2020-2021学年河北省初中七年级下期末数学试卷(有答案)-精品试卷
2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷
2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷一、单选题(每小题3分,共30分)1.(3分)下列运算中,计算结果正确的是()A.2x3•x2=2x6B.(﹣a3)2=a6C.(﹣3a2)3=﹣9a6D.x8÷x2=x42.(3分)一个不等式组的两个不等式的解集如图所示、则这个不等式组的解集为()A.x<2B.x≤2C.x<3D.x≤33.(3分)如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线D.无法确定4.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°5.(3分)若x2﹣ax﹣2可以分解为(x﹣2)(x+b),则a+b的值为()A.﹣1B.1C.﹣2D.26.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤17.(3分)关于式子a2﹣2a+3的说法正确的是()A.当a=1时,式子有最大值2B.当a=1时,式子有最小值2C.当a=﹣1时,式子有最大值2D.当a=﹣1时,式子有最小值28.(3分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解,乙看错了方程组中的b,而得到解为,则a2020﹣(﹣)2121的值为()A.2B.﹣2C.0D.﹣29.(3分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为()A.2B.5C.2或2.5D.无法计算10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒二、填空题(每小题3分,共30分)11.(3分)不等式3﹣3x>4x﹣2的最大整数解是.12.(3分)计算:(2a)3=.13.(3分)小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买粒韭菜水饺.14.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于.15.(3分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是.16.(3分)分解因式:m3n﹣4mn=.17.(3分)如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为.18.(3分)若线段AM,AN分别是△ABC中BC边上的高线和中线,则AM与AN的数量大小关系为.19.(3分)某商场计划每月销售900台电脑,2007年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售台才能完成本月计划.20.(3分)如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2,则△CDE和△BEF的面积分别为.三、解答题(满分60分)21.(10分)把下列各式因式分解:(1)18a2b﹣8b;(2)(x﹣1)(x﹣3)+1.22.(10分)解不等式(组):(1);(2).23.(8分)先化简,后求值:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2,其中x=﹣.24.(10分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).25.(10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB =70°.(1)求∠BAD和∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.26.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷参考答案与试题解析一、单选题(每小题3分,共30分)1.(3分)下列运算中,计算结果正确的是()A.2x3•x2=2x6B.(﹣a3)2=a6C.(﹣3a2)3=﹣9a6D.x8÷x2=x4【解答】解:(A)原式=2x5,故A错误.(B)原式=a6,故B正确.(C)原式=﹣27a6,故C错误.(D)原式=x6,故D错误.故选:B.2.(3分)一个不等式组的两个不等式的解集如图所示、则这个不等式组的解集为()A.x<2B.x≤2C.x<3D.x≤3【解答】解:由数轴知这个不等式组的解集为x<2,故选:A.3.(3分)如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线D.无法确定【解答】解:过A作AH⊥BC于H,∵S△ACD=CD•AH,S△ABD=BD•AH,∵△ACD和△ABD面积相等,∴CD•AH=BD•AH,∴CD=BD,∴线段AD是三角形ABC的中线,故选:C.4.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.5.(3分)若x2﹣ax﹣2可以分解为(x﹣2)(x+b),则a+b的值为()A.﹣1B.1C.﹣2D.2【解答】解:x2﹣ax﹣2=(x﹣2)(x+b)=x2+(b﹣2)x﹣2b,∴,解得:,∴a+b=2.故选:D.6.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤1【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为﹣1<x≤1,故选:A.7.(3分)关于式子a2﹣2a+3的说法正确的是()A.当a=1时,式子有最大值2B.当a=1时,式子有最小值2C.当a=﹣1时,式子有最大值2D.当a=﹣1时,式子有最小值2【解答】解:a2﹣2a+3=(a﹣1)2+2,∵(a﹣1)2≥1(当a=1时,等号成立),∴(a﹣1)2+2≥2(当a=1时,取最小值2),选项B符合题意.故选:B.8.(3分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解,乙看错了方程组中的b,而得到解为,则a2020﹣(﹣)2121的值为()A.2B.﹣2C.0D.﹣2【解答】解:将代入方程4x=by﹣2,得:8=b﹣2,∴b=10,将代入方程ax+5y=15,得:5a+20=15,∴a=﹣1,∴a2020﹣(﹣)2121=(﹣1)2020﹣(﹣)2121=1﹣(﹣1)=2.故选:A.9.(3分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为()A.2B.5C.2或2.5D.无法计算【解答】解:如图∵AB=2,AD=7,∴BD=BC+CD=5,∵BC作为腰的等腰三角形,∴BC=AB或BC=CD,∴BC=2或2.5.故选:C.10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒【解答】解:设运动的时间为xcm,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4(cm).故选:D.二、填空题(每小题3分,共30分)11.(3分)不等式3﹣3x>4x﹣2的最大整数解是0.【解答】解:不等式3﹣3x>4x﹣2的解集为x<;所以其最大整数解是0.故答案为:0.12.(3分)计算:(2a)3=8a3.【解答】解:(2a)3=23•a3=8a3.故答案为:8a3.13.(3分)小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买8粒韭菜水饺.【解答】解:设虾仁水饺每粒x元,韭菜水饺每粒y元,根据题意可得:15x=20y,则x=y,故他身上剩下的钱恰好可买韭菜水饺:(15x﹣9x)×y=8(粒),故答案为:8.14.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于15°.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故答案为:15°.15.(3分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.【解答】解:不等式“45x+30y≥500”表示的实际意义是租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.故答案为:租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.16.(3分)分解因式:m3n﹣4mn=mn(m﹣2)(m+2).【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).17.(3分)如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为(m﹣n)2.【解答】解:正方形中空白的面积为(m+n)2﹣4mn=(m﹣n)2,故答案为:(m﹣n)2.18.(3分)若线段AM,AN分别是△ABC中BC边上的高线和中线,则AM与AN的数量大小关系为AM≤AN.【解答】解:∵线段AM,AN分别是△ABC中BC边上的高线和中线,∴AM≤AN,故答案为:AM≤AN.19.(3分)某商场计划每月销售900台电脑,2007年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售33台才能完成本月计划.【解答】解:设平均每天销售x台,依题意得54×7+24x≥900+900×30%,解得x≥33台,则这个商场本月后24天平均每天至少销售33台才能完成本月计划.故答案为:33.20.(3分)如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2,则△CDE和△BEF的面积分别为6cm2,5cm2.【解答】解:∵BD:CD=2:3,△ABC的面积为20cm2,∴S△ABD=S△ABC=8cm2,S△ACD=S△ABC=12cm2,又点E,F分别是线段AD,CE的中点,∴S△BDE=S△ABD=4cm2,S△CDE=S△ACD=6cm2,∴S△BEC=S△BDE+S△CDE=S△ABC=10cm2,∴S△BEF=S△BEC==5cm2,则△CDE和△BEF的面积分别为6cm2,5cm2.故答案为:6cm2,5cm2.三、解答题(满分60分)21.(10分)把下列各式因式分解:(1)18a2b﹣8b;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=2b(9a2﹣4)=2b(3a+2)(3a﹣2);(2)原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.22.(10分)解不等式(组):(1);(2).【解答】解:(1)去分母得:3(x﹣2)≥2(2x﹣1)+6,去括号得:3x﹣6≥4x﹣2+6,移项得:3x﹣4x≥﹣2+6+6,合并同类项得:﹣x≥10,系数化成1得:x≤﹣10;(2),解不等式①得:x>﹣1,解不等式②得:x≤4,所以不等式组的解集是﹣1<x≤4.23.(8分)先化简,后求值:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2,其中x=﹣.【解答】解:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2=4x2﹣1+4x3﹣x(1+4x+4x2)=4x2﹣1+4x3﹣x﹣4x2﹣4x3=﹣x﹣1当x=﹣时原式=﹣x﹣1=﹣1=﹣.24.(10分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.25.(10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB =70°.(1)求∠BAD和∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.【解答】(1)证明:∵BE平分∠ABC,∴∠ABC=2∠EBC=64°,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°﹣64°=26°,∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,∴∠CAD=90°﹣38°=52°;(2)解:分两种情况:①当∠EFC=90°时,如图1所示:则∠BFE=90°,∴∠BEF=90°﹣∠EBC=90°﹣32°=58°;②当∠FEC=90°时,如图2所示:则∠EFC=90°﹣38°=52°,∴∠BEF=∠EFC﹣∠EBC=52°﹣32°=20°;综上所述:∠BEF的度数为58°或20°.26.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.。
2020-2021七年级数学试卷有理数解答题专题练习(附答案)
2020-2021七年级数学试卷有理数解答题专题练习(附答案)一、解答题1.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.5.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:6.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.7.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且 .(1)a=________,b=________;(2)在数轴上是否存在一点P,使,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿的路径运动,在路径的速度是每秒2个单位,在路径上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?8.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.9.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)11.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果: =________.12.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.13.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷
2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷一、选择题(本大题共14个小题,每小題3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x72.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度3.(3分)下列计算正确的是()A.1﹣1=﹣1B.10=0C.(﹣1)﹣1=1D.(﹣1)0=1 4.(3分)如图,数轴上表示的数的范围是()A.﹣2<x<4B.﹣2<x≤4C.﹣2≤x<4D.﹣2≤x≤4 5.(3分)下列等式从左到右的变形,属于因式分解的是()A.a2﹣b2=(a+b)(a﹣b)B.a(x﹣y)=ax﹣ayC.x2+2x+1=x(x+2)+1D.(x+1)(x+3)=x2+4x+36.(3分)由﹣2x<6,得x>﹣3,其根据是()A.不等式的两边都加上(或都减去)同一个数或同一个整式,不等号方向不变B.不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变C.不等式的两边都乘以(或都除以)同一个负数,不等号的方向改变D.移项7.(3分)解方程组时,把①代入②,得()A.2y﹣15y+2=10B.2y﹣3y+2=10C.2y﹣15y+10=10D.2y﹣15y﹣10=108.(3分)平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是()A.只有①B.只有②C.①②都正确D.①②都不正确9.(3分)如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°10.(3分)若(x+3)(x﹣5)=x2+mx﹣15,则m的值为()A.5B.2C.﹣5D.﹣211.(3分)如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确12.(3分)用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×3 13.(3分)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2B.x2+2x C.2x﹣2D.x2﹣2x14.(3分)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°二、填空题(本大题共3个小题,15-16小题各3分,17小题每空2分,共10分)15.(3分)若是方程x+ay=0的一个解,则a的值是.16.(3分)把命题“互补两角的和是180°”,改写成“如果⋯,那么⋯”的形式:.17.(4分)一个正方体集装箱的棱长为0.4m.(1)用科学记数法表示这个集装箱的体积是m3;(2)若有一个小立方块的棱长为1×10﹣3m,则把集装箱装满需要这样的小立方块的个数为.(用科学记数法表示)三、解答题(本大题共7个小题,满分48分,解答题应写出必要的解题步骤或文字说明)18.(6分)某木材市场上木棒规格与价格如下表:规格1m2m3m4m5m6m价格101520253035(元/根)小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3m和5m的木棒,还需要到某木材市场上购买一根.(1)有几种规格木棒可供小明的爷爷选择?(2)选择哪一种规格木棒最省钱?19.(4分)如图,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.20.(6分)如图,是一道例题及部分解答过程,其中A、B是两个关于x,y的二项式.请仔细观察上面的例题及解答过程,完成下列问题:(1)直接写出多项式A和B,并求出该例题的运算结果;(2)求多项式A与B的平方差.21.(6分)嘉淇准备完成题目:解一元一次不等式组,发现常数“□”印刷不清楚.(1)他把“□”猜成5,请你解一元一次不等式组;(2)张老师说:我做一下变式,若的解集是x<3,请求常数“□”的取值范围.22.(8分)如图,BD∥EF,AE与BD交于点C,∠B=36°,∠A=72°,∠DEF=∠CEF,判断AB与DE是否平行,并说明理由.23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小长方形的周长是20cm且每块大正方形与每块小正方形的面积差为40cm2,求这张长方形纸板的面积是多少平方厘米?24.(10分)建设新农村,绿色好家园.为了减少冬季居民取暖带来的环境污染,国家特推出煤改电工程.某学校准备安装一批柜式空调(A型)和挂壁式空调(B型).经市场调查发现,3台A型空调和2台B型空调共需21000元;1台A型空调和4台B型空调共需17000元.(1)求A型空调和B型空调的单价.(2)为响应国家号召,有两家商场分别推出了优惠套餐.甲商场:A型空调和B型空调均打八折出售;乙商场:A型空调打九折出售,B型空调打七折出售.已知某学校需要购买A型空调和B型空调共16台,则该学校选择在哪家商场购买更划算?2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小題3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x7【解答】解:∵x2•x7=x9,∴“□”所表示的代数式为x7,故选:D.