第2章 复习与小结
第二章 有理数的运算小结复习(第3课时知识方法)(课件)七年级数学上册(人教版2024)
∴|x+1|+|x﹣2|的最小值是3.
(3)解决问题:|x+3|+|x﹣1|的最小值是多少?并利用下面所给数轴说明理由;
例 如图,试利用图形所揭示的规律计算:
1
2
(1) +
(2)
1
2
+
1
4
1
4
+
+
1
8
+
1
8
1
16
+
+
1
16
+
1
32
=—
1
32
+
1
64
=—
4.特殊值方法
例当
1
0<x<1时,x、 、x2
解:气温从5℃下降到-1℃所用的时间为
3
4
[5-(-1)]÷ =6× =8(h).
4
3
因为13+8=21,
所以气温下降到-1℃的时间是21:00.
已知:有理数m所表示的点到点3距离4个单位长度,a,b互为相反数,
且都不为零,c,d互为倒数.求:2a+2b+( -3cd)-m的值.
2. 探究规律:
第二章 有理数的运算
第二章 有理数的运算
知
识
方
复 习 小 结 第 2 课 时
法
|
知识结构
自然数
数轴
正
数
形
大于
绝 对 值
小于
数
数
计
算
运算
比较大小
相 反 数
有理数
零
负
表
示
第二章 一元二次函数、方程和不等式复习与小结)课件-高一数学人教A版(2019)必修第一册)
常量(如1)替换,变量替换(消元)
返回
6.二次函数与一元二次方程、不等式的关系:
(1)形式上
二次函数 y=ax2+bx+c
(2)数值上 二次函数函数 y=ax2+bx+c的零点
一元二次方程 ax2+bx+c=0
右边化为0, 左边设为y
一元二次不等式 ax2+bx+c<0(或>0)
一元二次方程 ax2+bx+c=0的根
a b a b 0; 2.两个实数大小关系的基本事实: a b a b 0;
a b a b 0.
利用这个事实可以采取作差法可以对一些代数式的大小进 行了比较也可以证明不等式:
(1)作差; (2)变形;
目的:便于判定差的符号 常用的方法:因式分解、配方、通分、分子有理化等 (3)定号; 当差的符号不确定时,一般需要分类讨论 (4)作结论。 根据当差的正负与实数大小关系的基本事实作出结论 返回
1
1
ab
返回
4.基本不等式及其推导
对任意的a 0,b 0,有 ab a b 2
当且仅当a b时,等号成立
(1)基本不等式的常见变形:
① a+b≥2 ab ;
② ab≤( a+b )2 2
代数特征: 两个正数的几何平均数不大于它们的算术平均数,当且仅 当这两个正数相等时,二者相等. 几何解释: 圆O的半弦CD不大于圆的半径OD,当且仅当C与圆心O 重合时,二者相等。 (2)基本不等式的推导和证明: ①利用两个实数大小关系的基本事实用作差法得出;
求a b的最小值以及此时a的值。
解: 方法1
a0 , b0
由a b ab - 3得 a b ab - 3 ( a b )2 3
沪科版数学七年级上册第2章 小结与复习教案与反思
第2章 整式加减知人者智,自知者明。
《老子》棋辰学校 陈慧兰一、复习引入与巩固(1)单项式、多项式的定义:由数与字母的乘积组成的代数式叫做单项式.例如, h r 231、r π2、abc 、-m 都是单项式.特别地,单独一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数.例如,h r 231的系数是31,r π2的系数是π2,abc 的系数是1,-m 的系数是-1.一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,abc 的次数是3, yz x 245的次数是4.注意:圆周率π是常数;当一个单项式的系数是1或-1时,“1”通常省略不写,如2ab ,-abc ; 单项式的系数是带分数时,通常写成假分数.如y x 2411写成y x 245. (2)多项式的定义几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式5232+-x x 有三项,它们是23x ,-2x ,5.其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式5232+-x x 是一个二次三项式.注意多项式的次数不是所有项的次数之和;多项式的每一项都包括它前面的符号.重新排列多项式时,每一项一定要连同它的符号一起移动;含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列.(3)同类项的定义所含字母相同,并且相同字母的指数也分别相等的项叫做同类项;所有的常数项都是同类项.合并同类项的方法:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.例:k 取何值时y x k 3与y x 2-是同类项? 要使y x k 3与y x 2-是同类项,这两项中x 的次数必须相等,即 k =2. 所以当k =2时,y x k 3y 与y x 2-是同类项.如果一个多项式中含有同类项,那么我们常常要把同类项合并起来,使结果得以简化.把多项式中的同类项合并成一项,叫合并同类项.