综合AB_第五讲(3)_2009年版

合集下载

第五讲-对国家出路-的早期探索之维新运动

第五讲-对国家出路-的早期探索之维新运动

二、 维新运动的概况
维新派宣传变法的主要行动 向皇帝上书 著书立说 介绍外国变法的经验教训 办学会 设学堂 办报纸
公车上书
康有为(1858~1927) ,字广 厦,号长素,广东南海县人。 出身封建仕宦家庭。
19岁于广州著名理学家朱次琦就 读, 致力于“济人经世”之学。
康有为与《大同书》手稿。
1888年入京顺天乡试,首次上书光绪。
第五讲 对国家出路的早期探索之 维新运动(戊戌变法)
一 背景
• (1)甲午战争的惨败,造成了新的民族危机, 激发了新的民族觉醒。而站在救亡图存和变法维 新前列的,正是代表民族资本主义发展要求的知 识分子。他们把向西方学习推进到一个新的高度, 即不但要求学习西方的科学技术,而且要求学习 西方资本主义的政治制度和思想文化。
明罚之诏 :对主和辱国之昏庸大臣 ;阵战不力、 闻风溃逃、克扣军饷的贪鄙将帅;擅许割地赔款的 卖国使臣,应予处罚,重者处死,轻者革职,以蔽 其辜。有功将帅疆吏,则予以奖赏。
求才之诏:建议帝应悬赏求贤,破格提拔有真才 实学的知识分子参与决策国家大事。
三诏一下,赏罚既明,天下士气必大受鼓舞, 则可上下一心,以赴国家之急。
三、戊戌变法
1.戊戌变法(1898年) 光绪于1898年6月11日颁布Байду номын сангаас明定国是”诏书,
宣布变法,至9月21日慈禧政变历时103天,史称 “百日维新”(戊戌变法)。
2.变法失败 帝后较量 帝解怀塔布等6大臣(后党)职务,授谭嗣同、
刘光第、杨锐、林旭军机京章。慈禧与天津荣禄 密谋政变,欲趁帝天津阅兵时,武力逼帝退位。
而死 。据清宫太医院档案选编的 《慈禧光绪医方选议》一书:光 绪182个医方中,神经衰弱64个 ,骨关节炎22个,种子长寿方17 个。肉体与精神折磨,“怫郁摧 伤,奄致殂落”。

第五讲 全国矿产地数据库

第五讲 全国矿产地数据库


LOGO
图2 数据库关系示意图


LOGO
3、由项目综合技术组组织对各单位矿产地数据 库进行汇总,建立全国矿产地空间数据库。内容 包括: 数据库的拼接和合并; 数据库检查和修正; 全国矿产地数据库的集成; 建立全国矿产地数据库查询、检索等应用系统; 建立全国矿产地数据库信息共享服务体系。
LOGO

二、数据库结构和数据库关系
1、数据库结构 矿产地属性数据库的内容初步拟包括矿产地11个数据文件,156个属性数 据项(详见《矿产地数据库建设工作指南》修订版)。11个数据文件分别是: (1)矿产地基本情况,包括矿产地编号、矿种、矿产地名、交通位置、 地理经度、地理纬度、矿床成因类型、共生矿、伴生矿、矿床规模、成矿时 代、三级成矿带、四级成矿带、地质工作程度和开采情况15个数据项。 (2)矿区地质情况,包括矿产地编号、矿区大地构造位置、岩石地层单位、 侵入岩、火山岩、变质岩、地质构造特征、围岩蚀变、年龄测定方法种类、 同位素地质年龄、采样位置、样品编号、稳定同位素分析方法和稳定同位素 地球化学14个数据项。 (3)矿体特征,包括矿产地编号、矿体数、主矿体数、矿体形状、矿体埋 深、矿体走向、矿体倾向、矿体倾角、矿体侧伏方向、矿体长度、矿体斜长、 矿体厚度、氧化带深度、矿石自然类型、矿石结构、矿石构造、矿石的矿物 组成、矿石品位、矿石品级、伴生有益组分、矿石工业特征和矿石工业类型 22个数据项。 (4)煤矿产特征,包括矿产地编号、含煤地层、含煤层数、可采煤层层数、 可采煤层累计厚度、煤层总厚度、煤层型别、宏观煤炭类型、工业牌号(煤 类)、煤层倾向、煤层倾角、埋藏深度、煤层顶板、煤层底板、露天开采、 矿井瓦斯、自燃倾向等级和地温状况18个数据项。

