二元一次方程练习题2
二元一次方程练习题及答案
宇文皓月一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6D.4x=2 4 y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式暗示y为:y=_______;用含y的代数式暗示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x -y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m -2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必须条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必须条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超出1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-1 2.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,纷歧定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程组练习题多篇
二元一次方程组练习题多篇二元一次方程组练习题11)66x+17y=396725x+y=1200答案:x=48y=47(2)18x+23y=230374x-y=1998答案:x=27y=79(3)44x+90y=779644x+y=3476答案:x=79y=48(4)76x-66y=408230x-y=2940答案:x=98y=51(5)67x+54y=854671x-y=5680答案:x=80y=59(6)42x-95y=-141021x-y=1575答案:x=75y=48(7)47x-40y=85334x-y=2006答案:x=59y=48 (8)19x-32y=-1786 75x+y=4950答案:x=66y=95 (9)97x+24y=7202 58x-y=2900答案:x=50y=98 (10)42x+85y=6362 63x-y=1638答案:x=26y=62 (11)85x-92y=-2518 27x-y=486答案:x=18y=44 (12)79x+40y=2419 56x-y=1176答案:x=21y=19 (13)80x-87y=2156 22x-y=880答案:x=40y=12 (14)32x+62y=513457x+y=2850答案:x=50y=57(15)83x-49y=8259x+y=2183答案:x=37y=61(16)91x+70y=584595x-y=4275答案:x=45y=25(17)29x+44y=528188x-y=3608答案:x=41y=93(18)25x-95y=-435540x-y=2000答案:x=50y=59(19)54x+68y=328478x+y=1404答案:x=18y=34(20)70x+13y=352052x+y=2132答案:x=41y=50二元一次方程组练习题2实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想找出题目中的等式关系。
二元一次方程组练习题(含问题详解)
实用文档标准二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.word版本二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.word版本专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x ,y 的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.word 版本(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.word版本10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.word版本专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;word版本2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.word版本。
二元一次方程练习题及答案
一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ( )A.有且只有一解 B.有无数解 C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是( )A.-1B.-2C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5; ④x=y; ⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41 xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?ﻭ答案:一、选择题1.D解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4, ∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28 x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程组练习题及答案
二元一次方程组练习题及答案二元一次方程组是初中数学中的重要内容,也是解决实际问题的一种常用方法。
通过练习题的形式来巩固和提高对二元一次方程组的理解和运用能力,有助于学生更好地掌握这一知识点。
下面将给出几道二元一次方程组的练习题及其答案,供大家参考。
练习题1:已知方程组2x + y = 73x - y = 1求解方程组,并写出解的集合。
解答1:首先,我们可以通过消元法来解这个方程组。
将第二个方程的两边同时乘以2,得到6x - 2y = 2。
然后将这个式子与第一个方程相加,得到8x = 9,即x = 9/8。
将x的值代入第一个方程,可求得y = 7 - 2x = 7 - 2(9/8) = 7 - 9/4 = 19/4。
因此,方程组的解为{x = 9/8, y = 19/4}。
练习题2:已知方程组2x - 3y = 84x + 5y = 1求解方程组,并写出解的集合。
解答2:同样地,我们可以通过消元法来解这个方程组。
将第一个方程的两边同时乘以2,得到4x - 6y = 16。
然后将这个式子与第二个方程相加,得到9y = 17,即y = 17/9。
将y的值代入第一个方程,可求得x = (8 + 3y)/2 = (8 + 3(17/9))/2 = 1/2。
因此,方程组的解为{x = 1/2, y = 17/9}。
练习题3:已知方程组3x + 2y = 15x - 4y = -2求解方程组,并写出解的集合。
解答3:继续使用消元法来解这个方程组。
将第一个方程的两边同时乘以5,得到15x + 10y = 5。
然后将这个式子与第二个方程相加,得到20x + 6y = 3。
再将第二个方程的两边同时乘以3,得到15x - 12y = -6。
将这个式子与前面的式子相减,得到22y = 9,即y = 9/22。
将y的值代入第一个方程,可求得x = (1 - 2y)/3 = (1 - 2(9/22))/3 = 5/22。
因此,方程组的解为{x = 5/22, y = 9/22}。
二元一次计算题带答案
二元一次计算题带答案在数学学习中,解二元一次方程是一个重要的内容。
它需要我们熟练掌握二元一次方程的求解方法,并能正确地进行计算。
本文将为大家提供一些常见的二元一次计算题,并附上详细的答案解析。
1. 计算题一:求解方程组:2x + 3y = 7x - y = 2解答:为了求解方程组,我们可以采用消元法或代入法。
这里我们使用代入法进行求解。
首先,我们将第二个方程改写为 x = y + 2。
然后,将得到的表达式代入第一个方程中,得到:2(y + 2) + 3y = 72y + 4 + 3y = 75y + 4 = 75y = 7 - 45y = 3y = 3 / 5将求得的 y 值代入第二个方程中,可以得到:x = (3 / 5) + 2x = 3 / 5 + 10 / 5x = 13 / 5因此,方程组的解为 x = 13 / 5,y = 3 / 5。
2. 计算题二:求解方程组:3x - 2y = 82x + 4y = 10解答:同样地,我们可以使用消元法或代入法来求解这个方程组。
这里我们选用消元法。
首先,我们将第一个方程乘以 2,得到:6x - 4y = 16然后,我们将第二个方程乘以 3,得到:6x + 12y = 30接下来,将这两个方程相减,得到:(6x - 4y) - (6x + 12y) = 16 - 306x - 4y - 6x - 12y = -14-16y = -14y = (-14) / (-16)y = 7 / 8将求得的 y 值代入第一个方程中,可以得到:3x - 2(7 / 8) = 83x - 14 / 8 = 83x = 8 + 14 / 83x = 8 + 7 / 43x = 32 / 4 + 7 / 43x = 39 / 4x = (39 / 4) / 3x = 39 / 4 * 1 / 3x = 13 / 4因此,方程组的解为 x = 13 / 4,y = 7 / 8。
二元一次方程组练习题(含答案)
二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。
已知关于x,y的二元一次方程y=kx+b的解有和。
1)求k,b的值。
2)当x=2时,y的值。
3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。
又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。
二元一次解方程练习题
二元一次解方程练习题解方程是数学中的重要内容,其中二元一次方程是一种常见的形式。
本文将为您提供一些关于二元一次方程的练习题,以帮助您熟悉解这类方程的方法。
练习题1:解下列二元一次方程组:1)3x + 4y = 102x - y = 12)5x - 2y = 83x + 4y = 2练习题2:求解下列二元一次方程:1)x - y = -22x + 3y = 72)2x + 3y = 14x - y = 11练习题3:请解下列二元一次方程组:1)2x + 5y = 13x - y = 42)4x - y = -3x + 2y = 5练习题4:解下列二元一次方程:1)3x + 2y = 82x - y = 12)4x + 5y = 143x - 2y = -5在解决这些练习题时,我们可以使用不同的方法,如代入法、消元法或图解法。
下面逐一解答这些题目,供您参考。
练习题1:1)首先,我们可以通过消元法解决这个方程组。