例:5253432222+++--xy y x xy y x 228)53()24()53()53()24()53(532453222222222222+-=+-++-++=+-++-++=+-+-+=xy y x xy y x xy xy y x y x xy xy y x y x概括:不难发现,合并同类项实际上就是根据加法交换律、结合律以及乘法分配律,把各同类项的系数加以合并.因而合并同类项的法则可以概括为:例: 求多项式13243222--+--+x x x x x x 的值,其中x =-3.(4)去括号的法则括号前面是“+”号,把括号和它前面的“”号去掉,括号里各项都不变符号; 括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 例:()(x +y -z )+(x -y +z )-(x -y -z );(2)()()222223223x y y x ---.补充:通过观察与分析,可以得到添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.:(1)错误!未找到引用源。
第2章 复习与小结(2)(教案)
第2章 复习与小结(2)江苏省靖江第一高级中学 宋锦芳教学目标:1.掌握圆锥曲线的统一定义;2.掌握椭圆、双曲线、抛物线的几何性质;3.会求一些简单的曲线的轨迹方程.教学重点:圆锥曲线的统一定义及曲线方程的求法.教学难点:圆锥曲线的统一定义及曲线方程的求法.教学方法:启发引导.教学过程:一、 复习1.圆锥曲线的统一定义是什么?2.椭圆、双曲线、抛物线的准线方程分别是什么?3.求曲线方程的步骤有哪些?方法有哪些?二、基础练习1.已知椭圆2212516x y +=上一点P 到椭圆一个焦点的距离为3,则P 点到另一个焦点的距离为 ;2.如果椭圆的两条准线间的距离是这个椭圆的焦距的两倍,那么这个椭圆的离心率为 ;3.若椭圆()222210x y a b a b +=>>的离心率为2,则双曲线22221x y a b-=的离心率是 ;4.抛物线216y x =-的准线方程为 ; 5.抛物线顶点在原点,焦点在y 轴上,其上一点P (m ,1)到焦点距离为5,则抛物线方程为 .三、例题讲解例1 根据下列条件判断方程22194x y k k+=--表示什么曲线: ()14k < ()249k <<例 2 已知点P 是椭圆221259x y +=上一点,F 1和F 2是椭圆的焦点,()()()01212012121212190,260,3,F PF F PF F PF F PF F PF F PF θ∠=∆∠=∆∠=∆若求的面积;若求的面积;若求的面积.变式1:若将椭圆改为双曲线呢?变式2:已知F 1,F 2是椭圆()222210x y a b a b+=>>的两个焦点,P 为椭圆上一点,∠F 1MF 2=60°.(1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.例3 已知圆C 1的方程为:()()2220213x y -+-=,椭圆C 2的方程为: ()222210x y a b a b+=>>,C 2的离心率为2,若C 1与C 2相交于A ,B 两点,且线段AB 恰好为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.226910x y x +--= 相内切,求△ABC 面积的最大值.(2)在(1)的条件下,给定点P (-2,2), 求53PA AB +的最小值. (3)在(2)的条件下求|P A |+|AB | 的最小值. 例5 已知ABC ∆的两个顶点A ,B 坐标分别是(5,0)-,(5,0),且AC ,BC 所在直线的斜率之积等于m (0)m ≠,试探求顶点C 的轨迹.四、巩固练习1. 方程 2213sin(2)4x y πα-=+ 表示椭圆,则α的取值范围是___________; 2.抛物线y 2=2x 上到直线x -y +3=0的距离最短的点的坐标为_________;3. 椭圆221123x y +=的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的 倍;4. 设直线:l x =A ),动点P 到直线l 的距离为d ,且2PAd =.求动点P 的轨迹方程. 五、课后作业1.如果方程22112x y m m+=--表示双曲线,则实数m 的取值范围是 ; 2.一个椭圆的离心率12e =,准线方程是x =4,对应的焦点F (2,0),则椭圆的方程是 ; 3.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |长是 ;4.如图,已知OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点,且S △ABF =(162-,∠BAO =30°,则双曲线的方程为__________________ ;5.已知圆C 过双曲线 221916x y +=的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是_ __.6.以抛物线 ()220y px p =>的焦半径|PF |为直径的圆与y 轴位置关系为7.已知点A (-,设F 为椭圆2211612x y +=的右焦点,M 为椭圆上一动点, (1) 求|AM |+2|MF |的最小值,并求出此时点M 的坐标.(2) 求MF 的最大值和最小值;(3) 设左焦点为F 1,求1MF MF ⋅的最大值.。