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度【解答】解:根据题意,点C到直线AB的距离即点C到AB的垂线段的长度,已知CD⊥AB,则点C到直线AB的距离就是线段CD的长度.故选:B.3.(3分)下列计算正确的是()A.1﹣1=﹣1B.10=0C.(﹣1)﹣1=1D.(﹣1)0=1【解答】解:A、1﹣1=1,故此选项错误;B、10=1,故此选项错误;C、(﹣1)﹣1=﹣1,故此选项错误;D、(﹣1)0=1,故此选项正确.故选:D.4.(3分)如图,数轴上表示的数的范围是()A.﹣2<x<4B.﹣2<x≤4C.﹣2≤x<4D.﹣2≤x≤4【解答】解:由图示可看出,从﹣2出发向右画出的线且﹣2处是空心圆,表示x>﹣2;从4出发向左画出的线且4处是实心圆,表示x≤4,不等式组的解集是指它们的公共部分,所以这个不等式组的解集是﹣2<x≤45.(3分)下列等式从左到右的变形,属于因式分解的是()A.a2﹣b2=(a+b)(a﹣b)B.a(x﹣y)=ax﹣ayC.x2+2x+1=x(x+2)+1D.(x+1)(x+3)=x2+4x+3【解答】解:A、a2﹣b2=(a+b)(a﹣b),把一个多项式化为几个整式的积的形式,故此选项符合题意;B、a(x﹣y)=ax﹣ay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x2+2x+1=x(x+2)+1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x+1)(x+3)=x2+4x+3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.6.(3分)由﹣2x<6,得x>﹣3,其根据是()A.不等式的两边都加上(或都减去)同一个数或同一个整式,不等号方向不变B.不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变C.不等式的两边都乘以(或都除以)同一个负数,不等号的方向改变D.移项【解答】解:由﹣2x<6,得x>﹣3,其根据是:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.故选:C.7.(3分)解方程组时,把①代入②,得()A.2y﹣15y+2=10B.2y﹣3y+2=10C.2y﹣15y+10=10D.2y﹣15y﹣10=10【解答】解:解方程组时,把①代入②,得2y﹣5(3y﹣2)=10,即2y ﹣15y+10=10.故选:C.8.(3分)平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是()A.只有①B.只有②C.①②都正确D.①②都不正确【解答】解:①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选:A.9.(3分)如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°【解答】解:由量角器的位置可判断ON与70°的刻度线接近平行,∴将量角器右移,使点O与量角器的中心点位置重合时,ON与70°刻度线接近重合,∴∠MON是70°,故选:C.10.(3分)若(x+3)(x﹣5)=x2+mx﹣15,则m的值为()A.5B.2C.﹣5D.﹣2【解答】解:(x+3)(x﹣5)=x2﹣5x+3x﹣15=x2﹣2x﹣15,∵(x+3)(x﹣5)=x2+mx﹣15,∴m=﹣2,故选:D.11.(3分)如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确【解答】解:AD是三角形ABC的角平分线,则是∠BAC的角平分线,所以AO是△ABE的角平分线,故①正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的中点,故②错误.故选:C.12.(3分)用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×3【解答】解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.13.(3分)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2B.x2+2x C.2x﹣2D.x2﹣2x【解答】解:∵甲与乙相乘的积为x2﹣4=(x+2)(x﹣2),乙与丙相乘的积为x2﹣2x=x (x﹣2),∴甲为x+2,乙为x﹣2,丙为x,则甲与丙相乘的积为x(x+2)=x2+2x,故选:B.14.(3分)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°【解答】解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=2×55°=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.二、填空题(本大题共3个小题,15-16小题各3分,17小题每空2分,共10分)15.(3分)若是方程x+ay=0的一个解,则a的值是2.【解答】解:把代入方程x+ay=0,得2﹣a=0,解得a=2.故答案为:2.16.(3分)把命题“互补两角的和是180°”,改写成“如果⋯,那么⋯”的形式:如果两个角互补,那么这两个角的和是180°.【解答】解:命题“互补两角的和是180°”,写成“如果⋯,那么⋯”的形式是:如果两个角互补,那么这两个角的和是180°,故答案为:如果两个角互补,那么这两个角的和是180°.17.(4分)一个正方体集装箱的棱长为0.4m.(1)用科学记数法表示这个集装箱的体积是 6.4×10﹣2m3;(2)若有一个小立方块的棱长为1×10﹣3m,则把集装箱装满需要这样的小立方块的个数为 6.4×106.(用科学记数法表示)【解答】解:(1)∵一个正方体集装箱的棱长为0.4m,∴这个集装箱的体积是:0.4×0.4×0.4=6.4×10﹣2(m3),答:这个集装箱的体积是6.4×10﹣2m3;故答案是:6.4×10﹣2;(2)∵一个小立方块的棱长为1×10﹣3m,∴6.4×10﹣3÷(1×10﹣3)3=6.4×106(个),即:需要6.4×106个这样的小立方块才能将集装箱装满.故答案是:6.4×106.三、解答题(本大题共7个小题,满分48分,解答题应写出必要的解题步骤或文字说明)18.(6分)某木材市场上木棒规格与价格如下表:规格1m2m3m4m5m6m价格101520253035(元/根)小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3m和5m的木棒,还需要到某木材市场上购买一根.(1)有几种规格木棒可供小明的爷爷选择?(2)选择哪一种规格木棒最省钱?【解答】解:(1)设第三根木棒的长度为xm,根据三角形的三边关系可得:5﹣3<x<5+3,解得2<x<8,x=3,4,5,6共4种,∴有4种规格木棒可供小明的爷爷选择;(2)根据木棒的价格可得选3m最省钱.19.(4分)如图,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.【解答】解:如图:四边形A′B′C′D′即为所求.20.(6分)如图,是一道例题及部分解答过程,其中A、B是两个关于x,y的二项式.请仔细观察上面的例题及解答过程,完成下列问题:(1)直接写出多项式A和B,并求出该例题的运算结果;(2)求多项式A与B的平方差.【解答】解:(1)A=2x﹣3y,B=2x+3y,原式=4x﹣6y﹣6x﹣9y=﹣2x﹣15y.(2)A2﹣B2=(2x﹣3y)2﹣(2x+3y)2=(2x﹣3y+2x+3y)(2x﹣3y﹣2x﹣3y)=4x⋅(﹣6y)=﹣24xy.21.(6分)嘉淇准备完成题目:解一元一次不等式组,发现常数“□”印刷不清楚.(1)他把“□”猜成5,请你解一元一次不等式组;(2)张老师说:我做一下变式,若的解集是x<3,请求常数“□”的取值范围.【解答】解:(1),由①得:x<3;由②得:x<﹣5,则不等式组的解集为x<﹣5;(2)设“□”为a,则不等式x﹣1<2的解集为x<3,不等式x+a<0的解集是x<﹣a,∵不等式组的解集是x<3,∴﹣a≥3,即a≤﹣3.∴常数“□”的取值范围为不大于﹣3.22.(8分)如图,BD∥EF,AE与BD交于点C,∠B=36°,∠A=72°,∠DEF=∠CEF,判断AB与DE是否平行,并说明理由.【解答】解:AB与DE平行,理由如下:∵∠B=36°,∠A=72°,∴∠ACB=∠DCE=180°﹣36°﹣72°=72°,又∵BD∥EF,∴∠DEF=∠CDE,又∵∠DEF=∠CEF,若设∠DEF=α,则∠CDE=α,∠CED=2α,∴在△CED中,∠DCE+∠CDE+CED=180°,即,72°+α+2α=180°,∴α=36°,∴∠CED=2×36°=72°,又∵∠CED=∠A=72°,∴AB∥DE(内错角相等,两直线平行).23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(2m+n)(m+2n);(2)若每块小长方形的周长是20cm且每块大正方形与每块小正方形的面积差为40cm2,求这张长方形纸板的面积是多少平方厘米?【解答】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)∵m2﹣n2=40,∴(m+n)(m﹣n)=40,∵m+n=20÷2=10,∴m﹣n=4,解得m=7,n=3,∴2m+n=17,m+2n=13,∴纸板的面积(2m+n)(m+2n)=17×13=221(平方厘米).答:纸板的面积为221平方厘米.24.(10分)建设新农村,绿色好家园.为了减少冬季居民取暖带来的环境污染,国家特推出煤改电工程.某学校准备安装一批柜式空调(A型)和挂壁式空调(B型).经市场调查发现,3台A型空调和2台B型空调共需21000元;1台A型空调和4台B型空调共需17000元.(1)求A型空调和B型空调的单价.(2)为响应国家号召,有两家商场分别推出了优惠套餐.甲商场:A型空调和B型空调均打八折出售;乙商场:A型空调打九折出售,B型空调打七折出售.已知某学校需要购买A型空调和B型空调共16台,则该学校选择在哪家商场购买更划算?【解答】解:(1)设A型空调的单价为x元,B型空调的单价为y元,依题意得:,解得:.答:A型空调的单价为5000元,B型空调的单价为3000元.(2)设购买A型空调m(0≤m≤16,且m为整数)台,则购买B型空调(16﹣m)台,设在甲商场购买共需w甲元,在乙商场购买共需w乙元,根据题意得:w甲=5000×0.8m+3000×0.8(16﹣m)=1600m+38400;w乙=5000×0.9m+3000×0.7(16﹣m)=2400m+33600.当w甲>w乙时,16000m+38400>2400m+33600,解得:m<6;当w甲=w乙时,16000m+38400=2400m+33600,解得:m=6;当w甲<w乙时,16000m+38400<2400m+33600,解得:m>6.答:当0≤m<6时,选择乙商场购买更划算;当m=6时,选择甲、乙两商场所需费用一样;当6<m≤16时,选择甲商场购买更划算.。
2020-2021学年河北省沧州市任丘市七年级(下)期末数学试卷(解析版)
2020-2021学年河北省沧州市任丘市七年级(下)期末数学试卷一、正确选择.(本大题10个小题,每小题2分,共20分)1.关于x,y的方程组的解为()A.B.C.D.2.下列命题是真命题的()A.两点之间直线最短B.如果ab>0,那么a>0,b>0C.内错角相等,两直线平行D.若|a|=1,则a=13.如图,AB∥CD,点O在AB上,OE平分∠BOD,若∠CDO=100°,则∠BOE的度数为()A.30°B.40°C.50°D.60°4.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm5.下列现象中,()是平移.A.“天问”探测器绕火星运动B.篮球在空中飞行C.电梯的上下移动D.将一张纸对折6.据国家邮政局统计,2021年农历除夕和初一两天,全国快递处理超130 000 000件,与去年同期相比增长223%,快递的春节“不打烊”服务确保了广大用户能够顺利收到年货,欢度佳节.将130 000 000用科学记数法表示应为()A.1.3×107B.13×107C.1.3×108D.0.13×1097.下列运算中,正确的是()A.a5+a5=a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣3ab)2=9a2b28.下列关系式中,不含有x=﹣1这个解的是()A.2x+1=﹣1B.2x+1>﹣1C.﹣2x+1≥3D.﹣2x﹣1≤3 9.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b10.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔()支.A.28B.29C.30D.31二、准确填空.(本大题10个小题,每小题3分,共30分)11.若方程(m﹣4)x|m|﹣3=3y n+1+4是二元一次方程,则m=,n=.12.已知x、y满足方程组,则x+y的值为.13.如图,直线AB和CD相交于O点,OM⊥AB,∠BOD:∠COM=1:3,则∠AOD的度数为度.14.如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=40°,则∠BED的度数为.16.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=39°,则∠2的度数是.17.已知a m=6,a n=3,则a m+n=.18.“x与5的差不小于x的3倍”用不等式表示为.19.若关于x的不等式的非负整数解只有3个,则m的取值范围是.20.因式分解:ax2﹣a=.三、解答题.(本大题7个小题,共70分)21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE.(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.23.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.24.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.25.如图所示,AD⊥BC,EF⊥BC,∠BEF=∠ADG.试说明DG∥AB.把说明的过程填写完整.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(),∴EF∥AD(),∴∠BEF=(两直线平行,同位角相等).∵∠BEF=∠ADG(已知),∴(等量代换).∴DG∥AB().26.关于x的不等式组.(1)若不等式组的解集是1<x<2,求a的值;(2)若不等式组无解,求a的取值范围.27.(1)简便计算:992﹣108×92;(2)因式分解:2x3﹣8x2+8x.参考答案一、正确选择.(本大题10个小题,每小题2分,共20分)1.关于x,y的方程组的解为()A.B.C.D.【分析】利用加减消元法求解即可.解:,①﹣②,得x=﹣4,把x=﹣4代入②,得﹣4+y=3,解得y=7.故方程组的解为.故选:A.2.下列命题是真命题的()A.两点之间直线最短B.如果ab>0,那么a>0,b>0C.内错角相等,两直线平行D.若|a|=1,则a=1【分析】利用线段的性质、不等式的性质、平行线的判定及绝对值的意义分别判断后即可确定正确的选项.解:A、两点之间线段最短,故原命题错误,是假命题,不符合题意;B、如果ab>0,那么a>0,b>0或a<0,b<0,故原命题错误,是假命题,不符合题意;C、内错角相等,两直线平行,正确,是真命题,符合题意;D、若|a|=1,则a=±1,故原命题错误,是假命题,不符合题意,故选:C.3.如图,AB∥CD,点O在AB上,OE平分∠BOD,若∠CDO=100°,则∠BOE的度数为()A.30°B.40°C.50°D.60°【分析】根据平行线的性质可得∠BOD=100°,利用角平分线的性质可得∠BOE=50°.解:∵AB∥CD,∠CDO=100°,∴∠BOD=100°,∵OE平分∠BOD,∴∠BOE=50°.故选:C.4.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm【分析】根据三角形的三边关系确定a的取值范围即可求解.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.5.下列现象中,()是平移.A.“天问”探测器绕火星运动B.篮球在空中飞行C.电梯的上下移动D.将一张纸对折【分析】要根据平移的性质,判断是否是平移现象,平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).解:A.“天问”探测器绕火星运动不是平移;B.篮球在空中飞行不是平移;C.电梯的上下移动是平移;D.将一张纸对折不是平移;故选:C.6.据国家邮政局统计,2021年农历除夕和初一两天,全国快递处理超130 000 000件,与去年同期相比增长223%,快递的春节“不打烊”服务确保了广大用户能够顺利收到年货,欢度佳节.将130 000 000用科学记数法表示应为()A.1.3×107B.13×107C.1.3×108D.0.13×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:130000000=1.3×108.故选:C.7.下列运算中,正确的是()A.a5+a5=a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣3ab)2=9a2b2【分析】根据同底数幂的乘除法,幂的乘方与积的乘方的计算方法逐项计算即可.解:A.a5+a5=2a5,因此选项A不符合题意;B.3a3•2a2=6a5,因此选项B不符合题意;C.a6÷a2=a4,因此选项C不符合题意;D.(﹣3ab)2=9a2b2,因此选项D符合题意;故选:D.8.下列关系式中,不含有x=﹣1这个解的是()A.2x+1=﹣1B.2x+1>﹣1C.﹣2x+1≥3D.﹣2x﹣1≤3【分析】把x=﹣1代入各个不等式,满足不等式成立时,它就是该不等式的解.解:当x=﹣1时,2x+1=﹣1,﹣2x+1=3≥3,﹣2x﹣1=1≤3,所以x=﹣1满足选项A、C、D,因为﹣1不大于﹣1,所以x=﹣1不满足B.故选:B.9.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选:D.10.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔()支.A.28B.29C.30D.31【分析】设该同学购买钢笔x支,笔记本y本,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各购买方案,取x的最大值即可得出结论.解:设该同学购买钢笔x支,笔记本y本,依题意得:5x+4y=162.∵x,y均为正整数,∴或或或或或或或,∴x的最大值为30.故选:C.二、准确填空.(本大题10个小题,每小题3分,共30分)11.若方程(m﹣4)x|m|﹣3=3y n+1+4是二元一次方程,则m=﹣4,n=0.【分析】二元一次方程就是只含有两个未知数,并且未知数的项的次数是1的整式方程,依据定义即可求解.解:根据题意,得|m|﹣3=1且n+1=1且m﹣4≠0,解得m=﹣4,n=0.故答案为:﹣4,0.12.已知x、y满足方程组,则x+y的值为5.【分析】将两式相加即可.解:两式相加得3x+3y=15,x+y=5.故答案为:5.13.如图,直线AB和CD相交于O点,OM⊥AB,∠BOD:∠COM=1:3,则∠AOD的度数为157.5度.【分析】先根据OM⊥AB,得∠BOM=90°,再∠BOD:∠COM=1:3,可求出∠DOB,再根据平角关系,即可得出∠AOD的度数.解:∵OM⊥AB,∴∠BOM=90°,∴∠BOD+∠COM=90°,∵∠BOD:∠COM=1:3,∴∠BOD=22.5°,∵∠AOB=180°,∴∠AOD=∠AOB﹣∠BOD=157.5°.故答案为:157.5.14.如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是①.