中考数学压轴题十大类型经典题目

中考数学压轴题十大类型经典题目

中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.2011吉林如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm,BC =4cm,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,这里规定:线段是面积为0的三角形解答下列问题:1 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. 2当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.3当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. 4直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.D C BA 2.2007河北如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC3设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;,写出t 的取值范围;若不能,请说明理由. 备用图3.2008河北如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒0t >.1D F ,两点间的距离是 ;2射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;3当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; 4连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.2011山西太原如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为8,0,点B 的坐标为11,4,动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t秒0t>,△MPQ的面积为S.1点C的坐标为________,直线l的解析式为__________.2试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.3试求题2中当t为何值时,S的值最大,并求出S的最大值.4随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.5.2011四川重庆如图,矩形ABCD中,AB=6,BC=2错误!,点O是AB的中点,点P在AB的延长线上,且BP=3个单位长度的速度沿OA匀速运动,到达A点后,F从P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以和矩形ABCD在射线PA的同侧,设运动的时间为t秒1当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;3设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.2011山东烟台如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为-4,0,0,4.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t秒时,△OPQ的面积为S不能构成△OPQ的动点除外.1求出点B、C的坐标;2求S随t变化的函数关系式;3当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题12011浙江温州如图,在平面直角坐标系中,O是坐标原点,点A的坐标为-4,0,点B的坐标为0,bb>0.P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P 关于y轴的对称点为P′ 点P′不在y轴上,连结P P′,P′A,P′C,设点P的横坐标为a.(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是-1,m ,求m 的值;2若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; 3是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. 2010武汉如图,抛物线212y ax ax b=-+经过A -1,0,C 2,32两点,与x 轴交于另一点B . 1求此抛物线的解析式; 2若抛物线的顶点为M ,点P 为线段OB 上一动点 不与点B 重合,点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; 3在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与2中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. 2011江苏镇江在平面直角坐标系xOy 中,直线1l 过点A 1,0且与y 轴平行,直线2l 过点B 0,2且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=k >0的图象过点E 且与直线1l 相交于点F . 1若点E 与点P 重合,求k 的值; 2连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; 3是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. 2010浙江舟山△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O 如图,△ABC 可以绕点O 作任意角度的旋转.1当点B 在第一象限,,求点B 的横坐标; x y P'DO C B A P2如果抛物线2y ax bx c =++a ≠0的对称轴经过点C ,请你探究:①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m 的值;若不存在,请说明理由.5.12若点N 为线段BMQ .当点N 在线段BM 上运动时点N 不与点B ,点M 面积为S ,求S 与t 之间的函数关系式及自变量3,求出所有符合条件的点P 4将△OAC 补成矩形,使得△,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标不需要计算过程. 三、测试提高1. 2011山东东营如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为30-,,0,1,点D是线段BC 上的动点与端点B 、C 不重合,过点D 作直线12y x b =+交折线OAB 于点E . 1记△ODE 的面积为S .求S 与b 的函数关系式;2当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题1. 2011辽宁大连如图,抛物线y =ax 2+bx +c 经过A -1,0、B 3,0、C 0,3三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .1求该抛物线的解析式;2抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;3在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. 2011湖北十堰如图,和点 B ,与y 轴交于点C 0,-3.1求抛物线的解析式;2如图1,己知点H 0,-1.问在抛物线上是否存在点G 点G 在y 轴的左侧,使得S △GHC =S △GHA 若存在,求出点G 的坐标,若不存在,请说明理由:3如图2,抛物线上点D 在x 轴上的正投影为点E ﹣2,0,F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.3. 2010天津在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B 点A 在点B 的左侧,与y 轴的正半轴交于点C ,顶点为E . Ⅰ若2b =,3c =,求此时抛物线顶点E 的坐标;Ⅱ将Ⅰ中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;Ⅲ将Ⅰ中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. 2011山东聊城如图,在矩形ABCD 中,AB =12cm,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s,点F 的速度为4cm/s,当点F 追上点G 即点F 与点G 重合时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.1当t =1s 时,S 的值是多少2写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;3若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. 2011江苏淮安如图,在Rt△ABC中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒t >0,正方形EFGH 与△ABC 重叠部分面积为S .1当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . 2当0<t ≤2时,求S 与t 的函数关系式;3直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少A EB FC GDA 备用图三、测试提高1. 2010山东东营如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点D 不与A ,B 重合,且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .1当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;2设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. 2011江苏盐城如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.备用图2. 2009湖北黄冈如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t 单位:秒B AD E F G C B 备用图1 A C B 备用图2 A C1求A ,B ,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;3当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;4当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. 2009四川眉山如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 1,0. 1求该抛物线的解析式;2动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. 2010广东中山如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动点M 可运动到DA 的延长线上,当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:1说明△FMN ∽△QWP ;2设04x ≤≤即M 从D 到A 运动的时间段.试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形3问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. 2011湖北天门在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为-3,0、B 1,0,过顶点C 作CH ⊥x 轴于点. 1直接填写:a = ,b = ,顶点C 的坐标为 ;2在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由; 3若点P 为x 轴上方的抛物线上一动点点P 与顶点C 不重合,PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. W QPNM F D CB A备用图三、测试提高1. 2009广西钦州如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.1填空:点C 的坐标是_____,b =_____,c =_____;2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. 2009黑龙江齐齐哈尔直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A 、B 两点的坐标;2设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;3当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. 2010河南在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.1求抛物线的解析式;2若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.3若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. 2011黑龙江鸡西已知直线y =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .1试确定直线BC 的解析式;2若动点P 从A 点出发沿AC 向点C 运动不与A 、C 重合,同时动点Q 从C 点出发沿CBA 向点A 运动不与C 、A 重合,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;3在2的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. 2007河南如图,对称轴为直线x =27的抛物线经过点A 6,0和B0,4.1求抛物线解析式及顶点坐标;2设点Ex ,y 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;3①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. 2010黑龙江大兴安岭如图,在平面直角坐标系中,函数2y x =+12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M,且点M 为线段OB 的中点. 1求直线AM 的解析式;2试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;3若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. 2009辽宁抚顺已知:如图所示2=++y ax x c a ≠0与x C .1求出此抛物线的解析式,2在抛物线上有一点D ,D 的坐标,并求出直线AD 的解析式;3在2中的直线AD P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. 2010天津在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.Ⅰ若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;Ⅱ若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. 2011四川广安四边形ABCD 是直角梯形,BC ∥AD ,∠=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 1 0-,,B 1 2-,,D 3,0.连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .1求抛物线的解析式;2抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;3设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.3. 2011四川眉山如图,在直角坐标系中,已知点A 0,1,B 4-,4,将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . 1 求抛物线的解析式和点C 的坐标;2 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;3 在2的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. 2011福建福州已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x轴交于A 、B 两点B 在A 点右侧,点H 、B 关于直线3:33l y x =+ 1求A 、B 两点坐标,并证明点A 在直线l 上; 2求二次函数解析式;3过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. 2009湖南郴州 如图1,已知正比例函数和反比例函数的图象都经过点M -2,-1,且y B O D C A xEyB O DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xP -1,-2为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .1写出正比例函数和反比例函数的关系式;2当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;3如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. 2010江苏苏州如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为3,0、0,4. 1求抛物线的解析式;2设()M m n ,M B O A 、、、,求点M 的坐标; 3在2的条件下,试问:22228PA PB PM ++>是否总成立请说明理由.三、测试提高1. 2009浙江舟山如图,已知点A -4,8和点B 2,n 在抛物线2=y ax 上.1求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;2平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C -2,0和点D -4,0是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. 2011天津已知抛物线1C :21112y x x =-+,点F 1,1. Ⅰ求抛物线1C 的顶点坐标;Ⅱ①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P P P x y ,01P x <<,连接PF ,并延长交抛物线1C 于点Q Q Q x y ,,试判断112PF QF+=是否成立请说明理由; Ⅲ将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. 2009湖南株洲如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D .1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. 2008山东济南已知:抛物线2y ax bx c =++a ≠0,顶点C1,3-,与x 轴交于A 、B 两点,(10)A -,. 1求这条抛物线的解析式; 2如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点P 与A 、B 两点不重合,过点P 作断PM PNBE AD+是否为PM ⊥AE 于M ,PN ⊥DB 于N ,请判定值 若是,请求出此定值;若不是,请说明理由;3在2的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE相交于点F 、GF 与A 、E 不重合,G 与E 、B 不重合,请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. 2011湖南株洲孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: 1若测得OA OB ==如图1,求a 的值;2对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; 3对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 2009湖北武汉如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .1求抛物线的解析式;2已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 3在2的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. 2009湖南湘西在直角坐标系xOy与x 轴交于两点A 、B ,与y 的坐标是3,0.将直线y kx =沿y 轴向上平移3(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. 2009山西太原问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一方法指导:图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011点E 不与点C ,D 重合,压平后得到折痕MN .当12CE CD =时,求AMBN 的值. 类比归纳:在图1中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=n 为整数,则AMBN 的值等于 .用含n 的式子表示 联系拓广: 如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 不与点C D ,重合,压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .用含m n ,的式子表示 2. 2011陕西如图①,在矩形ABCD 中,将矩形折叠,使B落在边AD 含端点上,落点记为E ,这时折痕与边BC 或边CD 含端点交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.1由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;2如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;3如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么图① 图② 图③3. 2010江西南昌课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=αα<∠A 1A 0A 2,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. 1用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想图2NA B CD E F M图1A BCDE FM N设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合其中,A 1与B 1重合,现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转αn1800<<α. 3设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;4试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来不要求证明;若不存在,请说明理由.4. 2009山东德州已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC于F ,连接DF ,G 为DF 中点,连接EG ,CG . 1求证:EG =CG ;2将图①中△BEF 绕B 点逆时针旋转45o,如图②所示,取DF 中点G ,连接EG ,CG .问1中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. 3将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问1中的结论是否仍然成立通过观察你还能得出什么结论均不要求证明5. 2010江苏苏州刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D =°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上移动开始时点与点重合. 1在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.填“不变”、“变大”或“变小” 2刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行 问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.三、测试提高1. 2009湖南常德如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:F BA D E G图①F A D G图② F A E 图③ ①图②F ED AB图③D。

