第十章紫外可见分光光度法(A)

合集下载

紫外-可见吸收光谱 - 紫外-可见吸收光谱

紫外-可见吸收光谱 - 紫外-可见吸收光谱

2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。

243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生

紫外可见分光光度计基本原理

紫外可见分光光度计基本原理

应用
定量分析——标准曲线法
最大吸收波长
在一定波长下,测定某物质的标准 系列溶液的吸光度做标准曲线,然 后测定样品溶液的吸光度值,根据 所测吸光度,求出所测溶液浓度。

AX


波长范围
CX
应用
定量分析——对照法
A标 = K c标 l Ax = K cx l
cx = Ax C标
A0
谢谢!
称为电荷迁移吸收光谱。
例如:某些取代芳烃可产生这种分子内电荷迁移跃迁吸收带。谱带较宽,吸收强度较大, εmax可大于104
无机化合物 电子迁移跃迁 吸收光谱 配位场跃迁
收能量后向σ*反键跃迁,这种跃迁可以吸收波长在200nm左右。
n
π *跃迁:含有杂原子不饱和基团,如C=O,C=S,-N=N-等化合物,这种跃
迁一般处于近紫外区(200 ~ 400nm)。
电荷迁移跃迁:用电磁辐射照射化合物时,电子从给予体向与接受体相联系
的轨道上跃迁。因此,电荷迁移跃迁实质是一个内氧化还原的过程,而相应的吸收光谱
吸光物质的溶液时,在入射光的波长强度以及溶液的温 度等因素保持不变的情况下,该溶液的吸光度A与溶液 的浓度c及液层厚度l的乘积成正比关系,称为朗伯比尔 定律。
A=K·c·l
适用条件:单色光、稀溶液
朗伯比尔定律
A=K·c·l K—比例常数,与入射光的波长、溶液的性质、
液层厚度以及温度有关。 c—吸光物质的浓度。 l—透光液层厚度。
定义
紫外-可见分光光度法(ultraviolet and visible spectrophotometry ;
UV- vis )是研究物质在紫外-可见光区(200 ~ 800nm)分子吸收光谱的分析方 法。

仪器分析 10.1紫外可见分光光度法 图文

仪器分析 10.1紫外可见分光光度法 图文

61-19
二、UV光谱的有关知识和概念
2、物质吸光的程度表达
辐射功率P:单位时间内所传输的能量, 光度法中用光强 I 代替。 透过率 T:透过光与入射光强度的比值 吸光度 A :
I T
I0
A lgT lg IO I
2020年9月13日星期日 上一内容 下一内容
61-20
3、UV吸收光谱——吸收曲线
镧系元素:f-f 跃迁
二、UV光谱的有关知识和概念
1、物质吸光的选择性
M h I0 M * It h
ΔΕ ΔΕe ΔΕv ΔΕr
分子轨道包括三种: 分子轨道能级的量子化:光吸收具有选择性 电子能级差:约为1~20ev(1250~60nm)
2020年9月13日星期日 上一内容 下一内容
一、分子轨道中的电子跃迁类型 二、UV光谱的常用概念 三、吸收带及其与分子结构的关系 四、影响吸收带的因素 五、物质对光的吸收与吸收曲线 五、朗伯-比尔定律
2020年9月13日星期日 上一内容 下一内容
61-3
练习:
下面五个电磁辐射区域
A:X射线区
B:红外区
C:无线电波
D:可见光区
E:紫外光区
请指出:
61-22
4、有关概念:
① 吸收带:吸收峰位置 ② 红移或长移 ③ 蓝移或短移 ④ 增色效应
减色效应
⑤ 强带 ε ≥104
弱带 ε ≤102
2020年9月13日星期日 上一内容 下一内容
61-23
⑥ 生色团(chromophore ):含π→π* 、 n →π* 等跃迁的基团,即能产生UV吸收的 基团
61-12
5、电荷迁移跃迁
Charge transfer transition

