊥⊥,所以PEB ∠为二面角P AD B --的平面角,60PEB ∴∠=︒. 又2,90,22BA BD DBA AD ==∠=︒∴=∴在PAD △中,由10,22PA PD AD ===,可解得22PE =在Rt ABD △中,由22,AD E =为AD 的中点,可得122BE AD ==. ∴在PEB △中,2222cos PB PE EB PE EB PEB =+-⋅∠,2182222262PB ∴=+-⨯⨯⨯=, 2226,,PB PB EB PE PB EB ∴=∴+=∴⊥.又,,,PE AD BE AD PE BE E AD ⊥⊥⋂=∴⊥平面PBE ,AD ⊂平面PAD ,∴平面PBE ⊥平面PDA .过点B 作BO PE ⊥交PE 于点,O OB ∴⊥平面PDA .∴在PEB △中,OB PE PB EB ⋅=⋅, 从而62622PB EB OB PE ⋅⨯===. ∴点B 到平面PAD 的距离为6.【点睛】关键点点睛:本题考查了面面垂直的判定定理,求点到面的距离,解题的关键是求出6PB =,证出平面PBE ⊥平面PDA ,作出点到面的距离,考查了计算能力.22.(1)22;(2)23;(33 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin dBD θ=即可得出结果; (3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d,即可得出结果. 【详解】(1)在正四棱柱1111ABCD A BC D -中,取BD 中点G ,连接GC ,FG , ∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥, ∴四边形EFGC 为矩形,∴1EF CC ⊥, ∵11//D D C C ,∴1EF DD ⊥,又CG BD ⊥,//EF CG ,BD ⊂平面1BDD ,1D D ⊂平面1BDD ,1BD D D D ⋂=, ∴EF ⊥平面1BDD ,又1BD ⊂平面1BDD ,∴1EF BD ⊥, ∴EF 为1BD 与1CC 的公垂线,且1E CC ⊂,1F BD ⊂, ∴异面直线1BD 与1CC的距离为||2EF =. (2)在正四棱柱1111ABCD A BC D -中,连接1ED ,则11E DBD D DBE V V --=, 由(1)知EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d , ∵12AA =,1AB =,∴BD BE ED ===EF =1BD =∴1122DBD S==212DBES =⨯=从而1DBEDBD Sd SEF ⨯=⨯,∴d ==,记直线1BD 与平面BDE 所成角为θ,则1sin d BD θ===, ∴直线1BD 与平面BDE所成角的正弦值为3.(3)由(2)知,1D 到平面BDE 的距离23d =,∵F 是1BD 的中点,且B ∈平面BDE ,∴F 到平面BDE 的距离为32d =. 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可. 23.(1)证明见解析;(2)2. 【分析】(1)要证明线面平行,需先证明线线平行,(2)利用等体积转化2F BDE D OEF B OEF B OEF V V V V ----=+=三棱锥三棱锥三棱锥三棱锥,求三棱锥的体积.【详解】证明:(1)设AC 和BD 交于O ,连接OMM 和O 分别是BF 与BD 的中点,∴ //OM DF 又OM ⊂平面ACM ,DF ⊄平面ACM 所以 //DF 平面ACM(2)菱形ABCD ⊥菱形ACFE ,菱形ABCD菱形ACFE AC =又BD AC ⊥所以 BD ⊥面ACFE ,连接OE 和OF∴ D OEF B OEF V V --=三棱锥三棱锥∴ 2F BDE D OEF B OEF B OEF V V V V ----=+=三棱锥三棱锥三棱锥三棱锥又π3ABC CAE ∠=∠=, ∴2AC AB ==,3OB =132OEF ACEF S S ∆==菱形∴1•13OEF B OEF V OB S ∆-==三棱锥所以 22F BDE B OEF V V --==三棱锥三棱锥. 【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行. 24.(1)证明见解析;(26 【分析】(1)取BC 的中点M ,连接HM ,DM .证明四边形DGHM 是平行四边形,可得线面平行;(2)由H 到平面AEC 的距离为F 到平面AEC 的距离的一半,先求出F 到平面AEC 的距离,用体积法可求得F 到平面AEC 的距离. 【详解】(1)证明:取BC 的中点M ,连接HM ,DM .。
(易错题)高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)
一、选择题1.设m ,n 是不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①若m α⊥,n β⊥,//αβ,则//m n ;②若m αγ=,n βγ=,//m n ,则//αβ;③若γα⊥,γβ⊥,则//αβ.④若//αβ,//βγ,m α⊥,则m γ⊥;其中正确命题的序号是( )A .①③B .②③C .③④D .①④ 2.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥3.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( )A .4πB .92πC .1256πD .323π 4.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .725.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角P AB C 的平面角为45°.其中正确命题的个数有( )A .2个B .3个C .4个D .5个6.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 7.已知平面α与平面β相交,直线m ⊥α,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内必存在直线与m 平行,不一定存在直线与m 垂直D .β内不一定存在直线与m 平行,但必存在直线与m 垂直8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A .13B .2C .3D .2310.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 11.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .24312.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E13.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C 到平面ABD 的距离为( )A .263B .233C .223D .6314.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( )A .1B .2C .1或7D .2或6二、解答题15.如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F .(1)求证:BF AC ⊥;(2)若2AB BC ==,60CBD ∠=︒,求三棱锥B DEF -的体积.16.如图,在四棱锥S ABCD -中,底面梯形ABCD 中,//BC AD ,平面SAB ⊥平面ABCD ,SAB 是等边三角形,已知24AC AB ==,2225BC AD CD ===(1)求证:平面SAB ⊥平面SAC ;(2)求直线AD 与平面SAC 所成角的余弦值.17.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ;(2)求三棱锥C -AEB 的体积.18.如图所示,在四面体ABCD 中,点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,AB BD ⊥,2AB =,3PR =,22CD =.(1)证明://CD 平面PQR ;(2)证明:平面ABD ⊥平面BCD .19.如图,已知三棱台111ABC A B C -中,平面11BCC B ⊥平面ABC ,ABC 是正三角形,侧面11BCC B 是等腰梯形,111224AB BB B C ===,E 为AC 的中点.(1)求证:1AA BC ⊥;(2)求直线1B E 与平面11ACC A 所成角的正弦值.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.21.ABC 是正三角形,线段EA 和DC 都垂直于平面ABC .设2,EA AB a DC a ===,且F 为BE 的中点,如图.(1)求证://DF 平面ABC ;(2)求证:AF BD ⊥;(3)求平面BDF 与平面ABC 所成锐二面角的大小.22.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN 沿MN 折起到PMN 的位置,使得60PMB ∠=︒.(1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.23.如图,四面体ABCD 中,O ,E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==.(1)求证:AO ⊥平面BCD ;(2)若G 为AO 上的一点,且2AG GO =,求证://AC 平面GDE .24.在斜三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,且2AB AC ==,123AA =.(Ⅰ)求证:平面1AB C ⊥平面11ABB A ;(Ⅱ)求直线1BC 与平面11ABB A 所成角的正弦值.25.如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,1ED =,//EF BD .(1)设EF BD λ=,是否存在实数λ,使//BF 平面ACE ;(2)证明:平面EAC ⊥平面BDEF ;(3)当12EF BD =时,求几何体ABCDEF 的体积. 26.在如图所示的圆锥中,OP 是圆锥的高,AB 是底面圆的直径,点C 是弧AB 的中点,E 是线段AC 的中点,D 是线段PB 的中点,且2PO =,1OB =.(1)试在PB 上确定一点F ,使得EF ∥面COD ,并说明理由;(2)求点A 到面COD 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据空间线面位置关系的性质和判定定理判断或举出反例说明.【详解】对①,根据垂直于两个平行平面中一个平面的直线与另一个平面也垂直,以及垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,当三个平面,,αβγ两两垂直时,显然结论不成立,故③错误.对④,∵////αβγ,当m α⊥时,m γ⊥,故④正确.故选:D.【点睛】该题考查空间线面位置关系的判断,属于中档题目. 2.