【分析】根据同位角相等,两直线平行即可判断AC∥BD.解:①∵∠1=∠2,∴AC∥BD(同位角相等,两直线平行).故答案为:①.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=40°,则∠BED的度数为60°.【分析】先根据角平分线的定义,得出∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,再根据三角形内角和定理,推理得出∠BAD+∠BCD=2∠E,进而求得∠E的度数.解:∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,∴∠BAD+∠BCD=2∠E,∵∠BAD=80°,∠BCD=40°,∴∠E=(∠BAD+∠BCD)=(80°+40°)=60°.故答案为:60°.16.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=39°,则∠2的度数是21°.【分析】过B作BC∥l1,可得∠2=∠ABC,由平行公理可得BC∥l2,根据平行线的性质可得∠1+∠2=∠ABD,结合直角三角板的特性可求解.解:如图,过B作BC∥l1,∴∠2=∠ABC,∵l2∥l1,∴BC∥l2,∴∠CBD=∠1,∴∠1+∠2=∠ABC+∠CBD=∠ABD,由题意知:∠ABD=60°,∴∠1+∠2=60°,∵∠1=39°,∴∠2=60°﹣39°=21°,故答案为21°.17.已知a m=6,a n=3,则a m+n=18.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.解:a m+n=a m•a n=6×3=18,故答案为:18.18.“x与5的差不小于x的3倍”用不等式表示为x﹣5≥3x.【分析】根据x与5的差不小于x的3倍,可知x与5的差大于等于x的3倍,从而可以用相应的不等式表示出来.解:“x与5的差不小于x的3倍”用不等式表示为x﹣5≥3x,故答案为:x﹣5≥3x.19.若关于x的不等式的非负整数解只有3个,则m的取值范围是<m≤1.【分析】首先确定不等式组的解集,先利用含m的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.解:解不等式,得:x<3m,∵关于x的不等式的非负整数解只有3个,∴不等式的非负整数解为0、1、2,则2<3m≤3,解得:<m≤1,故答案为:<m≤1.20.因式分解:ax2﹣a=a(x+1)(x﹣1).【分析】首先提公因式a,再利用平方差进行二次分解即可.解:原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).三、解答题.(本大题7个小题,共70分)21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)【分析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE.(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.【分析】(1)根据∠AGF=∠ABC可得出BC∥GF,进而可得出∠AFG=∠C,再根据角的计算可得出∠1=∠CDE,由此即可得出∠CED=∠CFB,根据“同位角相等,两直线平行”即可得出BF∥DE;(2)根据DE⊥AC、BF∥DE即可得出∠AFB=90°,再结合∠1+∠2=180°、∠2=150°以及∠AFB=∠AFG+∠1即可算出∠AFG的度数.【解答】(1)证明:∵∠AGF=∠ABC,∴BC∥GF,∴∠AFG=∠C.∵∠1+∠2=180°,∠CDE+∠2=180°,∴∠1=∠CDE.∵∠CED=180°﹣∠C﹣∠CDE,∠CFB=180°﹣∠AFD﹣∠1,∴∠CED=∠CFB,∴BF∥DE.(2)解:∵DE⊥AC,BF∥DE,∴∠AFB=∠AED=90°,∵∠1+∠2=180°,∠2=150°,∴∠1=30°.∵∠AFB=∠AFG+∠1=90°,∴∠AFG=60°.23.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣624.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.【分析】(1)直接利用同底数幂的除法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;(2)直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进,而得出答案;(3)直接利用同底数幂的乘法运算法则以及积的乘方运算法则将原式变形进,而得出答案.解:(1)∵2m=8,2n=32,∴22m﹣n=(2m)2÷2n=82÷32=64÷32=2;∴22m﹣n的值为2;(2)∵2x+3y﹣3=0,∴2x+3y=3,∴4x⋅8y=22x⋅23y=22x+3y=23=8;∴4x⋅8y的值为8;(3)∵2x+2⋅5x+2=10x+2,∴10x+2=103x﹣3,∴x+2=3x﹣3,∴,∴x的值为.25.如图所示,AD⊥BC,EF⊥BC,∠BEF=∠ADG.试说明DG∥AB.把说明的过程填写完整.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义),∴EF∥AD(同位角相等,两直线平行),∴∠BEF=∠BAD(两直线平行,同位角相等).∵∠BEF=∠ADG(已知),∴∠ADG=∠BAD(等量代换).∴DG∥AB(内错角相等,两直线平行).【分析】根据垂直的定义得出∠EFB=∠ADB=90°,即可判定EF∥AD,则得出∠BEF =∠BAD,等量代换得出∠ADG=∠BAD,即可判定DG∥AB.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义),∴EF∥AD(同位角相等,两直线平行),∴∠BEF=∠BAD(两直线平行,同位角相等),∵∠BEF=∠ADG(已知),∴∠ADG=∠BAD(等量代换),∴DG∥AB(内错角相等,两直线平行).故答案为:垂直的定义;同位角相等,两直线平行;∠BAD;∠ADG=∠BAD;内错角相等,两直线平行.26.关于x的不等式组.(1)若不等式组的解集是1<x<2,求a的值;(2)若不等式组无解,求a的取值范围.【分析】(1)解不等式组中两个不等式后根据不等式组的解集可得关于a的方程,解之可得;(2)根据“大小小大无解了”可确定关于a的不等式,解之可得.解:(1)解不等式2x+1>3得:x>1,解不等式a﹣x>1得:x<a﹣1,∵不等式组的解集是1<x<2,∴a﹣1=2,解得:a=3;(2)∵不等式组无解,∴a﹣1≤1,解得:a≤2.27.(1)简便计算:992﹣108×92;(2)因式分解:2x3﹣8x2+8x.【分析】(1)把992﹣108×92写成(100﹣1)2﹣(100+8)(100﹣)的形式,再利用完全平方公式和平方差进行计算即可.(2)首先提取公因式2x,再进一步运用完全平方公式计算即可解答.解:(1)992﹣108×92=(100﹣1)2﹣(100+8)(100﹣8)=1002﹣200+1﹣1002+82=﹣200+1+64=﹣135;(2)原式=2x(x2﹣4x+4)=2x(x﹣2)2.。
河北省邯郸市育华中学2020-2021学年七年级上学期期末数学试题(含答案解析)
河北省邯郸市育华中学2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2017的绝对值是( )A .12017B .12017-C .2017D .-2017 2.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯3.23-与34-的大小关系为( ) A .2334->- B .2334-=- C .2334-<- D .无法比较 4.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( ) A .3 个 B .4 个C .6 个D .7 个 5.下列平面图形经过折叠不能围成正方体的是( )A .B .C .D .6.下列几何体中,是圆柱的为A .B .C .D .7.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿若直线AB 架设;④把弯曲的公路改直,就能缩知路程.其中可用“两点确定一条直线”来解释的现象有( )A .①②B .①③C .②④D .③④8.能用∠α、∠AOB 、∠O 三种方式表示同一个角的图形是( )A .B .C .D .9.一只蚂蚁沿数轴从点A 向右爬5个单位长度到达点B ,点B 表示的数是2-,则点A 所表示的数是( )A .5B .3C .3-D .7- 10.解方程3162x x +-=利用等式性质去分母正确的是( ) A .133x x --=B .633x x --=C .633x x -+=D .33x x -+= 11.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )12.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=( )A .310B .103C .-310D .-10313.中国CBA 篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次是( )A .6场B .31场C .32场D .35场14.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm15.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/小时,顺水航行需要6小时,逆水航行需要8小时,则甲乙两地间的距离是( )A .220千米B .240千米C .260千米D .350千米二、填空题16.若|x|=6,则x=________.17.一个角是70°39′,则它的余角的度数是__.18.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点……那么六条直线最多有__________个交点.19.有不在同一条直线上的两条线段AB 和CD ,李明很难判断出它们的长短,因此他借助于圆规,操作如图所示.由此可得出AB __________CD .(填“>”“<”“=”)20.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________ .三、解答题21.计算:(1)()211623⎛⎫-⨯- ⎪⎝⎭(2)211108225⎛⎫+⨯--÷ ⎪⎝⎭ 22.解方程:(1)()4325x x --=(2)13142x x x ---=- 23.先化简,再求值:()()2142824x x x -+---,其中12x =. 24.如图,直角三角板的直角顶点O 在直线AB 上,OC 、OD 是三角板的两条直角边,OE 平分AOD ∠.(1)若20COE ∠=︒,求BOD ∠的度数;(2)若COE α∠=,则BOD ∠= ︒(用含α的代数式表示);(3)当三角板绕点O 逆时针旋转到图2的位置时,其他条件不变,请直接写出COE ∠与BOD ∠之间有怎样的数量关系.25.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x 表示商品价格,请你用含x 的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2700元的电脑,请分析选择哪种优惠方式更省钱.26.已知3x =-是关于x 的方程()245k x k x --+=的解.(1)求k 的值;(2)在(1)的条件下,已知线段12AB =,点C 是直线AB 上一点,且BC k AC =⋅,若点D 是AC 的中点,求线段CD 的长.(注意:先画出对应的图形再求解)参考答案1.C【分析】由绝对值的意义,即可得到答案.【详解】 解:20172017-=;故选:C .【点睛】本题考查了绝对值的意义,解题的关键是掌握绝对值的意义进行解题.2.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4 600 000 000用科学记数法表示为:4.6×109.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.A【分析】根据有理数的大小比较法则可求【详解】 2233-=,3344-=, 又3928=412312>=, 3243∴-<-, 故A 正确,B 、C 、D 选项错误故选:A【点睛】本题考查了有理数大小比较法则的应用,即:正数都大于0;负数都小于0;正数大于一切负数;两个负数比较大小,绝对值大的反而小.4.C【分析】根据整式的定义,结合题意即可得出答案【详解】整式有﹣12mn,m,8,x2+2x+6,25x y-,24x yπ+故选C【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.5.C【详解】根据正方体展开的图形可得:A、B、D选项可以折叠成正方体,C选项不能.故选C.【点睛】能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.6.A【详解】分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.7.A【分析】根据“两点确定一条直线”可直接进行排除选项.【详解】①用两个钉子就可以把木条固定在墙上,符合题意;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,符合题意;③从A地到B地架设电线,总是尽可能沿若直线AB架设,符合“两点之间,线段最短”,故不符合题意;④把弯曲的公路改直,就能缩知路程,符合“两点之间,线段最短”,故不符合题意;故选A.【点睛】本题主要考查直线的概念,熟练掌握直线的相关定义是解题的关键.8.B【解析】A选项:∠α、∠AOB表示同一个角,但是不能用∠O表示;B选项:∠α、∠AOB、∠O表示同一个角;C选项:∠α、∠AOB表示同一个角,但是不能用∠O表示;D选项:∠O、∠AOB表示同一个角,但是与∠α不是同一个角;故选B.点睛:掌握角的表示方法.9.D【分析】根据数轴右边的数大于左边的数列式计算即可.【详解】解:由题意可得:点A所表示的数是-2-5=-7.故选:D.【点睛】本题主要考查了数轴上的动点问题,掌握数轴右边的数大于左边的数是解答本题的关键.10.B【分析】根据题意可直接进行排除选项.【详解】解方程3162x x+-=利用等式性质去分母可得633x x--=;故选B.本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.11.D【详解】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.12.B【分析】解方程3x+5=11,得到x=2,把x=2代入6x+3a=22即可求出a的值.【详解】对方程3x+5=11移项,得3x=6系数化为1,得x=2把x=2代入6x+3a=22,得12+3a=22解得:a=10 3故选:B.【点睛】考查方程的解以及解一元一次方程,熟练掌握解一元一次方程是解题的关键. 13.C【详解】设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选C14.B【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm ,∴CD =DB ﹣BC =7﹣4=3(cm ),∵D 是AC 的中点,∴AC =2CD =2×3=6(cm ).故选:B .【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.15.B【解析】【分析】可根据船在静水中的速度来得到等量关系为:航程÷顺水时间-水流速度=航程÷逆水时间+水流速度,把相关数值代入即可求得航程.【详解】设A 、B 两码头之间的航程是x 千米.5568x x -=+ 解得x=240,故选B【点睛】考查一元一次方程的应用;得到表示船在静水中的速度的等量关系是解决本题的关键.16.±6.【分析】根据绝对值的定义即可求解.【详解】∵|x|=6,∴x=±6,故填:±6. 【点睛】此题主要考查绝对值,解题的关键是熟知绝对值的性质.17.19°21′.【分析】根据余角的定义列式进行计算即可.【详解】一个角是70°39′,则它的余角=90°﹣70°39′=19°21′,故答案为19°21′.【点睛】本题考查了余角和补角以及度分秒的换算,掌握互余两角的和为90度是解题的关键.18.15【分析】画出图形,结合图形,找出规律解答即可【详解】如图,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而()33132⨯-=,()44162⨯-=,()551102⨯-=∴n条直线相交,最多有()12n n⨯-个交点.∴6条直线两两相交,最多有()661152⨯-=个交点.故答案为 15.【点睛】此题主要考察了图形的变化类问题,在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.19.>【分析】根据题意及线段的大小比较可直接得出答案.【详解】由图可得:AB >CD ;故答案为>.【点睛】本题主要考查线段的大小比较,熟练掌握线段的大小比较是解题的关键.20.55【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910< 则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦. 故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.21.(1)6;(2)2.【分析】(1)先算乘方、再运用乘法分配律计算即可;(2)先算乘方、然后按有理数四则混合运算法则计算即可.【详解】(1)解:()211623⎛⎫-⨯- ⎪⎝⎭ 113632⎛⎫=⨯- ⎪⎝⎭ 21136363=⨯-⨯ =18-126=;(2)解:211108225⎛⎫+⨯--÷ ⎪⎝⎭1108254=+⨯-⨯ 10210=+-2=.【点睛】本题主要考查了含乘方的有理数混合运算,掌握基本的运算法则是解答本题的关键. 22.(1)x=-1;(2)x=-3【分析】(1)先去括号,再移项,合并同类项,最后系数化为1求解即可;(2)先去分母,再去括号,移项,合并同类项,最后系数化为1求解即可.【详解】解:(1)()4325x x --=4635x x -+=3564x x -=-22x -=1x =-;(2)13142x x x ---=- ()()41423x x x --=--41462x x x -+=-+42461x x x --=--3x =-.【点睛】本题考查一元一次方程的求解,属于基础题,要有一定的运算求解能力,熟练掌握一元一次方程的求解步骤是解题的关系.23.212x x --,12- 【分析】首先去括号,然后合并同类项即可化简,然后代入数值计算即可.【详解】解:()()2142824x x x -+---22112222x x x x x =-+--+=-- 当12x =时,原式221111122222x x ⎛⎫=--=--⨯=- ⎪⎝⎭ 【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.24.(1)40º;(2)2α;(3)BOD 2COE ∠=∠【分析】(1)由题意易得920700DOE ︒-︒=∠=︒,则有2270140AOD DOE ∠=∠=⨯︒=︒,进而根据邻补角可求解;(2)由题意易得90DOE α∠=︒-,则有()22901802AOD DOE αα∠=∠=⨯︒-=︒-,进而问题可求解;(3)由题意可得90DOE COE ∠=︒-∠,则有()22901802AOD DOE COE COE ∠=∠=⨯︒-∠=︒-∠,然后根据角的和差关系可求解.【详解】解:(1)20COE ∠=︒且COD ∠为直角902070DOE ∴∠=︒-︒=︒ OE 平分AOD ∠2270140AOD DOE ∴∠=∠=⨯︒=︒180AOD BOD ∠+∠=︒18040BOD AOD ∴∠=︒-∠=︒(2)2αCOE α∠=且COD ∠为直角90DOE α∴∠=︒- OE 平分AOD ∠()22901802AOD DOE αα∴∠=∠=⨯︒-=︒-180AOD BOD ∠+∠=︒()180********BOD AOD αα∴∠=︒-∠=︒-︒-=故答案为2α(3)BOD 2COE ∠=∠COD ∠为直角90DOE COE ∴∠=︒-∠ OE 平分AOD ∠()22901802AOD DOE COE COE ∴∠=∠=⨯︒-∠=︒-∠180AOD BOD ∠+∠=︒()180********BOD AOD COE COE ∴∠=︒-∠=︒-︒-∠=∠.【点睛】本题主要考查角平分线的定义及邻补角,熟练掌握角平分线的定义及邻补角是解题的关键.25.(1)方案一的金额:90%x ;方案二的金额:80%x +200.(2)2000元;(3)方案二更省钱.【详解】试题分析:(1)根据题意分别得出两种优惠方案的关系式即可;(2)利用(1)中所列关系式,进而解方程求出即可;(3)将已知数据代入(1)中代数式求出即可.试题解析:(1)由题意可得:优惠一:付费为:0.9x ,优惠二:付费为:200+0.8x ; (2)当两种优惠后所花钱数相同,则0.9x=200+0.8x ,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.考点:1.一元一次方程的应用;2.列代数式.26.(1)k=2;(2)图见解析,2或6.【分析】(1)将3x =-,代入()245k x k x --+=,即可求得k ;(2)分点C 在线段AB 外和点C 在线段AB 内两种情况,分别先求出BC,再求出AB ,然后求得AC ,最后根据中点的定义即可解答.【详解】(1)将3x =-,代入()245k x k x --+=,得235k k +-=;解得2k =;(2)情况1:点C 在线段AB 外,如图由(1)知2k =,即2BC AC =,又12AB =,12AC ∴=, 又点D 是AC 的中点,162CD AC ∴==; 情况2:点C 在线段AB 内,如图12AB =,2BC AC =,4AC ∴=,点D 是AC 的中点,122CD AC ∴==. 综上:线段CD 的长为2或6.【点睛】本题主要考查了方程的解、中点的定义、线段的和差以及分类讨论思想,灵活运用相关知识并掌握分类讨论思想是解答本题的关键.。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2020-2021学年九年级上学期期末考试数学试卷(有答案)