将两个方程相加,消去y的系数,得到5x = 11。
然后,将此结果代入第一个方程,解得x = 11/5。
将x的值代入任一方程,求得y的值为3/5。
因此,方程的解为x = 11/5,y = 3/5。
2)对于第二个方程组,我们可以使用代入法。
将第一个方程中的x 表示为y的函数,并代入第二个方程中,最终解得x = 2,y = -3。
因此,方程的解为x = 2,y = -3。
练习题2:1)对于第一个方程组,我们可以使用消元法。
将第一个方程的2倍加到第二个方程上,得到4x + 6y = 14。
然后,将此结果代入第一个方程,解得x = 5,将x的值代入任一方程,求得y的值为-3。
因此,方程的解为x = 5,y = -3。
2)针对第二个方程组,我们可以使用代入法。
将第一个方程中的x 表示为y的函数,并代入第二个方程中,得到2y + 3y = 1。
化简后,解得y = 1/5,将y的值代入任一方程,求得x的值为51/5。
二元一次方程组练习题(二)(含答案)
二元一次方程组练习题(二)一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是( )A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ( )A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是( )A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有( )①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有( )A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0。
二元一次方程练习题
二元一次方程练习题1.要使分式的植为0,则应该等于2.若正数a是一元二次方程x2?5x+m=0的一个根,?a是一元二次方程x2+5x?m=0的一个根,则a的值是.3.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.4已知关于x的一元二次方程x2+ax+b=0有一个非零根?b,则a?b的值为()a.1b.?1c.0d.?25已知a,b是方程x2?x?3=0的两个根,则代数式2a3+b2+3a2?11a?b+5的值为.6.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m?4,则=.7.菱形abcd的一条对角线长为6,边ab的长是方程的一个根,则菱形abcd的周长为_______.8.第二象限内一点a(x—1,x2—2),关于x轴的对称点为b,且ab=6,则x=_________.9.已知关于x的方程x2+(1?m)x+=0有两个不相等的实数根,则m的最大整数值是.10.关于x的一元二次方程(a?1)x2?2x+3=0有实数根,则整数a的最大值是()a.2b.1c.0d.?111.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是.12.已知关于x的方程(k?1)x2?(k?1)x+=0有两个相等的实数根,则k=13.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是a.b=?1b.b=2c.b=?2d.b=014.(2013乐山)已知一元二次方程x2-(2k+1)x+k2+k=0.(1)求*:方程有两个不相等的实数根;(2)若△abc的两边ab,ac的长是这个方程的两个实数根,第三边bc的长为5.当△abc是等腰三角形时,求k的值.第2篇:一元二次方程练习题一元二次方程有4种解法,即直接开平方法、*法、公式法、因式分解法。
以下是小编整理的关于一元二次方程练习题,希望大家认真阅读!题型1:认识一元二次方程,并能找出各项的系数解法:根据一元二次方程的概念,这个不难找,注意ax+bx+c=0,不是一元二次方程,因为没有确定a的范围,a=0时,它就不是。
新人教版七年级下册数学第八章二元一次方程练习题
第八章 二元一次方程1.1.练习题1一 选择题1.下列方程中,是二元一次方程的是( ) A .3x -2y =4z B .6xy +9=0 C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( ) A.⎩⎨⎧x +y =42x +3y =7 B.⎩⎨⎧2a -3b =115b -4c =6C.⎩⎨⎧x 2=9y =2x D.⎩⎨⎧x +y =8x 2-y =43.在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为( )A .-2B .2或-2C .2D .以上答案都不对4.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( )A.⎩⎨⎧x =0y =-12 B.⎩⎨⎧x =1y =1C.⎩⎨⎧x =1y =0D.⎩⎨⎧x =-1y =-1 5.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( )A.⎩⎨⎧x =1y =4B.⎩⎨⎧x =2y =3C.⎩⎨⎧x =3y =2D.⎩⎨⎧x =4y =16.已知是二元一次方程组的解,则2m n -的算术平方根为( )A .2±B.C .2D .421x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为( ) A .21x y =⎧⎨=⎩ B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩8.已知关于x ,y 的方程组,给出下列结论:①是方程组的一个解;②当2a =时,x ,y 的值互为相反数;③当时,方程组的解也是方程的解;④x ,y 间的数量关系是.其中正确的是( )A .②③B .①②③C .①③D .①③④9.二元一次方程组的解是( )A .B .C .D .10.解方程组,由①②得正确的方程是( )A .B .C .D . 二 填空题11.写出一个未知数为a ,b 的二元一次方程组: . 12.已知方程x m -3+y 2-n =6是二元一次方程,则m -n = . 13.已知,则xy = .14.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为 .15.小亮解方程组2212x y x y +=⎧⎨-=⎩•的解为5x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数•和▲,请你帮他找回▲这个数,▲=.343x y a x y a +=-⎧⎨-=⎩51x y =⎧⎨=-⎩1a =23x y -=4x y a +=-320x y x y -=-⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =⎧⎨=-⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=⎩5210x y x y +=⎧⎨+=⎩①②-310x =5x -=-35x =-5x =-2(4)|2|0x y x y +-+--=三 解答题16.解下列二元一次方程组(1)33814x y x y -=⎧⎨-=⎩(2)254x y x y +=⎧⎨-=⎩(3) (4)73100202x y y x +=⎧⎨=-⎩17..已知关于,x y 的方程组122x m y y x -⎧+=⎨=⎩①② .(1)若用代入法求解,可由①得x = ③,把③代入②,解得y = ,将其代入③,解得x = ,∴原方程组的解为 ;(2)若此方程组的解,x y 互为相反数,求这个方程组的解及m 的值.18.方程()()()224268k x k x k y k -+++-=+是关于x ,y 的方程,试问当k 为何值时.(1)方程为一元一次方程;(2)方程为二元一次方程.4518549x y x y +=⎧⎨+=⎩19.若,求x+y+z的值.20.根据题意设未知数,列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,问有多少只鸡,多少个笼?第八章 二元一次方程练习题1 参考答案与解析一、选择题1.D2.A3.C4.B5.C6.D7.D8.C9.A 10.B二、填空题11.3,2a b a b +=⎧⎨-=⎩(答案不唯一) 12.3 13.3 14.20元 2元 15.-2三、解答题16.解:(1)2,1.x y =⎧⎨=-⎩(2)3,1.x y =⎧⎨=-⎩(3)3,6.x y =-⎧⎨=⎩(4)40,60.x y =⎧⎨=-⎩17.解:(1)1-2y 144m - 122m + 1,22144m x m y ⎧=+⎪⎪⎨⎪=-⎪⎩(2)∵此方程组的解,x y 互为相反数,∴ 122m ++144m-=0,解得m=-3,则方程组的解为1,1.x y =-⎧⎨=⎩18.解:若方程为一次方程,则k ²-4=0,∴k=±2.当k=2时,原方程可化为4x-4y=10,是关于x ,y 的二元一次方程,不符合题意,舍去;当k=-2时,原方程可化为-8y=6,是关于y 的一元一次方程. (1)当k=-2时,原方程是一元一次方程. (2)当k=2时,原方程是二元一次方程.19.解∵,∴x+3y-2z-3=0,x-3y+7z-3=0,将z 当作已知,可解得x=-2.5z+3,y=1.5z ,∴x+y+z=3.20.解:(1)设0.8元与2元的邮票各x 枚,y 枚.由题意,列方程组13,0.8220.x y x y +=⎧⎨+=⎩(2)设有x 只鸡,y 个笼.由题意,列方程组41,5(1).x y x y =+⎧⎨=-⎩1.2.练习题2一选择题1.以为解的二元一次方程组是( )A.B. C. D.2.下列各组数值是二元一次方程x﹣3y=4的解的是( )A. B. C. D .3.已知,用含x的代数式表示y正确的是()A. B. C.D.4.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣85.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣96.有一个两位数,十位上的数字与个位上的数字之和为7,且个位上的数不为0,这样的两位数有( )A.8个B.7个C.6个D.5个7.若43m a b 与223n m n a b ++-的和为0,则3n m +的值是( )A.9B.8C.6D.4 8.方程的正整数解有( )A.1组B.2组C.3组D.无 9.已知a ,b 满足方程组,则a+b 的值为( )A.﹣4B.4C.﹣2D.210.二元一次方程2x+5y=32的正整数解有( )A .3组B .4组C .5组D .6组11.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双,乙鞋y 双,则依题意可列出下列哪一个方程式?( )A.200(30﹣x)+50(30﹣y)=1800B.200(30﹣x)+50(30﹣x ﹣y)=1800C.200(30﹣x)+50(60﹣x ﹣y)=1800D.200(30﹣x)+50=1800 12.