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.3.D解析:D【分析】先保证截面圆与ABC 内切,记圆O 的半径为r ,由等面积法得()68AC AB BC r ++=⨯,解得2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,球的最大半径为2,由此能求出结果.【详解】 解:如图,由题意可知,球的体积要尽可能大时,球需与三棱柱内切.先保证截面圆与ABC 内切,记圆O 的半径为r ,则由等面积法得1111 (682222)ABC S AC r AB r BC r =++=⨯⨯△, 所以()68AC AB BC r ++=⨯,又因为6AB =,8BC =,所以10AC =,所以2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,若r 增大,则无法保证球在三棱柱内,故球的最大半径为2,所以3344322333V r πππ==⋅=. 故选:D .【点评】本题考查球的最大体积的求法,考查空间想象能力,属于中档题.4.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知23AE x =+23ED y =+ 在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =. 在Rt SED ∆中,212SE x =+22933ED y x =+=+. 所以221110834522SED S SE ED x x ∆=⋅=++. 因为22221081083336x x x x+≥⋅=, 当且仅当6x =6y =19364522SED S ∆≥+=.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.5.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 6.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,2233BO BE ==,2AB = 所以3cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠, 在CFD △中,3,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯, 即31=90cos cos =33αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 7.D解析:D【分析】可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【详解】如图,平面ABCD 平面11D C BA AB =,1BB ⊥平面ABCD ,但平面11D C BA 内无直线与1BB 平行,故A 错.又设平面α平面l β=,则l α⊂,因m α⊥,故m l ⊥,故B 、C 错, 综上,选D .【点睛】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例. 8.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.D解析:D【分析】连接DN ,取DN 的中点O ,连接MO ,BO ,得出BMO ∠(或其补角)是异面直线BM 与AN 所成的角,根据长度关系求出BMO ∠(或其补角)的余弦值即可.【详解】连接DN ,取DN 的中点O ,连接MO ,BO ,∵M 是AD 的中点,∴MO ∥AN ,∴BMO ∠(或其补角)是异面直线BM 与AN 所成的角.设三棱锥A -BCD 的所有棱长为2, 则2213AN BM DN ===- 则13122MO AN NO DN ====, 则223714BO BN NO =+=+= 在BMO ∠中,由余弦定理得222373244cos 233232BM MO BO BMO BM MO +-+-∠===⋅⨯⨯, ∴异面直线BM 与AN 所成角的余弦值为23. 【点睛】 本题主要考查异面直线的夹角,解题的关键是正确找出异面直线所对应的夹角,属于中档题.10.B解析:B【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值.【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球.因为三棱锥A BCD -的棱长为22,可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,△OBD 为等腰三角形,过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B.【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.11.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 12.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题13.A解析:A【分析】取AC 的中点O ,连接DO 和BO ,由等腰三角形的性质得出DO AC ⊥,可求出DO 和BO 的长,再由平面ACD ⊥平面ABC ,根据面面垂直的性质可得DO ⊥平面ABC ,进而得到DO OB ⊥,利用勾股定理即可求出BD ,最后利用等体积法得出C ABD D ABC V V --=,进而求出点C 到平面ABD 的距离.【详解】解:取AC 的中点O ,连接DO 和BO ,则DO AC ⊥,BO AC ⊥,由于四边形ABCD 是边长为2的正方形,2AD CD AB BC ∴====,则AC ==DO BO ===由题知,平面ACD ⊥平面ABC ,且交线为AC ,而DO ⊂平面ACD ,则DO ⊥平面ABC ,又BO ⊂平面ABC ,所以DO BO ⊥,∴在Rt BOD 中,2BD ==,∴ABD △是等边三角形,则122sin 6032ABD S =⨯⨯⨯=△, 则在Rt ABC 中,12222ABC S =⨯⨯=, 设点C 到平面ABD 的距离为d ,则C ABD D ABC V V --=,即1133ABD ABC S d S DO ⋅=⋅△△,即:11233=⨯d =,即点C 到平面ABD 的距离为3. 故选:A.【点睛】本题考查利用等体积法求点到面的距离,还涉及面面垂直的性质和棱锥的体积公式,考查推理证明和运算能力.14.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.二、解答题15.(1)证明见解析;(23 【分析】(1)易证得CD ⊥平面ABD ,由线面垂直性质可得CD BF ⊥,利用线面垂直判定定理可证得BF ⊥平面ACD ,由线面垂直性质证得结论;(2)利用勾股定理可求得,AD BD 长,在ABD △中,利用面积桥可求得BF ,进而得到BDF S ;由等腰三角形三线合一可知E 为AC 中点,由此确定E 到平面ABD 的距离;利用体积桥和三棱锥体积公式可求得结果.【详解】(1)AB 垂直于圆O 所在平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥, BC 为圆O 的直径,CD BD ∴⊥, 又,BD AB ⊂平面ABD ,AB BD B =,CD平面ABD , BF ⊂平面ABD ,CD BF ∴⊥,又BF AD ⊥,AD CD D =,,AD CD ⊂平面ACD ,BF ∴⊥平面ACD , AC ⊂平面ACD ,BF AC ∴⊥.(2)2BC =,60CBD ∠=︒,CD BD ⊥,1BD ∴=,由AB ⊥平面BCD ,CD ⊂平面BCD 知:AB BD ⊥,AD ∴==,111222ABD S AB BD AD BF BF ∴=⋅=⋅==,解得:5BF =,5DF ∴===,11122555BDF S DF BF ∴=⋅=⨯=, AB BC =,BE AC ⊥,E ∴为AC 中点,由(1)知:CD ⊥平面ABD ,E ∴到平面ABD 的距离为122CD =,13230B DEF E BDF BDF V V S --∴==⨯=. 【点睛】 方法点睛:立体几何求解三棱锥体积的问题常采用体积桥的方式,将所求三棱锥转化为底面面积和高易求的三棱锥体积的求解问题.16.(1)证明见解析;(2. 【分析】(1)在ABC 中,利用勾股定理易证AB AC ⊥,再由平面SAB ⊥平面ABCD ,利用面面垂直的性质定理和线面垂直的判定定理证明.(2)由(1)以A 为原点,以AB ,AC 为x ,y 轴建立空间直角坐标系,分别求得AD 的坐标和平面SCA 的一个法向量()111,,m x y z =,再由||cos ,||||AD m AD m AD m ⋅〈〉=⋅求解. 【详解】(1)在ABC 中,由于2AB =,4CA =,BC =∴222AB AC BC +=, AB AC ∴⊥,平面SAB ⊥平面ABCD ,AC ∴⊥平面SAB ,又因为AC ⊂平面SAC ,所以平面SAB ⊥平面SAC ;(2)如图建立A xyz -空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,3)S ,(0,4,0)C , 则(1,3)CS =-,(2,4,0)BC =-,(0,4,0)AC =,1(1,2,0)2AD BC ==-. 设平面SCA 的一个法向量()111,,m x y z =,则00m AC m CS ⎧⋅=⎨⋅=⎩,即111140430y x y z =⎧⎪⎨-+=⎪⎩ ∴(3,0,1)m =-. ||15cos ,10||||AD m AD m AD m ⋅〈〉==⋅, 设直线AD 与平面SAC 所成夹角为θ, 则15sin |cos ,|10AD m θ=<>=, ∴直线AD 与平面SAC 85. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 17.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.(1)证明见解析;(2)证明见解析.【分析】(1)推导出//PQ DC ,由此能证明//CD 平面PQR .(2)推导//RQ AB ,//PQ CD ,且12RQ AB =,12PQ CD =,从而RQ BD ⊥,PQ RQ ⊥,进而RQ ⊥平面BCD ,由此能证明平面ABD ⊥平面BCD .【详解】证明:(1)点P ,Q 分别为棱BC ,BD 的中点,//PQ DC ∴,PQ ⊂平面PQR ,CD ⊂/平面PQR ,//CD ∴平面PQR .(2)点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,//RQ AB ∴,//PQ CD ,且12RQ AB =,12PQ CD =, AB BD ⊥,RQ BD ∴⊥,2AB =,3PR =,22CD =. 112RQ AB ∴==,122PQ CD ==, 222PQ QR PR ∴+=,PQ RQ ∴⊥, BD PQ Q ⋂=,RQ ∴⊥平面BCD , RQ ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行、面面垂直的常见思路:(1)证明线面平行的思路:通过三角形中位线或者证明平行四边形说明线线平行或者证明面面平行;(2)证明面面垂直的思路:证明线面垂直结合面面垂直的判定定理完成证明. 19.(1)答案见解析;(26. 