《第2章整式的加减》小结与复习
第2章小结与复习【学习目标】对本章的内容进行回顾和总结,熟练掌握代数式、单项式、多项式、同类项等有关概念和合并同类项、去括号及添括号法则.掌握整式的运算.【学习重点】回顾本章知识,构建知识体系.【学习难点】整式加减.行为提示:创景设疑,帮助学生知道本节课学什么.说明:引导学生回顾本章知识点,展示本章知识结构图.使学生系统了解本章知识及它们之间的关系.教学时,边回顾边建立知识结构图.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入 生成问题知识结构我能建: 用字母表示数代数式列代数式求代数式的值整式单项式单项式的次数、系数多项式多项式的次数、项数升(降)幂排列整式加减去(添)括号合并同类项自学互研 生成能力知识模块一 代数式与整式典例1:(1)把含盐15%的盐水a 千克与含盐20%的盐水b 千克混合得到的盐水浓度是(含盐的百分比)( B )A .17.5%B .15%a +20%b a +b×100% C .a +b 15%a +20%b D .15%a +20%b 85%a +80%b×100% (2)校园里刚栽下一棵1.8米高的小树苗,以后每年长0.3米,则n 年后的树高是(1.8+0.3n)米;(3)“a 的2倍与1的和”用代数式表示是2a +1;(4)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重x -25千克; (5)某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是55%x 人.典例2:(1)下列说法中不正确的是( D )A .-a 2b 的系数是-1,指数是3B .a 2-1是整式 C .6a 2-2b -3的项是6a 2,-2b ,-3 D .22ab 2c 3-3a 3是八次二项式(2)已知多项式-13x 2y m +1+12xy 2-3x +6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m ,n 的值.解:由题意得:2+m +1=6,2n +2=6,m =3,n =2.变例:(齐齐哈尔中考)已知x 2-2x =5,则2x 2-4x -1的值为9.知识模块二 整式加减典例1:-x 2n -1y 与8x 9y 是同类项,则代数式(2n -9)2015的值是( B ) A .0 B .1 C .-1 D .1或-1学习笔记:行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 典例2:一个长方形的一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是( B )A .12a +16bB .6a +8bC .3a +8bD .6a +4b仿例:(1)一个多项式P 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则P 等于( D )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy(2)2a 5-3b 5-4⎝⎛⎭⎫12a 5-12a 3b 2+2a 2b 3-34b 5. 解:原式=2a 5-3b 5-2a 5+2a 3b 2-8a 2b 3+3b 5=2a 3b 2-8a 2b 3.变例:(1)已知a =-15,求15a 2-{-4a 2+[5a -(2a 2-a)]}; 解:原式=21a 2-6a ,将a =-15代入, 得原式=21×⎝⎛⎭⎫-152-6×⎝⎛⎭⎫-15=5125; (2)3x 2y -⎣⎡⎦⎤2xy 2-2⎝⎛⎭⎫xy -32x 2y +xy +3xy 2,其中x =3,y =-13. 解:原式=3x 2y -(2xy 2-2xy +3x 2y +xy)+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy.将x =3,y =-13代入, 得原式=3×⎝⎛⎭⎫-132+3×⎝⎛⎭⎫-13=13+(-1)=-23. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 代数式与整式知识模块二整式加减检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。
北师版九年级数学下册教学课件(BS) 第二章 二次函数 第二章小结与复习
解:(1)由题意,得
1 b c 4, 4 2b+c 5,
解得
b 2, c -3.
所以,该抛物线的解析式为y=x2-2x-3;
(2)若抛物线与x轴的两个交点为A、B,与y轴交于点C. 在该抛物线上是否存在点D,使得△ABC与△ABD全等? 若存在,求出D点的坐标;若不存在,请说明理由.
(2)∵抛物线y=x2-2x-3的对称轴为x=1,
抛物线的平移
抛物线的顶点坐 标和对称轴
二
次 函 数
应 用
的
性
最质值源自(-3,y1),(3 2
,y2)是抛物线上两点,则y1>y2.