第二单元 第五讲 整式方程(组)的概念及解法 2025年九年级中考数学总复习人教版(山东)

第二单元 第五讲 整式方程(组)的概念及解法 2025年九年级中考数学总复习人教版(山东)
方程
一般形式
5
对点练习
1.(1)下列是一元一次方程的是 ( D )
A.3-2x
B.6+2=8
C.x2-49=0
D.5x-7=3(x+1)
(2)下列是二元一次方程组的是( D )
A.
C.

2

3
2 2 + = 1
B.
3 − = 4

3
+ =7
D.
3 − = 0
− =1
− =2
当p=-1时,Δ=p2-4=-3<0;
∴p=3.
30
【方法技巧】
判别式的“双向应用”
1.正向:系数已知,可以判断方程根的情况.
2.逆向:已知方程根的情况,可以求未知系数或参数的值.
提醒:要根据a≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.
31
【变式训练】
1.(2024·上海中考)以下一元二次方程有两个相等实数根的是 ( D )
【解析】(1)x2-(m+2)x+m-1=0,
这里a=1,b=-(m+2),c=m-1,
Δ=b2-4ac
=[-(m+2)]2-4×1×(m-1)
=m2+4m+4-4m+4
=m2+8.
∵m2≥0,∴Δ>0.∴无论m取何值,方程都有两个不相等的实数根;
33
(2)若方程x2-(m+2)x+m-1=0的两个实数根为x1,x2,
18
− = ①
【自主解答】(1)
,
− = + ②
由①,得y=3x-5,③
把③代入②,得5(3x-5)-1=3x+5,

第五讲几何解题方法总结

第五讲几何解题方法总结

第五讲:几何解题方法总结知识点在这里:一、巧求面积平面图形涉及到两个内容:周长和面积。

在求面积中常用的方法有:平移,割补法,去空法,等积变换法,差不变法,利用线段关系求面积等方法。

二、等积变形 (1)直线AB 平行于CD ,可知S ACD ∆= S BCD ∆;反之,如果S ACD ∆= S BCD ∆,同样可得到直线AB 平行于CD 。

(图1)(2)两个三角形的高相等,面积比就等于它们的底之比;两个三角形的底相等,面积比就等于它们的高之比。

(图2)S ABD ∆: S ACD ∆=BD :CD(3)三角形等积变形中常用到的几个重要性质: ①平行线间的距离处处相等;②等底等高的两个三角形面积相等;③共底共顶点的三角形高必定相等;④两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形底(或高)的几倍,那么这个三角形的面积也是另一个三角形面积的几倍;⑤一个平行四边形和一个三角形二者面积相等,如果它们的底相等,那么三角形的高是平行四边形高的2倍,如果它们的高相等,那么三角形的底是平行四边形底的2倍。

(老师可讲“武当山众图形比赛面积大小的‘恐怖’故事”以加深学生记忆。

) 三、“群山模型”每个平行四边形中的阴影可以看做“山”不管几座山,每个平行四边形里“山”的总面积都等于其所在平行四边形面积的一半。

即S 阴影=21S 平行四边形。

四、对等模型一平行四边形或长方形内有任意一点,往四个顶点连线,分成如左图所示四个三角形,则有:S 1+S 2=S 3+S 4=21S 平行四边形。

五、共角问题(鸟头模型)ACDABE S S ∆∆=AD AC AEAB ⨯⨯(各线段的份数相乘)六、燕尾模型 S 1:S 2=DE :EA S 4:S 3= DE :EA 所以:S 1:S 2= S 4:S 3 即S 1:S 4= S 2:S 3=BD :DC你看右边的两幅图有相似之处吧。

总结:两翅膀的面积比等于尾部的宽度之比。

第五讲二次根式PPT课件

第五讲二次根式PPT课件
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
(2)( 10-3)2012·( 10+3)2013. 解 原式=( 10-3)2012·( 10+3)2012·( 10+3) =[( 10-3)( 10+3)]2012·( 10+3) =[( 10)2-32]2012·( 10+3) =(10-9)2012·( 10+3)=1×( 10+3)= 10+3.
4. 同类二次根式:把几个二次根式化为最 简二次根式以后,它们的被开方数相同.
常考类型剖析
类型一 二次根式有意义的条件
例1(’14巴中)要使式子 m 1 有意
m 1
义,则实数m的取值范围是
(D)
A. m>-1
B. m≥-1 C. m>-1且m≠1 D. m≥-1且m≠1
第4课时┃ 数的开方及二次根式 考点1 二次根式的相关概念与性质
当堂检测
1.[2014·拱墅二模] 16的值等于
(A)
A.4 B.-4 C.±2 D.2
2.[2014·孝感] 下列二次根式中,不能与 2合并的是
(C )
A.
1 2
B. 8
C.
12
D. 18
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·济宁] 如果 ab>0,a+b<0,那么下面各式:①
C. 27÷ 3=3
D. (-3)2=-3
解析 27÷ 3= 27÷3= 9=3.
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.