【分析】(1)分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,则AO BC ⊥,由平面11BCC B ⊥平面ABC ,推出AO ⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,故11//AO AO ,即1A 、1O 、O 、A 四点共面;易知1OO BC ⊥,而AO BC ⊥,于是有BC ⊥平面11AO OA ,故而得证;(2)由(1)知,AO ⊥平面11BCC B ,得1AO OO ⊥,于是1OO ,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,根据法向量的性质求得平面11ABB A 的法向量n ,设直线1EB 与平面11ABB A 所成角为θ,由1sin |cos EB θ=<,|n >,即可得解.【详解】(1)证明:分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,ABC ∆为正三角形, AO BC ∴⊥,平面11BCC B ⊥平面ABC ,平面11BCC B 平面ABC BC =,AO ⊂平面ABC ,AO ∴⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,11//AO AO ∴,1A ∴、1O 、O 、A 四点共面.等腰梯形11BCC B 中,O 、1O 分别为BC 、11B C 的中点,1OO BC ∴⊥,又AO BC ⊥,1AO OO O ⋂=,AO 、1OO ⊂平面11AO OA ,BC ∴⊥平面11AO OA ,1AA ⊂平面11AO OA , 1AA BC ∴⊥.(2)解:由(1)知,AO ⊥平面11BCC B ,1OO ⊂平面11BCC B , 1AO OO ∴⊥,1OO ∴,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则(23A ,0,0),(0B,2,0),1(0B ,1,(0C ,2-,0),E 1-,0),∴1(EB =-2,(AB =-,2,0),1(0BB =,1-,设平面11ABB A 的法向量为(n x =,y,)z ,则1·0·0n AB n BB ⎧=⎪⎨=⎪⎩,即200y y ⎧-+=⎪⎨-+=⎪⎩,令y =1x =,1z =,∴(1n =1),设直线1EB 与平面11ABB A 所成角为θ, 则1sin |cos EB θ=<,11·|534·EB n n EB n>===+, 故直线1EB 与平面11ABB A 所成角的正弦值为 【点睛】关键点点睛:本题考查空间中线与面的位置关系、线面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理线面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题. 20.(Ⅰ)证明见解析;(Ⅱ;(Ⅲ. 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AE n AE n AE n⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n⋅=求解.【详解】(Ⅰ)证明:因为PA ⊥底面ABCD , 所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂= 所以CD PAD ⊥面. 因为AE PAD ⊂面, 所以CD AE ⊥.(Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =, 向量(2,2,0)BD =-,(2,0,2)PB =-. 设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩,令y=1,可得n =(1,1,1), 所以 6cos ,AE n AE n AE n⋅==⋅ 所以直线AE 与平面PBD 6. (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 2333AE n d n⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.21.(1)证明见解析;(2)证明见解析;(3)45︒.【分析】(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;(2)利用线面、面面垂直的判定和性质定理即可证明;(3)延长ED 交AC 延长线于G ′,连BG ′,只要证明BG ′⊥平面ABE 即可得到∠ABE 为所求的平面BDE 与平面ABC 所成二面角,在等腰直角三角形ABE 中即可得到. 【详解】(1)证明:如图所示,取AB 的中点G ,连接,CG FG .∵,EF FB AG GB ==,//FG EA ∴,1=2FG EA又//DC EA ,1=2DC EA ,//FG DC ∴,=FG DC ,∴四边形CDFG 为平行四边形,故//DF CG .∵DF ⊄平面,ABC CG ⊂平面ABC , ∴//DF 平面ABC .(2)证明:∵EA ⊥平面ABC ,∴EA CG ⊥. 又ABC 是正三角形, ∴CG AB ⊥. ∴CG ⊥平面AEB . ∴CG AF ⊥. 又∵//DF CG , ∴DF AF ⊥.又AE AB =,F 为BE 中点, ∴AF BE ⊥.又BE DF F ⋂=, ∴AF ⊥平面BDE . ∴AF BD ⊥.(3)延长ED 交AC 延长线于G ',连接BG '.由12CD AE =,//CD AE 知D 为EG '中点, ∴//FD BG '.由CG ⊥平面,//ABE FD CG , ∴BG '⊥平面ABE .∴EBA ∠为所求二面角的平面角.在等腰直角三角形AEB 中,易求45ABE ∠=︒. 【点睛】熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键. 22.(1)证明见解析;(2)存在,理由见解析. 【分析】(1)证明PB BM ⊥,由线面垂直证明MN PB ⊥,然后由线面垂直的判定定理可得线面垂直,然后有面面垂直;(2)过点N 作//NH BM ,交BC 于点H ,再过点H 作GH //PB ,交PC 于点G ,可得两个线面平行,从而得面面平行,于是可得//GN 平面PMB ,同时得出13CG CP =. 【详解】解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥. 因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥. 又PM BMM ⋂=,所以MN ⊥平面PBM ,PB ⊂平面PBM ,则MN PB ⊥,又60PMB ∠=︒,可令2PM =,则1BM =,由余弦定理得PB =所以222PB BM PM +=,即PB BM ⊥.又因为BMMN M =,所以PB ⊥平面BCNM .又因为PB ⊂平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =.又由NH ⊄平面PBM ,BM ⊂平面PBM 知,//NH 平面PBM .再过点H 作GH //PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB ⊂平面PBM 知,//GH 平面PBM .又NH ⊂面GHN ,GH ⊂面GHN ,GH HN H ⋂=, 所以平面//GHN 平面PBM .又GN ⊂平面PBM ,所以//GN 平面PBM .【点睛】关键点点睛:本题考查证明面面垂直,线面平行,解题方法根据面面垂直的判定定理证明垂直,根据面面平行的性质定理证明线面平行.要注意立体几何中证明平行与垂直的方法很多,解题时注意线线、线面、面面平行(垂直)间的相互转化. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)连结OC ,根据等腰三角形的性质得出AO BD ⊥和CO BD ⊥,利用勾股定理的逆定理得出90AOC ︒∠=,则AO OC ⊥,最后根据线面垂直的判定定理,即可证明AO ⊥平面BCD ;(2)连接DE 交OC 于点H ,由BCD △为正三角形,得出H 为BCD △重心,最后通过线面平行的判定,即可证明//AC 平面GDE . 【详解】证明:(1)证明:O ,E 分别是BD 、BC 的中点,连结OC , ∵,BO DO AB AD ==,∴AO BD ⊥, ∵,BO DO BC CD ==,∴CO BD ⊥, 在AOC △中,由已知可得1,3AO CO ==2AC =,∴222AO CO AC +=,∴90AOC ︒∠=,即AO OC ⊥, ∵BD OC O ⋂=,,BD OC ⊂平面BCD , ∴AO ⊥平面BCD ;(2)证明:连接DE 交OC 于点H ,∵BCD △正三角形,,O E 分别为,BD BC 的中点, ∴H 为BCD △重心,∴2CH HO =且2AG GO =, ∴AG CHGO HO=,∴//AC GH ,∴GH ⊂平面GDE ,AC ⊄平面GDE , ∴//AC 平面GDE .【点睛】关键点点睛:本题考查等腰三角形的性质、线面垂直和线面平行的判定定理,熟练掌握三角形的重心的性质是解题的关键. 24.(Ⅰ)证明见解析;(Ⅱ)2. 【分析】(Ⅰ)通过1B C AB ⊥和AB AC ⊥可得AB ⊥平面1AB C ,即得证; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,可得EBO ∠为1BC 与平面11ABB A 所成角,求出相关长度即可求解.【详解】(Ⅰ)证明:∵1B C ⊥平面ABC ,∴1B C AB ⊥, 又AB AC ⊥,1AC B C C ⋂=, 所以AB ⊥平面1AB C ,AB ⊂平面11ABB A ,所以平面1AB C ⊥平面11ABB A ; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,∵平面1AB C ⊥平面11ABB A 于1AB ,∴OE ⊥平面11ABB A ,∴EBO ∠为1BC 与平面11ABB A 所成角,由已知2AB AC ==,123BB =,得12B C =,122B A =, ∴223BO BC OC =+=,在等腰直角1AB C 中,2OE =, 所以2sin 6OE EBO OB ∠==,即1BC 与平面11ABB A 所成角的正弦值为26. 【点睛】方法点睛:求线面角或面面角的常用方法,根据图形结构常用建立坐标系利用向量法求解或直接用几何法求解,向量法的往往更简单有效. 25.(1)存在;(2)证明见解析;(3)2. 【分析】 (1)存在12λ=满足题意,设AC 与BD 的交点为O ,连接EO ,由平面几何的知识可得//BF EO ,再由线面平行的判定即可得证;(2)由线面垂直的性质与判定可得AC ⊥平面BDEF ,再由面面垂直的判定即可得证;(3)结合(2)可得AC ⊥平面BDEF 、2ABCDEF A BDEF V V -=,再由棱锥的体积公式即可得解. 【详解】 (1)存在12λ=满足题意,理由如下: 设AC 与BD 的交点为O ,则12DO BO BD ==,连接EO ,如图,∵//EF BD ,当12λ=时,12EF BD BO ==, ∴四边形EFBO 是平行四边形,∴//BF EO ,又EO ⊂平面ACE ,BF ⊄平面ACE ,∴//BF 平面ACE ; (2)证明:ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED AC ⊥, ∵ABCD 为正方形,∴BD AC ⊥, 又EDBD D =,∴AC ⊥平面BDEF ,又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF ; (3)∵ED ⊥平面ABCD ,∴ED BD ⊥, 又∵//EF BD 且12EF BD =,∴BDEF 是直角梯形,又∵ABCD 是边长为2的正方形,BD =,EF =∴122BDEF S⨯==,由(2)知AC ⊥平面BDEF ,∴12222332ABCDEF A BDEF BDEF V V S AO -==⨯⋅=⨯=. 【点睛】本题考查了线面平行、面面垂直的判定及几何体体积的求解,考查了空间思维能力与运算求解能力,属于中档题.26.(1)点F 是PB 上靠近点P 的四等分点;(2)d = 【解析】 试题分析:(1)连接BE ,设BEOC G =,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , 利用EF ∥面COD ,可得∴EF DG ∥,进而求得点F 的位置;(2)由PO ABC ⊥面,得到OC PO ⊥,利用线面、面面垂直的判定与性质定理,可得OC ⊥面POB ,再利用体积A COD D AOC V V --=,即可求解距离.试题解:(1)连接BE ,设BE OC G ⋂=,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , ∵EF 面COD ,EF ⊂平面BEF ,面BEF ⋂面COD DG =,∴EF DG ,∴21BD BG DF GE == 又BD DP =,∴14DF PF PB ==∴点F 是PB 上靠近点P 的四等分点.。