其中正确的是
(B)
y
A.①②③ C.①②④
B.①③④ D.②③④
O x=-1
2x
针对训练
3.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,
则实数b的取值范围是( D )
A.b≥-1
B.b≤-1
C.b≥1
D.b≤1
六、二次函数与一元二次方程的关系
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点, 没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当 y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
二次函数y=ax2+bx+c的图象和x
轴交点
2.顶点式:y=a(x-h)2+k(a≠0)
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式 y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数的值,最后将解析式 化为一般式.
3.交点式:y=a(x-x1)(x-x2)(a≠0)
2024年秋季新人教版七年级上册数学教学课件 第二章 小结与复习
n 指数
(1) 先乘方,再乘除,最后加减; (2) 同级运算,从左到右进行;
底数
(3) 如有括号,先做括号内的运算,按小括号、
中括号、大括号依次进行.
二、科学记数法 把大于 10 的数记成 a×10n 的形式,其中 1. 1≤a<10;
2. n 为原数的整数位数减去 1. 三、近似数
1. 按照要求取近似数 四舍五入到某一位,就说这个近似数精确到那一位. 2. 由近似数判断精确度
有理数 的运算
新知一览
有理数的加法 与减法
有理数的乘法 与除法
有理数的乘方
有理数的加法 有理数的减法 有理数的乘法 有理数的除法 有理数的乘方
科学记数法 近似数
第二章 有理数的运算
小结与复习
人教版七年级(上)
知识回顾
一、有理数的运算
1. 有理数的加法
(1) 加法法则
加法的交换律
(2) 加法的运算律 加法的结合律
注意:1. 底数或因数 是带分数时,要先将 带分数化成假分数; 2. 区分 -24 与 (-2)4.
练一练
1. 计算:(1) -3 + 8 - 7 - 15; (2) 23 - 6×(-3) + 2×(-4);
答案:(1) -17. (3) -3.3.
(2) 33.
考点2: 科学记数法
例2 (保定模拟考) 地球与太阳的最远距离约为 15 200
万千米,最近距离约为 14 700 万千米,两者相差的距
离用科学记数法表示为 ( C )
A. 5×102 千米
B. 5×104 千米
C. 5×106 千米
D. 5×108 千米
分析:15200 - 14700 = 500 万千米
2024年秋新沪科版七年级上册数学教学课件 第2章 整式加减 本章小结与复习
xy2 xy
当x
1 ,y 3
3时,原式
xy 2
xy
1 3
32
1 3
3
3 1 4
例6 若(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取 值无关,求5ab2-[a2b+2(a2b-3ab2)]的值.
解:(2x2+ax-y+6)-(2bx2-3x+5y-1) =2x2+ax-y+6-2bx2+3x-5y+1 =(2-2b)x2+(a+3)x-6y+7
2.多项式
每一项都包
(1)概念:几个单项式的_和__叫作多项式.
括它前面的 符号
(2)项:每个__单__项__式__叫作多项式的项,其中不含字
母的项叫作__常__数__项__.
(3)次数:一个多项式里,次数_最__高__的项的次数.
3.整式 _单_项__式___和_多__项__式__统称为整式.
例3 (1)单项式 xy2 的系数与次数分别是( D ) 3
(4)若单项式2xm-1y2与单项式 1 x2 yn1 是同类项,则 3
m+n=____4___.
考点三 整式加减
1.合并同类项 (1)同类项:所含字母相同,并且相同字母的_指__数__ 也分别相同的项. (2)法则:同类项的系数_相__加__,所得结果作为系数, 字母和字母的指数_不__变__.
A. 1 , 2 3
B. 1 ,3 3
C. , 2 3
D. ,3 3
(2)下列各组属于同类项的是( D )
A.3x2 y与2xy2
C. 1 x2 y2与 1 x2 y3
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)
巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
人教版七年级数学课件:第二章 小结与复习 (共21张PPT)
指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=( 2 ) ,n=( 1 ) 若5x2 y与x m yn的和是单项式,则m=( 2 ) , n=( 1 )
只有同类项才 能合并成一项
三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
第二章 整式的加减
小结与复习
一、整式的有关概念 1.单项式:都是数或字母的__积__,这样的式子叫 做单项式,单独的一个数或一个字母也是单项式. 2.单项式的系数:单项式中的数字因数叫做这个 单项式的系数. 3.单项式的次数:一个单项式中,所有字母的指 数的和叫做这个单项式的次数. 4.多项式:几个单项式的_和___叫做多项式. 5.多项式的次数:多项式里次数最高项的次数, 叫做这个多项式的次数. 6.整式:_____单__项__式__与__多__项__式_____统称整式.