第五讲 政策监督

第五讲  政策监督

山东东营市政府大楼
济南市政府大楼
顺德市政府大楼
上海浦东区政府大楼
成都争议政府大楼
美国国税局
美国商务部
美国麻省布卢克城政府楼
美国德州一市政厅
密歇根州一市政厅
伊阿华州一市政厅
毛新宇委员:解决腐败要进行长期的整风学习
国际在线报道(记者 孙亚萍):3月7日晚,全国政协委员、开国领袖毛泽东唯 一嫡孙、中国军事科学院战争理论和战略研究部副部长毛新宇,在两会中抽 空接受了国际在线的专访。针对我国近期腐败大案频发,毛新宇委员说,解 决腐败问题,还是要进行长期的整风学习,继续加强思想建设。 毛主席一生痛恨腐败 本次政协会议召开期间,许多政协委员都提案或发言,呼吁加大政府信 息公开、加强社会舆论监督。毛新宇委员认为,在加强法律制度保障、严惩 腐败的同时,还要治本,也就是要提高党员的马列主义水平,提高他们的思 想境界。 毛新宇委员说:“毛泽东主席一生痛恨腐败,提倡反腐倡廉。”他认为, 要想根本地解决中国的腐败问题,就要让广大党员干部重温毛主席提出的 “防止糖衣炮弹的进攻”、“两个务必”。对于党员干部的教育,他认为毛 泽东主席创造了一个好的方式,就是整风运动。毛新宇委员提出,反腐败还 是要进行长期的整风学习,特别要学习毛泽东的党的建设思想,理论与实践 学习、坚持群众路线,密切联系群众。 针对现在很多腐败官员喜欢收藏古玩字画、文物、名贵工艺品的“雅 贪”,毛新宇委员认为,党员可以拥有自己的爱好,但是作为一个党员、一 个领导干部,有一个底线,就是自己的兴趣爱好,始终不能脱离群众。
唱红 重庆
温家宝强调民主监督:只有民主才不会人亡政息
2010-02-27 16:18:02 来源: 中国网
核心提示:27日下午,中共中央政治局常委、国务院总理温家 宝与网友在线交流。温家宝 说,只有民主才不会出现人亡政息。温家 宝认为,公款吃喝、公车私用,公费出国,其实 也关系到整个反腐败, 应该也必须管得住。 中国网北京2月27日报道 :中共中央政治局常委、国务院总理 温家宝今天下午与广大网友在 线交流时表示,必须管得住公款吃喝、 公车私用等现象。在回应网友“为什么管不住公款吃喝、公车私用” 时,温家宝明确表示,应该管得住,必 须管得住。 温家宝说,我们 能够做到,最根本的是两条,第一条就是公开透明,就要让任何一项 行政 性支出都进入预算,而且公开让群众知道,接受群众监督;第二 条就是民主监督。“我曾 经引过在建国前毛泽东主席和黄元培先生说 过的一段话解决‘其兴也勃,其亡也乎’的周 期律问题,最重要的是 民主,只有民主才不会出现人亡政息”。温家宝认为,公款吃喝、 公 车私用,公费出国,其实也关系到整个反腐败。

第五讲 神圣时间

第五讲 神圣时间
第五讲 神圣和神圣的时间
神圣时间和世俗时间
讨论:特别的时间经验
你的人生中有无经历过特别的时间? 为什么特别? 特别短,特别浓缩,特别有收获,……
--------------- 奥古斯丁《忏悔录》
4
5
不同的时间观念
一,对日常时间的哲学反思 二,宗教的时间理解 三,伊利亚德的神圣时间
时间
baike./link?url=p8_dwSRVOZFMZ8u1vsdTFNy XUjztoko3Z4_MuqC5J99iATG5SAwl4kJXDnzQ SiLN8moqcsyOazbl86HGFRziShNr5_uxCPQ4HjBxiX4cgu
几个和时间相关有意思的词
文本提到的Tempus/ --Templum (Contemplation。正如“ 刹那”,不是一个点,而是过去和未来的当下化)
希腊文中的Chronics和Kairos Chronics:类似后来牛顿所讲的“绝对时间”和对应的“相对时 间”所表述的东西。Kairos是指线性的时间遭遇关键时刻,指 存在状态的转变,神圣性事件的来临。
三,伊利亚德论时间
一,永恒:但不是线性的或连续性的
东方或古希腊:循环或轮回的时间
亚伯拉罕一神宗教:神掌管过去现在和未来,任何时间对神都是永恒当下
二,神圣时间是可逆的
1,巴门尼德式的时间 p33: 借正义之神的口说:存在者存在。不存在着存在则不可能。) “存在”的特性是圆满的,不动的-不生不灭,永恒不变的,不可分割的 神圣时间也有类似的特质 2,神圣时间的循环是用特定的方式完成的:逆转,借助仪式
神圣时间所指
1,仪式开始的那段时间,这种时间的世俗时间 有本质的区别
2,指神秘时间,而通过一种仪式或者只是重复 某种神秘实在的行为就可以重新得到这种神秘 时间

中国历史地理课件第五讲(三)自然环境变迁:河口与海岸线以长江口、珠江口为例

中国历史地理课件第五讲(三)自然环境变迁:河口与海岸线以长江口、珠江口为例

香港与其邻近地区图
何 氏 宗 祠(番禺沙湾)
2、沙田的形成,主要有四种形式
湾头淤积发育:由于河水受潮水顶托,便在海湾回流处形 成沙田。
沿河岸发育:即在河岸两边淤积而成。 沿海岛屿、台地发育:围绕小岛、台地而成。 江心沙。 珠三角近二三百年来形成的新沙田,天然积成者少,大部
分是人工造成。
2000年前长江口海岸线
长江口的流向大致是由西北往东南入海,一切沙带、贝壳沙 带、江岸、江堤、海塘亦大致由西北往东南有规则的排列, 因而顺势的同一条沙带、贝壳沙带、江岸等的成陆年代也大 致相同。
太仓、嘉定一带往东北至长江南岸的垂直距离最短,而伸展 速度最慢,约每六十至一百年才涨出一公里;往东南至南汇 的距离最远,而伸展速度最快,约每二十年涨一公里。
地理空间
村落形态
生业 市场
土地经营 宗族 信仰仪式 社会等级 族群分类
明明明清
初正代代
:
军 事 征
:
统 年 间
:
中 叶 士
迁 海 与
服黄大复
/
土 豪 控 制
/
萧 养 之 乱
/
夫 化 礼 仪