高中数学必修2立体几何模块测试卷(含参考答案)
高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。
上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。
(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(4)
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.已知三棱锥P ABC -的三条侧棱两两垂直,且,,PA PB PC 的长分别为,,a b c ,又2()2a b c +=,侧面PAB 与底面ABC 成45︒角,当三棱锥体积最大时,其外接球的表面积为( ) A .10π B .40πC .20πD .18π3.正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( ) A .34B .63C 5D .234.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6π B .4π C .3π D .2π5.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE6.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( ) A .若//m α,n αβ=,则//m n B .若//m n ,m α⊥,则n α⊥ C .若m α⊥,m β⊥,则//αβ D .若m α⊥,m β⊂,则αβ⊥7.三棱锥P ABC -中,6AB =,8AC =,90BAC ∠=︒,若52PA PB PC ===,则点B 到平面PAC 的距离为( ) A .32B .304141C .153417D .68.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A 263B 463C .4263D .22639.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A 43B 23C .83D .4310.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π12.在正方体1111ABCD A B C D -中,M 和N 分别为11A B ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .1010C .35D .32二、填空题13.在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,①四边形1BFD E 一定是平行四边形;②四边形1BFD E 有可能是正方形;③四边形1BFD E 在底面ABCD 内的投影一定是正方形;④四边形1BFD E 有可能垂直于平面1BB D .以上结论正确的为___________.(写出所有正确结论编号)14.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.15.3ABCD 中,对角线3AC =ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.16.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .17.在三棱锥P ABC -中,4PA PB ==,42BC =8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________. 18.在正三棱锥A BCD -中,5AB AC AD ===,6BC BD CD ===.点M 是线段BC 上的点,且2BM MC =.点P 是棱AC 上的动点,直线PM 与平面BCD 所成角为θ,则sin θ的最大值为______.19.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.20.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.三、解答题21.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =3(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .22.在三棱锥A BCD -中,BCD △为等腰直角三角形,点E ,G 分别是线段BD ,CD 的中点,点F 在线段AB 上,且2BF FA =.若1AD =,3AB =,2CB CD ==.(Ⅰ)求证://AG 平面CEF ; (Ⅱ)求直线AD 与平面CEF 所成的角.23.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.24.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C D ,的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?若不存在,说明理由,若存在请证明你的结论并说明P 的位置.25.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.26.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.A解析:A 【分析】将三棱锥体积用公式表示出来,结合均值不等式和2()2a b c +=a b =,进而得到22c a =,带入体积公式求得2,2a b c ===24S R π=求出外接球的表面积. 【详解】解:21116211622266()643V abc ab ab a b ab ==⋅⋅=+,当且仅当a b =时取等号, 因为侧面PAB 与底面ABC 成45︒角, 则22PC a c ==, 21222623V a a ∴=⨯=, 2,2a b c ∴===,所以2222410R a b c =++=, 故外接球的表面积为10π. 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A B C D -的棱长为2,故2,5BD BE ED ===2215232h ED BD ⎛⎫=-=-= ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.4.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.6.A解析:A【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误.【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面,由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确;对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.7.C解析:C【分析】取BC 中点为O ,连接OP ,OA ,根据题中条件,由线面垂直的判断定理,证明PO ⊥平面ABC ;求出三棱锥P ABC -的体积;以及PAC △的面积,设点B 到平面PAC 的距离为d ,根据等体积法,由P ABC B PAC V V --=,即可求出结果.【详解】取BC 中点为O ,连接OP ,OA ,因为6AB =,8AC =,90BAC ∠=︒,所以226810BC =+=,则152AO BC ==; 又52PA PB PC ===222100PB PC BC +==,则PB BC ⊥,152PO BC ==, 所以22250PO OA PA +==,所以PO AO ⊥;因为PB PC =,O 为BC 中点,所以PO BC ⊥,又BC AO O ⋂=,BC ⊂平面ABC ,AO ⊂平面ABC ,所以PO ⊥平面ABC ; 此时三棱锥P ABC -的体积为11168540332P ABC ABC V S PO -=⋅=⨯⨯⨯⨯=, 因为在PAC △中,PA PC ==,8AC =,所以PAC △的面积为182PAC S =⨯=, 设点B 到平面PAC 的距离为d ,由P ABC B PAC V V --=可得1403PAC S d =⋅,所以17d ==. 故选:C.【点睛】方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平面α的一条斜线PA 所对应的向量PA ,则点P 到面α的距离即为PA md m ⋅=.8.A解析:A【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值.【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+=在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A.【点睛】 本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.9.D解析:D【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCD S ≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得 2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅ 因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅,所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCD S BC BD =⋅≤⨯⨯=, 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==,所以1144333333A BCD BCD V S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D【点睛】 关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值.10.