【解析】可以发现每个图形的五角星个数都比前 面一个图形的五角星个数多3个.由于第1个图形的五 角星个数是3×1+1,所以第n个图形的五角星个数是 3n+1,故第2016个图形五角星个数是3×2016+1=6049.
课堂小结
用字母表示数
整
整 单项式: 系数、次数
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
【解析】从化简入手进而揭开它神秘的面纱. 解:设所想的数为n,则(2n+8)÷2-n=n+4-n=4. 因为结果是常数4,所以与所想的数无关,因此甲能 知道结果.
湘教版数学七年级上册第2章小结与复习教学设计
湘教版数学七年级上册第2章小结与复习教学设计一. 教材分析湘教版数学七年级上册第2章主要内容有小结与复习,包括有理数的乘方、整式的乘法、因式分解、不等式及其性质、不等式的解法、函数的性质等。
这些内容是学生掌握数学基础的关键,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经初步掌握了实数、代数式的基本知识,对于有理数的乘方、整式的乘法、因式分解等有一定的了解。
但学生在理解和运用上还存在一定的困难,特别是在解决实际问题时,不能灵活运用所学知识。
因此,在教学过程中,需要注重引导学生理解概念,提高学生解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握有理数的乘方、整式的乘法、因式分解、不等式及其性质、不等式的解法、函数的性质等基本概念和性质,能够运用所学知识解决实际问题。
2.过程与方法目标:通过复习和总结,使学生掌握解题的基本方法,提高学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信,培养学生的合作精神。
四. 教学重难点1.重点:有理数的乘方、整式的乘法、因式分解、不等式及其性质、不等式的解法、函数的性质等基本概念和性质。
2.难点:理解并运用有理数的乘方、整式的乘法、因式分解等解决实际问题。
五. 教学方法采用自主学习、合作学习、探究学习等教学方法,注重引导学生主动参与,培养学生的逻辑思维和解决问题的能力。
六. 教学准备1.教师准备:备好相关教学资料,了解学生的学习情况,制定合理的学习计划。
2.学生准备:预习相关内容,了解基本概念和性质,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾上节课所学内容,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT或黑板展示本节课的主要内容,包括有理数的乘方、整式的乘法、因式分解、不等式及其性质、不等式的解法、函数的性质等,让学生对这些内容有一个整体的认识。
3.操练(10分钟)教师提出一些实际问题,引导学生运用所学知识解决问题。
第2章整式的乘法小结与复习PPT课件
要点梳理
方法总结
本章中数形结合思想主要体现在根据给定的图形写出一个代数恒 等式或根据代数式画出几何图形. 由几何图形得到代数恒等式时,需 要用不同的方法表示几何图形的面积,然后得出代数恒等式;由代数 恒等式画图时,关键在于合理拼接——往往是把相等的边拼到一起.
针对训练
我们已知道,完全平方公式可以用平面几何图形的面积来表示, 实际上还有一个代数恒等式也可以用这种情势来表示,例如 (2a + b)(a + b) = 2a2 + 3ab + b2,就可以用图①和图②等图形的面积表示.
解:(1)原式=
2
3
2 5
a1
2
b31
c 12 a3b4c. 5
(2) 原式= (-2x) ·(-6x3) + 5 ·(-6x3) + x2 ·(-6x3) = 12x4-30x3-6x5.
针对训练
将要解决的问题转化为另一个较易解决的问题,这是初中数学中
常单用 项的式思×想单方项法式.转如化本章有中理,数多的项乘式法×和多同项底式数幂转的化乘单法项.式×多项式
解:原式= (x3y2-x2y-x2y + x3y2)·3x2y = (2x3y2-2x2y)·3x2y = 6x5y3-6x4y2 .
当 x = 1,y = 3 时,原式 = 6×27-6×9 = 108.
针对训练
方法总结
整式的乘法主要包括单项式乘单项式、单项式乘多项式及 多项式乘多项式,其中单项式乘单项式是整式乘法的基础,必 须熟练掌握它们的运算法则.