2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
2021-2022学年七年级下学期期末考试数学试题(含答案解析)
2021-2022学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)在平面直角坐标系中,点P(﹣2020,2021)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵P(﹣2020,2021)的横坐标小于0,纵坐标大于0,∴点P(﹣2020,2021)在第二象限,故选:B.2.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.3.(2分)如图是某电商今年1﹣5月份销售额统计图,根据图中信息,可以判断相邻两个月销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月解:1月至2月,30﹣23=7(万元),2月至3月,30﹣25=5(万元),3月至4月,25﹣15=10(万元),4月至5月,19﹣15=4(万元),则相邻两个月销售额变化最大的是3月至4月. 故选:C .4.(2分)下列说法正确的是( ) A .1的平方根是1 B .25的算术平方根是±5C .(﹣6)2没有平方根D .立方根等于本身的数是0和±1解:A .1的平方根是±1,故本选项不合题意; B .25的算术平方根是5,故本选项不合题意; C .(﹣6)2的平方根是±6,故本选项不合题意; D .立方根等于本身的数是0和±1,故本选项符合题意. 故选:D .5.(2分)如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°解:如图,∵a ∥b ,∠2=45°, ∴∠3=∠2=45°, ∴∠1=180°﹣∠3=135°, 故选:C .6.(2分)若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确;C.不等式两边都除以一个正数,不等号方向不改变,则C错误;D.因a<b,则﹣a>﹣b,于是3﹣a>3﹣b,则D错误.故选:B.7.(2分)√13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间解:∵√9<√13<√16,∴3<√13<4,故选:C.8.(2分)已知点A(2,2√2),B(5,√2),若线段CD是由线段AB沿y轴方向向下平移2√2个单位得到的,则线段CD两端点的坐标分别为()A.(2−2√2,2√2),(5−2√2,√2)B.(2,4√2),(5,3√2)C.(2,0),(5,−√2)D.(2,0),(5,﹣2)解:点A(2,2√2),B(5,√2),线段AB沿y轴方向向下平移2√2个单位,即把各点的纵坐标都减2√2,即可得到线段CD两端点的坐标.则C(2,0),D(5,−√2).故选:C.9.(2分)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等解:A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.10.(2分)为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的()A .乙种笔记本比甲种笔记本少4本B .甲种笔记本比丙种笔记本多6本C .乙种笔记本比丙种笔记本多8本D .甲种笔记本与乙种笔记本共12本解:设分别甲、乙、丙三种不同的笔记本x 、y 、z , 根据题意得:{2x +3y +4z =60①1.5x +2.5y +3.5z =49②,①﹣②得:x +y +z =22 ③, ③×3﹣①得,x ﹣z =6,故甲种笔记本比丙种笔记本多6本, 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: 2800×x10−2200≥2200×5% . 解:由题意得:2800×x10−2200≥2200×5%, 故答案为:2800×x10−2200≥2200×5%. 12.(2分)不等式组{x >a x >2的解集为x >2,则a 的取值范围是 a ≤2 .解:由不等式组{x >a x >2的解集为x >2,可得a ≤2.故答案为:a ≤213.(2分)如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOD =118°,则∠EOC 的度数为 28° .解:∵∠AOD =118°,∴∠BOC=∠AOD=118°,∵EO⊥AB,∴∠BOE=90°,∴∠EOC=∠BOC﹣∠BOE=28°,故答案为:28°.14.(2分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有300人.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.(2分)如果|a﹣2|=2﹣a,那么(a﹣3,a﹣4)在第三象限.解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,∴a﹣3<0,a﹣4<0,∴(a﹣3,a﹣4)在第三象限.故答案为:三.16.(2分)已知,a,b是正整数.若√7a+√10b是整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).解:∵a,b是正整数.√7a+√10b是整数,∴a=7,b=10或a=4×7,b=4×10,即满足条件的有序数对(a,b)为(7,10)或(28,40).故答案为(7,10)或(28,40). 三.解答题(共8小题,满分68分) 17.(8分)计算:(1)√25+√−273+√214; (2)2√2−|√2−1|. 解:(1)√25+√−273+√214 =5+(﹣3)+32=2+32 =72.(2)2√2−|√2−1| =2√2−√2+1 =√2+1.18.(8分)解方程组:{5(x −9)=6(y −2)x 4−y+13=2.解:方程组整理得:{5x −6y =33①3x −4y =28②,①×2﹣②×3得:10x ﹣12y ﹣3(3x ﹣4y )=66﹣84, 解得:x =﹣18,把x =﹣18代入①得:y =﹣20.5, 则方程组的解为{x =−18y =−20.5.19.(8分)(1)解不等式4x ﹣3<2x +1,并把解集表示在数轴上. (2)解不等式组{3x +2>x2−4(x −4)≥2x,并写出它的整数解.解:(1)移项得,4x ﹣2x <1+3, 合并同类项得,2x <4, 系数化为1得,x <2. 在数轴上表示为:.(2){3x+2>x①2−4(x−4)≥2x②,解①得:x>﹣1,解②得:x≤3,故不等式的解集为:﹣1<x≤3,其的整数解为0,1,2,3.20.(8分)南开中学为了培养学生的地理实践能力,举办了“自制地球仪”比赛.我校地理老师在全校学生的参赛作品中随机抽取了部分作品进行质量评估,成绩如下:61,62,62,63,64,64,64,65,65,65,65,65,66,67,69,71,71,72,72,72,73,73,73,74,74,75,75,75,75,75,75,76,78,78,78,82,82,83,85,85,85,87,87,88,88,291,92,95,97,98,并将成绩统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:分数x频数(人)频率60≤x<70150.370≤x<80a80≤x<90b90≤x≤1005合计c1(1)频数分布表中,a=0.4,b=10,c=50;(2)补全频数分布直方图;(3)本次比赛学校共收到参赛作品900件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.解:(1)分别统计各组的频数可得,70≤x<80的频数为20,80≤x<90的频数为10,因此a=20÷50=0.4,b=10,c=15+20+10+5=50,故答案为:0.4,10,50,(2)补全频数分布直方图如图所示:(3)900×10+550=270(人),答:全校将展出的作品数量为270件.21.(8分)完成下面的证明:如图,AB和CD相交于点O,AC∥BD,∠A=∠AOC.求证∠B=∠BOD.证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).故答案为:两直线平行,内错角相等;等量代换;∠BOD,对顶角相等.22.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.解:(1)建立平面直角坐标系如图所示;(2)体育馆C (1,﹣3),食堂D (2,0)如图所示;(3)四边形ABCD 的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2, =20﹣4.5﹣3﹣1.5﹣1, =20﹣10, =10.23.(10分)某景点的门票价格如下表:购票人数(人) 1~50 51~99 100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1有x 名学生,2班有y 名学生, 由题意得:{x +y =10248x +45y =4737,解得:{x =49y =53, 答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x 人,九年级报名y 人,分两种情况:①若x +y <100,由题意得:{48x +45y =491445(x +y)=4452, 解得:{x =154y ≈−55,(不合题意舍去); ②若x +y ≥100,由题意得:,{48x +45y =491442(x +y)=4452, 解得:{x =48y =58,符合题意; 答:八年级报名48人,九年级报名58人.24.(10分)如图,A 、B 、C 和D 、E 、F 分别在同一条直线上,且∠1=∠2,∠C =∠D ,试完成下面证明∠A =∠F 的过程.证明:∵∠1=∠2(已知),∠2=∠3( 对顶角相等 ),∴ ∠1=∠3 (等量代换)∴BD ∥CE ( 同位角相等,两直线平行 )∴∠D +∠DEC =180°( 两直线平行,同旁内角互补 ),又∵∠C =∠D ( 已知 ),∴∠C +∠DEC =180°( 等量代换 ),∴ DF ∥AC ( 同旁内角互补,两直线平行 ),∴∠A =∠F ( 两直线平行,内错角相等 ).证明:∵∠1=∠2(已知),∠2=∠3(对顶角相等),∴∠1=∠3(等量代换),∴BD ∥CE (同位角相等,两直线平行),∴∠D +∠DEC =180°(两直线平行,同旁内角互补),又∵∠C=∠D(已知),∴∠C+∠DEC=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠1=∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;已知;等量代换;DF∥AC;同旁内角互补,两直线平行;两直线平行,内错角相等.。
2021学年-有答案-人教版三年级(下)期末数学试卷(9)
2021学年人教版三年级(下)期末数学试卷(9)一、填空.1. 在横线上填上适当的单位。
2. 在横线里填上>、<或=3. 一根绳子长1米,________根这样的绳子长1千米。
4. 一吨减去________千克等于600千克。
5. 四月份有30天,这个月共________个星期余________天。
6. 一辆汽车本应10:15到站,现在已提前25分到了站,这辆汽车________到站。
7. 将一根绳子对折后再对折,每段占这根绳子的________.8. 一块蛋糕,小明吃了它的26,小华吃了它的16,________吃得多。
9. 用一根长38厘米的铁丝围成一个长方形,若长为15厘米,宽为________厘米。
10. 一捆绳子长600米,第一次用去37米,第二次又用去63米,这捆绳子比原来短了________米。
11. 一个盒子里放有红黄两种棋子,红棋子有12个,黄棋子有3个,若一次摸出一个棋子,摸出________棋子的可能性大些。
12. 小华每分钟能做34道口算题,一天小华做了6分钟口算题,他大约做了________道口算题。
二、判断题(对的画“√”,错的画“×”).最大的两位数乘最大的一位数,积一定是三位数。
________(判断对错)世界上每分每秒一定都有人出生。
________.(判断对错)如果两个长方形周长相等,那么它们的长和宽也一定相等。
________(判断对错)________÷5=7...4,________里应填31.________.(判断对错)三、将正确答案的序号填在括号里(有几个选几个)一个三位数乘一个一位数,积是()A.三位数B.四位数C.两位数D.无法确定用7、8、5三个数可以摆出()个不同的三位数。
A.4个B.5个C.6个D.3个□÷9=△…○,○最大是()A.9B.8C.7D.106+7+8+9+0○6×7×8×9×0○里填()A.>B.<C.=小明每天睡9()A.小时B.分C.秒D.时四、按要求计算.口算。
2020-2021学年山西省初中七年级下期末数学试卷(有答案)-精品试卷
山西省最新七年级(下)期末数学试卷(解析版)一、选择题(共10小题,每小题2分,满分20分)1.﹣27的立方根是()A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°4.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人 B.70人 C.80人 D.200人5.不等式4x﹣1>1的解集是()A.x>B.x<C.x>﹣D.x<﹣6.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×27.若m>n,下列不等式不一定成立的是()A.m﹣2>n﹣2 B.>C.m2>n2D.2m+1>2n+18.学习了统计知识后,数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形和扇形统计图.依据图中信息,得出下列结论中正确的是()A.接受这次调查的家长人数为180人B.在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为135°C.表示“无所谓”的家长人数为60人D.表示“很赞同”的家长人数为20人9.不等式组的解集在数轴上表示为()A.B.C.D.10.周末,某小组12名同学都观看了电影《甲午风云》,其中8人买了甲票,4人买了乙票,总计用了200元.已知每张乙票比甲票售价多5元,求甲票、乙票的售价分别是多少元?设每张甲票的售价为x元,每张乙票的售价为y元.根据题意,可列方程组为()A.B.C.D.二、填空题(本大题共有6小题,每小题3分,共18分)11.不等式5x﹣3<3x+5的最大整数解是______.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是______.13.实数a在数轴上的位置如图所示,则|a﹣2|=______.14.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为______.15.如图所示,在平面直角坐标系中,“鱼”的每个“顶点”都在小正方形的顶点处,点A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,则平移后点A的坐标为______.16.如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为80°,要使OD∥AC,直线OD绕点O 按逆时针方向至少旋转______度.三、解答题(本大题共有8小题,共62分)17.(1)解方程组;(2)解不等式组,并写出不等式组的整数解.18.如图所示,已知在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(﹣2,0).(1)把△ABO沿着x轴的正方向平移4个单位,请你画出平移后的△A′B′O′,其中A,B,O的对应点分别是A′,B′,O′(不必写画法);(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标.19.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.20.(10分)(2016春•平定县期末)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80 ______80≤x<100 4100≤x<120 18120≤x<140 13140≤x<160 8160≤x<180 ______180≤x<200 1(1)补全频数分布表和频数分布直方图.(2)表中组距是______次,组数是______组.(3)跳绳次数在100≤x<140范围的学生有______人,全班共有______人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线.(1)请直接写出和∠AOD能成为互为补角的角;(把符合条件的角都填出来)(2)若∠AOD=142°,求∠AOE的度数.22.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?23.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?24.(12分)(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.﹣27的立方根是()A.3 B.﹣3 C.±3 D.