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD .由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长,所以球O 的半径R 满足2222688164R =++=,所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.12.A解析:A【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值.【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角,设异面直线AM 和CN 所成的角为θ,设正方体的边长为2, 2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯. 故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 二、填空题13.①③④【分析】由题意在正方体中结合几何关系逐一考查所给命题的真假即可求得最终结果【详解】对于①由平面平面并且四点共面同理可证故四边形一定是平行四边形故①正确;对于②若是正方形有又且平面又平面与经过平解析:①③④【分析】由题意,在正方体中,结合几何关系逐一考查所给命题的真假即可求得最终结果【详解】对于①,由平面11//BCC B 平面11ADD A ,并且 B 、E 、F 、1D 四点共面,1//F ED B ∴,同理可证,1//FD EB ,故四边形1BFD E 一定是平行四边形,故①正确;对于②,若1BFD E 是正方形,有1ED BE ⊥,又 11A D BE ⊥,且1111A D ED D =, BE ∴⊥平面11ADD A ,又 AB ⊥平面11ADD A ,与经过平面外一点作已知平面的垂线有且只有一条相矛盾,故②错误;对于③,由图得,1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确; 对于④,当点E 和F 分别是对应边的中点时,:平面1BFD E ⊥平面11BB D D ,故④正确.故答案为:①③④【点睛】方法点睛:本题主要考查了正方体的几何特征,利用面面平行和线线垂直,以及特殊情况进行判断,考查了学生的空间想象能力和逻辑思维能力,属于中档题.14.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,42AB BC AC ===,则90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 15.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因 解析:55π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积.【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC =所以ABC 和DBC △都是正三角形,又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=, 所以其体积为3344555(3326V R ππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下:(1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径;(4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.16.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π 【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长.【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==,设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥,则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球,在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==,所以532cm AE AB BE =-=-=,在直角三角形AFB 和直角三角形AEO 中,因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足, 则球O 与圆锥的侧面的交线是以DE 为半径的圆, 354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】 本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.17.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =,8AC =,AB BC ⊥,所以42AB =,又因为4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC中点即为球心.考查空间思维能力,运算求解能力,是中档题.18.【分析】证明直线与平面所成角中当此为二面角的平面角时最大即可得【详解】先证一个命题:平面内所有直线与平面所成的角中当此角为二面角的平面角时最大如图平面于点于是上任一点则而则平面又平面∴是二面角的平面【分析】证明直线PM 与平面BCD 所成角中当此为二面角的平面角时最大即可得.【详解】先证一个命题:平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.如图AO ⊥平面BCD 于点O ,OE BC ⊥于E ,Q 是BC 上任一点,则AO BC ⊥,而AO OE O =,则BC ⊥平面OAE ,又AE ⊂平面OAE ,∴AEO ∠是二面角A BC D --的平面角,而AQO 是直线AQ 与平面ABCD 所成的角, 显然sin AO AEO AE∠=,sin AO AQO AQ ∠=,又AQ AE ≥,∴sin sin sin AQO AEO ∠≤∠,,AEO AQO ∠∠都是锐角,∴AQO AEO ∠≤∠,,Q E 重合时等号成立.由此可知平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.由已知66EO ==4AE =,AOsin 4AEO ∠=, ∴直线PM 与平面BCD 所成角最大值等于AEO ∠,∴sin θ.故答案为:4.【点睛】结论点睛:在二面角A BC D --(为锐二面角)中,AEO ∠是A BC D --二面角的平面角,Q 是棱BC 上任一点,则AQ 与平面BCD 所成角中最大值为二面角的平面角,AQ 与平面BCD 内过Q 点的直线(实际上是所有直线)所成角中最大值为直线AQ 与平面BCD 所成的角.19.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC ,所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN ,所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN ,连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=,所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.20.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为:解析:【详解】设它们的底面圆的半径为r (0r >).依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯,化简得28r =,所以r =故答案为: 三、解答题21.(1)主视图(正视图)见解析,S =;(2)V =. 【分析】(1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V .【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC ,设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得32h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()1233322S +⨯==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥, 由(1)可知,3PO h ==1122AO CO AC ===, 由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形,N 为PC 的中点,AN PC ∴⊥,且3sin 602AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,BC ⊂平面ABC ,BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥,PC BC C =,AN ∴⊥平面BCPM ,//PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形,因此,1133333224BCPM V S AN =⋅=⨯⨯=梯形. 【点睛】 方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.22.(Ⅰ)证明见解析;(Ⅱ)6π. 【分析】(Ⅰ)连接BG 交EC 于H ,连接FH ,即可得到2BH HG=,又2BF FA =,所以//FH AG ,从而得证;(Ⅱ)依题意利用余弦定理求出EF ,从而得到EF BD ⊥,即可证明BD ⊥平面CEF . 过F 作AD 的平行线FP ,交BD 于P .则PE ⊥平面CEF .所以直线FP 与平面CEF 所成角为PFE ∠,再利用锐角三角函数计算可得;【详解】解:(Ⅰ)连接BG 交EC 于H ,连接FH .则点H 为BCD △的重心,有2BH HG =. 因为2BF BH FA HG==, 所以//FH AG ,且FH ⊂平面CEF ,AG ⊄平面CEF ,所以//AG 平面CEF .(Ⅱ)因为33BF =1BE =,30ABD ∠=︒, 所以22212cos 3EF BF BE BE BF ABD =+-⋅∠=,。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)(2)
3.设 , 为两条不同的直线, , 为两个不同的平面,给出下列命题:
①若 , ,则 ;
②若 , ,则 ;
③若 , , ,则 ;
④若 , ,则 与 所成的角和 与 所成的角相等.