解:∵ 420 = (42)10 =1610, ∴ 1610 > 1510. ∴ 420 > 1510.
例题讲授
2024年秋季新华师大版7年级上册数学课件第2章第2章 整式及其加减小结与复习
重难剖析
3.化简下列各式: (1)2a+(a+1)-(2a-1);(2)(5a2-3b)-3(a2-2b).
解: (1)2a+(a+1)-(2a-1) =2a+a+1-2a+1 =(2a+a-2a)+(1+1) =a+2.
重难剖析
3.化简下列各式: (1)2a+(a+1)-(2a-1);(2)(5a2-3b)-3(a2-2b).
知识回顾
3. 整式 ____单__项__式______和_____多__项__式_____统称为整式, 整式中如果有分母,分母不能含有字母.
知识回顾
四、整式的加减
1. 同类项与合并同类项 (1)同类项:所含字母相同,并且相同字母的___指__数____都相 等的项叫做同类项. 另外,所有的______常__数______项都是同类项. 注意:同类项与系数无关,与字母的排列顺序无关.
整式的加减运算,实质是正确地去括号、合并同类项.
知识回顾
(1)几个多项式相加,可以省略括号,直接写成相加的形式. 如3a+2b与-2a+b的和可直接写成3a+2b-2a+b的形式. (2)两个多项式相减,被减数可不加括号,但减数一定要添加 括号. 如3a+2b与-2a+b的差要写成3a+2b-(-2a+b)的形式,再 去括号进行计算.
重难剖析
(2)如果这个老师带了6名学生,乘哪一辆车合算?如果带了 10名学生呢?
解:(1)乘甲车所需的车费为50(x+1)×80%元, 乘乙车所需的车费为50x·90%元; (2)当x=6时,50(x+1)×80%=40×7=280(元), 50x·90%=45×6=270(元),乘乙车合算;
当x=10时,50(x+1)×80%=40×11=440(元), 50x·90%=45×10=450(元),乘1)a,b两数的平方和减去它们乘积的2倍; (2)a,b两数的和的平方减去它们的差的平方;
第二章 一元二次函数、方程和不等式章节复习与小结课件(人教版)
方法二:令g(x)=x2-2ax+2-a,
由已知,得x2-2ax+2-a≥0在[-1,+∞)上恒成立,
0,
即Δ=4a2-4(2-a)≤0或 a 1解, 得-3≤a≤1.
g 1 0.
即所求a的取值范围为[-3,1].
利用基本不等式求最值 【名师指津】 利用基本不等式求最值的方法
基本不等式通常用来求最值问题:一般用a+b≥ 2 ab (a>0, b>0)解“定积求和,和最小”问题,用ab≤ (a b)2 解
f
2 0, 2 0
解得 1 7 x 1 3 .
2
2
即x的取值范围是( 1 7 ,1) . 3
2
2
课堂小结
y
y
x1 O x2 x
O x1 =x2 x
y Ox
方程ax2 + bx + c = 0 有两个不等
(a > 0)的根
实根 x1 < x2
有两个相等实根
x1 = x2
无实根
ax2 + bx + c > 0 (a > 0)的解集
ax2 + bx + c < 0 (a > 0)的解集
x x < x1或x > x2
性质6同向同正可乘性:
a c
b dLeabharlann 00⇒_a_c_>__b_.d
性质7可乘方性:a>b>0⇒_a_n_>__bn(n∈N,n≥1).
性质8可开方性:a>b>0⇒ n a n b (n∈N,n≥2).
知识梳理
Δ= b2 - 4ac
2.一元二次不等式及其解法
宿迁市沭阳县潼阳中学高中数学教案:第2章 复习与小结
例 3 已知圆 C1 的方程为: x 2 y 1
2 2
x2 y 2 2 2 1 a b 0 ,C2 的离心率为 ,若 C1 与 C2 相交于 A,B 两点,且线段 AB 恰好为圆 2 2 a b
C1 的直径,求直线 AB 的方程和椭圆 C2 的方程.