【免费下载】第十章 紫外 可见分光光度法

【免费下载】第十章 紫外 可见分光光度法

第十章紫外—可见分光光度法一、选择题1.所谓真空紫外区,所指的波长范围是( )。

A、200~400nmB、400~800nmC、1000nmD、100~200nm2.在紫外可见分光度计中,用于紫外光区的光源是()A、钨灯B、卤钨灯C、氘灯D、能斯特灯3.指出下列化合物中,哪个化合物的紫外吸收波长最大()A、CH3CH2CH3B、CH3CH2OHC、CH2=CHCH2CH=CH2D、CH3CH=CHCH=CHCH34.符合比耳定律的有色物质溶液稀释时,其最大吸收峰的波长位置()A、向长波方向移动B、不移动,但峰高值降低C、向短波方向移动D、不移动,但峰高值增大5.下列化合物中,同时有n→л﹡、л→л﹡、σ→σ﹡跃迁的化合物是()A、一氯甲烷B、丙酮C、l,3丁二烯D、甲醇6.双光束分光光计与单光束分光光计相比,其突出的优点是()A、扩大波长的应用范围B、可以采用快速响应的监测系统一C、可以抵消吸收池所带来的误差D、可以抵消因光源强度的变化而产生的误差7.某化合物入max(正己烷为溶剂)=329nm,入max(水为溶剂)= 305nm,该跃迁类型为()A、n→л﹡B、л→л﹡C、σ→σ﹡D、n→σ﹡8.丙酮在乙烷中的紫外吸收λmax=279nm,ε=14.8,此吸收峰由( )能级跃迁引起的。

A、n→л﹡B、л→л﹡C、n→σ*D、σ→σ*9.下列四种化合物中,在紫外光区出现两个吸收带的是()A、乙烯B、l,4一戊二烯C、1,3一丁二烯D、丙烯醛10.助色团对谱带的影响是使谱带()A、波长变长B、波长变短C、波长不变D、谱带蓝移11.某物质在给定波长下的摩尔吸光系数(ε)很大,则表明()A、物质对该波长光的吸收能力很强B、物质的摩尔浓度很大C、光通过物质溶液的光程长D、物质的摩尔质量很大12.符合比耳定律的溶液稀释时,其浓度、吸光度和最大吸收波长的关系为()A、减小,减小,减小B、减小,减小,不变C、减小,不变,减小D、减小,不变,增加13.下列叙述正确的是()A、透光率与浓度成线性关系B、一定条件下,吸光系数随波长变化而变化C、浓度相等的x,y两物质,在同一波长下,其吸光度定相等D、质量相等的x,y两物质,在同一波长下,其吸光系数一定相等14.吸光性物质的摩尔吸光系数与下列( )因素有关。

紫外-可见分光光度法

紫外-可见分光光度法
30.01mg→100ml 5→50ml 浓度为30.01ug/ml
E=A / C C为100ml溶液中所含被测物质的重量 (按干燥品或无水物计算),g
(C = 0.003001g ×(1-水分)/ 100ml)
二.鉴别: 按各该品种项下的规定,测定供试品
溶液在有关波长处的最大及最小吸收,有 的并须测定其各最大吸收峰值或最大吸收 与最小吸收的比值,均应符合规定。
在高精度的分析测定中(紫外区尤其 重要),吸收池要挑选配对。因为吸收池 材料本身的吸光特征以及吸收池的光程长 度的精度等对分析结果都有影响。
玻璃吸收池因为能吸收紫外光,故只 能用于320nm以上的可见光区。
石英吸收池因不吸收紫外光而常用 于300nm以下的紫外光区,但也可用于 可见光区。
最常用的光路长度为: 1cm的吸收池。
表示方法:
(1)百分吸收系数(E):

E 1% 1cm
表示。
E=A/C(%)×L(cm)
中国药典规定的吸收系数即为
E 1% 1cm

在用吸收系数法计算含量时,E11c%m 通常要
大于100
(2)摩尔吸收系数(ε):
当溶液的浓度(C)为1mol/L,光路长 度(L)为1cm时,相应的吸光度为摩尔吸 收系数,以ε表示。
通常使用的紫外-可见分光光度计的工作波长 范围为190~900nm。
第二节 光吸收基本定律和吸收系数
1.光吸收基本定律: 比尔—郎伯(Beer—Lambert)定律
为光吸收基本定律,是分光光度分析的 理论基础。 Lambert于1730年提出了光 强度与吸收介质厚度的关系。1852年 Beer提出了光强度与吸收介质中吸光物 质浓度之间的关系。
光源为空心阴极灯。每种元素都 有各自的空心阴极灯,因此原子 吸收光谱是锐线光谱。

第十章 紫外可见分光光度法

第十章  紫外可见分光光度法

如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动
能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度 不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲 线形状相似,λmax不变。而对于不同 物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息,
电子的基团。 例: C=C;C=O;C=N;—N=N— 注:当出现几个生色团共轭,则几个生色团所产生的
吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个生色团的吸收波长长,强度也增强。
下面为某些常见生色团的吸收光谱
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
称最小吸收波长(λmin) 。
3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的
部分。
5. 生色团
所谓生色团,是指有机化合物分子结构中含有p -
p*和n-p*中跃迁的基团,即能在紫外-可见光范围内产 生吸收的原子团。 对有机化合物:主要为具有不饱和键和未成对
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。
可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学