粮 户 归
/
//
垛 集 军 户
秩 序 重 建
改 革 宗 族
宗 户 籍 制
/
/
屯 田
户 籍 整 理
吴越显德元年(954年)
政和元年(1111年)
嘉定十年(1217)
至顺元年(1330)
历史上江南地区行政区划的设置
万历四十五年(1617)
乾隆元年(1736)
同治二年(1863)
宣统二年(1910)
口岸城市的兴起:上海 1850年的上海

第五讲---等压线

第五讲---等压线

第五讲 等压线一、等压线有关知识点把空间气压值相同的各点组合而成的面叫做等压面。

1 (1)对于同一地点而言,气压总是随高度的增加而递减。

比较AD,BC 气压高低(2)高压和低压都是针对同一水平面上的气压差异而言。

比较AB ,CD 气压高低(3)等压面凸起的地方为高压区,下凹的地方为低压区。

比较ABCD 的气压高低(4)气压系统①凡等压线闭合,中心气压高于四周气压的区域,叫做高气压;凡等压线闭合,中心气压低于四周气压的区域,叫做低气压。

②由高气压向外延伸出来的狭长区域,叫做高压脊,脊的最高部分的连线称为脊线;由低气压向外延伸出来的狭长区域,叫做低压槽,槽的最低部分的连线称为槽线。

③两个高压脊之间和两个低压槽之间的部位称为鞍部。

CD B A ··· ·2、等压线的判读(1)根据风向可判读在同一水平面上,一般大气总是从高气压区向低气压区流动①等压线值大小的确定:顺着风向,等压线数值减小。

②南北半球的确定:水平气压梯度力→右偏→北半球;水平气压梯度力→左偏→南半球。

③近地面和高空位置的确定:近地面的风向:风向与等压线斜交;高空中的风向:风向与等压线平行。

④高气压和低气压位置的确定:北半球→背风而立,右后方是高压;南半球→背风而立,左后方是高压。

北半球南半球(2)根据等压线疏密判断风力等压线密集处→单位距离内气压差异大→水平气压梯度力大→风力越强。

⊙同一等压线图中:等压线密集——气压梯度力大——风力大,等压线稀疏——气压梯度力小——风力小⊙不同等压线图中:水平气压梯度越大(单位距离气压差越大),风速越大。

2读下图,完成下列题目。

(1)图中v箭头表示A空气匀速运动方向此图是_____ (南、北)半球气压分布图。

(2)Fl是____________力,与等压线______,且由___气压指向___气压,大小(3)F2是__________力,它与风向V_____,对风速_______影响。

第五讲 不等式性质及解法

第五讲 不等式性质及解法

博通教育辅导讲义年 级 高一辅导科目 数学 学科教师 课次数 课 题第五讲 不等式的基本性质及解法主管审核教 学 内 容知识点及例题精讲一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或n n a b >;4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。

[例1](1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦bc ba c ab ac ->->>>则若,0; ⑧11,a b a b >>若,则0,0a b ><。

其中正确的命题是______(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______ 二、一元二次不等式解法1.一元二次不等式(1)一元二次不等式经过变形,可以化成如下标准形式: ①ax 2+bx+c >0(a >0);②ax 2+bx+c <0(a >0).2.一元二次函数的图像、一元二次方程的根、一元二次不等式的解集对比表二次函数△情况一元二次方程一元二次不等式y=ax2+bx+c(a>0) △=b2-4ac ax2+bx+c=0(a>0)ax2+bx+c>0(a>0)ax2+bx+c<0(a>0)图像与解△>0x1=x2=不等式解集为{x|x<x1或x>x2=不等式解集为{x|x1<x<x2=△=0x1=x2=x0=不等式解集{x|x≠x0,x∈R}解集为△<0 方程无解不等式解集为R(一切实数)解集为a<0的情况自己完成3.一元n次不等式(x-a1)(x-a2)…(x-a n)>0,(x-a1)(x-a2)…(x-a n)<0,其中a1<a2<…<a n.把a1,a2,…a n按大小顺序标在数轴上,则不等式的解的区间如图所示:综合可知,一元二次不等式的解法充分运用了“函数与方程”,“数形结合”及“化归”的数学思想,一元二次方程ax2+bx+c=0的根就是使二次函数y=ax2+bx+c的函数值为零时对应的x值,一元二次不等式ax2+bx+c>0,ax2+bx+c<0的解就是使二次函数y=ax2+bx+c的函数值大于零或小于零时x的取值范围,因此解一元二次方程ax2+bx+c>0,ax2+bx+c<0一般要画与之对应的二次函数y=ax2+bx+c的图像.例1解下列关于x的不等式:(1)2x+3-x2>0;(2)x(x+2)-1≥x(3-x);(3)x2-2x+3>0;(4)x2+6(x+3)>3;例2解不等式≥2.例3若函数f(x)=ax2+bx+c(a>0)对任意的实数t,都有f(2+t)=f(2-t),下列不等式成立的是( ) A.f(1)<f(2)<f(4) B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)例4已知不等式ax2+bx+2>0的解为-<x<,求a,b值.例5若x2+qx+q>0的解集是{x|2<x<4},求实数p、q的值.例6设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},试求a,b 的值.例7已知f(x)=x2+2(a-2)x+4.(1)如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.(2)如果对x∈〔-3,1〕,f(x)>0成立,求实数a的取值范围.例8公园要建造一个圆形喷水池.在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如下左图所示.为使水流形状较为漂亮,设计成水流在到OA距离为1米处达到距水平最大高度为2.25米,如果不计其他因素,那么水池半径至少要多少米,才能使喷出的水流不致落到池外?巩固练习与随堂测验一、选择题1.已知集合A={x|x2-2x-3<0 ,B={x||x|<a ,若B A,则实数a的取值范围是( )A.0<a≤1;B.a≤1;C.-1<a≤3;D.a<1.2.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的子集的个数为( )A.16;B.8;C.15;D.7.3.不等式≥0的解集是( )A.{x|-1≤x≤3}B.{x|x≤-1,或x>3}C.{x|x≤-1,或x≥3}D.{x|-1≤x<3}4.若对于任何实数,二次函数y=ax2-x+c的值恒为负,那么a、c应满足( )A.a>0且ac≤B.a<0且ac<C.a<0且ac>D.a<0且ac<0二、填空题2.不等式ax2+bx+2>0的解集是{x|- <x<,则a+b=________ .3.不等式≤1的解集是 __________________ .4.不等式-4≤x2-3x<18的整数解为____________________ .5.已知关于x的方程ax2+bx+c<0的解集为{x|x<-1或x>2}.则不等式ax2-bx+c>0的解集为___________________________________ .三、解答题1.求不等式x2-2x+2m-m2>0的解集.4.已知a>1解关于x的不等式组5.解不等式课后作业1.解关于x的不等式x2-x-a2+a>02.已知函数y=(k2+4k-5)x2+4(1-k)x+3的图像都在x轴上方,求实数k的取值范围.3.已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.(1)若A B,求a的取值范围;(2)若B A,求a的取值范围;(3)若A∩B为仅含有一个元素的集合,求a的值.4不等式>1解集是 .5如下图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千米.现要在AB上某一点D处向C修一条公路,已知铁路每吨千米的运费与公路每吨千米的运费之比为3∶5.为了使原料从供应站B运到工厂C的运费最少,D点应选在何处?6要在墙上开一个上半部为半圆形,下部为矩形的窗户(如下图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?。