5 AB 的最小值. 3
已知 ABC 的两个顶点 A , B 坐标分别是 (5,0) , (5,0) ,且 AC , BC 所在直
线的斜率之积等于 m (m 0) ,试探求顶点 C 的轨迹. 四、巩固练习 1. 方程
x2 y2 1 3 sin(2 ) 4
表示椭圆,则 的取值范围是___________;
教学心得
倍;
7 定点 A 3, 6
3, 0 , 动点 P 到直线 l 的距离为 d, 且
PA d
3 . 求 2
3
4
2
4
2
A B
-5
5
-2
-4
例4
(1)已知动圆 A 过定圆 B: x 2 y 2 6 x 7 0 的圆心,且与定圆 C:
x 2 y 2 6 x 91 0 相内切,求△ABC 面积的最大值.
(2)在(1)的条件下,给定点 P(-2,2), 求 PA (3)在(2)的条件下求|PA|+|AB| 的最小值. 例 5
.
x2 y2 1 表示什么曲线: 9k 4k
1 k 4
例 2
2 4 k 9
已知点 P 是椭圆
x2 y 2 1 上 一 点 , F1 和 F2 是 椭 圆 的 焦 点 , 25 9
1 若F1PF2 900 , 求F1PF2的面积; 2 若F1PF2 600 , 求F1PF2的面积; 3 若F1PF2 , 求F1PF2的面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 复习与小结 宿迁市马陵中学 范金泉
教学目标:
1.梳理本章知识结构,找出重点;
2.函数的概念、图象及其性质、映射的概念.
复习重点:
函数的概念与图象及函数的简单性质.
复习过程:
一、知识梳理
本章主要运用数形结合的方法来研究函数的性质,可以通过函数的图象来探究函数的性质,利用函数的性质又可以作出函数的图象.
二、学生活动
1.画出本章知识结构图.
2.概念回顾:
函数的定义;
函数的单调性;
函数的奇偶性;
映射概念.
三、数学应用
(一)函数的有关概念
例1 二次函数的图象顶点为A (1,16),且图象在x 轴上截得的线段长为8,求这个二次函数的解析式.
练习:
1.已知二次函数f (x )同时满足条件:(1)对称轴是x =1;(2)f (x )的最大值为15;(3)f (x )的两个零点的立方和等于17.求f (x )的解析式.
2.已知f (2x +1)=4x +3,求f (x ).
3.已知22∈≠≠1()+()=(,,R,0,)af x bf cx a b c abc a b x
,求f (x ).
例2 判断下列各组函数是否表示同一个函数.
21(1)==+1(2)=1=11x y y x y y x x 与与---
例3
求函数23y x =-
(二)函数的图象
例4 下列关于函数y = f (x )(x ∈D )的图象与直线x =a 交点的个数的结论,(1)有且只有1个;(2)至少有1个;(3)至多有1个,其中正确的是 .
练习:画出下列函数的图象.
(1) f (x )=|x 2-x |;
(2) f (x )=|2x -1|; (3)f (x )=|x -1|+|x +1|;
(4) f (x )=|x -1|-|x +1|. (三)函数的单调性
例5 若函数f (x )是R 上的增函数,对实数a ,b ,若a +b >0,则有下列关系式:(1)f (a )+f (b )>f (-a )+f (-b );(2)f (a )+f (b )<f (-a )+f (-b );(3)f (a )-f (b )>f (-a )-f (-b );(4)f (a )-f (b )<f (-a ) -f (-b );其中一定正确的有 .
(四)函数的奇偶性
例6 判断下列函数的奇偶性:
(1)f (x )=|x -1|+|x +1|;
(2)f (x )=|x -1|-|x +1|; (3
)22()=+-f x x ; (4)2220()0.
2,,x x x f x x x x ⎧⎪⎨⎪⎩+<=>-+, 练习:设函数f (x )在R 上有定义,下列函数(1)y =-|f (x )|;(2)y =xf (x 2);
(3)y =-f (-x );(4)y =f (x )-f (-x )中必为奇函数的有____________.
(五)函数奇偶性的综合应用
例7 设函数f (x )是定义在实数集R 上的奇函数,当x ≤0时,f (x )=x (x +1),试求当x >0时,f (x )的解析式.
例8 已知函数21()ax f x bx c
+=+(a ,b ,c ∈Z)是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.
练习:(1)与y =x 2-2x +5的图象关于y 轴对称的图象的函数解析式是_____.
(2)已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=,b=.
(3)已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)=0的所有实根之和为________.
(4)f(x)是偶函数,且在[a,b]上是减函数(0<a<b),则f(x)在[-b,-a]
上的单调性为_____.(若改为奇函数呢?)
四、作业
课本第52页4,5,7,9.。