紫外可见分光光度法

紫外可见分光光度法
同一物质相同浓度的吸收曲线重合。
●同一物质不同浓度,其吸收曲线形状相似,λmax相同。(定量) ●不同物质相同浓度,其吸收曲线形状,λmax不同。(定性)
吸收光谱 特征值:
λmax λmin λsh
20210919/1/100//2222
19 19
五、偏离光的吸收定律原因
朗伯-比尔定律:A=k C L
1 T
I0 = -lgT = lg It
A=-lgT , T=10-A
③T与A关系: A∝1/T,T=0,A=∞ ,T=100%,A=0 例2:P157
20210919/1/100//2222
15 15
二、光的吸收定律
朗伯(Lambert)和比尔(Beer)分别于1760年和1852年研究吸光度 A与溶液厚度L和其浓度C的定量关系:
尤其浓度过高(>0.01mol/L)会使C与A关系偏离定律: ①粒子相互作用加强,吸光能力改变。 ②溶液对光的折射率显著改变。
(二)光学因 素1.非单色光的影响:入射光为单色光是应用该定律的重要前提:
2.杂散光的影响:仪器本身缺陷;光学元件污染造成。
3.反射和散色光的影响:散射和反射使T↓,A↑,吸收光谱变形。 通常可用空白对比校正消除。

(0.1cm~1000m)
20210919/1/100//2222
55
(二)原子光谱与分子光谱
1、原子光谱:气态原子或离子外层电子在不同能级间跃迁而产生 的光谱。包括:原子吸收、原子放射、原子荧光光谱等。
原子吸收辐射能条件:
E

E2

E1

h

h
c




h
c E

第十章 紫外可见分光光度法

第十章 紫外可见分光光度法

第十章紫外可见分光光度法(Ultraviolet visible spectrophotometry, UV)§概述依据物质发射或吸收辐射能或辐射能与物质的相互作用而建立的分析方法,广义上都称为光谱分析(Spectral Analysis)。

首先我们要了解辐射能与物质相互作用的特点及各种光谱的产生。

一、电磁辐射与电磁波谱辐射是一种能量形式,具有电和磁的特性,故又称电磁辐射或电磁波;电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传插媒介的量子流,它具有波粒二象性。

它包括很宽的频率范围,从波长短至可见光的十万分之一的r射线到波长为千米长的无线电波。

电磁辐射具有波动和粒子的两重性,简单可以看成是一种平面偏振波,由单一平面上振动的电场矢量(E)和垂直于电场矢量在另一平面上振动的磁场矢量(M)组成,而两者都垂直于它的运动方向作周期性变化。

当碰撞到物体时,辐射的电或磁矢量与带有电荷或磁矩的粒子作用,在辐射与物质之间发生能量传递。

在多数情况下,这种能量传递,电矢量起作用,因此一般用电矢量来描述辐射的性质,而频率、波长、速度等是描述电磁场辐射特性的主要参数。

1.光的波粒二象性(电是一种电磁波)E=hγ=hc/λ(γ=c/λ)= hv/λ1γ:频率为每秒钟内正弦波振动次数,其大小决定于波源,与传插介质无关,以周数/秒表示,单位为Hz(1Hz=1周·秒-1)v: 波的传播速度,它不是常数,随传播介质而改变。

但是所有电磁波在真空中传播速度都约为3.0×1010cm/s, (V=C=3.0×1010cm·s-1),因此在真空或接近真空介质中传播辐射,其波长与频率的关系则为:λ=C/γ。

普朗克提出了量子学说,1905年爱因斯坦引用普朗克的量子论理并加以推广,提出了光子学说,认为辐射能的最小单位是光子,光子的能量E等于普朗克常数与频率辐射的乘积,即E=hγ。

h: 6.62×10-34丁·S-1E:J或ev(1ev=1.60×10-19J)显然辐射以一个光子的能量表示粒子的概念,而辐射的频率则是波动的概念,从而将辐射的波动和粒子理论联系起来。