其中正确命题的序号是 )
A.①②B.①④C.②③D.②④
4.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面 是铅垂面,下宽 ,上宽 ,深 ,平面BDEC是水平面,末端宽 ,无深,长 (直线 到 的距离),则该羡除的体积为()
D. , 与 所成的角,转化为 的大小, 的最小角是 与平面 所成的角,即 ,此时 ,所以 的最小角大于 ,故D正确.
故选:C
【点睛】
关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C和D,C选项的关键是 平面 ,点 是等边三角形的中心,D选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.
C. , ,则 D. , ,则
12.在正方体 中, 和 分别为 ,和 的中点.,那么直线 与 所成角的余弦值是()
A. B. C. D.
二、填空题
13.如图,在矩形 中, , ,点E为 的中点,F为线段 (端点除外)上一动点.现将 沿 折起,使得平面 平面 .设直线 与平面 所成角为 , 的取值范围为__________.
【详解】
依题意, ,而 ,
解得 ,记 的中心为О, 的中心为О1,则 ,
取 的中点 ,因为 , ,由勾股定理得 ,同理可得 ,
所以正三棱柱的外接球的球心为即 , 为外接球的半径,
人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)
一、选择题1.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( )A .323π B .86π C .36π D .323π2.如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A .12πB .32πC .36πD .48π3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm5.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦ C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦6.如图,梯形ABCD 中,AD ∥BC ,AD =AB =1,AD ⊥AB ,∠BCD =45°,将△ABD 沿对角线BD 折起,设折起后点A 的位置为A ′,使二面角A ′—BD —C 为直二面角,给出下面四个命题:①A ′D ⊥BC ;②三棱锥A ′—BCD 的体积为2;③CD ⊥平面A ′BD ;④平面A ′BC ⊥平面A ′D C .其中正确命题的个数是( )A .1B .2C .3D .47.如图,已知正方体1111ABCD A B C D -,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行8.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( ) A .1 B .2 C .1或7D .2或69.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm10.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32的正方形,则该球的表面积为( ) A .75518πB .62516πC .36πD .34π11.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4B .51C .4或51D .4或512.设l 是直线,α,β是两个不同的平面,下列命题正确的是( ) A .若//l α,//l β,则//αβ B .若αβ⊥,//l α,则l β⊥ C .若αβ⊥,l α⊥,则//l β D .若//l α,l β⊥,则αβ⊥ 13.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.在如图所示的几何体中,侧面CDEF 为正方形,底面ABCD 中,//AB CD ,222AB BC DC ===,30BAC ∠=,AC FB ⊥.(1)求证:AC ⊥平面FBC ;(2)线段AC 上是否存在点M ,使//EA 平面FDM ?证明你的结论.16.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ; (2)求三棱锥C -AEB 的体积.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.18.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值; (Ⅲ)求点A 到平面PBD 的距离.19.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.20.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ; (2)若三棱锥A -BEA 1的体积是3,求异面直线AB 和A 1C 1所成角的大小. 21.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ; (2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1; 23.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =3π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(I )证明:直线MN //平面OCD ; (II )求异面直线AB 与MD 所成角的余弦值.24.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ; (Ⅱ)求三棱锥A PFB -的体积;25.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ; (2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可. 【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=, 所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题.2.C解析:C 【分析】根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积. 【详解】∵M ,N 分别为棱SC ,BC 的中点, ∴MN ∥SB∵三棱锥S −ABC 为正棱锥, ∴SB ⊥AC (对棱互相垂直) ∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A , ∴MN ⊥平面SAC , ∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==, ∴R =3, ∴V =36π. 故选:C 【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键.3.B解析:B 【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可. 【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立, 当αβ⊥时,l β⊥不一定成立, 即“l β⊥”是“αβ⊥”的充分不必要条件, 故选:B . 【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.4.B解析:B 【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可. 【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示, 其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B. 【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.5.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为2,故正方体的棱长为2, 可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.6.C解析:C 【分析】根据//AD BC ,1AD AB ==,AD AB ⊥,45BCD ︒∠=, 易得 CD BD ⊥,再根据,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',可判断③的正误;由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则可求出A BDC V '-,进而可判断②的正误;根据CD ⊥平面A BD ',有CD AB '⊥,,A B A D ''⊥ 得A B '⊥平面CDA ',④利用面面垂直的判定定理判断④的正误;根据CD ⊥平面A BD ',有CD A D '⊥,若A D BC '⊥,则可证AD '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,进而可判断①的正误.【详解】由题意,取BD 中点H ,连接A H ',则折叠后的图形如图所示:由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则A H CD '⊥, ∴A BDC V '-=1221326⨯⨯=,②正确, ∵CD BD ⊥,A H CD '⊥,且A H BD H '=,∴CD ⊥平面A BD ',故③正确,∵1A B '=,由几何关系可得3A C '=,2BC =,∴2222132A B A C BC ''+=+==,∴A B A C ''⊥,由CD ⊥平面A BD ',得CD A B '⊥,又A CCD C '=∴A B '⊥平面A DC ',∵A B '⊂平面A BC ',∴ 平面A BC '⊥平面A DC ',④正确, CD ⊥平面A BD ',CD A D '∴⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,所以①错误.故选C .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,解题关键是利用好直线与平面,平面与平面垂直关系的转化关系,属于中档题.7.D解析:D【分析】在正方体1111ABCD A B C D -中,可得11//BD B D ,根据线面平行的判定定理和性质定理可得11////m BD B D ,可判断选项A 结论;分别取11,BD B D 中点1,O O ,连1,OP O P ,则1OPO ∠为平面PBD 与平面11B D P 的平面角,判断1OPO ∠是否为直角,即可判断选项B 的结论;若P 为1CC 中点时,可证平面PBD 与平面11B D Q 平行,即可判断选项C 的结论;根据面面平行的性质定理可得11//n B D ,即可判断选项D 的结论.