5第五讲《有理数的乘法法则》《有理数乘法的运算律》《有理数的除法》汇总

5第五讲《有理数的乘法法则》《有理数乘法的运算律》《有理数的除法》汇总

【例题】
【例】计算 (1)(−4)×5 (3)
(2)(−4)×(−7) (4)
求解中的第一步 是确定积的符号;
解:(1) (−4)×5 = −(4×5) =−20
(3)
(2) (−4)×(−7) =+(4×7)
=28
(4)
第二步是 绝对值相乘 .
=1
=1
【跟踪训练】
1.判断下列各式中积的符号:
①(-17)×16 -
再看一个例子:
从这个例子中大家能得到什么? 分配律:一个数与两个数的和相乘,等于把这个数分别
与这两个数相乘,再把积相加. a(b+c)=ab+ac.
【例题】
【例3】计算(:1)30×( 1
2
-2
3
+
2 5
)
(2) 4.98×(-5)
解:(1)30×( 12-
+ 23
)
2 5
=30×12 -30× 23+30×
②(-0.03)×(-1.8) +
③(-183)×(-21)+ ④ 45×(+1.1) +
2.口答:
①(-2)×(+3) =-6
②(-4)×(-6) =24
③(+6)×(-2) =-12 ⑤9×(+5) =45
④(-299.589)×0 =0 ⑥3×(-2)=-6
1.如果a×b=0,那么一定有( C.) A.a=b=0 B.a=0 C.a、b之中至少有一个为0 D.a、b之中最多一个为0 【解析】 几个数相乘,只要有一个因数为0,积就为0.
第5讲有理数乘除与乘方
5.1 有理数的乘法
有理数的乘法法则

第五讲单项式和多项式

第五讲单项式和多项式
第五讲
单项式和多项式
第五讲
单项式和多项式
知识梳理
记住以下概念:
1.单项式:数与字母的积组成的代数式叫单项式,单独的一个数或字母也是单项式。 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系 数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。 3.多项式:几个单项式的和叫多项式。 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式 的项;多项式里,次数最高项的次数叫多项式的次数;注意: (若 a、b、c、p、q 是常数)ax +bx+c 和 x +px+q 是常见的两个二次三项式。 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。 整式分类为:单项式和多项式 。
x y c2 不是整式; 2 3 6
D.8x-5 是一次二项式 )。 C.既不是单项式也不是多项式 )。 D.不能判断
1 2 2 (x +y )是(
A.单项式;
B.多项式;
10. 如果一个多项式是五次多项式,那么( A.这个多项式最多有 6 项 。 B.这个多项式只能有一项的次数是 5。 C.这个多项式一定是五次六项式。
2
③. a 与 1 C.3 组
④. 2bc 与 cb D.4 组 。
A.1 组
2
4.多项式 2 xy 4 x y 是
3

项式,其中 3 次项的系数是
2x 2 y 5.式子 的系数是 3
6.如果单项式 x y
2 m 2 n
,次数是

与 3x y 的和仍然是一个单项式,则 m=
,n=
常数项是________. 2. 4 x y 5 x y 7 xy

第五讲大陆法系:基本制度

第五讲大陆法系:基本制度

第五讲大陆法系:基本制度学时安排:3学时。

教学目的:在重点讲述大陆法系的形成与发展历史的基础上,使学生能够清楚大陆法系主要国家的基本制度,并进而为后面学习英美法系的形成与演变以及基本制度奠定基础,从而为辨识西方两大法系的基本制度奠定基础。

主要内容:宪法制度、行政法制度、民法制度、刑法制度、司法制度。

重点难点:违宪审查制度、法国民法与德国民法的异同。

一、宪法制度(一)宪法的基本原则1、人民主权原则2、政府向议会负责原则3、分权原则(二)立法制度与立法机构在法国,一切法律皆由议会通过,议会实行两院制,由国民议会和参议院组成。

议会还掌握着国家财政大权。

立法的创议权属于政府总理和议员,但事实上总统在立法方面的权力很大。

(欧洲式议会制和美国式总统制的混合体,与戴高乐有关)德国则实行议会立法的单一式体制,联邦议院居于中心地位:选举产生联邦总理,要求政府成员出席会议质询,通过对联邦总理的不信任案。

确认联邦与州的两级立法体制。

联邦设有联邦议院和联邦参议院,各州立法权则属于州议会。

(三)行政体制1、政府的产生与组成法国总统任免总理及各部部长,德国的政府首脑则由议会选举产生。

各国政府通常由总理及各部部长组成,政府的组织原则采取不相容原则。

瑞士的联邦委员会是一种特殊的形式,共有成员7名,由联邦议会选出,任期4年,委员们分别主管联邦的某个部,并推选一人担任主席(同时也是联邦总统),任期1年。

委员会最大的特点是其非党派色彩。

2、政府的职权与责任(四)公民的权利与义务1、权利观的差异与英美法系相比,大陆法系倾向于立法规定,而英美法系则选择司法保护。

2、《人权宣言》3、发展趋势以及存在的问题二、行政法制度(一)行政行为与法治行政(二)赔偿责任1、布朗哥案所确立的原则1873年2月,法国权限争议法庭判决了布朗哥案。