【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3,故选:B.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.2.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)【考点】坐标与图形变化-平移.【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).故选D.【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【考点】平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.4.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人 B.70人 C.80人 D.200人【考点】扇形统计图.【分析】根据题意和统计图中的数据可以求得总的人数,进而求得参加人数最多的小组的人数.【解答】解:由题意可得,参加体育兴趣小组的人数一共有:50÷25%=200(人),∴参加人数最多的小组的有:200×(1﹣25%﹣35%)=200×40%=80(人),故选C.【点评】本题考查扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.不等式4x﹣1>1的解集是()A.x>B.x<C.x>﹣D.x<﹣【考点】解一元一次不等式.【分析】根据解不等式的基本步骤依次移项、合并同类项、系数化为1即可得.【解答】解:移项,得:4x>1+1,合并同类项,得:4x>2,系数化为1,得:x>,故选:A.【点评】本题主要考查解一元一次不等式的能力,熟练掌握解不等式的基本步骤是解题的关键.6.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【考点】解二元一次方程组.【分析】观察方程组中x与y系数特征,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2,故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若m>n,下列不等式不一定成立的是()A.m﹣2>n﹣2 B.>C.m2>n2D.2m+1>2n+1【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、如m=2,n=3,m>n,m2>n2,故C正确;D、不等式的两边都乘以2,不等号的方向不变;不等式的两边都加2,不等号的方向不变;故D错误;故选:C.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.8.学习了统计知识后,数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形和扇形统计图.依据图中信息,得出下列结论中正确的是()A.接受这次调查的家长人数为180人B.在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为135°C.表示“无所谓”的家长人数为60人D.表示“很赞同”的家长人数为20人【考点】条形统计图;扇形统计图.【分析】由家长看法为赞同的人数除以占的百分比,求出调查家长的总人数,求出家长意见很赞同的人数即可.【解答】解:根据题意得:调查总家长有50÷25%=200(人);在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角为×360°=162°;表示“无所谓”的家长人数为200×20%=40(人);表示“很赞同”的家长人数为200﹣(40+50+90)=200﹣180=20(人),故选D【点评】此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.9.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选A.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.10.周末,某小组12名同学都观看了电影《甲午风云》,其中8人买了甲票,4人买了乙票,总计用了200元.已知每张乙票比甲票售价多5元,求甲票、乙票的售价分别是多少元?设每张甲票的售价为x元,每张乙票的售价为y元.根据题意,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意,可以列出相应的二元一次方程组,本题得以解决.【解答】解:由题意可得,,故选C.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本大题共有6小题,每小题3分,共18分)11.不等式5x﹣3<3x+5的最大整数解是 3 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1 .【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.13.实数a在数轴上的位置如图所示,则|a﹣2|= 2﹣a .【考点】实数与数轴.【分析】根据数轴上的点与实数的一一对应关系得到a<2,然后利用绝对值的意义即可求解.【解答】解:∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a.故答案为:2﹣a.【点评】本题考查了实数与数轴,解决本题的关键是明确绝对值的意义以及数轴上的点与实数的一一对应关系.14.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为7 .【考点】频数(率)分布直方图.【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于6分钟的人数,本题得以解决.【解答】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于6分钟的人数为:5+2=7,故答案为:7.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.15.如图所示,在平面直角坐标系中,“鱼”的每个“顶点”都在小正方形的顶点处,点A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,则平移后点A的坐标为(﹣1,0).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:由图可知,点A的坐标为(﹣4,6).∵A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,∴平移后点A的坐标为(﹣4+3,6﹣6),即(﹣1,0).故答案为(﹣1,0).【点评】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为80°,要使OD∥AC,直线OD绕点O 按逆时针方向至少旋转10 度.【考点】旋转的性质;平行线的判定.【分析】根据平行可知:∠BOD′=∠A,计算出∠DOD′就是旋转的度数.【解答】解:要使OD∥AC,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD﹣BOD′=80°﹣70°=10°,∴直线OD绕点O按逆时针方向至少旋转10°;故答案为:10.【点评】本题考查了旋转的性质和平行线的判定,熟知对应点与旋转中心所连线段的夹角等于旋转角,根据定义要知道求哪一个角,同时,两直线平行,同位角相等.三、解答题(本大题共有8小题,共62分)17.(1)解方程组;(2)解不等式组,并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解二元一次方程组;解一元一次不等式组.【分析】(1)整理后①+②得出2x=﹣4,求出x,把x的值代入①求出y即可;(2)先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:(1)整理的:,①+②得:2x=﹣4,解得:x=﹣2,把x=﹣2代入①得:4+3y=1,解得:y=﹣1,所以原方程组的解为:;(2)∵解不等式①得:x≤4,解不等式②得:x>2,∴不等式组的解集为2<x≤4,∴不等式组的整数解为3,4.【点评】本题考查了解一元一次不等式组,解二元一次方程组,不等式组的整数解的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据找不等式组解集的规律找出不等式组的解集是解(2)的关键.18.如图所示,已知在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(﹣2,0).(1)把△ABO沿着x轴的正方向平移4个单位,请你画出平移后的△A′B′O′,其中A,B,O的对应点分别是A′,B′,O′(不必写画法);(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标.【考点】作图-平移变换.【分析】(1)根据平移条件画出图象即可.(2)根据向下平移横坐标不变,纵坐标上加下减的规律写出坐标即可.【解答】解:(1)把△ABO沿着x轴的正方向平移4个单位,平移后的△A′B′O′如图所示,(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标为(2,﹣3).【点评】本题考查作图﹣平移变换,解题的关键是记住上下平移横坐标不变,纵坐标上加下减,左右平移纵坐标不变,横坐标左减右加,属于中考常考题型.19.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【考点】立方根;有理数的乘方.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.20.(10分)(2016春•平定县期末)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80 280≤x<100 4100≤x<120 18120≤x<140 13140≤x<160 8160≤x<180 4180≤x<200 1(1)补全频数分布表和频数分布直方图.(2)表中组距是20 次,组数是7 组.(3)跳绳次数在100≤x<140范围的学生有31 人,全班共有50 人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,成绩在140≤x≤160的人数为8人,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;(2)利用频数分布表和频数分布直方图求解;(3)把第3组和第4组的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)如图,成绩在60≤x≤80的人数为2人,成绩在160≤x≤180的人数为4人,(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<140范围的学生有31人,全班人数为2+4+18+13+8+4+1=50(人);故答案为2,4;20,7;31,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.【点评】本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线.(1)请直接写出和∠AOD能成为互为补角的角;(把符合条件的角都填出来)(2)若∠AOD=142°,求∠AOE的度数.【考点】对顶角、邻补角;角平分线的定义;余角和补角.【分析】(1)根据角平分线、对顶角及互补的定义确定∠AOD的补角.(2)根据互补先求出∠BOD,再根据角平分线的定义得到∠EOD的度数,再根据角的和差关系求出∠AOE 的度数.【解答】解:(1)由图示可得,∠AOD+∠AOC=180°,∠AOD+∠BOD=180°,又OD为∠BOE的角平分线,可得∠BOD=∠DOE,故∠AOD+∠DOE=180°,故∠AOD的补角是∠AOC、∠BOD、∠EOD;(2)∵∠AOD=142°,∴∠BOD=38°,∵OD为∠BOE的角平分线,∴∠EOD=38°,∴∠AOE=∠AOD﹣∠EOD=142°﹣38°=104°.【点评】本题利用角平分线的定义,对顶角相等和邻补角互补的性质及角的和差关系计算.22.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?【考点】二元一次方程组的应用.【分析】设甲商品单价为x元,乙商品单价为y元,根据购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元,列出方程组,继而可计算购买10件甲商品和10件乙商品需要的花费,也可得出比不打折前少花多少钱.【解答】解:设打折前甲商品的单价为x元,乙商品的单价为y元,由题意得:,解得:,则购买10件甲商品和10件乙商品需要900元,∵打折后实际花费735元,∴这比不打折前少花165元.答:这比不打折前少花165元.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.【解答】解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.24.(12分)(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【考点】平行线的性质.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.。
2020-2021学年辽宁省七年级数学下学期期末试卷(有答案)-精品试卷
最新辽宁省七年级(下)期末数学试卷一、选择题,共10小题,每小题2分,共20分1.2的平方根是()A.B.C.4 D.±42.下列计算中,错误的是()A.+=2 B.﹣(+)=﹣C.|﹣|+2=+D.2﹣3=﹣1 3.下列说法中,正确的是()A.1的平方根是1 B.0没有立方根C.的平方根是±2 D.﹣1没有平方根4.下列方程组中,是二元一次方程组的是()A. B.C. D.5.已知:如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=46°,则∠2的度数是()A.50°B.45°C.44°D.30°6.在实数,,﹣,,3.020020002…点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴4个单位长,点P的坐标是()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)8.把不等式组的解在数轴上表示出来,正确的是()A.B.C.D.9.我县某初中七年级进行了一次数学测验,参加人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是()A.抽取前100名同学的数学成绩B.抽取后100名同学的数学成绩C.抽取(1)(2)两班同学的数学成绩D.抽取各班学号为6号的倍数的同学的数学成绩10.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组 B.9组C.8组D.7组二、填空题,共8个小题,每小题2分,共16分.11.= .12.已知,如图,AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为.13.若点P(a+1,a﹣2)在x轴上,则点P的坐标是.14.如果不等式ax≤2的解集是x≥﹣4,则a的值为.15.一个扇形统计图中,扇形A、B、C、D的面积之比为2:3:3:4,则最大扇形的圆心角为.16.一元一次不等式﹣x≥2x+3的最大整数解是.17.若方程组的解是方程3x+my=﹣1的一个解,则m= .18.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=6时,x的值为.三、解答题,共8个小题,共64分19.已知方程组与的解相同,试求a+b的值.20.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{ }.无理数集合:{ }.负实数集合:{ }.21.已知,如图,∠ADE=46°,DF平分∠ADE,∠1=23°,求证:DF∥BE.请你根据已知条件补充推理过程,并在相应括号内注明理由.证明:∵DF平分∠ADE(已知)∴=∠ADE()又∵∠ADE=46°,(已知),∴=23°,而∠1=23°(已知).∴∥()22.某工程队承包了一段全长1957米的隧道工程,甲乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲乙两组共掘进57米,那么甲乙两个班组平均每天各掘进多少米?23.已知如图,四边形ABCD坐标为A(9,0),B(5,1),C(5,4),D(2,4).(1)请在边长为1的小正方形组成的网格中建立平面直角坐标系,然后在平面直角坐标系中画出四边形ABCD.(2)求四边形ABCD的面积.24.某市对2015年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为正整数)整理后,绘制了如图所示的条形统计图,请你根据图中所提供的信息,回答下列问题:(1)该市共抽取了名学生的数学成绩进行分析;(2)若不低于80分为优秀,则该市2015年初升高数学考试成绩的优秀率为;(3)该市2015年共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数一共有多少人?25.已知,如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明(温馨提示:添加适当辅助线)(1)在图1中,∠APC与∠PAB,∠PCD之间的关系是:.(2)在图2中,∠APC与∠PAB,∠PCD之间的关系是:.(3)在图3中,∠APC与∠PAB,∠PCD之间的关系是:.(4)在图4中,∠APC与∠PAB,∠PCD之间的关系是:.(5)在图中,求证:.26.某厂家生产三种不同型号的电视机,甲,乙,丙出厂价分别为1500元,2100元,2500元.(1)某商场同时从该厂购进其中两种不同型号的电视机共50台,正好用去90000元,可有几种进货方案(写出演算步骤)?(2)若该商场销售甲、乙、丙种电视机每台可分别获利150元,200元,250元,请你结合(1)的进货方案,如何进货可使销售时获利最多?参考答案与试题解析一、选择题,共10小题,每小题2分,共20分1.2的平方根是()A.B.C.4 D.±4【考点】平方根.【分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【解答】解:2的平方根是±.故选B【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列计算中,错误的是()A.+=2 B.﹣(+)=﹣C.|﹣|+2=+D.2﹣3=﹣1 【考点】实数的性质;算术平方根.【分析】根据二次根式的加减:系数相加被开方数不变,可得答案.【解答】解:A、系数相加被开方数不变,故A正确;B、﹣()=﹣﹣=﹣,故B正确;C、|﹣|+2=﹣+2=+,故C正确;D、系数相加被开方数不变,故D错误;故选:D.【点评】本题考查了二次根式的加减,同类二次根式相加减系数相加被开方数不变是解题关键.3.下列说法中,正确的是()A.1的平方根是1 B.0没有立方根C.的平方根是±2 D.﹣1没有平方根【考点】立方根;平方根.【分析】直接根据平方根和立方根的意义和性质判断即可.【解答】解:由平方根的性质得,1的平方根是±1,所以A错误∵,∴的平方根是±,所以C错误,﹣1没有平方根,所以D正确,根据立方根的性质得,0的立方根是0,所以B错误,故选D【点评】此题是立方根和平方根题目,主要考查了平方根和立方根的性质,解本题的关键是熟记平方根和立方根的性质.4.下列方程组中,是二元一次方程组的是()A. B.C. D.【考点】二元一次方程组的定义.【分析】根据二元一次方程组的定义进行判断.