若|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( ) A.14 B.2 C.-2 D.-4二 填空题13.2元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .14.若x 3m-3-2y n-1=5是二元一次方程,则m= ,n= . 15.若是关于x ,y 的二元一次方程组,则.16.如果2x 2a-b-1-3y 3a+2b-16=10是一个二元一次方程,那么数a= ,b= .17.已知关于x ,y 的方程(k 2-1)x 2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k= 时,它为二元一次方程. 18.已知,则用x 的代数式表示y 为 .19.已知是二元一次方程组的解,则m +3n 的值为 .20.若2,1x y =⎧⎨=⎩是方程()212,1x m y nx y +-=⎧⎪⎨+=⎪⎩的解,则(m +n )2018的值是__________.三 计算题21.某市2007年秋季开始,减免学生在义务教育阶段的学杂费,并按照每学期小学每生250元,初中每生450元的标准,由财政拨付学校作为办公经费,该市一学校小学生和初中生共有840人,2007年秋季收到当学期该项拨款290000元,该学校小学生和初中生各有多少人?22.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?23.课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组,并写出你求解这个方程组的方法.24.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?第八章二元一次方程练习题2 参考答案与解析一、选择题1.D2.A3.C4.D5.D6.C7.B8.A9.B 10.A 11.D 12.D二、填空题13.2x+5y=120 14.432 15.5216.3 4 17.-1 118.x+3y=14 19.3 20.1三、解答题21.解:该学校小学生有x人,初中生有y人.由题意得840,250450290000,x yx y+=⎧⎨+=⎩解得440,400.xy=⎧⎨=⎩答:该学校小学生有440人,初中生有400人.22.解:设一盒“福娃”玩具的价格是x元,一枚徽章的价格是y元.由题意得2145,23280,x yx y+=⎧⎨+=⎩解得125,10.xy=⎧⎨=⎩答:一盒“福娃”玩具的价格是125元,一枚徽章的价格是10元.23.解:由题意得35,2494,x yx y+=⎧⎨+=⎩①②由①得y=35-x③,将③代入②,得2x+4(35-x)=94,解得x=23④,将④代入③,得y=12,则原方程组的解为23,12. xy=⎧⎨=⎩答:鸡有23只,兔有12只.24.解:设该校老师捐款x元,学生捐款y元.由题意得45000,29000,x yx y+=⎧⎨=-⎩解得27000,18000.xy=⎧⎨=⎩答:该校老师捐款27000元,学生捐款18000元.1.3.练习题3一选择题1.由加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去xB.①×4+②×3,消去xC.②×2+①,消去yD.②×2﹣①,消去y2.用加减消元法解方程组时,有下列四种变形,其中正确的是()A. B. C. D.3.已知与-9x7-m y1+n的和是单项式,则m,n的值分别是().A.m=-1,n=-7B.m=3,n=1C.m=,n=D.m=,n=-24.若|x﹣2y﹣1|+|2x﹣y﹣5|=0,则x+y的值为()A.4B.5C.6 D .75.关于x,y的方程组,其中y值被盖住了,不过仍能求出p,则p值是( )A.-B.C.-D.6.一个两位数,个位数字与十位数字的和是9,如果个位数字与十位数字对调后所得的两位数比原来的两位数大9,那么原来这个两位数是()A.54B.27C.72D.457.若关于x.y的方程组的解都是正整数,那么整数a的值有()A.1个B.2个C.3个 D.4个8.若方程组的解是,则方程组的解为()A. B. C. D.二填空题9.已知(2x+3y﹣4)2+|x+3y﹣7|=0,则x=______,y=______.10.在解方程组时,小明把c看错了得而他看后面的正确答案是则a=__ ,b= ,c= .11.若,则.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.已知方程组与有相同的解,则m2﹣2mn+n2= .14.定义运算“⊙”:规定x⊙y=ax+by(其中a,b为常数),若1⊙1=3,1⊙(-1)=1,则1⊙2=.15.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.三计算题16.解方程组:(1);(2);(3);(4);(5);(6).17.解方程组:,试求7y(x﹣3y)2﹣2(3y﹣x)3的值.18.已知关于x,y的方程组的解相同,求a,b 的值.19.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为.乙看错了方程组中的b,而得解为.(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.第八章 二元一次方程练习题3 参考答案与解析一、选择题1.D2.B3.B4.A5.A6.D7.B8.C 二、填空题9.-3103 10.45 -2 11.2013 12.-1 13.144 14.4 15.10,9x y =⎧⎨=⎩三、解答题16.解:(1)0.5,5x y =⎧⎨=⎩ (2)2,3x y =⎧⎨=⎩ (3)3,2x y =-⎧⎨=-⎩(4)4,0x y =⎧⎨=⎩ (5)2,1x y =⎧⎨=⎩ (6)28,30x y =⎧⎨=⎩17.解:解方程组得2,1,x y =-⎧⎨=-⎩ ∴原式=-7×(-2+3)²-2(-3+2)³=-5.18.解:由题意得1,3,x y x y +=⎧⎨-=⎩解得2,1.x y =⎧⎨=-⎩将2,1.x y =⎧⎨=-⎩分别代入24,(1)3,ax by bx a y +=⎧⎨+-=⎩得224,213,a b b a -=⎧⎨-+=⎩解得6,4.a b =⎧⎨=⎩∴a=6,b=4.19.解:(1)由题意得3'515,204'2,a b --=⎧⎨-=-⎩解得20',311',2a b ⎧=-⎪⎪⎨⎪=⎪⎩即甲把a 看成了203-,乙把b 看成了112. (2)由题意得122,52015,b a -+=-⎧⎨+=⎩解得1,10,a b =-⎧⎨=⎩∴原方程组为515,4102,x y x y -+=⎧⎨-=-⎩解得14,5.8.x y =⎧⎨=⎩1.4.练习题4一 选择题1.7年前,母亲的年龄是儿子的5倍;5年后,母亲的年龄是儿子的2倍.求母子现在的年龄.设母亲现年x 岁,儿子现年y 岁,列出的二元一次方程组是( )A. {x +5=2(y +5)x −7=5(y −7)B. {x +5=6(x +5)x −7=2(y −7)C. {y +5=2(x +5)y −7=5(x −7)D. {y −7=2(x −7)y +5=5(x +5)2.某服装店用6000元购进A 、B 两种新款服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:则这两种服装共购进( )A. 60件B. 70件C. 80件D. 100件3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A. ()77{91x y x y +=-= B. ()77{9+1x y x y +==C. ()77{ 91x y x y-=-= D. ()77{ 9+1x y x y-==4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( ) A. 42{43x y x y +== B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{43y xx y +== 5.某班学生参加运土劳动,一部分学生抬土(两人抬一箩筐),另一部分学生挑土(一人挑两箩筐).已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x 人,挑土的学生y 人,则可得方程组( )A.2592{362yxxy⎛⎫+=⎪⎝⎭+=B.2592{362xyxy+=+=C.259{2236xyx y+=+=D.259{236x yx y+=+=6.为清理积压的库存,商场决定打折销售.已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是( )A. 200元,240元B. 240元,200元C. 280元,160元D. 160元,280元7.已知∠A和∠B互余,∠A比∠B大10°,设∠A、∠B的度数分别为x°、y°,下列方程组符合题意的是( )A.90{10x yx y+==+B.90{10x yx y+==-C.180{10x yx y+==-D.180{10x yx y+==+8.观察方程组323,2411,751x y zx y zx y z-+=+-=+-=⎧⎪⎨⎪⎩的系数特点,若要使求解简便,消元的方法应选取( )A.先消去xB.先消去yC.先消去zD.以上说法都不对9.三元一次方程组1,0,1x yx zy z+=-+=+=⎧⎪⎨⎪⎩的解是( )A.11xyz⎧=-==⎪⎨⎪⎩B.11xyz===-⎧⎪⎨⎪⎩C.11xyz===-⎧⎪⎨⎪⎩D.11xyz⎧=-==⎪⎨⎪⎩10.将三元一次方程组540,3411,2x y z x y z x y z ++=+-=++=-⎧⎪⎨⎪⎩①②③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( )A.432753x y x y +=+=⎧⎨⎩B.432231711x y x y +=+=⎧⎨⎩C.342753x y x y +=+=⎧⎨⎩D.342231711x y x y +=+=⎧⎨⎩ 二 填空题11.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.12.一个两位数,个位数字与十位数字之和为8,个位数字与十位数字互换后所成的新两位数比原两位数小18,则原两位数是_________13.如图,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是 .14.已知A 、B 两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,那么这艘船在静水中的速度和水流速度分别为_______千米/时、_______千米/时.15.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14,则这个三位数是__________. 三 解答题 16.