该案中的一个名叫布朗哥的小孩路过国营烟草公司门前的大街时,被该公司的一辆运货卡车撞伤。

法庭在没有法律依据的情况下,创造性地判决国家应该承担损害赔偿责任。

第五讲 牛顿三大定律

第五讲 牛顿三大定律

第一讲牛顿运动定律【知识框架】【知识点一】牛顿第一定律1、定律内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2、惯性:物体保持原来的匀速直线运动或静止状态的性质叫做惯性。

一切物体都有惯性,惯性是物体的固有性质。

质量是惯性大小的唯一量度。

惯性与物体是否受力及受力大小无关,与物体是否运动及速度大小无关.3、理想实验方法也叫假想实验或思想实验.它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想上塑造的理想过程。

牛顿第一定律即是通过理想实验得出的,它不能由实际的实验来验证。

【例】理想实验是科学研究中的一种重要方法,它把可靠事实和合理的推理相结合,可以深刻地揭示自然规律。

下列实验中属于理想实验的是( )。

(A)平行四边形定则的科学探究(B)伽利略设想的对接光滑斜面实验(C)用DIS实验系统测物体的加速度(D)利用刻度尺的落体运动,测定人的反应时间的小实验☆力和运动的关系【例】(2013海南卷)科学家关于物体运动的研究对树立正确的自然现象具有重要作用。

下列说法符合历史事实的是(BCD )A 亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B 伽利略通过“理想实验”得出结论:运动必具有一定速度,如果它不受力,它将以这一速度永远运动下去C 笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D 牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质【例】如图所示为伽利略设计的理想斜面实验。

伽利略的理想斜面实验是将可靠的事实和理论思维结合了起来,能更深刻地反映自然规律。

下面给出了伽利略理想斜面实验的四个事件:①减小斜面BC的倾角(到图中的BC′),小球将通过较长的路程,仍能到达原来的高度②由静止释放小球,小球沿斜面AB滚下,滚上另一斜面BC,高度几乎与原来相同③如果没有摩擦,小球将上升到原来的高度④继续减小斜面BC的倾角,最终使它水平,小球将沿水平面以恒定速度一直运动下去下列对事件性质的判断及排序,正确的是( )A 事实②→推论①→事实③→推论④B 事实②→推论③→事实①→推论④C 事实②→推论①→推论③→推论④D 事实②→推论③→推论①→推论④【例】有一只热气球,以一定的速度匀速竖直上升,到达某一高度时从热气球里掉出一个物体,这个物体将( )。

第五讲 全等三角形与角平分线(综合、拔高)

第五讲 全等三角形与角平分线(综合、拔高)