【解答】解:A、该方程中的第一个方程是分式方程,故本选项错误;B、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误;C、该方程组符合二元一次方程组的定义,故本选项正确;D、该方程组属于二元二次方程组,故本选项错误;故选:C.【点评】本题考查了二元一次方程组的定义;二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.5.已知:如图,直线a∥b,AC⊥AB于A,AC交直线b于点C,∠1=46°,则∠2的度数是()A.50°B.45°C.44°D.30°【考点】平行线的性质;垂线.【分析】先根据平行线的性质,求得∠B的度数,再根据直角三角形的性质,求得∠2的度数.【解答】解:∵直线a∥b,∠1=46°,∴∠B=∠1=46°,又∵AC⊥AB,∴∠2=90°﹣∠B=44°.故选(C)【点评】本题主要考查了平行线的性质以及垂线的定义,解决问题的关键是掌握:两条平行线被第三条直线所截,同位角相等.6.在实数,,﹣,,3.020020002…点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴4个单位长,点P的坐标是()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)【考点】点的坐标.【分析】根据平面直角坐标系中点的坐标的几何意义解答即可.【解答】解:∵点P位于y轴左方,∴点的横坐标小于0,∵距y轴3个单位长,∴点P的横坐标是﹣3;又∵P点位于x轴上方,距x轴4个单位长,∴点P的纵坐标是4,∴点P的坐标是(﹣3,4).故选B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.把不等式组的解在数轴上表示出来,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据解不等式组的方法,可得不等式组的解集,根据不等式组的解集在数轴上的表示方法,可得答案.【解答】解:,解得,故选:B.【点评】考查了解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.我县某初中七年级进行了一次数学测验,参加人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是()A.抽取前100名同学的数学成绩B.抽取后100名同学的数学成绩C.抽取(1)(2)两班同学的数学成绩D.抽取各班学号为6号的倍数的同学的数学成绩【考点】抽样调查的可靠性.【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:参加人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是抽取各班学号为6号的倍数的同学的数学成绩,故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.10.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组 B.9组C.8组D.7组【考点】频数(率)分布表.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为141,最小值为50,它们的差是141﹣50=91,已知组距为10,那么由于=9.1,故可以分成10组.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.二、填空题,共8个小题,每小题2分,共16分.11.= 2 .【考点】二次根式的性质与化简.【专题】计算题.【分析】利用=|a|,再根据绝对值的意义化简.【解答】解:=|﹣2|=2.故答案为:2.【点评】二次根式的结果一定为非负数.12.已知,如图,AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为25°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠DCE=∠ADC=45°,再由∠1=20°即可得出结论.【解答】解:∵AD∥BE,∠DCE=45°,∴∠DCE=∠ADC=45°.∵∠1=20°,∴∠2=∠ADC﹣∠1=45°﹣20°=25°.故答案为:25°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.13.若点P(a+1,a﹣2)在x轴上,则点P的坐标是(3,0).【考点】点的坐标.【分析】根据x轴上点的纵坐标为0列方程求出a的值,然后求解即可.【解答】解:∵点P(a+1,a﹣2)在x轴上,∴a﹣2=0,所以,a+1=2+1=3,所以,点P的坐标为(3,0).故答案为:(3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征,需熟记.14.如果不等式ax≤2的解集是x≥﹣4,则a的值为a=﹣.【考点】不等式的解集.【分析】根据不等式的解集,可得答案.【解答】解:由ax≤2的解集是x≥﹣4,得x≥,=﹣4,解得a=﹣,故答案为:a=﹣.【点评】本题考查了不等式的解集,利用不等式的解集得出关于a的方程是解题关键.15.一个扇形统计图中,扇形A、B、C、D的面积之比为2:3:3:4,则最大扇形的圆心角为120°.【考点】扇形统计图.【分析】因为扇形A,B,C,D的面积之比为2:3:3:4,所以其所占扇形比分别为、、、,则最大扇形的圆心角度数可求.【解答】解:∵扇形A,B,C,D的面积之比为2:3:3:4∴其所占扇形比分别为、、、∵<=<,∴最大扇形的圆心角为:360°×=120°.故答案为:120°.【点评】此题考查了扇形统计图及相关计算.圆心角的度数=360°×该部分占总体的百分比是解题关键.16.一元一次不等式﹣x≥2x+3的最大整数解是﹣1 .【考点】一元一次不等式的整数解.【分析】首先移项,然后合并同类项,系数化为1,即可求得不等式的解.【解答】解:移项得:﹣x﹣2x≥3即﹣3x≥3,解得x≤﹣1,∴不等式﹣x≥2x+3的最大整数解是﹣1,故答案为:﹣1【点评】本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键.17.若方程组的解是方程3x+my=﹣1的一个解,则m= ﹣7 .【考点】二元一次方程组的解;二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【解答】解:,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程得:6+m=﹣1,解得:m=﹣7,故答案为:﹣7【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=6时,x的值为.【考点】整式的混合运算;实数的运算.【专题】新定义.【分析】结合题中所给的运算法则,将=6化简为2x×x﹣(﹣x)×x=6,然后进行求解即可.【解答】解:∵=6,∴2x×x﹣(﹣x)×x=6,∴3x2=6,∴x=±.故答案为:±.【点评】本题考查了整式的混合运算,解答本题的关键在于熟读题意,然后结合题中所给的运算法则,将=6化简为2x×x﹣(﹣x)×x=6,进行求解.三、解答题,共8个小题,共64分19.已知方程组与的解相同,试求a+b的值.【考点】二元一次方程组的解.【分析】根据题意先解方程组,再求a,b的值即可.【解答】解:依题意可有,解得,所以,有,解得,因此a+b=3﹣=.【点评】本题考查了二元一次方程组的解,掌握二元一次方程组的解法是解题的关键.20.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{ ①,③,④,⑦,⑧,…}.无理数集合:{ ②,⑤,⑥,…}.负实数集合:{ ①,④,⑧,…}.【考点】实数.【分析】根据有理数,无理数,负实数的定义求解即可.【解答】解:有理数集合:{①,③,④,⑦,⑧,…};无理数集合:{②,⑤,⑥,…};负实数集合:{①,④,⑧,…}.故答案为①,③,④,⑦,⑧,…;②,⑤,⑥,…;①,④,⑧,….【点评】此题考查了实数,熟练掌握各自的定义是解本题的关键.21.已知,如图,∠ADE=46°,DF平分∠ADE,∠1=23°,求证:DF∥BE.请你根据已知条件补充推理过程,并在相应括号内注明理由.证明:∵DF平分∠ADE(已知)∴∠FDE =∠ADE(角平分线定义)又∵∠ADE=46°,(已知),∴∠FDE =23°,而∠1=23°(已知).∴DF ∥BE (内错角相等,两直线平行)【考点】平行线的判定.【分析】根据平分线的定义可得出∠FDE=∠ADE,根据∠ADE的度数即可得出∠FDE的度数,再根据∠1=23°即可得出∠FDE=∠1,再根据平行线的判定定理即可得出结论.【解答】证明:∵DF平分∠ADE(已知),∴∠FDE=∠ADE(角平分线定义).又∵∠ADE=46°(已知),∴∠FDE=23°,而∠1=23°(已知),∴∠FDE=∠1,∴DF∥BE(内错角相等,两直线平行).故答案为:∠FDE;角平分线定义;∠FDE;DF;BE;内错角相等,两直线平行.【点评】本题考查了平行线的判定,解题的关键是找出∠FDE=∠1.本题属于基础题,难道不大,解决该题型题目时,熟练掌握平行线的判定定理是关键.22.某工程队承包了一段全长1957米的隧道工程,甲乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲乙两组共掘进57米,那么甲乙两个班组平均每天各掘进多少米?【考点】二元一次方程组的应用.【分析】设甲班平均每天掘进x米、乙班平均每天掘进y米,根据“甲组比乙组每天多掘进0.5米,经过6天施工,甲乙两组共掘进57米”列方程组求解可得.【解答】解:设甲班平均每天掘进x米、乙班平均每天掘进y米,根据题意,得,解之,得:,答:甲、乙两个班组平均每天分别掘进5米、4.5米.【点评】本题主要考查二元一次方程组的实际应用,弄清题意挖掘题目蕴含的相等关系,据此列出方程组是解题的关键.23.已知如图,四边形ABCD坐标为A(9,0),B(5,1),C(5,4),D(2,4).(1)请在边长为1的小正方形组成的网格中建立平面直角坐标系,然后在平面直角坐标系中画出四边形ABCD.(2)求四边形ABCD的面积.【考点】坐标与图形性质.【分析】(1)建立平面直角坐标系,根据点的坐标确定点A、B、C、D的位置,然后顺次连接即可;(2)分割成两个三角形即可求得.【解答】解:(1)右下边的图形即为所求.(2)根据题意,可知:S=×3×4+×3×3=10.5.【点评】本题考查了坐标与图形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.某市对2015年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为正整数)整理后,绘制了如图所示的条形统计图,请你根据图中所提供的信息,回答下列问题:(1)该市共抽取了300 名学生的数学成绩进行分析;(2)若不低于80分为优秀,则该市2015年初升高数学考试成绩的优秀率为35% ;(3)该市2015年共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数一共有多少人?【考点】条形统计图;用样本估计总体.【分析】(1)从表中读出学生数,相加可得学生总数;(2)从表中成绩这一坐标中先找到80分以上(包括80分)的人数,再除以总数,得出优生率.(3)先从表中查出及格率,再计算全市共有22000人的及格人数.【解答】解:(1)根据题意有30+35+45+60×2+70=300;故答案为:300;(2)从表中可以看出80分以上(包括80分)的人数有35+70=105,共300人;所以优生率是105÷300=35%;故答案为:35%.(3)从表中可以看出及格人数为300﹣30﹣60=210,则及格率=210÷300=70%,所以22000人中的及格人数是22000×70%=15400(名);答:全市及格的人数有15400人.【点评】本题是一道利用统计知识解答实际问题的重点考题,计算量略大,难度中等.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.25.已知,如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明(温馨提示:添加适当辅助线)(1)在图1中,∠APC与∠PAB,∠PCD之间的关系是:∠APC+∠PAB+∠PCD=360°.(2)在图2中,∠APC与∠PAB,∠PCD之间的关系是:∠APC=∠PAB+∠PCD .(3)在图3中,∠APC与∠PAB,∠PCD之间的关系是:∠PAB=∠APC+∠PCD .(4)在图4中,∠APC与∠PAB,∠PCD之间的关系是:∠PCD=∠APC+∠PAB .(5)在图 2 中,求证:∠APC=∠PAB+∠PCD .【考点】平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,同旁内角互补,即可求得答案;(2)首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,内错角相等,即可求得答案;(3)由AB∥CD,根据两直线平行,同位角线相等,以及三角形外角的性质,即可求得答案;(4)由AB∥CD,根据两直线平行,同位角线相等,以及三角形外角的性质,即可求得答案.【解答】解:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PAB=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.证明:过P点作PE∥AB,∴∠1=∠PAB.又∵AB∥CD,PE∥CD,∴∠2=∠PCD,∴∠1+∠2=∠PAB+∠PCD,而∠APC=∠1+∠2,∴∠APC=∠PAB+∠PCD.故答案为:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PAB=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.【点评】此题考查了平行线的性质与三角形外角的性质.解题的关键是掌握两直线平行,同旁内角互补,两直线平行,内错角相等以及两直线平行,同位角相等定理的应用与辅助线的作法.26.某厂家生产三种不同型号的电视机,甲,乙,丙出厂价分别为1500元,2100元,2500元.(1)某商场同时从该厂购进其中两种不同型号的电视机共50台,正好用去90000元,可有几种进货方案(写出演算步骤)?(2)若该商场销售甲、乙、丙种电视机每台可分别获利150元,200元,250元,请你结合(1)的进货方案,如何进货可使销售时获利最多?【考点】二元一次方程组的应用.【分析】(1)设购进甲型电视机x台,乙型电视机y台,丙型电视机z台,分①只购进甲、乙两种不同型号的电视机、②只购进甲、丙两种不同型号的电视机、③只购进乙、丙两种不同型号的电视机三种情况考虑,根据三种型号电视机的出厂价、购进台数以及购机的总花费为90000元即可得出二元一次方程组,解方程组后再根据x、y、z均为正整数即可得出结论;(2)根据总利润=每台利润×购进台数即可求出各购机方案的利润,比较后即可得出结论.【解答】解:(1)设购进甲型电视机x台,乙型电视机y台,丙型电视机z台,①当购进甲、乙两种不同型号的电视机时,,解得:;②当购进甲、丙两种不同型号的电视机时,,解得:;③当购进乙、丙两种不同型号的电视机时,,解得:(舍去).综上所述:可有两种进货方案,方案一:购进甲型电视机25台、乙型电视机25台;方案二:购进甲型电视机35台、丙型电视机15台.(2)当选择方案一时:利润=150×25+200×25=8750(元);当选择方案二时:利润=150×35+250×15=9000(元).∵8750<9000,∴购进甲型电视机35台、丙型电视机15台可使销售时获利最多.【点评】本题考查了二元一次方程组的应用,根据数量关系列出二元一次方程组是解题的关键.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (31)
2020-2021学年七年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算(2x)2的结果是()A.2x2B.4x2C.4x D.2x解:(2x)2=22×x2=4x2.故选:B.2.下列语句中正确的是()A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角解:A、相等的角不一定是对顶角,是假命题;B、有公共顶点且相等的角不一定是对顶角,错误;C、有公共顶点的两个角不一定是对顶角,错误;D、角的两边互为反向延长线的两个角是对顶角,正确;故选:D.3.下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选:B.4.如果一个角的余角是30°,那么这个角的补角的度数是()A.30°B.60°C.90°D.120°解:由题意,得:180°﹣(90°﹣30°)=180°﹣60°=120°.故这个角的补角的度数是120°.故选:D.5.若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.57米D.88米解:把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选:C.6.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤解:①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确;故选:A.7.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.8.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为()A.35°B.40°C.105°D.145°解:∵CD∥AB,∠B=40°,∠A=105°,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.故选:D.9.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A.B.C.D.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m.故选:D.10.设a=x﹣2017,b=x﹣2019,c=x﹣2018,若a2+b2=34,则c2的值是()A.16B.12C.8D.4解:∵a=x﹣2017,b=x﹣2019,a2+b2=34,∴(x﹣2017)2+(x﹣2019)2=34,∴(x﹣2018+1)2+(x﹣2018﹣1)2=34,∴(x﹣2018)2+2(x﹣2018)+1+(x﹣2018)2﹣2(x﹣2018)+1=34,∴2(x﹣2018)2=32,∴(x﹣2018)2=16,又c=x﹣2018,∴c2=16.故选:A.二、填空题(每小题4分,6小题共24分)11.(4分)如果a x•a3=a5,那么x=2.解:由题意,得x+3=5,解得x=2,故答案为:2.12.(4分)在关系式y=3x﹣1中,当x由1变化到5时,y由2变化到14.解:当x=1时,代入关系式y=3x﹣1中,得y=3﹣1=2;当x=5时,代入关系式y=3x﹣1中,得y=15﹣1=14.故答案为:2,14.13.(4分)如图,直线l1∥l2,被直线l所截,如果∠1=60°,那么∠2的度数为120°.解:∵直线l1∥l2,被直线l所截,∠1=60°,∴∠2=180°﹣60°=120°.故答案为:120°.14.(4分)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.(4分)已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是∠COD,∠BOE.解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠COB=∠AOC=90°,∴∠AOD+∠COD=∠AOD+∠BOE=90°,∴与∠AOD互余的角是∠COD,∠BOE.故答案为:∠COD,∠BOE.16.(4分)设4x2+mx+121是一个完全平方式,则m=±44.解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣2x3y2)3÷(2x2y)解:原式=﹣8x9y6÷2x2y=﹣4x7y5.18.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=1 4.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=14时,原式=4×14−4=1−4=−3.19.(6分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)若一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.21.(7分)已知y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,(1)求a的值;(2)当x=1时,求y的值.解:(1)由y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,得﹣1﹣(a﹣1)+2a﹣3=0,解得a=3;(2)函数解析式为y=﹣x2+2x+3,当x=1时,y=﹣1+2+3=4.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.24.(9分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76﹣64)÷1.2=10(千克)∴小明从批发市场共购进50千克西瓜.(3)76﹣50×0.8=76﹣40=36(元).即小明这次卖瓜赚了36元钱.25.(9分)小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD 交于O点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB②∠D+∠C=∠A+∠B.试探究下面问题:已知∠BAD的平分线AE与∠BCD的平分线CE交于点E,(1)如图2,若AB∥CD,∠D=30°,∠B=40°,则∠E=35°;(2)如图3,若AB不平行CD,∠D=30°,∠B=50°,则∠E=40°;(3)在总结前两问的基础上,借助图3,探究∠E与∠D、∠B之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.解:(1)∠E=12(∠D+∠B)=35°;(2)∠E=12(∠D+∠B)=40°;(3)∠D+∠B=2∠E.简单说明:∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E.故答案为:35°;40°.。