解方程组:(1)20,320,767100.x y z x y z x y z -+=+-=++=⎧⎪⎨⎪⎩①②③ (2)30,222,3.x z x y z x y z +-=-+=--=⎧⎪⎪⎩-⎨①②③17.若|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,试求x ,y ,z 的值.18.已知方程组35223x y ax y a+=++=⎧⎨⎩,的解适合x+y=8,求a的值.19.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?20.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题;(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.①设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示);②请问至少需要补充多少名新工人才能在规定期内完成总任务?-21.为了迎接河北省中小学生健康体质测试,某学校开展“健康校园,阳光跳绳”活动,为此学校准备购置A,B,C三种跳绳.已知某厂家的跳绳的规格与价格如下表:A绳子 B绳子 C绳子长度(米)86 4单价(元/条)128 6(1)已知购买A,B两种绳子共20条花了180元,问A,B两种绳子各购买了多少条?(2)若该厂家有一根长200米的绳子,现将其裁成A,C两种绳子销售总价为240元,则剩余的绳子长度最多可加工几条B种绳子?第八章二元一次方程练习题4 参考答案与解析一、选择题1.A2.C3.A4.B5.B6.B7.A8.B9.D 10.A二、填空题11.5 12.53 13.300cm² 14.17 3 15.275三、解答题16.解:(1)3,5,7.xyz=⎧⎪=⎨⎪=⎩(2)2,4,1.xyz=⎧⎪=⎨⎪=⎩17.解:∵|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,,∴250,23130,3100,x yy zz x+-=⎧⎪+-=⎨⎪+-=⎩解得1,2,3.xyz=⎧⎪=⎨⎪=⎩∴x=1,y=2,z=3.18.解:由题意得35223x+y=8x y ax y a+=++=⎧⎪⎨⎪⎩①,②,③,①-②得x+2y=2④,④-③得y=-6⑤,将⑤代入③得x=14⑥,将⑤和⑥代入②得a=10.19.解:(1)设需甲种车型x辆,需乙种车型y辆.由题意得581204005008200x yx y+=+=⎧⎨⎩,,解得8,10.xy=⎧⎨=⎩答:需甲种车型8辆,需乙种车型10辆.(2)设需甲种车型m辆,需乙种车型n辆,需丙种车型(16-m-n)辆.由题意得5m+8n+10(16-m-n)=120,则m=4025n-.∵m,n都是正整数,∴当n=5时,m=6;当n=10时,m=4;当n=15时,m=2.∵(16-m-n)是正整数,∴有2种情况:需甲种车型6辆,需乙种车型5辆,需丙种车型5辆,总运费7900元,节约300元;需甲种车型4辆,需乙种车型10辆,需丙种车型2辆,总运费7800元,节约400元.20.解:(1)设每天安排a名工人生产G型装置,b名工人生产H型装置.由题意得806:34:3a ba b+==⎧⎨⎩,,解得3248ab==⎧⎨⎩,,则33b=b=48(套).答:工厂每天能配套组成48套GH型电子产品.(2)①设原来每天安排x名工人生产G型装置,(80-x)名工人生产H型装置,后来补充m名新工人生产G型装置.由题意(6x+4m):3(80-x)=4:3,解得x=32-25m.②由题意得()3803x-=80-x=80-(32-25m)=120020,解得m=30.即至少需要补充30名新工人才能在规定期内完成总任务.21.解:(1)设购买A种绳子x条,购买B种绳子y条.由题意得20128180x yx y+=+=⎧⎨⎩,,解得515.xy=⎩=⎧⎨,答:购买A种绳子5条,购买B种绳子15条.(2)由题意,设加工A种绳子m条,加工C种绳子n条.由题意12m+6n=240,则n=40-2m.则(200-8m-4n)÷6=263,即剩余的绳子长度最多可加工6条B种绳子.1.5.练习题5一 选择题 1.有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅.设学生有x 人,长椅有y 条,依题意得方程组 ( )A .5105662x y x y =+⨯⎧⎨=-⨯⎩B .51062x y x y =-⎧⎨=+⎩C .5105662x y x y =-⨯⎧⎨=+⨯⎩D .51062x y x y =+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?( )A .300元B .310元C .320元D .330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( )A .赔了10元B .赚了10元C .赔了约7元D .赚了约7元 5. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是 ( ) A .甲池21吨,乙池19吨 B .甲池22吨,乙池18吨 C. 甲池23吨,乙池17吨 D .甲池24吨,乙池16吨6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A.272366x y x y +=⎧⎨+=⎩ B .2723100x y x y +=⎧⎨+=⎩ C.273266x y x y +=⎧⎨+=⎩ D.2732100x y x y +=⎧⎨+=⎩二 填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个(条),其中荷包每个4元,五彩绳每条3元,设王老师购买荷包x 个,五彩绳y 条,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则15个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三解答题13.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?14.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?15. 2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?16.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩乙:128x y x y⎧+=⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示_____ ___,y 表示_____ ___; 乙:x 表示_____ ___,y 表示_____ ___; (2)求A 、B 两工程队分别整治河道多少米.(写出完整的解答过程)第八章 二元一次方程练习题5 参考答案与解析一、选择题1. D2.A3.C4.C5.B6.A二、填空题7.204372x y x y +=+=⎧⎨⎩, 8.20 2 9.19 10.2304320x y x y -=-=⎧⎨⎩, 35和4011.21 12.900 2100三、解答题13.解:设第一车间有x 人,第二车间有y 人.由题意得()4305310104y x y x ⎧=-+=⎪⎪-⎪⎨⎪⎩,,解得250170.x y ==⎧⎨⎩,答:第一车间有250人,第二车间有170人.14.解:设A 服装的成本是x 元,B 服装的成本是y 元.由题意得50030%20%130x y x y +=+=⎧⎨⎩,,解得300200.x y ==⎧⎨⎩,答:A 服装的成本是300元,B 服装的成本是200元.15.解:设该农户去年两块农田的花生产量分别是x 千克,y 千克.由题意得47020%10%57x y x y +=+=⎧⎨⎩,,解得100370.x y ==⎧⎨⎩,则100×20%=20(千克),370×10%=37(千克).答:该农户今年两块农田的花生产量分别是20千克,37千克.16.解:(1)A 工程队整治河道的时间 B 工程队整治河道的时间 A 工程队整治河道的长度 B 工程队整治河道的长度 方框中分别填入:20 180 180 20(2)设A 、B 两工程队分别整治河道x 米、y 米.由题意得18020128x y x y +=+=⎧⎪⎨⎪⎩,,解得60120.x y ⎩==⎧⎨,答:A 、B 两工程队分别整治河道60米、120米.1.6.练习题6一 选择题1.在方程523x y z -+=中,若12x y =-=-,,则z 的值为( ) A .4B .3C .2D .12.解方程组 323,2411,751,x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩若要使计算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.下列四组数值中,为方程组202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是( )A .012x y z =⎧⎪=⎨⎪=-⎩B .101x y z =⎧⎪=⎨⎪=⎩C .010x y z =⎧⎪=-⎨⎪=⎩D .123x y z =⎧⎪=-⎨⎪=⎩4.若方程组4312(1)3x y kx k y +=⎧⎨+-=⎩的解x 和y 的值互为相反数,则k 的值等于( )A .0B .1C .2D .35.由方程组,可以得到x +y +z 的值等于( )A .8B .9C .10D .116.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球的个数为( ) A .21个B .12个C .8个D .35个7.解方程组1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都对8.以311x y z =⎧⎪=⎨⎪=-⎩为解建立三元一次方程组,不正确的是( )A .3423x y z -+=B .113x y z -+=- C .2x y z +-=-D .251236x y z --=9.方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为( )A .无数多个B .1C .2D .010.已知方程组25589x y z x y z -+=⎧⎨+-=⎩,则x y +的值为( )A .14B .2C .-14D .-211.三元一次方程组354x y y z z x +=⎧⎪+=⎨⎪+=⎩的解为( )A .023x y z =⎧⎪=⎨⎪=⎩B .123x y z =⎧⎪=⎨⎪=⎩C .103x y z =⎧⎪=⎨⎪=⎩D .311x y z =⎧⎪=⎨⎪=⎩12.已知方程组2334823x y z x y z x y z ⎧-+=⎪+-=⎨⎪+-=-⎩①②③,若消去z ,得二元一次方程组不正确的为( )A .531153x y x y +=⎧⎨-=⎩B .53115719x y x y +=⎧⎨+=⎩C .535719x y x y -=⎧⎨+=⎩D .535719x y x y +=⎧⎨+=⎩13.