化学分析UV

化学分析UV
– 比较不同吸收带的A或E的比值 – 比较吸收光谱的一致性
a
O
a
b
CH3
O C CH C
CH3 CH3
b
例1:
安宫黄体酮和炔诺酮因共轭体系部分的结构相同,
所以它们的lmax=240nm,而E1%有差别分别为
408和571。
CH3
CO CH3 OCOCH3 CH3 H
CC CH3 OH H
HH O
光系数达1.1×104,反应灵敏,适用于微量铁的测定。 • 当铁为三价时,可用盐酸羟胺还原,反应式如下: • 2Fe3++2NH2OH·HCl→2Fe2++N2↑+4H++2H2O+2Cl• 反应在pH4.5~5的缓冲溶液中进行,含铁量在0.5~8
mg/L范围时,其浓度与吸光度符合Beer定律。
铁含量的测定
O CH3 C CH2 CH=CH-CH=CH2
• 下列化合物中,在近紫外光区中有两个 吸收带的物质是哪个?
• A.丙烯; B.丙烯醛; • C.1,3-丁二烯; D.丁烯
• 下面几个化合物中跃迁所需能量最大的 是( )
• A、1,4-戊二烯 • B、1,3-丁二烯 • C、1,3-环己二烯 • D、2,3-二甲基-1,3-丁二烯
一. 基本原理
CuSO4
KMnO4
Fe(SCN)3
(一)朗伯-比尔定律:
朗伯-比尔定律
透光度
(transmittance)
I0
I
T=I/I0
吸光度
(absorbance) A= -lgT
影响物质对光吸收程度的因素:
♪ 物质的本性 ♪ 入射光波长 ♪ 溶剂种类 ♪ 溶液温度 ♪ 溶液浓度 ♪ 光路长度

紫外-可见分光光度法

紫外-可见分光光度法
称这两种单色光为互补色光,这种现象称为光的互补。
7/27/52/52/2002200
10 10
物质的颜色:是由于物质对不同波长的光具有选择性吸收而产生。 即物质的颜色是它所吸收光的互补色。
物质的本色
7/27/52/52/2002200
无色溶液:透过所有颜色的光 有色溶液:透过光的颜色 黑色: 吸收所有颜色的光 白色: 反射所有颜色的光
按波长不同分: 红外、可见光、紫外光谱法等
7/27/52/52/2002200
33
一、基本概念
(一)电磁辐射和电磁波谱
1.电磁辐射(电磁波,光是其中一种) :以巨大速度通过空间、 不需要任何物质作为传播媒介的一种粒子流(能量)。
2.电磁辐射的性质:具有波、粒二向性
➢波动性:光的反射、折射、偏振、干涉衍射现象。
γ射线→ X 射线→紫外光→可见光→红外光→微波→无线电波
|
|
|
|
|
|
|
10-2 0.1nm 10 nm 102 nm 103nm 0.1 cm 100cm 1 cm 103 m
紫 外--可见 光在电磁波谱中的位置
高能辐射区 γ射线 能量最高,来源于核能级跃迁
波长

(10-3~10nm) χ射线 来自内层电子能级的跃迁
c , 1
σ是波数,C=2.9979×108m/s
➢微粒性:光的吸收、放射、光电效应等现象。光子能量:
E h h c
例1:P153
E∝ 1/λ,λ ↓ E ↑
7/27/52/52/2002200
44
➢电磁波谱: 电磁辐射本质是一样的,区别在于频率不一样。 按波长不同排列起来就形成电磁波谱。表13-1

紫外可见分光法

紫外可见分光法
溶液对光的吸收除与溶液本性有关外,还与入射 光波长、溶液浓度、液层厚度及温度等因素有关。
A Kcl
l: 吸收光程(液层厚度),cm。 c: 吸光物质浓度。 K: 吸光系数
注意
1.Lamber-Beer定律的适用条件(前提)
➢ 入射光为单色光
➢ 溶液是稀溶液
2.该定律适用于固体、液体和气体样品
3.在同一波长下,各组分吸光度具有加和性
吸收定律(标准曲线)与吸收光谱的区别
吸A 收 定 律
吸 A或 收 光 谱
C
一定,一般是在 max时测得
C一定时测得
第二节 紫外可见分光光度计
➢ 一、基本构造:五个单元组成
光源
0.575
单色器 吸收池 检测器 显示器
紫外-可见分光光度计组件
光源
氢灯,氘灯,150 ~ 400 nm; 卤钨灯,> 350 nm. 基本要求:光源强,能量分布均匀,稳定
第十章 紫外-可见分光光度法
第一节 紫外-可见分光光度法 的基本原理和概念
利用被测物质的分子对紫外-可见光具有 选择性吸收的特性而建立的分析方法。
电子能级 跃迁
紫外、可见吸收光谱 (λ: 200-760 nm)
10-200 nm:远紫外;200-400 nm:近紫外 400-760 nm:可见光
物质为什么会有颜色? 为什么不同的物质会呈现不同的颜色?
末端吸收
吸收峰
最大吸收
最小吸收 特征值→定性依肩据 峰
肩峰
末端吸收
分子吸收光谱的形状取决于分子的内部结构,不
同分子的内部结构不同,吸收光谱不同。因此,分子
吸收谷光谱是物质定性的依据。
在定量分析中,通过吸收光谱选择测定波长,一