【详解】在正方体1111ABCD A B C D -中,四边形11BB D D 为矩形,11//,BD B D BD ∴⊂平面PBD ,11B D ⊄平面PBD ,11//B D 平面PBD ,11B D ⊂平面11B D P ,平面BDP 与平面1111////P B D m m B D BD =∴,选项A ,11//,m B D m ⊄平面11B D Q ,11B D ⊂平面11B D Q ,//m 平面11B D Q ,选项A 结论正确;选项B ,分别取11,BD B D 中点1,O O ,连11,,OP O P OO ,设正方体的边长为2,设CP h =,则11BP DP B P D P ====,,PO BD PO m ∴⊥⊥,同理1PO m ⊥,1OPO ∴∠为平面PBD 与平面11B D P 的平面角,在1OO P △中,22222112,2(2),4OP h O P h OO =+=+-=,22211OP O P OO +>,1OPO ∴∠不是直角,所以平面PBD 与平面11B D P 不垂直,选项B 结论正确;选项C ,若P 为1CC 中点,取1BB 中点E 连1,C E QE ,则1//C E BP ,又Q 为棱1AA 的中点,1111//,QE C D QE C D ∴=,四边形11C D QE 为平行四边形,1111//,//,D Q C E D Q BP D Q ∴∴⊄面PBD ,BP ⊂平面PBD ,1//D Q ∴平面PBD ,同理11//B D 平面PBD ,1111111,,B D D Q D B D D Q =⊂平面11B D Q ,∴平面//PBD 平面11B D Q ,选项C 结论正确;选项D ,在正方体中,平面//ABCD 平面1111D C B A ,平面ABCD 平面11B D Q n =,平面1111A B C D 平面1111B Q D B D =11//,//n B D n m ∴∴,选项D 结论不正确.故选:D .【点睛】本题考查空间线、面位置关系,涉及到线线平行、线面平行、面面平行、面面垂直的判定,掌握平行、垂直的判定定理和性质定理是解题的关键,属于中档题.8.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.9.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 10.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =,∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.11.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6, ∴2AB =,22BC =O 4484++=;或26AB =3BC =,球O 2424351++=故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 12.D解析:D【分析】利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若//l α,//l β,则α与β可能平行,也可能相交,所以不正确.B.若αβ⊥,//l α,则l 与β可能的位置关系有相交、平行或l β⊆,所以不正确.C.若αβ⊥,l α⊥,则可能l β⊆,所以不正确.D.若//l α,l β⊥,由线面平行的性质过l 的平面与α相交于l ',则ll ',又l β⊥.所以l β'⊥,所以有αβ⊥,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.13.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A A AD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力.二、解答题15.(1)证明见解析;(2)M 为AC 的中点,证明见解析.【分析】(1)本题首先可通过正弦定理得出90ACB ∠=以及AC BC ⊥,然后根据AC FB ⊥以及线面垂直的判定即可证得结果;(2)本题首先可取AC 的中点M ,连接CE 、MN ,然后通过三角形中位线的性质得出//EA MN ,最后通过线面平行的判定即可得出结果.【详解】(1)因为30BAC ∠=,2AB =,1BC =, 所以sin sin AB BC ACB BAC =∠∠,即211sin 2ACB ,解得sin 1ACB ∠=,90ACB ∠=,AC BC ⊥,因为AC FB ⊥,BC FB B ⋂=,所以AC ⊥平面FBC .(2)当M 为AC 的中点时,//EA 平面FDM .证明如下:如图,取AC 的中点M ,连接CE ,与DF 交于点N ,连接MN ,因为四边形CDEF 为正方形,所以N 为CE 的中点,因为M 是AC 的中点,所以//EA MN ,因为MN ⊆平面FDM ,EA ⊄平面FDM ,所以//EA 平面FDM .【点睛】关键点点睛:本题考查线面垂直与线面平行的判定,若直线与平面内的两条相交直线都垂直,则线面垂直,若平面外一条直线平行平面内一条直线,则线面平行,考查数形结合思想,是中档题.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).17.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥又平面ADE ⊥平面ABCE ,平面ADE平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n = 又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =, 2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,22022220x x y z +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =-- ()12122221211cos ,111113n n n n n n ⋅∴===⋅⨯+-+ ∴平面ADE 与平面BDC 所成锐二面角的余弦值为1111. 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.18.(Ⅰ)证明见解析;(Ⅱ6;(Ⅲ23 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AEn AE n AE n ⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n ⋅=求解.【详解】 (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂=所以CD PAD ⊥面.因为AE PAD ⊂面,所以CD AE ⊥. (Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =,向量(2,2,0)BD =-,(2,0,2)PB =-.设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩, 令y=1,可得n =(1,1,1),所以 6cos ,AE nAE n AE n ⋅==⋅ 所以直线AE 与平面PBD . (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 3AE n d n ⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.19.(1)证明见解析;(2)13. 【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA=,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =,由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C .(2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD .由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB ,所以1C AD ∠是1AC与平面1ABB 所成的角.由11B C =11AB =,11AC =得1116cos 7C AB ∠=,111sin 7C A B ∠=, 所以13CD =,故11139sin C D C AC AD ∠==. 因此,直线1AC 与平面1ABB 所成的角的正弦值是39.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 20.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,12BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE , 则111111322332ABEA A ABE ABE V V S B E AB --==⋅=⨯⨯⨯⨯=,解得3AB =, 则113A B AB ==, 在111Rt A B C △中,11111113tan 3B C C A B A B ∠===,11130A C B ∴∠=, 即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D , 又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.22.(1)证明见解析;(263)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B ,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =22×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(I) 证明见解析;2 【分析】(I )取OD 的中点E ,通过证明四边形MNCE 是平行四边形可得MN //EC ,即可证明; (II )可得MDC ∠为异面直线AB 与MD 所成的角(或其补角),连接,AC MC ,求出三角形各边长,即可根据余弦定理求出.【详解】(Ⅰ)证明:取OD 的中点E ,∵M 为OA 的中点 12MEAD ∴, ∵N 为BC 的中点,12NCAD ∴, 12ME NC ∴, ∴四边形MNCE 是平行四边形,∴MN //EC ,∵MN ⊄平面OCD ,EC ⊂平面OCD ,∴MN //平面OC D.(Ⅱ)解://CD ABMDC ∴∠为异面直线AB 与MD 所成的角(或其补角), 连接,AC MC ,1,3AD AB BC ABC π===∠=, 1AC ∴=,M 是OA 的中点,1AM ∴=,OA ⊥平面ABCD ,∴OA ⊥AD ,2MD MC ∴==2cos 4212MDC ∴∠==⨯⨯ 【点睛】 方法点睛:证明线面平行的方法是在平面内找一条直线与已知直线平行,常用的证明线线平行的方法是构造平行四边形或者利用三角形的中位线定理.24.(Ⅰ)证明见解析;(Ⅱ)33 . 【分析】 (Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB .(Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 6022443A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯= 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.25.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B . (2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴, ∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点, 点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB , ∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥. 底面ABCD 是正方形,侧棱PD ⊥底面ABCD , ∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=, ∴BC ⊥平面PDC ,∴DE BC ⊥, 又PC BC C ⋂=,∴DE ⊥平面PBC , ∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学2(必修)立体几何初步水平检测题一、选择题(本大题共12个小题,每小题5分,共60分)1.下列说法中正确的是 ( ) A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等2.( )A.圆柱B.圆锥C.圆台D.球 3.圆柱的侧面展开图是边长为4的正方形,则圆柱的体积是 ( ) A.π15B.π16C.π17D.π184.圆锥的底面半径为r ,高是h ,在这个圆锥内部有一个内接正方体,则此正方体的棱长等于 ( )A.hr rh + B.hr rh +2 C.hr rh 222+ D.hr rh +25.在ABC ∆中,0120,5.1,2=∠==ABC BC AB (如下图), 若将ABC ∆绕直线BC 旋转一周,则所形成的旋转体的体积是 ( ) A.29π B.27π C.25π D.23π6.下面4个命题:①若直线b a 与异面,c b 与异面,则c a 与异面 ②若直线b a 与相交,c b 与相交,则c a 与相交 ③若直线c b b a //,//,则c b a ////④若直线c b a b a 与直线则,,//所成的角相等其中真命题的个数是 ( ) A.4 B.3 C.2 D.17.空间四边形的两对角线的位置关系是 ( ) A.相交 B.平行 C. 异面 D.或相交或平行或异面正视图 侧视图 俯视图 ACB D 01208.表示直线、表示平面,、、n m γβα,下列说法中可以判定βα//的是 ( ) ①γβγα⊥⊥,②由α内不共线的三点作平面β的垂线,各点与垂足间线段的长度都相等 ③βα⊥⊥n m n m ,,// ④内两条直线,且是、αn m ββ////n m ,A.①②B.②C.③④D.③ 9.菱形ABCD 在平面α内,BD PA PC 与对角线则,α⊥的位置关系是 ( ) A.平行 B.相交但不垂直 C.垂直相交 D. 异面垂直10.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则,56==的距离为 ( )A.54B.3C.33D.32 11.下面四个命题:①分别在两个平面内的直线平行②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行其中正确的命题是 ( ) A.①② B.②④ C.①③ D.②③ 12.已知直线b a ,和平面α,有以下四个命题:①若αα//,//,//b b a a 则 ②若b a A b a a 与,则,=⊂ α异面 ③若αα⊥⊥a b b a 则,,// ④若αα//,,b a b a 则⊥⊥其中真命题的个数为 ( ) A.0 B.1 C.2 D.3 二、填空题(本大题共14个小题,每小题4分,共16分,将答案直接写在横线上)13. 湖面上漂着一球,湖结冰后将球取出,冰面上留下了一个直径为cm 24,深为cm 8的空穴,则该球的体积为_________。
14.在正方体1111D C B A ABCD -中,若过1B C A 、、三点的平面与底面1111D C B A 的交线为l ,则AC l 与的位置关系是_________。
15.若3223===⊥BC AB PA ABCD ABCD PA ,,是矩形,若,且平面,则二面角A BD P --的正切值为_________。
16.在空间四边形ABCD 中,DA CD BC AB H G F E 、、、分别是、、、的中点,若060所成的角为与,且BD AC a BD AC ==,则四边形EFGH 的面积是_________。
三、解答题17.(本小题满分12分)在全面积为2a π的圆锥中,当底面半径为何值时圆锥体积最大,最大体积是多少?18.(本小题满分12分)在正方体1111D C B A ABCD -中,G F E 、、分别是棱1DD DC DA 、、的中点,试找出过正方体的三个顶点且与平面EFG 平行的平面,并证明。
19.(本小题满分12分)太阳光照射高为m 3的竹竿时,它在水平地面上的射影为m 1;同时,照射地面上一圆球时,如下图所示,其影子长度cm AB 33=20.(本小题满分12分)正方形ABCD 的边长为1,分别取边CD BC 、的中点F E 、,连结AF EF AE 、、,以AF EF AE 、、为折痕,折叠这个正方形,使点D C B 、、重合于一点P ,得到一个四面题,如下图所示。
(1)求证:EF AP ⊥;(2)求证:平面APF APE 平面⊥。
21.(本小题满分14分)在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 平面F PB PB EF PC E DC PD ABCD 于点交中点,作是⊥=,,。
(1)证明:EDB PA 平面//; (2)证明:EFD PB 平面⊥;(3)求二面角D PB C --的大小。
A BC D E FE FPAABCDPE F高中数学2(必修)立体几何初步水平检测题答案一、选择题1.B ;点拨:棱柱侧面都是四边形,排除A ;球的表面不能展成平面,排除C ;棱柱的侧棱与底面边长可以不相等,排除D 。
2.A ;点拨:俯视图为圆,正视图、侧视图为全等矩形,故直观图为圆柱。
3.B ;点拨:因为πππππ164)2(,4,2,422=⋅⋅=∴==∴==V l r l r 。
4.C ;点拨:作正方体一对角面的轴截面,如右图所示,设正方体棱长为rh rh a h a h r a a 222,:)(2:2,+=∴-=则。
5.D ;点拨:,1)3(312ππ=⋅⋅=BD V 小锥,2525)3(312ππ=⋅⋅=DCV 大锥=∴旋转体V 25π23ππ=-。
6.C ;点拨:③④正确。
7.C ;点拨:空间四边形的四个顶点不共面。
8.D ;点拨:相交与或βαβαγβγα//,⇒⊥⊥,排除A ;若α内不共线的三点分别在平面β两侧,则相交与βα,排除B ;若内两条平行直线是、αn m ,则有可能相交与βα,排除C 。
9.D ;点拨:因为A B C D 是棱形,BD AC ⊥∴,又因为BD PC ABCD PC ⊥∴⊥,面,PA BD PAC BD ⊥∴⊥∴,面。
10.A ;点拨:取BC 的中点D ,连结,、PD AD 因为⊥∴⊥⊥BC BC PA BC AD ,,平面544822=+=∆∴⊥∴PD PAD Rt PD BC PAD 中,在,,。
11.B ;点拨:②④正确。
12.B ;点拨:③正确。
二、填空题 13.π38788;点拨:设球的半径为R ,则221334,13),82(812⋅⋅=∴=-⋅=πV R R =π38788。
14.平行;点拨:因为平面l AC D C B A ABCD //,//1111∴平面。
15.3;点拨:过PE E BD AE A ,连结于作⊥,因为BD BD PA BD AE ∴⊥⊥,, PAE 平面⊥,A BD P PAE BD AE PE BD --∠∴⊥⊥∴为二面角,, 的平面角,在PEA Rt ∆中,ra h a2333tan ===∠AEPA PEA 。
16.283a ;点拨:因为DA CD BC AB H G F E 、、、分别是、、、的中点,所以易证四边形EFGH 为平行四边形。
又==∴====FG EF a BD AC BD FG AC EF ,,21,21a 21,所以四边形EFGH为棱形。
由EFG BD FG AC EF ∠∴,//,//是异面直线BD AC 与所成的角,则28360sin 212160a a a S EFG EFGH =⋅⋅=∴=∠,。
三、解答题17.解:设全面积为2a π的圆锥的底面半径为r ,高为h ,则2222a hr r r πππ=++,即22421ra a rh -=,422422422231213131ra ra r a rrr h r V -=-==∴πππ)(圆锥,当2,442242a r aaar===即时,圆锥V 取到最大值3122a π。
18.证明:过正方体的三个顶点1D C A 、、的平面与平面EFG 平行。
由G F E 、、分别是棱1DD DC DA 、、的中点可得:CD GF AD GE ////1,。
又EFG GF EFG GE 平面,平面⊂⊂,EFG CD EFG AD 平面,平面////11∴, 又111D CD AD = ,∴平面EFG //平面1ACD 。
19.解:设球的半径为rm ,光线倾斜角为θ,则313tan ==θ,30260==∠∴=∴θθOAB ,,330tan 0==∴AB r ,)(3633433cm V ππ=⋅=∴球,即球的体积为336cm π。
20.证明:(1)因为P PF PE APF APE ==∠=∠ ,900,PEF PA 平面⊥∴,又PEF EF 平面⊂,EF PA ⊥∴。
(2)因为P PF AP EPF APE ==∠=∠ ,900,APF PE 平面⊥∴, 又APE PE 平面⊂,APF APE 平面平面⊥∴。
21.证明:(1)连结EO O BD AC ,连结于交。
因为底面ABCD 是正方形,所以AC O 是的中点。
在PAC ∆中,EO 是中位线,所以EO PA //。
而EDB PA EDB EO 平面且平面⊄⊂,EDB PA 平面//∴。
(2)因为ABCD DC ABCD PD 底面且底面⊂⊥,DC PD ⊥∴,又DC PD =, P D C ∆∴是等腰直角三角形,而DE 是斜边PC 的中线,PC DE ⊥∴ ① 同理可得BC PD ⊥。
因为底面ABCD 是正方形,有BC DC ⊥,PDC BC 平面⊥∴。
而PDC DE 平面⊂,DE BC ⊥∴ ②由①和②推得:PBC DE 平面⊥。
而PBC PB 平面⊂,DE PB ⊥∴,又E EF DE PB EF =⊥ 且,EFD PB 平面⊥∴。
(3)由(2)知D PB C EFD DF PB --∠⊥是二面角故,的平面角。
由(2)知DB PD EF DE ⊥⊥,。
设正方形ABCD 的边长为a DC PD a ==,则,a BDPDPB a BD 3222=+==,,a PC DE a DCPDPC 2221,222===+=,在a aa a PBBD PD DF PDB Rt 3632,=⋅=⋅=∆中,在23sin ==∠∆DFDE EFD EFD Rt 中,,33ππ的大小为,二面角D PB C EFD --=∠∴。