方程组 101x y x z y z +=-⎧⎪+=⎨⎪+=⎩的解是( )A .110x y z =-⎧⎪=⎨⎪=⎩B .101x y z =⎧⎪=⎨⎪=-⎩C .011x y z =⎧⎪=⎨⎪=-⎩D .101x y z =-⎧⎪=⎨⎪=⎩14.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .215.若方程组431(1)3x y ax a y +=⎧⎨+-=⎩ 的解x 与y 相等,则a 的值等于( )A .4B .10C .11D .12 二 填空题16.如果三角形ABC 的三边长a 、b 、c 满足关系式()226018300a b b c +-+-+-=,则三角形ABC 的周长是 . 17.已知和互为相反数,则x+4y 的平方根是 .18.已知式子2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当2x =时,其值为25,则当3x =时,其值为__________.19.确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为___________. 三 解答题20.解下列方程组:(1)6,33,2312;x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩(2)25,24,2310.x y z x y z x y z +-=⎧⎪-+=⎨⎪+-=⎩21.已知2x y y z x-+-+-=,求x+y+z的值.82(41)383022.为迎接“第一届全国青年运动会”,学校组织了飞镖比赛游戏:每位选手朝特制的靶子上各投三次飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是多少分?23.现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?第八章二元一次方程练习题6 参考答案与解析一、选择题1.A2.B3.D4.C5.A6.A7.D8.C9.A 10.B 11.B 12.D 13.D 14.A 15.C二、填空题16.72 17.±3 18.52 19.6,4,1,7三、解答题20.解:(1)2,3,1.xyz=⎧⎪=⎨⎪=⎩(2)2,3,3.xyz=⎧⎪=-⎨⎪=-⎩21.解:∵282(41)3830x y y z x-+-+-=,∴80,410,830,x yyz x-=⎧⎪-=⎨⎪-=⎩解得2,0.25,0.75.xyz=⎧⎪=⎨⎪=⎩则x+y+z=2+0.25+0.75=3.22.解:设小、中、大圆环的得分分别为x分、y分、z分.由题意得229,243,333,y zx zy+=⎧⎪+=⎨⎪=⎩解得18,11,7.xyz=⎧⎪=⎨⎪=⎩则x+y+z=18+11+7=36(分).答:小华的成绩是36分.23.解:设大、中、小3种包装的饮料每瓶各x元、y元、z元.由题意得20.2,0.4,9.6,y zx y zx y z-=-⎧⎪--=⎨⎪++=⎩解得5,3,1.6.xyz=⎧⎪=⎨⎪=⎩答:大、中、小3种包装的饮料每瓶各5元、3元、1.6元.。
二元一次方程练习题及答案
二元一次方程练习题及答案SANY GROUP system office room 【SANYUA16H-一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4zB.6xy+9=0 C.1x+4y=6D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1B.-2 C.-3D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+xA.1B.2 C.3D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B解析:不加限制条件时,一个二元一次方程有无数个解.4.C解析:用排除法,逐个代入验证.5.C解析:利用非负数的性质.6.B7.C解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.14解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x -2ax=a+2有相同的解,∴3×(-3)-2a ×4=a+2,∴a=-119. 18.解:∵(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,∴a -2≠0,b+1≠0,•∴a ≠2,b ≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0. (•若系数为0,则该项就是0)19.解:由题意可知x=y ,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k -1)y=3中得k+k -1=3,∴k=2解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12. 当x=1,y=-12时,x -y=1+12=32; 当x=-1,y=-12时,x -y=-1+12=-12. 解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都等于0,从而得到│x │-1=0,2y+1=0.21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3. 22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩. (2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x +=⎧⎨-=⎩. 23.解:满足,不一定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x -y=8,• ∴方程组的解一定满足其中的任一个方程,但方程2x -y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程专项练习60题+解析答案
一元二次方程专练60题一.解答题(共60小题)1.解二元一次方程组.(1);(2).2.解下列方程组:(1);(2).3.解方程组:(1);(2).4.解方程组.(1);(2).5.解方程组:(1);(2).6.解下列方程组:(1);(2).7.解方程组:(1);(2).8.解二元一次方程组:(1);(2).9.按要求解下列方程组:(1)(用代入消元法);(2)(用加减消元法).10.解方程组:(1);(2).11.解下列方程组:(1)(代入消元法);(2)(加减消元法).12.解下列方程组:(1);(2).13.用指定的方法解下列方程组:(1)(代入法);(2)(加减法).14.解下列方程组.(1);(2).15.解方程组:(1);(2).16.解下列方程组:(1);(2).17.解二元一次方程组:(1).(2).18.解方程组:(1);(2).19.解方程组:(1);(2).20.用适当的方法解下列方程组:(1)(2).21.解方程组:(1);(2).22.解二元一次方程组:(1);(2).23.解二元一次方程组:(1);(2).24.解方程组:(1);(2).25.解方程组:(1);(2).26.解方程组:(1);(2).27.解方程组:(1);(2).28.解方程组:(1);(2).29.解方程组:(1);(2).30.解方程组:(1);(2).31.解方程组:(1);(2).32.解方程组:(1);(2).33.用适当的方法解方程组:(1);(2).34.解下列方程组:(1);(2).35.解方程组:(1);(2).36.解方程组:(1);(2).37.解方程组:(1);38.解方程组:(1);(2).39.解方程组:(1);(2).40.解下列方程组:(1);41.解下列方程组:(1);(2).42.用加减消元法解方程:(1);(2).43.解二元一次方程组:(1);44.解方程组:(1);(2).45.解方程:(1);(2).46.用适当的方法解下列方程组:(1);47.解方程组:(1);(2).48.解方程组:(1);(2).49.解方程组:(1);(2).50.解方程组:(1);(2).51.阅读以下材料:解方程组:;小亮在解决这个问题时,发现了一种新的方法,他把这种方法叫做“整体代入法”,解题过程如下:解:由①得x﹣y=1③,将③代入②得:(1)请你替小亮补全完整的解题过程;(2)请你用这种方法解方程组:.52.已知关于x、y的方程组的解满足x+y =﹣10,求代数式m2﹣2m+1的值.53.在解方程组时,由于粗心,甲看错了方程组中的a,得解为;乙看错了方程组中的b,得解为.(1)甲把a错看成了什么?乙把b错看成了什么?(2)求出原方程组的正确解.54.已知方程组和方程组的解相同求a、b的值.55.甲和乙两人同解方程组甲因抄错了a,解得,乙因抄错了b,解得,求5a﹣2b 的值.56.对于实数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6.(1)分别求出a、b的值;(2)根据上述定义新运算,试求2*(﹣4)的值.57.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.58.定义一种新运算“※”:规定m※n=am+bn﹣mn,其中a,b为常数,且6※15=270,8※10=360,求﹣2※1的值.59.若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2023的值.60.已知方程组和有相同的解,求a﹣2b的值.一元二次方程专练60题参考答案与试题解析一.解答题(共60小题)1.解二元一次方程组.(1);(2).【解答】解:(1)①+②,得4x=12,∴x=3.把x=3代入②,得3+2y=3,解得y=0所以原方程组的解为;(2),②化简得:2(x﹣2)﹣3(y﹣2)=6,即2x﹣3y=4③,①+③得:3x=18,解得:x=6,将x=6代入①得:6+3y=14,解得:y=,∴原方程组的解为:.2.解下列方程组:(1);(2).【解答】解:(1),由①得,3x+2y=12③,②×③﹣③×2,得5y=60,解得y=12,将y=12代入③,得3x+24=12,解得x=﹣4,∴原方程组的解为;(2),由①得x+1=5y+10,∴x=5y+9③,由②得6x﹣15﹣12y﹣16=5,整理,得6x﹣12y=36,∴x﹣2y=6④,将③代入④,得5y+9﹣2y=6,解得y=﹣1,将y=﹣1代入③,得x=﹣5+9=4,∴原方程组的解为.3.解方程组:(1);(2).【解答】解:(1),把①代入②,得3x+4x=7,解得x=1,把x=1代入①,得y=2,故原方程组的解为;(2),①+②,得6x=24,解得x=4,把x=4代入②,得y=5,故原方程组的解为.4.解方程组.(1);(2).