第10章紫外—可见分光光度法2012

第10章紫外—可见分光光度法2012
Absorbance
2 7 24 -
Cr2O72-、MnO4-的吸收光谱
17
6.生色团*
从广义来说,所谓生色团,是指 分子中可以吸收光子而产生电子跃迁 的原子基团。但是,人们通常将能吸 收紫外、可见光的原子团或结构系统 定义为生色团。
18
7. 助色团* 助色团是指带有非键电子对的基 团,如-OH、 -OR、 -NHR、-SH、Cl、-Br、-I等,它们本身不能吸收大 于200nm的光,当它们与生色团相连 时,会使生色团的吸收峰向长波方向 移动,并且增加其吸光度。
54
(三)分光光度计的校正
通常在实验室工作中,验收新仪器或 实验室使用过一段时间后都要进行波长校 正和吸光度校正。 1. 波长的校正 镨铷玻璃或钬玻璃都有若干特征的吸 收峰,可用来校正分光光度计的波长标尺, 前者用于可见光区,后者则对紫外和可见 光区都适用。
0.2
A
0
0
1
2
3
4
mg/mL
工作曲线
34
例如,重铬酸钾的水溶液有以下平衡:
Cr2O2-7 + H2O 2H+ + 2CrO2-4
若溶液稀释2倍,Cr2O2-7 离子浓 度不是减少2倍,而是减少明显地多 于2倍,结果偏离Beer定律,而产生 误差。
35
(二)光学因素 1. 非单色光(一定波长范围的光) 2. 杂散光(stray light) 不在谱带宽度范围内的与所需波 长相隔较远的光。 3. 散射光和反射光(透射光强度减 弱) 4. 非平行光 (光程差)
25
四、影响吸收带的因素
主要是分子中结构因素和测定条件 等多种因素的影响,它的核心是影响 分子中电子共轭结构。
26

紫外基本原理

紫外基本原理

第十章紫外-可见分光光度法(Ultraviolet and visible spectrophotometry;UV-vis)内容:1 朗伯-比尔定律2 偏离比尔定律的因素3 紫外-可见分光光度计要求:1.掌握Lambert-Beer定律的物理意义,成立条件,影响因素及有关计算;2.熟悉紫外-可见分光光度计的基本部件,工作原理及几种光路类型;第一节紫外-可见分光光度法的基本原理和概念五朗伯-比尔定律:(一) Lamber-Beer 定律:是吸收光度法基本定律,描述物质对单色光吸收强弱与液层厚度和待测物浓度之间关系的定律。

CA Beer l A Lamber ∝∝定律:定律:1.公式的推导:EClT A =-=lg假设一束平行单色光通过一个吸光物体(气体、液体或固体)nl S I I 吸光质点数为厚度为物体截面为透过光强为入射光强为0xxdI Sdnk S dS dn k dS dnI 透过薄层减弱的光强为几率光子通过薄层被吸收的不让光子通过的面积为薄层的吸光质点数为设入射光强为⋅=⋅=取物体中一极薄层S dn k I dI x x ⋅=-⇒⎰⎰⋅=-n I I xx S dS k I dI 00SnE S n k e I I S n k I I ..lg lg ln 00=⋅=-⇒⋅=-Cl SnC V n l V S ⋅=⇒⋅==和由lC E I IBeer Lamber ⋅⋅=--⇒0lg 定律表达式lC E T A ⋅⋅=-=lg lEC AT ⋅--==1010或)(:吸光系数E 透光率I I T =吸光度上式说明,单色光通过吸光介质后,透光率T 与浓度C 或厚度l 之间是指数函数的关系。