第五讲全等三角形与角平分线 (综合与拔高)一.选择题(共10小题)1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD 上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.13.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.604.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=7,DE=2,AB=4,△ABC则AC长是()A.3 B.4 C.6 D.55.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC 的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP8.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处9.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确10.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD 等于()A.4 B.3 C.2 D.1二.填空题(共10小题)11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 度.12.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.13.AB是四边形ACBE的对角线,AB=AC,过点C作CD∥AE交BE于D.若AE=DE,∠ACD=45°,BD=1,CD=5,则AE= .14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动.分钟后△CAP与△PQB全等.16.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG ⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.18.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是.19.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是.20.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A﹣C 路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q 分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为时,△PEC与△QFC全等.三.解答题(共15小题)21.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C 向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP 是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?23.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC 的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.26.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值.27.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.28.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE 的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.29.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.30.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.31.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.32.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.33.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC 于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.34.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.35.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.参考答案与试题解析一.选择题(共10小题)1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD 上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥AF,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AH,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=2y2①,(5﹣y)2+y2=12+(4﹣z)2②由②得到25﹣10y+2y2=5﹣8z+z2③,①代入③可得z=④④代入①可得y=(负根已经舍弃),∴S=×5×=,△ABE故选D.2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【解答】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM =S△PNF,∴S四边形PMON =S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误,故选B.3.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.4.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC =S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.5.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC 的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.(故①正确);②当E、F分别为AC、BC中点时,四边形CEDF是正方形(故②错误);③如图2所示,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,可以利用割补法可知四边形CEDF的面积等于正方形CMDN面积,故面积保持不变(故③错误);④△DEF是等腰直角三角形,DE=EF,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=2 ,∵CE=CF=2,∴此时点C到线段EF的最大距离为EF=.(故④正确);故正确的有2个,故选:B.7.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE ∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.8.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.9.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QSP故本题仅①和②正确.故选B.10.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD 等于()A.4 B.3 C.2 D.1【解答】解:过P作PE⊥OA于点E,则PD=PE,∵PC∥OB∴∠OPC=∠POD,又∵OP平分∠AOB,∠AOB=30°,∴∠OPC=∠COP=15°,∠ECP=∠COP+∠OPC=30°,在直角△ECP中,PE=PC=3,则PD=PE=3.故选B.二.填空题(共10小题)11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.12.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7 个.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.13.AB是四边形ACBE的对角线,AB=AC,过点C作CD∥AE交BE于D.若AE=DE,∠ACD=45°,BD=1,CD=5,则AE= .【解答】解:连接AD,过A分别作DC、BE的垂线,垂足分别为F、G,过E作EH⊥AD于H,∵AE=DE,∴∠ADE=∠DAE,∵CD∥AE,∴∠CDA=∠DAE,∴∠ADE=∠CDA,∵AG⊥BE,AF⊥CD,∴AG=AF,∵∠AGD=∠AFD=90°,AD=AD,∴△AGD≌△AFD,∴DG=FD,∵∠AGB=∠AFC=90°,AB=AC,∴△AGB≌△AFC,∴∠ABG=∠ACD=45°,∴∠FAC=45°,∴∠FAC=∠ACF,∴AF=CF,∵DC=DF+CF=DF+AF=DG+AG=5,设DG=t,则AG=5﹣t,AG=BG=5﹣t,∵BG=BD+DG=1+t,5﹣t=1+t,t=2,∴DG=2,AG=3,∴AD===,在△ADE中,AE=DE,EH⊥AD,∴AH=AD=,在Rt△AEH中,cos∠DAE=,在Rt△ADG中,cos∠ADE=,∴,∴,AE=.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.15.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动 4 分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.16.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG ⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= 4 cm.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.17.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.18.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.19.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是65°.【解答】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.20.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A﹣C 路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q 分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为1或时,△PEC与△QFC全等.【解答】解:如图1所示;∵△PEC与△QFC全等,∴PC=QC.∴6﹣t=8﹣3t.解得:t=1.如图2所示:∵点P与点Q重合,∴△PEC与△QFC全等,∴6﹣t=3t﹣8.解得:t=.故答案为:1或.四.解答题(共15小题)21.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.【解答】解:(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,,∴△AEC≌△CGB(ASA),∴AE=CG;(2)BE=CM.理由:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C 向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP 是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.23.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC 的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.【解答】解:(1)∵BD⊥AC,CF⊥AB,∴∠DCE+∠DEC=∠DCE+∠FAC=90°,∴∠DEC=∠BAC,∠DEC+∠BEC=180°,∴∠BAC+∠BEC=180°;(2)∵BD平分∠ABC,CF平分∠ACB,∴∠EBC=ABC,∠ECB=ACB,∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°∠BAC;(3)作∠BEC的平分线EM交BC于M,∵∠BAC=60°,∴∠BEC=90°+BAC=120°,∴∠FEB=∠DEC=60°,∵EM平分∠BEC,∴∠BEM=60°,在△FBE与△EBM中,,∴△FBE≌△EBM,∴EF=EM,同理DE=EM,∴EF=DE.24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.25.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【解答】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.26.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值.【解答】解:(1)如图1,过C作CM⊥x轴于M点,∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C的坐标为(﹣6,﹣2).(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ∴OP﹣DE=OP﹣OQ=PQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PQD中,,∴△AOP≌△PQD(AAS).∴PQ=OA=2.即OP﹣DE=2.27.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是AB=AP 、AB⊥AP .(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是BQ=AP 、BQ⊥AP .(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【解答】解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BCQ+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.28.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE 的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.29.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.30.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.31.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.32.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.33.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC 于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.34.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.【解答】证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD35.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC ;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、第1篇2002年综合类A级阅读理解考题Effects of Environmental PollutionIf pollution continues to increase at the present rate, formation of aerosols(浮质)in the atmosphere will cause the onset (开始) of an ice age in about fifty year’s time. This conclusion reached by Dr S.I. Rasool and Dr S.H. Scheider of the United States Goddard Space Flight Center, answer the apparently conflicting questions of whether an increase in the carbon dioxide(二氧化碳) content of the atmosphere will cause the Earth to warm up or increasing the aerosol content will cause it to cool down. The Americans have shown conclusively that the aerosol question is dominant.Two specters haunting conservationists have been the prospect that environmental pollution might lead to the planet’s becoming unbearably ho t or cold. One of these ghosts has now been laid, because it seems that even an increase in the amount of carbon dioxide in the atmosphere to eight times its present value will produce an increase in temperature of only 2℃, which would take place over seve ral thousand years. But the other problem now looms larger than ever. Aerosols are collection of small liquid or solid particles dispersed in air or some other medium. The particles are all so tiny that each is composed of only a few hundred atoms. Because of this they can float in the air for a very long time. Perhaps the most commonly experienced aerosol is industrial smog(烟雾) of the kind that plagued London in the 1950s and is an even greater problem in Los Angeles today. These collections of aerosols reflect the Sun’s heat and thereby cause the Earth to cool. Dr Rasool and Dr Schneider have calculated the exact effect of a dust aerosol layer just above the Earth’s surface in thetemperature of the planet. As the layer builds up, the present delicate balance between the amount of heat absorbed from the Sun and the amount radiated from the Earth is disturbed. The aerosol layer not only reflects much of the Sun’s light but also transmits the infrared(红外线) radiation from below. So, while the heat input to surface drops, the loss of heat remains high until the planet cools to a new balanced state. Within fifty years, if no steps are taken to stop the spread of aerosols in the atmosphere, a cooling of the Earth by as much as 3.5℃ seems inevitable. If that lasts for only a few years it would start another ice age, and because the growing ice caps at each pole would themselves reflect much of the Sun’s radiation it would probably continue to develop even if the aerosol layer were destroyed. The only bright spot in this gloomy forecast lies in the hope expressed by Dr Rasool and Dr Schneider that nuclear powder may replace fossil fuels in time to prevent the aerosol content of atmosphere from becoming critical.The author’s main purpose in writing the article is to warn o fA:warm weatherB:hot weateC:a new ice ageD:a new iceberg答案:C解析:C.该问题是总结性的,对于这样的问题,可以放在最后做,也可以借助文章标题和文章核心词,对选项一一筛选得出答案。

C和D的相似暗示答案可能出现在它们中。

而ice age在文章中多处出现,所以判断C是答案。

2、The word “specters” in the second paragraph is closest in meaning to A:pollution”B:“carbon dioxide”C:“aerosols”D:“ghosts”答案:D解析:D.spectre的基本含义是幽灵,而D的基本含义就是幽灵,所以可判断答案为D。

也可借助上下文的语义关系判断。

3、We learn from the third paragraph thatA:London was plagued with rats in the 1950sB:London is covered with smog todayC:London was polluted by smog in the 1950sD:Los Angeles is as heavily polluted today as London was in the 1950s.答案:C解析:C.利用备选项的特点:备选项中都涉及London,于是选用该词为答案线索词,在第3段第3句中找到答案相关句,原句说“使伦敦受灾的工业烟雾”,所以答案为C。

4、What will happen if the dust aerosol layer develops?A:The earth will get extremely hotB:The balance between the amount of heat absorbed from the Sun and the amount lost could hardly be maintained.C:the light of the Sun could no longer reach the surface of the EarthD:Infrared radiation could no longer be transmitted from the Earth to outer space.答案:B解析:B.选用“dust aerosol layer/浮尘层”为答案线索词,在第4段第2句中找到答案相关句(build up(堆积)对应develop),所以答案为B。

5、The only way to stop the spread of aerosols in the atmosphere, according to Dr Rasool and Dr Schneider, is to useA:fossil fuelsB:electric powerC:nuclear energyD:coal power.答案:C解析:C.利用“Dr Rasool and Dr Schneider”作为答案线索词,于是在第6段直接找到答案相关句(The only bright spot in this gloomy forecast lies in the hope expressed by Dr Rasool and Dr Schneider that nuclear powder may replace fossil fuels in time to prevent the aerosol content of atmosphere from becoming critical),该句说“Dr Rasool and Dr Schneider认为这个悲观预测中的唯一亮点就是希望核能量能及时地替代化石燃料以防止大气层中的悬浮颗粒含量变得更加危险。

相关文档
最新文档