【解答】解:(1),①﹣②得:9y=18,解得:y=2,把y=2代入①中得:3x+10=5,解得:x=﹣,∴原方程组的解为:;(2)将原方程组化简整理得:,①×3得:24u+27v=36③,③﹣②得:2v=22,解得:v=11,把v=11代入①中得:8u+99=12,解得:u=﹣,∴原方程组的解为:.5.解方程组:(1);(2).【解答】解:(1),①×2﹣②得:5x=﹣5,解得:x=﹣1,将x=﹣1代入①得:﹣3﹣y=﹣4,解得:y=1,故原方程组的解为;(2),①×5+②×3得:19x=19,解得:x=1,将x=1代入①得:2+3y=8,解得:y=2,故原方程组的解为.6.解下列方程组:(1);(2).【解答】解:(1),把②代入①得,6y﹣7﹣y=13,解得y=4;把y=4代入②得,x=6×4﹣7=17,故方程组的解为;(2),①×3﹣②×2得,6x+15y﹣6x﹣4y=24﹣10,解得y=,把y=代入②得,3x+2×=5,解得x=,故方程组的解为.7.解方程组:(1);(2).【解答】解:(1),①+②×2,得11x=33,解得:x=3,把x=3代入①,得9+2y=7,解得:y=﹣1,所以方程组的解是;(2)整理得:,①×2+②,得5x=15,解得:x=3,把x=3代入①,得3+2y=7,解得:y=2,所以方程组的解是.8.解二元一次方程组:(1);(2).【解答】解:(1),①﹣②×2,得7y=﹣14,解得y=﹣2,将y=﹣2代入①,得2x﹣2=2,解得x=2,∴原方程组的解为;(2),由①得,3x+4y=36③,由②得3x﹣2y=9④,③﹣④,得6y=27,解得y=,将y=代入④,得3x﹣9=9,解得x=6,∴原方程组的解为.9.按要求解下列方程组:(1)(用代入消元法);(2)(用加减消元法).【解答】解:(1),由②,得y=5﹣3x③,把③代入①,得3x+2(5﹣3x)=7,解得x=1,把x=1代入①,得y=2,故原方程组的解为;(2),①+②×2,得7x=21,解得x=3,把x=3代入②,得y=5,故原方程组的解为.10.解方程组:(1);(2).【解答】解:(1),①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:;(2),整理得:,①+②得:8y=24,解得:y=3,把y=3代入②得:x+15=10,解得:x=﹣5,故原方程组的解是:.11.解下列方程组:(1)(代入消元法);(2)(加减消元法).【解答】解:(1),由①得:x=1+2y③,把③代入②,得4(1+2 y)+3y=26,解得:y=2,把y=2代入③,得x=1+2×2=5,所以;(2),由①+②,得7x=21,解得:x=3,把x=3代入①,得2×3+3y=3,解得:y=﹣1,所以.12.解下列方程组:(1);(2).【解答】解:(1)将原方程组化简整理得:,②×4得:8x+20y=28③,③﹣①得:27y=27,解得:y=1,把y=1代入②中得:2x+5=7,解得:x=1,∴原方程组的解为:;(2)将原方程组化简整理得:,①×3得:9x﹣12y=﹣21③,②×4得:8x+12y=4④,③+④得:17x=﹣17,解得:x=﹣1,把x=﹣1代入②中得:﹣2+3y=1,解得:y=1,∴原方程组的解为:.13.用指定的方法解下列方程组:(1)(代入法);(2)(加减法).【解答】解:(1),把①代入②得:4x+3(2x﹣2)=5,解得x=,把x=代入①得:y=2×﹣2=,∴方程组的解为;(2),①×3得:3x+9y=﹣3③,③﹣②得:11y=﹣11,解得:y=﹣1,把y=﹣1代入①得:x﹣3=﹣1,解得:x=2,∴方程组的解为.14.解下列方程组.(1);(2).【解答】解:(1),由①+②得,5x=﹣5,解得x=﹣1,将x=﹣1代入①,得﹣2+5y=8,解得y=2,∴方程组的解为;(2),由①×3,②×2得:,由③+④得,13x=26,解得:x=2,把x=2代入①,得y=4,所以方程组的解为:.15.解方程组:(1);(2).【解答】解:(1),由①得,x=1+2y③,把③代入②,得3(1+2y)﹣y=3,解得y=0,把y=0代入③,得x=1,所以原方程组的解为:;(2)原方程组可化为,①+②得,4x=24,解得x=6,①﹣②得,6y=﹣6,解得y=﹣1,所以原方程组的解为:.16.解下列方程组:(1);(2).【解答】解:(1),①+②,得2x=12,解得x=6,将x=6代入①,得6﹣y=5,解得y=1,∴原方程组的解为;(2)原方程组化为,①﹣②,得25y=10,解得y=,将y=代入①,得5x+6=6,解得x=0,∴原方程组的解为.17.解二元一次方程组:(1).(2).【解答】解:(1),②﹣①×2得:x=6,把x=6代入①得:6+2y=0,解得y=﹣3.∴方程组的解是.(2),①×2+②×3得:13x=65,解得x=5.把x=5代入①得:10+3y=16,解得y=2.∴方程组的解是.18.解方程组:(1);(2).【解答】解:(1)对于方程组,①×2得:4x﹣10y=24③,②﹣③得:﹣13y=26,∴y=﹣2,将y=﹣2代入①得:x=1,∴原方程组的解为:.(2)对于方程组,将①代入②得:2×2y+y=5,∴y=1,将y=1代入①得:x=2,∴原方程组的解为:.19.解方程组:(1);(2).【解答】解:(1),①+②得4x=8,∴x=2,把x=2代入①得2+2y=3,,∴原方程组的解是.(2),整理得:,由①得:s=﹣2t③,把③代入②得:t=﹣2;把t=﹣2 代入③得:s=4,∴原方程组的解是.20.用适当的方法解下列方程组:(1)(2).【解答】解:(1),①+②得:6x=18,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为;(2),把①代入②得:4x﹣14=2,解得:x=4,把x=4代入①得:y=3,则方程组的解为.21.解方程组:(1);(2).【解答】解:(1),原方程可化为:,①+②×5得:46y=46,∴y=1,将y=1代入①得:x=7,∴原方程组得解为:;(2),原方程可化为:,①×4+②得:19x=57,∴x=3,将x=3代入①得:y=0,∴原方程组得解为:.22.解二元一次方程组:(1);(2).【解答】解:(1),②﹣①,得y=1,把y=1代入①,得x=2,故原方程组的解为;(2)原方程组整理,得,②﹣①×2,得7y=7,解得y=1,把y=1代入①,得x=5.故原方程组的解为.23.解二元一次方程组:(1);(2).【解答】解:(1),由②得y=13﹣2x③,把③代入①,得4x﹣3(13﹣2x)=11,解得x=5,把x=5代入③,得y=3,∴这个方程组的解是;(2),①×2﹣②×3,得﹣19y=19,解得y=﹣1.把y=﹣1代入①,得3x+2=5,解得x=1,∴这个方程组的解为.24.解方程组:(1);(2).【解答】解:(1),把①代入②,得3x﹣8(x﹣3)=14,解得x=2,把x=2代入①,得y=﹣1,故原方程组的解为;(2),①×2﹣②,得7x=35,解得x=5,把x=5代入①,得y=0,故原方程组的解为.25.解方程组:(1);(2).【解答】解:(1),由①+②得:4x=8,解得:x=2,将x=2代入①得:2﹣2y=1,解得:y=,∴方程组的解为:;(2),由①可得:x=3﹣2y③,将③代入②得:3(3﹣2y)﹣4y=4,解得:y=,将y=代入③得:x=3﹣2×,解得:x=2,∴原方程组的解为:.26.解方程组:(1);(2).【解答】解:(1),①×2得:4x﹣2y=0③,②+③得:5x=5,解得:x=1,把x=1代入①中得:y=2,∴原方程组的解为:.(2),②×2,8x﹣2y=6③,①+③得:11x=11,解得:x=1,把x=1代入②,得4﹣y=3,解得:y=1,∴原方程组的解为:.27.解方程组:(1);(2).【解答】解:(1),①+②,得7x=35,解得:x=5,把x=5代入①,得10﹣3y=﹣2,解得:y=4,所以方程组的解是;(2),①+②×2,得11x=11,解得:x=1,把x=1代入②,得4﹣y=3,解得:y=1,所以方程组的解是.28.解方程组:(1);(2).【解答】解:(1),把②代入①得y﹣9+3y=7,解得y=4,把y=4代入②得x=4﹣9=﹣5,所以方程组的解为;(2),①×2+②得10x+3x=34+5,解得x=3,把x=3代入②得9+4y=5,解得y=﹣1,所以方程组的解为.29.解方程组:(1);(2).【解答】解:(1),①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=﹣1,解得:,∴方程组的解为;(2),由②得:y=2x﹣2,把y=2x﹣2代入①得:4x﹣3(2x﹣2)=5,解得:,把代入y=2x﹣2得:,∴方程组的解为.30.解方程组:(1);(2).【解答】解:(1),将①代入②,可得:3x+2x+3=18,解得x=3,把x=3代入①,可得:y=9,∴原方程组的解是.(2),①×2﹣②,可得7y=35,解得y=5,把y=5代入①,可得:x=0,∴原方程组的解是.31.解方程组:(1);(2).【解答】解:(1),把①代入②得:3x+2(2x﹣1)=5,解得:x=1,把x=1代入①得:y=2﹣1=1,故原方程组的解是:;(2),①+②得:3m=6,解得:m=2,把m=2代入①得:2+3n=5,解得:n=1,故原方程组的解是:.32.解方程组:(1);(2).【解答】解:(1)把②代入①中,得3x+2(2x﹣8)=5.解得x=3.把x=3代入②中,得y=2×3﹣8解得y=﹣2.∴这个方程组的解为;(2)①﹣②,得﹣4y=8.解得y=﹣2.把y=﹣2代入①中,得2x+2=10.解得x=4.∴这个方程组的解为.33.用适当的方法解方程组:(1);(2).【解答】解:(1),②﹣①×3得:x=1,把x=1代入①中,解得:y=1,∴这个方程组的解为;(2)方程组整理为:,②×2+①得:5x=30,解得:x=6,把x=6代入②中,解得:y=9,∴这个方程组的解为.34.解下列方程组:(1);(2).【解答】解:(1),将①代入②,得:3x﹣2(2x+1)=2,解得:x=﹣4,把x=﹣4代入①得:y=﹣7,∴方程组的解为:;(2)①×2+②,得:5x=10,解得:x=2,把x=2代入①,得:4+y=1,解得:y=﹣3,∴方程组的解为:.35.解方程组:(1);(2).【解答】解:(1),①+②得,7x=14,解得x=2,把x=2代入①得,3×2+7y=9,解得y=,∴方程组的解是;(2),①×3得,15x+6y=12③,②×2得,16x+6y=14④,④﹣③得,x=2,把x=2代入①得,y=﹣3,∴方程组的解是.36.解方程组:(1);(2).【解答】解:(1),②﹣①得:y=2,把y=2代入①得:,∴方程组的解为:;(2),由③得:y=3﹣2x,把y=3﹣2x代入④得:3x﹣5(3﹣2x)=11,3x﹣15+10x=11,13x=26,x=2,把x=2代入y=3﹣2x得:y=﹣1,∴方程组的解为:.37.解方程组:(1);(2).【解答】解:(1),①×3得:3x﹣15y=0③,②﹣③得:17y=17,解得:y=1,把y=1代入①得:x﹣5=0,解得:x=5,∴原方程组的解为:;(2),把①代入②得:y﹣13﹣6y=7,解得:y=﹣4,把y=﹣4代入①得:x=﹣4﹣13=﹣17,∴原方程组的解为:.38.解方程组:(1);(2).