而吸光度A 与浓度或厚度之间是简单的正比关系。

2.讨论:1)Lamber-Beer 定律的适用条件(前提):入射光为单色光溶液是稀溶液2)同一波长下,各组分吸光度具有加和性+++=c b a A A A A 总3.吸光度的加合性:如果溶液中同时存在两种或两种以上吸光物质,只要不互相干扰,则总吸光度是各共存物吸光度的和,即:吸光度的加合性是计算分光光度法测定混合组分的依据。

仪器分析 课后习题答案 第十章 紫外-可见分光光度法课本习题答案

仪器分析 课后习题答案 第十章 紫外-可见分光光度法课本习题答案

第十章 紫外-可见分光光度法13.卡巴克洛(安络血)的摩尔质量为236,将其配成每100ml 含0.4962mg 的溶液,盛于1cm 吸收池中,在λmax 为355nm 处测得A 值为0.557,求卡巴克洛(安络血)的%11cm E 及ε值。

解:1123104962.01557.03%11=⨯⨯=⨯=-c b A E cm 4%111065.211231023610⨯=⨯=⨯=cm E M ε 14.称取维生素C 0.05g 溶于100ml 的0.005mol/L 硫酸溶液中,再准确量取此溶液2.00ml 稀释至100ml ,取此溶液于1cm 吸收池中,在λmax 245nm 处测得A 值为0.551,求试样中维生素C 的百分质量分数。

(%11cm E 245nm=560) 解:ml g b E A C cm 100/04920.0501560551.050%11=⨯⨯=⨯⨯= %39.98%10005.00492.0=⨯=w 15.某试液用2.0cm 的吸收池测量时T =60%,若用1.0cm 、3.0cm 和4.0cm 吸收池测定时,透光率各是多少?解:ECl T A =-=lg1109.00.260.0lg lg =-=-=l T EC 当l =1.0cm 时,-lg T 1=0.1109×3=0.1109 T 1=77.46%当l =3.0cm 时,-lg T 2=0.1109×3=0.3327 T 2=46.48%当l =4.0cm 时,-lg T 3=0.1109×4=0.4436 T 3=36.00%16.有一标准Fe 3+溶液,浓度为6μg/ml ,其吸光度为0.304,而试样溶液在同一条件下测得吸光度为0.501,求试样溶液中Fe 3+的浓度。

解:212121C C l EC l EC A A == 07.106304.0501.01122=⨯=⨯=C A A C μg/ml 17.将2.481mg 的某碱(BOH )的苦味酸(HA )盐溶于100ml 乙醇中,在1cm 的吸收池中测得其380nm 处吸光度为0.598,已知苦味酸的摩尔质量为229,求该碱的摩尔质量。

紫外可见光分光光度法

紫外可见光分光光度法

紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。

当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。

因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。

从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。

物质的吸收光谱具有与其结构相关的特征性。

因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。

用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。

(完整版)10紫外-可见分光光度法习题参考答案

(完整版)10紫外-可见分光光度法习题参考答案

紫外-可见分光光度法思考题和习题1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。

吸光度:指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,用来衡量光被吸收程度的一个物理量。

吸光度用A表示。

透光率:透过透明或半透明体的光通量与其入射光通量的百分率。

吸光系数:单位浓度、单位厚度的吸光度摩尔吸光系数:一定波长下C为1mol/L ,l为1cm时的吸光度值百分吸光系数:一定波长下C为1%(w/v) ,l为1cm时的吸光度值发色团:分子中能吸收紫外或可见光的结构单元,含有非键轨道和n分子轨道的电子体系,能引起π→π*跃迁和n→ π*跃迁,助色团:一种能使生色团吸收峰向长波位移并增强其强度的官能团,如-OH、-NH3、-SH及一些卤族元素等。

这些基团中都含有孤对电子,它们能与生色团中n电子相互作用,使π→π*跃迁跃迁能量降低并引起吸收峰位移。

红移和蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移);吸收峰位置向短波方向移动,叫蓝移(紫移,短移)2.什么叫选择吸收?它与物质的分子结构有什么关系?物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。

这时称该物质对此波长(或波段)的光有选择性的吸收。

由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。

3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征?电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。