2020-2021学年度七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题
人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。
2020-2021学年天津市河北区七年级(下)期末数学试卷(学生版+解析版)
2020-2021学年天津市河北区七年级(下)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列方程组中是二元一次方程组的是( ) A .{x −y =42x +y =3B .{2x −y =42x +y =1C .{2x −y =52y +z =1D .{x +y =5x 2+y 2=122.(3分)下列调查中,调查方式选择合理的是( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查 B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查 C .为了了解一批袋装食品是否含有防腐剂,选择全面调查 D .为了了解某公园全年的游客流量,选择抽样调查3.(3分)一个容量为80的样本,最大值为50,最小值为9,取组距为10,则可以分成( ) A .4组B .5组C .9组D .10组4.(3分)下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线. A .1个B .2个C .3个D .4个5.(3分)下列计算正确的是( ) A .√−83=−2B .√(−3)2=−3C .√4=±2D .√−1=−16.(3分)在平面直角坐标系中,点(﹣1,m 2+1)一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)已知点P (2m +4,m ﹣1),点Q (2,5),直线PQ ∥y 轴,点P 的坐标是( ) A .(2,2)B .(16,5)C .(2,﹣2)D .(﹣2,5)8.(3分)若关于x 的不等式组{−12(x −a)>0x −1≥2x−13至多有2个整数解,且关于y 的方程y =6a−1的解为整数,则符合条件的所有整数a 的和为( ) A .﹣3B .1C .7D .8二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)把方程5x﹣2y=3改写成用含x的式子表示y的形式是:.10.(3分)关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是.11.(3分)已知a>b,则−12a+c−12b+c(填>、<或=).12.(3分)关于x、y的方程3x+2y=7的正整数解为.13.(3分)已知x=2,y=0与x=﹣3,y=5都是方程y=kx+b的解,则k+b的值为.14.(3分)解方程组{x+y+z=12x+2y−z=63x−y+z=10时,消去字母z,得到含有未知数x,y的二元一次方程组是.15.(3分)商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车.设售出自行车x辆,则用不等式表示为.16.(3分)若方程组{x−(c+3)xy=3x a−2−y b+3=4是关于x,y的二元一次方程组,则代数式a+b+c的值是.三、解答题:本大题共6小题,共52分,解答应写出文字说明,演算步骤或证明过程.17.(8分)解不等式组:{x−3(x−2)≥4①1+2x3≥x−1②,并在数轴上表示它的解集.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.18.(8分)某校征求家长对某一事项的意见,随机抽取该校部分家长,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该事项的态度,将结果绘制成两幅不完整的统计图,根据图中提供的信息,解决下列问题:(Ⅰ)这次共抽取了名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(Ⅱ)将条形统计图补充完整;(Ⅲ)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?19.(8分)甲、乙两人相距6km,两人同时出发相向而行,1小时相遇,同时出发同向而行,甲3小时可追上乙.两人的平均速度各是多少?20.(8分)如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=35°,求∠BFC的度数.21.(10分)如图,在平面直角坐标系中,点A坐标为(0,3),点B坐标为(2,﹣1).(Ⅰ)点C在第一象限内,AC∥x轴,将线段AB进行适当的平移得到线段DC,点A的对应点为点D,点B的对应点为点C,连接AD,若三角形ACD的面积为12,求线段AC 的长;(Ⅱ)在(Ⅰ)的条件下,连接OD,P为y轴上一个动点,若使三角形P AB的面积等于三角形AOD的面积,求此时点P的坐标.22.(10分)为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(Ⅰ)篮球和排球的单价分别是多少元?(Ⅱ)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?如果你是校长,从节约资金的角度来谈谈你会选择哪种方案并说明理由.2020-2021学年天津市河北区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列方程组中是二元一次方程组的是( ) A .{x −y =42x +y =3B .{2x −y =42x +y =1C .{2x −y =52y +z =1D .{x +y =5x 2+y 2=12【解答】解:A 、这个方程组符合二元一次方程组的定义,故此选项符合题意; B 、2x −y =4是分式方程,故此选项不符合题意;C 、有三个未知数,是三元一次方程组,故此选项不符合题意;D 、第二个方程是x 2+y 2=12二次的,故此选项不符合题意. 故选:A .2.(3分)下列调查中,调查方式选择合理的是( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查 B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查 C .为了了解一批袋装食品是否含有防腐剂,选择全面调查 D .为了了解某公园全年的游客流量,选择抽样调查【解答】解:A .为了了解某一品牌家具的甲醛含量,适合抽样调查,故选项A 不符合题意;B .为了了解神舟飞船的设备零件的质量情况,意义重大,适合普查,故选项B 不符合题意;C .为了了解一批袋装食品是否含有防腐剂,适合抽样调查,故选项C 不符合题意;D .为了了解某公园全年的游客流量,适合抽样调查,故选项D 符合题意; 故选:D .3.(3分)一个容量为80的样本,最大值为50,最小值为9,取组距为10,则可以分成( ) A .4组B .5组C .9组D .10组【解答】解:(50﹣9)÷10=4.1>4,故分成5组较好. 故选:B .4.(3分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)经过直线外一点,有且只有一条直线与这条直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种,原来的说法正确;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.5.(3分)下列计算正确的是()3=−2B.√(−3)2=−3C.√4=±2D.√−1=−1 A.√−83=−2,因此选项A正确;【解答】解:√−8√(−3)2=|﹣3|=3,因此选项B不正确;√4=2,因此选项C不正确;√−1无意义,因此选项D不正确;故选:A.6.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.7.(3分)已知点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,点P的坐标是()A.(2,2)B.(16,5)C.(2,﹣2)D.(﹣2,5)【解答】解:∵点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,∴2m+4=2,且m﹣1≠5,∴m=﹣1,∴P(2,﹣2),故选:C .8.(3分)若关于x 的不等式组{−12(x −a)>0x −1≥2x−13至多有2个整数解,且关于y 的方程y =6a−1的解为整数,则符合条件的所有整数a 的和为( ) A .﹣3B .1C .7D .8【解答】解:不等式组{−12(x −a)>0x −1≥2x−13整理得{x <a x ≥2,∵不等式组至多2个整数解, ∴a ≤4,∵关于y 的方程y =6a−1的解为整数, ∴a =﹣5,﹣2,﹣1,0,2,3,4,7, ∴整数a 为﹣5,﹣2,﹣1,0,2,3,4,∴符合条件的所有整数a 的和为﹣5﹣2﹣1+0+2+3+4=1. 故选:B .二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)把方程5x ﹣2y =3改写成用含x 的式子表示y 的形式是: y =5x−32. 【解答】解:5x ﹣2y =3, 移项得:﹣2y =3﹣5x , 系数化1得:y =−3−5x 2=5x−32. 故答案为:y =5x−32. 10.(3分)关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是 ﹣1≤x <3 .【解答】解:根据数轴可知:不等式组的解集是﹣1≤x <3, 故答案为:﹣1≤x <3.11.(3分)已知a >b ,则−12a +c < −12b +c (填>、<或=). 【解答】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .12.(3分)关于x 、y 的方程3x +2y =7的正整数解为 {x =1y =2 .【解答】解:∵3x +2y =7, ∴y =7−3x2, ∵要求的是正整数解, ∴x =1,或x =2,∴当x =1时,y =2;当x =2时,y =12,此时y 不是正整数,故不符合题意. 故答案为:{x =1y =2.13.(3分)已知x =2,y =0与x =﹣3,y =5都是方程y =kx +b 的解,则k +b 的值为 1 . 【解答】解:把x =2,y =0与x =﹣3,y =5代入方程y =kx +b 得: {0=2k +b 5=−3k +b , 解得{k =−1b =2,则k +b =1, 故答案为:1.14.(3分)解方程组{x +y +z =12x +2y −z =63x −y +z =10时,消去字母z ,得到含有未知数x ,y 的二元一次方程组是 {2x +3y =184x +y =16 .【解答】解:{x +y +z =12①x +2y −z =6②3x −y +z =10③,①+②得出2x +3y =18④, ②+③得出4x +y =16⑤,由④和⑤组成方程组{2x +3y =184x +y =16.故答案为:{2x +3y =184x +y =16.15.(3分)商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车.设售出自行车x 辆,则用不等式表示为 330x >300×121 .【解答】解:设两个月后自行车的销售款已超过这批自行车的进货款,已售出x 辆自行车,由题意得:330x >300×121,故答案为:330x >300×121. 16.(3分)若方程组{x −(c +3)xy =3x a−2−y b+3=4是关于x ,y 的二元一次方程组,则代数式a +b +c 的值是 ﹣2或﹣3 .【解答】解:若方程组{x −(c +3)xy =3x a−2−y b+3=4是关于x ,y 的二元一次方程组,则c +3=0,a ﹣2=1,b +3=1, 解得c =﹣3,a =3,b =﹣2. 所以代数式a +b +c 的值是﹣2. 或c +3=0,a ﹣2=0,b +3=1, 解得c =﹣3,a =2,b =﹣2. 所以代数式a +b +c 的值是﹣3.综上所述,代数式a +b +c 的值是﹣2或﹣3. 故答案为:﹣2或﹣3.三、解答题:本大题共6小题,共52分,解答应写出文字说明,演算步骤或证明过程. 17.(8分)解不等式组:{x −3(x −2)≥4①1+2x 3≥x −1②,并在数轴上表示它的解集.请结合解题过程,完成本题的解答. (Ⅰ)解不等式①,得 x ≤1 ; (Ⅱ)解不等式②,得 x ≤4 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为 1≤x ≤4 .【解答】解:{x −3(x −2)≥4①1+2x 3≥x −1②,(Ⅰ)解不等式①,得x ≤1; (Ⅱ)解不等式②,得x ≤4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x≤1.故答案为:(Ⅰ)x≤1;(Ⅱ)x≤4;(Ⅳ)x≤1.18.(8分)某校征求家长对某一事项的意见,随机抽取该校部分家长,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该事项的态度,将结果绘制成两幅不完整的统计图,根据图中提供的信息,解决下列问题:(Ⅰ)这次共抽取了60名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是18°;(Ⅱ)将条形统计图补充完整;(Ⅲ)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?【解答】解:(Ⅰ)9÷15%=60(人),360°×360=18°,故答案为:60,18°;(Ⅱ)“A非常支持”的人数为:60﹣3﹣9﹣36=12(人),补全条形统计图如下:(Ⅲ)2000×12+3660=1600(人),答:该学校共有2000名学生家长中表示“支持”的(A 类,B 类的和)人数大约有1600人.19.(8分)甲、乙两人相距6km ,两人同时出发相向而行,1小时相遇,同时出发同向而行,甲3小时可追上乙.两人的平均速度各是多少?【解答】解:设甲的速度是x 千米/小时,乙的速度是y 千米/小时,{x +y =63x −3y =6, 解得:{x =4y =2. 答:甲的速度是4千米/时,乙的速度是2千米/时.20.(8分)如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.(1)试说明:AB ∥CD ;(2)若∠2=35°,求∠BFC 的度数.【解答】证明:(1)∵BE 、DE 平分∠ABD 、∠BDC ,∴∠1=12∠ABD ,∠2=12∠BDC ;∵∠1+∠2=90°,∴∠ABD +∠BDC =180°;∴AB ∥CD ;(同旁内角互补,两直线平行)解:(2)∵DE 平分∠BDC ,∴∠2=∠FDE ;∵∠1+∠2=90°,∴∠BED =∠DEF =90°;∴∠3+∠FDE =90°;∴∠2+∠3=90°.∵∠2=35°,∴∠3=55°,∴∠BFC =180°﹣55°=125°.21.(10分)如图,在平面直角坐标系中,点A 坐标为(0,3),点B 坐标为(2,﹣1).(Ⅰ)点C 在第一象限内,AC ∥x 轴,将线段AB 进行适当的平移得到线段DC ,点A 的对应点为点D ,点B 的对应点为点C ,连接AD ,若三角形ACD 的面积为12,求线段AC 的长;(Ⅱ)在(Ⅰ)的条件下,连接OD ,P 为y 轴上一个动点,若使三角形P AB 的面积等于三角形AOD 的面积,求此时点P 的坐标.【解答】解:(Ⅰ)如图1中,连接BC .∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,∴S △ACD =S △ACB =12,∴12•AC •(3+1)=12, ∴AC =6.(Ⅱ)如图2中,连接OD .设P (0,m ).由(Ⅰ)可知C (6,3),D (4,7),由题意12•|m ﹣3|•2=12×3×4, 解得m =9或﹣3,∴P (0,9)或(0,﹣3).22.(10分)为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(Ⅰ)篮球和排球的单价分别是多少元?(Ⅱ)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?如果你是校长,从节约资金的角度来谈谈你会选择哪种方案并说明理由.【解答】解:(1)设排球单价为x 元,则篮球单价为5x 元,则依题意得x +5x =90,解得:x =15,∴5x =75,∴篮球和排球单价分别为75元和15元;(2)设篮球为m 个,则排球为(40﹣m )个,依题意得{m >2875m +15(40−m)≤2400, 解得:28<m ≤30,因为m 为非负整数,所以m 值为29,30∴方案有两种:方案①篮球购买29个,排球购买11个,所需资金为:75×29+15×11=2340(元);方案②篮球购买30个,排球购买10个,所需资金为:75×30+15×10=2400(元),∵2340<2400,∴从节约资金的角度,应该选方案①:购进篮球29个,排球11个.。
2021-2022学年-有答案-河北省邢台市某校七年级第一学期期中考试数学试卷