【解答】解:(1),①+②得:5x=25,解得:x=5,把x=5代入①得:5﹣3y=10,解得:y=﹣,故原方程组的解是:;(2),由①得:3x﹣2y=8③,②+③得:6x=12,解得:x=2,把x=2代入②得:6+2y=4,解得:y=﹣1,故原方程组的解是:.39.解方程组:(1);(2).【解答】解:(1),①+②得:3x=12,解得:x=4,把x=4代入①得:4﹣y=2,解得:y=2,则方程组的解为;(2)方程组整理得:,①×4﹣②×3得:﹣7x=﹣14,解得:x=2,把x=2代入①得:4﹣3y=1,解得:y=1,则方程组的解为.40.解下列方程组:(1);(2).【解答】解:(1),由①,得x=y+3③,把③代入②,得3y+9﹣8y=14,解得y=﹣1,把y=﹣1代入①,得x=2,故原方程组的解为;(2),①×2+②,得11x=11,解得x=1,把x=1代入①,得x=﹣2,故原方程组的解为.41.解下列方程组:(1);(2).【解答】解:(1),②代入①,可得x+2x﹣1=2,解得,x=1,将x=1代入②,可得y=1,故方程组的解为.(2),②﹣①,可得,解得,x=3,将x=3代入①,可得y=2,故方程组的解为.42.用加减消元法解方程:(1);(2).【解答】解:(1),①﹣②得:12y=﹣36,即y=﹣3,把y=﹣3代入①得:x=,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.43.解二元一次方程组:(1);(2).【解答】解:(1)方程整理得,由①+②得:5a+5b=﹣5,即a+b=﹣1③,由①﹣③×2得:b=1,把b=1代入③得:a+1=﹣1,解得a=﹣2,∴方程组的解是.(2),由②得:x=3y﹣2③,把③代入①得:9(3y﹣2)﹣7y﹣12=0,解得y=,把y=代入③得x=﹣2=,∴方程组的解是.44.解方程组:(1);(2).【解答】解:(1),解:①+②得3x=33,解得x=11,把x=11代入①得y=14,∴方程组的解是;(2),解:原方程组可化为,①﹣②得6x=6,解得x=1,把x=1代入①得,∴方程组的解是.45.解方程:(1);(2).【解答】解:(1),①代入②得,2x+(3x+1)=﹣9,解得:x=﹣2,将x=﹣2代入①得,y=﹣5,∴方程组的解为:;(2),①×2+②得,6x+x=14,解得:x=2,将x=2代入①得6﹣2y=5,解得:,∴方程组的解为:.46.用适当的方法解下列方程组:(1);(2).【解答】解:(1),由①﹣②×2得:3y﹣(﹣2y)=1﹣5×2,解得:,将代入②得:,解得:,∴原方程组的解为;(2),由①×2+②得:7x=14,解得:x=2,把x=2代入①得:2×2+y=2,解得:y=﹣2,∴原方程组的解为.47.解方程组:(1);(2).【解答】解:(1),①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,∴方程组的解为:;(2)整理得:,①+②×5得:23y=23,解得y=1,把y=1代入①得:5x﹣2=﹣12,解得x=﹣2,∴方程组的解为.48.解方程组:(1);(2).【解答】解:(1),①+②得,2x=6,解得:x=3,把x=3代入①得y=﹣1,∴方程组的解为;(2),①×2,得10x+4y=50③,③﹣②,得7x=35,解得:x=5,把x=5代入①得,25+2y=25,解得:y=0,所以方程组的解为.49.解方程组:(1);(2).【解答】解:(1),整理得:,由①﹣②得:4y=28,解得:y=7,把y=7代入①得:3x﹣7=8,解得:x=5,∴原方程组的解为:;(2),由②﹣①得:5x=15,解得:x=3,把x=3代入①得:y﹣2×3=0,解得:y=6,∴原方程组的解为.50.解方程组:(1);(2).【解答】解:(1),②×3得:15x+3y=21③,①+③得:19x=38,解得:x=2,把x=2代入②得:10+y=7,解得:y=﹣3,故原方程组的解是:;(2),①×2得:2x﹣4y=16③,②+③得:5x=10,解得:x=2,把x=2代入①得:2﹣2y=8,解得:y=﹣3,故原方程组的解是:.51.阅读以下材料:解方程组:;小亮在解决这个问题时,发现了一种新的方法,他把这种方法叫做“整体代入法”,解题过程如下:解:由①得x﹣y=1③,将③代入②得:(1)请你替小亮补全完整的解题过程;(2)请你用这种方法解方程组:.【解答】解:(1)由①得x﹣y=1③,将③代入②得:4×1﹣y=0,解得y=4,把y=4代入①得:x﹣4﹣1=0,解得x=5,故原方程组的解是:;(2),整理得:,把③代入④得:2×2+1+15y=50,解得y=3,把y=3代入①得:3x﹣3﹣2=0,解得x=,故原方程组的解是:.52.已知关于x、y的方程组的解满足x+y =﹣10,求代数式m2﹣2m+1的值.【解答】解:,①×2﹣②×3得:y=4﹣m,把y=4﹣m代入②得:x=2m﹣6,代入x+y=﹣10得:4﹣m+2m﹣6=﹣10,解得:m=﹣8,则原式=(m﹣1)2=81.53.在解方程组时,由于粗心,甲看错了方程组中的a,得解为;乙看错了方程组中的b,得解为.(1)甲把a错看成了什么?乙把b错看成了什么?(2)求出原方程组的正确解.【解答】解:(1)将x=,y=﹣2代入方程组得:,解得:,将x=3,y=﹣7代入方程组得:,解得:,则甲把a错看成了1;乙把b错看成了1;(2)根据(1)得正确的a=2,b=3,则方程组为,解得:.54.已知方程组和方程组的解相同求a、b的值.【解答】解:方程组的解为,由于方程组和方程组的解相同,所以,解得.55.甲和乙两人同解方程组甲因抄错了a,解得,乙因抄错了b,解得,求5a﹣2b的值.【解答】解:由题意,是bx+y=12的解得5b+2=12,解得b=2.又是x+ay=5的解得3+2a=5,解得a=1,∴5a﹣2b=5×1﹣2×2=1.56.对于实数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6.(1)分别求出a、b的值;(2)根据上述定义新运算,试求2*(﹣4)的值.【解答】解:(1)根据题中的新定义化简得:,解得:;(2)根据题中的新定义得:原式=2×(﹣1)+(﹣4)×1=﹣2﹣4=﹣6.57.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.【解答】解:(1)由题意,将代入bx﹣4y=4,得4b﹣4=4,∴b=2,将代入ax+3y=9,得3a+6=9,∴a=1;(2),①×2﹣②,得y=1.4,将y=1.4代入①得,x=4.8,∴方程组的解为.58.定义一种新运算“※”:规定m※n=am+bn﹣mn,其中a,b为常数,且6※15=270,8※10=360,求﹣2※1的值.【解答】解:∵6※15=270,8※10=360,∴,解得:,∴﹣2※1=﹣100+4﹣(﹣2)×1=﹣94.59.若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2023的值.【解答】解:(1)两方程组化简可得,,∵两方程组同解,∴①×2+②得:7x=21,解得:x=3,把x=3代入①式得:y=1,∴两个方程组的相同解为;(2)把代入方程组可得:①﹣②式得:2a=﹣4,解得:a=﹣2,把a=﹣2代入②式得:b=﹣5,∴(3a﹣b)2023=(﹣6+5)2023=﹣1.60.已知方程组和有相同的解,求a﹣2b的值.【解答】解:联立得:,①×2+②得:11x=11,解得:x=1,把x=1代入②得:y=﹣2,把代入,得,解得:,则a﹣2b=14﹣4=10.。
二元一次方程组练习题100道
二元一次方程组练习题100道(卷一)(范围:代数:二元一次方程组)一、判断1、是方程组的解…………()2、方程组的解是方程3x-2y=13的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组()4、方程组,可以转化为()5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()6、若x+y=0,且|x|=2,则y的值为2 …………()7、方程组有唯一的解,那么m的值为m≠-5 …………()8、方程组有无数多个解…………()9、x+y=5且x,y的绝对值都小于5的整数解共有5组…………()10、方程组的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组的解………()11、若|a+5|=5,a+b=1则………( )12、在方程4x—3y=7里,如果用x的代数式表示y,则()二、选择:13、任何一个二元一次方程都有( )(A)一个解; (B)两个解;(C)三个解; (D)无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5个(B)6个 (C)7个(D)8个15、如果的解都是正数,那么a的取值范围是( )(A)a〈2;(B);(C);(D);16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是()(A)2;(B)—1;(C)1;(D)—2;17、在下列方程中,只有一个解的是( )(A)(B)(C) (D)18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是()(A)15x—3y=6 (B)4x—y=7 (C)10x+2y=4 (D)20x-4y=319、下列方程组中,是二元一次方程组的是()(A)(B)(C)(D)20、已知方程组有无数多个解,则a、b的值等于()(A)a=-3,b=—14 (B)a=3,b=—7(C)a=—1,b=9 (D)a=—3,b=1421、若5x-6y=0,且xy≠0,则的值等于( )(A)(B) (C)1 (D)-122、若x、y均为非负数,则方程6x=—7y的解的情况是()(A)无解(B)有唯一一个解(C)有无数多个解 (D)不能确定23、若|3x+y+5|+|2x—2y-2|=0,则2x2—3xy的值是()(A)14 (B)-4 (C)-12 (D)1224、已知与都是方程y=kx+b的解,则k与b的值为( )(A),b=-4 (B),b=4(C),b=4 (D),b=-4三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=—2时,x=_______若x、y都是正整数,那么这个方程的解为___________;26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0。
二元一次方程组练习题100道