而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢ 讨论:
E
A C l
1)E与(组分性质,温度,溶剂,λ)有关
当组分性质、温度,λ和溶剂一定,E一定
2)不同物质在同一波长下E可能不同(选择性吸收)
同一物质在不同波长下E一定不同
3)E↑,物质对光吸收能力↑, 定量测定灵敏度↑
→ 定性、定量依据
2.吸光系数两种表示法:
1)摩尔吸光系数ε:
在一定λ下,C=1mol/L,L=1cm时的吸光度
*核磁共振波谱法(NMR) 其它波谱法 *质谱法(MS)
第一节 光学分析概论
一、电磁辐射和电磁波谱 二、光学分析法及其分类 三、光谱法仪器——分光光度计
1. 光的基本性质 (电磁波的波粒二象性)
波动性 光的传播速度:
νλc ,σ λ1
V = c =
n
c -真空中光速 2.99792458×108m/s
(二)化学因素
• Beer定律适用的另一个前提:稀溶液 • 浓度过高会使C与A关系偏离定律
四、透光率的测量误差——ΔT
A lg T E C l C A 1 E l E l lg T
浓度的相对误差 C 0.434T C T lg T
✓ 影响测定结果的相对误差两个因素: T和ΔT ➢ ΔT影响因素:仪器噪音 1)暗噪音 2)讯号噪音
化学分析与仪器分析方法比较
化学分析:常量组分(>1%), Er : 0.1%~0.2%
准确度高
依据化学反应, 使用玻璃仪器
仪器分析:微量组分(<1%), Er : 1%~5% 灵敏度高 依据物理或物理化学性质, 需要特殊的仪器
例: 含Fe约0.05%的样品, 称0.2 g, 则m(Fe)≈0.1 mg
样品溶液 样品池 A样
✓ 注:采用空白对比消除因溶剂和容器的吸收、光的散射和 界面反射等因素对透光率的干扰
三、偏离Beer定律的因素
A E C l
• 依据Beer定律,A与C关系应 为 经过原点的直线
• 偏离Beer定律的主要因素表现 ✓为(以一下)两光个学方因面素 ✓ (二)化学因素
(一)光学因素

二、光学分析法及其分类
(一)光学分析法 依据物质发射的电磁辐射或物质与电磁辐射
相互作用而建立起来的各种分析法的统称~。 (二)分类:
1.光谱法:利用物质与电磁辐射作用时,物质内 部发生量子化能级跃迁而产生的吸收、发射或散射 辐射等电磁辐射的强度随波长变化的定性、定量分 析方法.
➢ 按能量交换方向分 吸收光谱法 发射光谱法
形状相同,max 相同,Amax 不同
——定量分析的基础
4.吸光度测量的条件选择:
λmax Amax 测定灵敏度高
1)测量波长的选择: λmax左右 较小的ΔA
E
A C l
须在λmax下测定
2)吸光度读数范围的选择:选A=0.2~0.7
3)参比溶液(空白溶液)的选择:
空白溶液 配制样品的溶剂 参 比 池光学性质和厚度相同 样 品 池 空白溶液 参比池调节光 路 A参 0 ,T 100%
A = EcL
检测器
光源
参 比
L
0.20
2L
比尔定律:吸光度与浓度的关系
A = EcL
显示器
பைடு நூலகம்
0.00
检测器
光源
参 比
0.10
c
0.20
2c
吸光度与波长的关系 A = EcL
显示器
0.00
检测器
光源
参 比
0.10
红 蓝绿光
0.00
红 红光
朗伯-比尔定律
A=lg(I0/It)=EcL
1.Lamber-Beer定律的适用条件(前提)
1.非单色光的影响: ✓ Beer定律应用的重要前提——入射光为单色光
• 照射物质的光经单色器分光后 并非真正单色光
• 其波长宽度由入射狭缝的宽度 和棱镜或光栅的分辨率决定
• 为了保证透过光对检测器的响 应,必须保证一定的狭缝宽度
• 这就使分离出来的光具一定的 谱带宽度
设入射光由波长为λ1和λ2的光组成 入 射 光 光 强 分 别 为I0 1和 I0 2 对应的透过光光强分别为I1和I2
A lg T
lg
I I0
E C l I
I0
10 ECl
又 T I1 I 2 I 01 10 E1Cl I 02 10 E2Cl
I 01 I 02
I 01 I 02
10 E1Cl I 01 I 02 10(E2 E1)Cl I 01 I 02
A
lg T
E1C
l
lg
I 01
A = A1 + A2 + … +An
用参比溶液调T=100%(A=0),再测样品溶 液的吸光度,即消除了吸收池对光的吸收、反射,
溶剂、试剂对光的吸收等。
A1
=
lg
I0 I参比
A2
=
lg
I0 I试液
A
=
A2
-
A1
=
lg
I参比 I试液
二、吸光系数和吸收光谱
1.吸光系数的物理意义:
单位浓度、单位厚度的吸光度
➢ 按作用结果不同分 原子光谱→线状光谱 分子光谱→带状光谱
(1)发射光谱
M * 发光释放能量M hν 发射光谱
激发态
基态 光
✓例:γ-射线;x-射线;荧光
(2)吸收光谱
M hν吸收辐射能量 M * 吸收光谱
基态 光
激发态
✓例:原子吸收光谱,分子吸收光谱
光谱种类
原子光谱:吸收、发射、荧光
线状光谱
分子光谱:紫外、可见、红外等吸收光谱
I
带状光谱
黑体辐射:白炽灯、液、固灼热发光
连续光谱
2.非光谱法:利用物质与电磁辐射的相互作用 测定电磁辐射的反射、折射、干涉、衍射 和偏振等基本性质变化的分析方法 分类:折射法、旋光法、比浊法、χ射线衍射法
3.光谱法与非光谱法的区别:P176
➢ 光谱法:内部能级发生变化 原子吸收/发射光谱法:原子外层电子能级跃迁
三、光谱法仪器——分光光度计
➢ 主要特点:五个单元组成
光源
单色器
样品池
记录装置
检测器
10.1 吸光光度法的基本原理
吸光光度法是基于被测物质的分子对光具 有选择性吸收的特性而建立起来的分析方法。
特点 – 灵敏度高:测定下限可达10-5~10-6mol·L-1, 10-4%~10-5% – 准确度能够满足微量组分的测定要求: 相对误差2~5% (1~2%) – 操作简便快速 – 应用广泛
重量法 容量法 光度法
m(Fe2O3)≈0.14 mg, 称不准 V(K2Cr2O7)≈0.02 mL, 测不准 结果0.048%~0.052%, 满足要求
带*的为四 大波谱
原子光谱法
光谱分析法
分子光谱法
发展联用技术是趋势!
原子发射光谱法 原子吸收光谱法(AAS) 原子荧光光谱法 *紫外-可见吸收光谱法(UV-Vis) *红外吸收光谱法(IR) 分子荧光光谱法(MFS) 分子磷光光谱法(MPS) 化学发光光谱法 拉曼光谱法(RS)
颜色 紫
蓝 绿蓝 蓝绿
绿 黄绿
黄 橙 红
互补光 黄绿
黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿
透光率(透射比)T(Transmittance)
T = It I0
I0 入射光
吸光度A (Absorbance)
It 透过光
A = lg(I0/It) = lg(1/T) = —lgT It↑ A↓
10.2 光吸收基本定律:朗伯-比 尔定律
1.0 350
0.8
Cr2O72-
0.6
0.4
0.2
525 545 MnO4-
300 350 400
500
600
700 /nm
苯 (254nm)
甲苯 (262nm)
A
230
250
270
苯和甲苯在环己烷中的吸收光谱
➢不同物质吸收光谱的形状以及max 不
同 ——定性分析的基础
➢同一物质,浓度不同时,吸收光谱的
单位:J(焦耳),eV(电子伏特) 1eV=1.602×10-19 J
波粒二象性
E=h
c
=
V h
=
h
n
真空中:E h c
结论:一定波长的光具有一定的能量,波长越
长(频率越低),光量子的能量越低.
单色光:具有相同能量(相同波长)的光.
混合光:具有不同能量(不同波长)的光复合在
一起. 例如白光.
2.电磁波谱:电磁辐射按波长顺序排列,称~。
~3.0 ×108m/s
-波长,单位:m,cm,mm, m,nm,Å
1 m=10-6m, 1nm=10-9m, 1Å=10-10m
-频率,单位:赫芝(周)Hz 次/秒
n -折射率,真空中为1
σ-波数,单位:cm-1
电场向量 Y
Xx
Z
微粒性
光量子,具有能量。 E h
h-普朗克(Planck)常数 6.626×10-34J·s -频率 E-光量子具有的能量
分子吸收/发射光谱法:分子外层电子能级跃迁 ➢ 非光谱法:内部能级不发生变化
仅测定电磁辐射性质改变
物质分子内部3 种运动形式及其对应能级:
1. 电子相对于原子核的运动--电子能级; 单重态:激发态与基态中的电子自旋方向相反. 三重态:激发态与基态中的电子自旋方向相同.
2. 原子核在其平衡位置附近的相对振动 --振动能级;
I 02 10(E2 E1)Cl I 01 I 02
➢ 讨论: 入射光的谱带宽度严重影响吸光系数和吸收光 谱形状 E1 E 2 A E1CL 成线性关系
相关文档
最新文档