二元一次方程组练习题100道(卷一)(范围:代数:二元一次方程组)一、判断1、是方程组的解…………()?2、方程组的解是方程3x-2y=13的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组()4、方程组,可以转化为()5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()6、若x+y=0,且|x|=2,则y的值为2 …………()7、方程组有唯一的解,那么m的值为m≠-5 …………()8、方程组有无数多个解…………()9、x+y=5且x,y的绝对值都小于5的整数解共有5组…………()10、方程组的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组的解………()11、若|a+5|=5,a+b=1则………()12、在方程4x-3y=7里,如果用x的代数式表示y,则()二、选择:13、任何一个二元一次方程都有()(A)一个解;(B)两个解;(C)三个解;(D)无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5个(B)6个(C)7个(D)8个15、如果的解都是正数,那么a的取值范围是()(A)a<2;(B);(C);(D);16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是()(A)2;(B)-1;(C)1;(D)-2;17、在下列方程中,只有一个解的是()(A)(B)?(C)(D)?18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是()(A)15x-3y=6(B)4x-y=7(C)10x+2y=4(D)20x-4y=319、下列方程组中,是二元一次方程组的是()(A)(B)?(C)(D)?20、已知方程组有无数多个解,则a、b的值等于()(A)a=-3,b=-14(B)a=3,b=-7?(C)a=-1,b=9(D)a=-3,b=1421、若5x-6y=0,且xy≠0,则的值等于()(A)(B)(C)1(D)-122、若x、y均为非负数,则方程6x=-7y的解的情况是()(A)无解(B)有唯一一个解(C)有无数多个解(D)不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()(A)14(B)-4(C)-12(D)1224、已知与都是方程y=kx+b的解,则k与b的值为()(A),b=-4(B),b=4(C),b=4(D),b=-4三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______若x、y都是正整数,那么这个方程的解为___________;26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果,那么用含有y的代数式表示的代数式是_____________;28、若是方程组的解,则;29、方程|a|+|b|=2的自然数解是_____________;30、如果x=1,y=2满足方程,那么a=____________;31、已知方程组有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a,x-y=1同时成立,且x、y都是正整数,则a的值为________;35、从方程组中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组37、;38、;39、;40、;41、;42、;43、;44、;45、;46、;五、解答题:47、甲、乙两人在解方程组时,甲看错了①式中的x的系数,解得;乙看错了方程②中的y的系数,解得,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x、y的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a的值;49、代数式ax2+bx+c中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组练习题一.选择题1.下列方程中,是二元一次方程的是()A.x-5y=6z B.5xy+3=0 C.1x+2y=3 D.x=24y-2. 二元一次方程x-2y=1有无数多个解,下列四组解中不是该方程的解的是()A.12xy=⎧⎪⎨=-⎪⎩B.11xy=⎧⎨=⎩C.1xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩3方程2x+y=8的正整数解的个数是()组A.4 B.3 C.2 D.14.一轮船顺流航行的速度为a千米/小时,逆流航行的速度为b千米/小时,(a>b>0).那么船在静.水中的速度为()千米/小时.A.a+b B.1()2a b-C.1()2a b+D.a-b5. 在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A.21元 B .22元C.23元D.不能确定5.1有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.2005.2如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置()A.3个球B.4个球C.5个球D.6个球二.填空题6. 已知23xy=⎧⎨=⎩是方程x-ky=1的解,那么k=7. 请你写出一个二元一次方程组,使它的解为12xy=⎧⎨=⎩,这个方程组是8. 某人买了60分和80分的邮票共20枚,用去13元2角,设买了60分邮票x枚,买了80分邮票y枚,则可列方程组为9. 已知方程组x=y+5x+y+m=0⎧⎨⎩和方程组2x-y=5x+y+m=0⎧⎨⎩有相同的解,则m的值是10. 若a:b:c=2:3:7,且a-b+3=c-2b,则c值为三.解答题11.解方程组(1)661x2833=x10yy⎧+=⎪⎪⎨⎪-⎪⎩(2)4(x-y-1)=3(1-y)-2x y+=223⎧⎪⎨⎪⎩(3)3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩(4)2318032802240x y zx y zx y z--+=⎧⎪+--=⎨⎪++-=⎩12. 已知1xy=-⎧⎨=⎩和23xy=⎧⎨=⎩都是方程y=ax+b的解,求a和b的值.13.1为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?13.2学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是()14某城市规定:出租车起步价允许行使的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?15.1 某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为多少?15.2在某浓度的盐水中加入一杯水后,得到新盐水,它的浓度为20%,又在新盐水中加入与前述一杯水的重量相等的纯盐混合,盐水浓度变为133%3,那么原来盐水的浓度是多少?16.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?1-4.D B B C3..解:∵2x+y=8,∴y=8-2x,∵x、y都是正整数,∴x=1时,y=6;x=2时,y=4;x=3时,y=2.∴二元一次方程2x+y=8的正整数解共有3对.故选B.4题的等量关系:顺流航行的速度-静水中的速度=静水中的速度-逆流航行的速度.5.设A、B、C三种特价玩具单价分别为x、y、z元,列方程组,用待定系数法求解.解答:解:设A、B、C三种特价玩具单价分别为x、y、z元,由题意,得{2x+y+3z=23,x+4y+5z=36,设x+2y+3z=m(2x+y+3z)+n(x+4y+5z)比较系数,得{2m+n=1,m+4n=2,3m+5n=3,解得{m=27,n=37∴x+2y+3z=(2/7)(2x+y+3z)+(3/7)(x+4y+5z)=2/7×23+3/7×36=22.故选B.点评:本题是三元不定方程组,解决这类问题,需要设待定系数,比较系数求解.5.1解:设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得{3x+2y+z=315x+2y+3z=285,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.5.2目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z的方程组即可.解答:解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z,3x+3y=2y+2z.解得:{y=x,z=2x,第三图中左边是:x+2y+z=5x,因而需在它的右盘中放置5个球.故选C.6. k=-17,答案不唯一。
8.20 60801320 x yx y+=⎧⎨+=⎩9. 既然两方程组有相同的解,那么将有一组x、y值同时适合题中四个方程,把题中已知的两个方程组成一个方程组,解出x、y后,代入x+y+m=0中直接求解即可.解答:5 10.先设a=2x,b=3x,c=7x,再由a-b+3=c-2b得出x的值,最后代入c=7x即可.解答:解:设a=2x,b=3x,c=7x,∵a-b+3=c-2b,∴2x-3x+3=7x-6x,解得x=3/2,∴c=7×3/2=21/2,点评:本题考查了解三元一次方程组,解题的关键是由题意中的比例式设a=2x,b=3x,c=7x,再求解就容易了.11. (1)x=20,y=30;(2)解:原方程组可化为:{4x-y=5①3x+2y=12②,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为{x=2,y=3.(3)231xyz=⎧⎪=⎨⎪=⎩(4)846xyz=⎧⎪=⎨⎪=⎩12. 解得a=1,b=1.13.1设甲种消毒液购买x瓶,则乙种消毒液购买y瓶.依题意得:x+y=100,6x+9y=780.解得:x=40.∴y=60(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.13.2,x=10,y=813.3 有鸡23只,兔12只14解:设出租车的起步价是x元,超过3千米后,每千米的车费是y元,由题意得:{x+y(11-3)=17,x+y(23-3)=35,解得:{x=5,y=3/2,答:出租车的起步价是5元,超过3千米后,每千米的车费是1.5元.15.1本题中,因为售价=进价+利润,所以等量关系是:原进价+原来利润=进价降低后的进价+降价后的利润.解:设原进价为x,则:x+m%•x=95%•x+95%•x•(m+6)%,解得:m=14.15.2根据溶液×浓度=溶质,可得到两个方程,解方程组即可.解:设原盐水溶液为a克,其中含纯盐m克,后加入“一杯水”为x克,依题意得:()20%1()33%3a x ma x x m x+=⎧⎪⎨++=+⎪⎩解得a=4m,故原盐水的浓度为m/a=m/4m=25%,16. 可设A的工作量为1,可得B的工作量;两个等量关系为:甲独做的工作量+甲丙合作的工作量=1;乙丙合作的工作量+乙独做的工作量=B的工作量,把相关数值代入求解即可.解答:解:设乙、丙二队合作了x天,丙队与甲队合作了y天.将工程A视为1,则工程B 可视为1+25%=5/4,由题意得:{x/20+y/30+y/20=1,x/24+x/30+y/24=5/4去分母得{3x+5y=60,9x+5y=150,由此可解得x=15,答:乙、丙二队合作了15天.点评:考查二元一次方程组的应用,根据工作量得到两个等量关系是解决本题的关键;在工程问题中,如果工作总量不是一个具体的量,常常将工作总量视为1.。