2021-2022学年河北省邢台市某校七年级第一学期期中考试数学试卷一、选择题1. 如果把向东走3km记作+3km,那么−2km表示的实际意义是( )A.向东走2kmB.向西走2kmC.向南走2kmD.向北走2km2. 下图几何体面的个数为()A.1B.2C.3D.43. |−4|=4表示的意义是()A.−4的相反数是4B.表示4的点到原点的距离是4C.4的相反数是−4D.表示−4的点到原点的距离是44. 如图,下面四种表示角的方法,其中正确的是()A.∠AB.∠BC.∠CD.∠D5. 若−(+a)=+(−2),则a的值是()A.12B.−12C.2D.−26. 在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这样做的依据是()A.两点之间线段最短B.两点确定一条直线C.三点确定一条直线D.四点确定一条直线7. 寒冬腊月的一天,某市的最低气温是−35∘C,最高气温是−24∘C,则这一天该市的温差为()A.9∘CB.10∘CC.11∘CD.59∘C8. 下面四幅图中,用量角器测得∠AOB度数是40∘的图是()A.B.C.D.9. 下面是佳佳的作业,他用了简便方法,依据是()A.乘法交换律B.乘法交换律与乘法分配律C.乘法分配律D.乘法结合律与乘法交换律10. 下列式子可读作:“负1,负3,正6,负8的和”的是( )A.−1+(−3)+(+6)−(−8)B.−1−3+6−8C.−1−(−3)−(−6)−(−8)D.−1−(−3)−6−(−8)11. 如图,点A ,B ,C ,D ,O 都在方格子的格点上,若△COD 是由△AOB 绕点O 按顺时针方向旋转得到的,则旋转的角度为( )A.135∘B.90∘C.60∘D.45∘12. 在−0.1428中用数字3替换其中的一个非0数码后,使所得的数最小,则被替换的数字是( )A.8B.3C.2D.113. 用直尺和圆规作 ∠HDG =∠AOB 的过程中,弧①是( )A.以点D 为圆心,以DN 长为半径画弧B.以点D 为圆心,以EF 长为半径画弧C.以点M 为圆心,以DN 长为半径画弧D.以点M 为圆心,以EF 长为半径画弧14. 一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是( )A.(13)99mB.(23)99mC.(13)100mD.(23)100m 二、填空题如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是________.一副三角板按如图方式摆放,若∠α=21∘36′,则∠β的度数为________.只用度表示∠α的补角为________∘.现有七个数−1,−2,−2,−4,−4,−8,−8,将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m ,如图2给出了一种填法,此时m =________,在所有的填法中,m 的最大值为________.三、解答题解答下列问题:(1)如下图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2019,−15%,−0.618,712,−9,−23,0,3.14,−72.(2)上图中,这两个圈的重叠部分表示什么数的集合?如图,平面上有四个点A ,B ,C ,D ,根据下列语句画图:(1)画线段AC ,BD 交于E 点;(2)作射线BC ;(3)取一点P ,使点P 既在直线AB 上又在直线CD 上.在一条不完整的数轴上从左到右有点A,B,C ,其中 AB =2cm,BC =4cm ,如图所示,设点A,B,C 所对应的数的和是p .(1)若以B 为原点,2cm 长为一个单位长度,写出点A,C 所对应的数,并计算p 的值;(2)若原点O 为BC 的中点,以1cm 长为一个单位长度,求p .计算:(1)414−3.8+145+2.75;(2)−32−35÷(−7)+18×(−13)2.如图,C 为线段AD 上的一点,点B 为CD 的中点,且AD =8cm ,BD =1cm .(1)求AC 的长;(2)若点E 在直线AD 上,且EA =2cm ,求BE 的长.某水果超市最近新进了一批芒果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周芒果的售价情况和售出情况:(1)这一周超市售出的芒果单价最高的是星期________,最高单价是________元;(2)这一周超市出售此种芒果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种芒果,决定从下周一起推出两种促销方式:方式一:购买不超过5斤芒果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.张老师决定买35斤芒果,通过计算说明用哪种方式购买更省钱.已知将一副三角板(直角三角板OAB和直角三角板OCD)的两个顶点重合于点O,∠AOB=90○,∠COD=30○.(1)如图1,将直角三角板COD绕点O逆时针方向转动,当OB恰好平分∠COD时,∠AOC 的度数是________;(2)如图2,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由;(3)当三角板OCD绕点O继续转动到如图3所示的位置时,作射线OM平分∠AOC,射线ON平分∠BOD,请你求出此时钝角∠MON的度数.参考答案与试题解析2021-2022学年河北省邢台市某校七年级第一学期期中考试数学试卷一、选择题1.【答案】B【考点】正数和负数的识别【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:向东走3km记作+3km,那么−2km表示向西走2km,故选B.2.【答案】A【考点】认识立体图形【解析】本题考查认识立体图形.【解答】解,由图知此为球体,由1个面构成,故选A.3.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】解:根据绝对值的定义可知,|−4|=4表示的是−4的点到原点的距离是4.故选D.4.【答案】A【考点】角的概念【解析】此题暂无解析【解答】解:先表示出各个角,再根据角的表示方法选出即可.图中的角有∠A,∠ABC,∠BCD,∠ADC,即表示方法正确的有∠A.故选A.5.【答案】C【考点】去括号与添括号【解析】本题考查了去括号法则的应用.【解答】解:因为−(+a)=+(−2),即−a=−2,所以a=2.故选C.6.【答案】B【考点】直线的性质:两点确定一条直线【解析】此题暂无解析【解答】解:射击时是确定了缺口和瞄准点,即利用了两点确定一条直线. 故选B.7.【答案】C【考点】有理数的减法【解析】根据有理数的减法,即可解答.【解答】解:∵−24−(−35)=−24+35=11(∘C),∴这一天该市的温差为11∘C.故选C.8.【答案】A【考点】角的概念【解析】根据角的定义即可解决问题;【解答】A 、正确.∠AOB =40∘;B 、错误.点O ,边OA 的位置错误;C 、错误.缺少字母A ;D 、错误.点O 的位置错误;9.【答案】C【考点】有理数的乘法【解析】此题暂无解析【解答】解:原式中,(100−124)×(−6)=100×(−6)−124×(−6),符合(a +b)×c =a ×c +b ×c ,所以应用了乘法分配律.故选C .10.【答案】B【考点】有理数的加法正数和负数的识别【解析】将所列的四个数写成省略加号的形式即可得.【解答】解:∵ −1+(−3)+(+6)+(−8)=−1−3+6−8,∴ 读作“负1,负3,正6,负8的和”的是−1−3+6−8.故选B .11.【答案】B【考点】旋转的性质【解析】△COD 是由△AOB 绕点O 按逆时针方向旋转而得,由图可知,∠AOC 为旋转角,可利用△AOC 的三边关系解答.【解答】解:因为△COD 是由△AOB 绕点O 按逆时针方向旋转而得,所以OB =OD .因为旋转的角度是∠BOD 的大小,所以∠BOD =90∘,所以旋转的角度为90∘.故选B .12.【答案】D【考点】有理数大小比较【解析】对负数来说,绝对值大的反而小,因此用3代替其中的一个数字,使她的绝对值最小即为正确选项.【解答】解:逐个代替后这四个数分别为−0.3428,−0.1328,−0.1438,−0.1423. −0.3428的绝对值最大,即−0.3428最小,只有D 符合.故选D .13.【答案】D【考点】作一个角等于已知角【解析】此题暂无解析【解答】解:用直尺和圆规作 ∠HDG =∠AOB 的第一步是以点D 为圆心,以任意长为半径画弧,分别交DH ,DG 于点N ,M ,第二步的作图痕迹①的作法是以点M 为圆心,EF 长为半径画弧.故选D .14.【答案】C【考点】有理数的乘方【解析】此题暂无解析【解答】解:由题意可得,第100次剪完后剩下绳子的长度是:(1−23)(1−23)(1−23)⋯(1−23)(1−23)=(13)100m .故选C .二、填空题【答案】两点之间线段最短【考点】线段的性质:两点之间线段最短【解析】根据线段的性质可得两点之间线段最短.【解答】校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短,【答案】68∘24′,158.4【考点】角的计算【解析】此题暂无解析【解答】解:由图可知,∠α+∠β=180∘−90∘=90∘,所以∠β=90∘−∠α,∵∠α=21∘36′,∴∠β=68∘24′,∴∠α的补角为158∘24′=158.4∘.故答案为:68∘24′;158.4.【答案】64,256【考点】规律型:数字的变化类有理数的乘法【解析】此题暂无解析【解答】解:由图可知,m=−1×(−8)×(−4)×(−2)=64.观察图象,可得这7个数,有的被乘了1次,2次,3次,要使得每个圆内部的4个数之积相等且最大,所以−8,−8必须放在被乘两次的位置,与−8,−8同圆的只能为−1,−4,其中−4放在中心位置,如图:所以m=(−8)×(−8)×(−1)×(−4)=256.故答案为:64;256.三、解答题【答案】解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合.【考点】有理数的概念及分类【解析】(1)根据负数集和整数集填表即可,(2)根据负分数的定义即可得出答案;(3)先找出这组数据中的最大数和最小数,再把这两个数进行相加即可得出答案.【解答】解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合.【答案】解:(1)如图所示:(2)如图所示,(3)如图所示,【考点】直线、射线、线段【解析】(1)分别根据直线、射线、线段的定义作出图形即可.【解答】解:(1)如图所示:(2)如图所示,(3)如图所示,【答案】解:(1)若以B为原点,2cm长为一个单位长度,则A表示−1,C表示2,故p=−1+0+2=1.(2)若原点O为BC的中点,BC=4cm且以1cm长为一个单位长度,则C表示2,B表示−2,A表示−4,故p=−4−2+2=−4 .【考点】有理数的加法数轴【解析】此题暂无解析【解答】解:(1)若以B为原点,2cm长为一个单位长度,则A表示−1,C表示2,故p=−1+0+2=1.(2)若原点O为BC的中点,BC=4cm且以1cm长为一个单位长度,则C表示2,B表示−2,A表示−4,故p=−4−2+2=−4 .【答案】(1)解:原式=4.25−3.8+1.8+2.75=(4.25+2.75)+(−3.8+1.8)=7−2=5.(2)解:原式=−9+5+18×19=−9+5+2=−2.【考点】有理数的加减混合运算有理数的混合运算【解析】本题考查有理数的混合运算.【解答】(1)解:原式=4.25−3.8+1.8+2.75=(4.25+2.75)+(−3.8+1.8)=7−2=5.(2)解:原式=−9+5+18×19=−9+5+2=−2.【答案】解:(1)∵点B为CD的中点.∴CD=2BD.∵BD=1cm,∴CD=2cm.∵AD=8cm,∴AC=AD−CD=8cm−2cm=6cm.(2)∵AD=8cm,BD=cm,∴AB=7cm.当E在点A的左边时,如图①,则BE=BA+EA=7cm+2cm=9cm,当E在点A的右边时,如图②,则BE=AB−EA=7cm−2cm=5cm.故BE的长为9cm或5cm..【考点】两点间的距离【解析】此题暂无解析【解答】解:(1)∵点B为CD的中点.∴CD=2BD.∵BD=1cm,∴CD=2cm.∵AD=8cm,∴AC=AD−CD=8cm−2cm=6cm.(2)∵AD=8cm,BD=cm,∴AB=7cm.当E在点A的左边时,如图①,则BE=BA+EA=7cm+2cm=9cm,当E在点A的右边时,如图②,则BE=AB−EA=7cm−2cm=5cm.故BE的长为9cm或5cm..【答案】六,15(2)1×20−2×35+3×10−1×30+2×15+5×5−4×50=−195(元),(10−8)×(20+35+10+30+15+5+50)=2×165=330(元),−195+330=135(元),所以这一周超市出售此种芒果盈利135元.(3)方式一:(35−5)×12×0.8+12×5=348(元),方式二:35×10=350(元),∵ 348<350,∴ 选择方式一购买更省钱.【考点】有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】解:(1)由表格可得,这一周超市售出的芒果单价最高的是星期六,最高单价是15元.故答案为:六;15.(2)1×20−2×35+3×10−1×30+2×15+5×5−4×50=−195(元),(10−8)×(20+35+10+30+15+5+50)=2×165=330(元),−195+330=135(元),所以这一周超市出售此种芒果盈利135元.(3)方式一:(35−5)×12×0.8+12×5=348(元),方式二:35×10=350(元),∵ 348<350,∴ 选择方式一购买更省钱.【答案】75∘(2)不变,60∘.(∠AOB−∠COD)+∠COD根据图中所示∠MON=12(90∘−30∘)+30∘=60∘.=12(3)∠MOC=∠MOD+30∘,∠NOD=∠NOC+30∘,∵OM平分∠AOC,ON平分∠BOD,∴2(∠MOC+∠NOD)−30∘+90∘=360∘,∴∠MOC+∠NOD=150∘,∴∠MON=150∘−30∘=120∘.【考点】角的计算角平分线的定义【解析】利用三角板角的特征和角平分线的定义解答:(1)由图可得角之间的关系:∠BOD=∠COD,据此解答;90∘−∠COD,∠AOC=90∘−12(2)由图可得角之间的关系:∠MON=1(∠AOB−∠COD)+∠COD;2(3)由图可得角之间的关系;∠MON=∠MOC+∠NOD−30∘.【解答】解:(1)∠AOC=90∘−12∠COD=90∘−12×30∘=75∘.故答案为:75∘.(2)不变,60∘.根据图中所示∠MON=12(∠AOB−∠COD)+∠COD=12(90∘−30∘)+30∘=60∘.(3)∠MOC=∠OMD+30∘,∠NOD=∠NOC+30∘,∵OM平分∠AOC,ON平分∠BOD,∴2(∠MOC+∠NOD)−30∘+90∘=360∘,∴∠MOC+∠NOD=150∘,∴∠MON=150∘−30∘=120∘.。
2020-2021学年七年级(下)期末数学试卷(解析版)
2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。
2020-2021学年河北省保定市定州市七年级(下)期末数学试卷(解析版)
2020-2021学年河北省保定市定州市七年级(下)期末数学试卷一、选择题(共12个小题;每小题3分,共36分).1.16的算术平方根是()A.4B.±4C.8D.±82.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.要调查实验中学八年级周日的睡眠时间,选取调查对象最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名八年级学生4.下列各式中,正确的是()A.B.C.D.5.已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>6.不等式组的解集是()A.﹣2≤x≤3B.x<﹣2,或x≥3C.﹣2<x<3D.﹣2<x≤3 7.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°8.在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()A.﹣11<m<﹣4B.﹣7<m<﹣4C.m<﹣7D.m>﹣49.已知面积为8的正方形的边长为x,那么下列对x的大小的估计正确的是()A.1<x<3B.2<x<3C.3<x<4D.4<x<5 10.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元11.数学活动课上,张老师要将全班40名学生恰当的分成4人小组或6人小组,则分组方案有()A.1种B.2种C.3种D.4种12.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.比较大小0.5.14.已知关于x,y的二元一次方程组的解为,则a+2b的值是.15.已知A(1,0),B(0,2),点P在x轴上,且△PAB面积是5,则点P的坐标是.16.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出辆自行车.17.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17,则不等式x⊕4<2的解集为.三、解答下列各题(本题有8个小题共66分)19.(1)解方程组:(2)解方程组20.完成下列各题.(1)计算:;(2)解不等式:.并在数轴上表示解集.21.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.22.如图,已知∠A=∠C,AB∥DC,试说明∠E=∠F的理由.23.如图所示,△ABC在方格中,方格纸中每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若直线BC上有一点P,使△PAC的面积是△ABC面积的2倍,求出P点的坐标.24.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”前同样的电视每台x元,空调每台y元,根据题意,得.被墨水污染的条件是:.被墨水污染的第一个方程是:.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.26.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用(注:户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?参考答案一、选择题(本大题共12个小题;每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的算术平方根是()A.4B.±4C.8D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.解:∵4的平方是16,∴16的算术平方根是4.故选:A.2.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.解:点(﹣3,2)所在的象限在第二象限.故选:B.3.要调查实验中学八年级周日的睡眠时间,选取调查对象最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名八年级学生【分析】利用样本的代表性即可作出判断.解:随机抽样是简单和最基本的抽样方法,抽样时要注意样本的代表性和广泛性,选取该校一个班级的学生、选取该校50名男生、选取该校50名男生,这些对象都缺乏代表性和广泛性,得到的结果也缺乏准确性,故选D.4.下列各式中,正确的是()A.B.C.D.【分析】利用二次根式的性质=|a|和立方根的性质=a进行计算即可.解:A、=3,故原题计算错误;B、=,故原题计算错误;C、==3,故原题计算错误;D、=﹣2,故原题计算正确;故选:D.5.已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>【分析】根据不等式的性质解答即可.解:A、不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,故本选项错误;B、不等式a<b的两边同时乘以3再减去1,不等式仍成立,即3a﹣1<3b﹣1,故本选项错误;C、不等式a<b的两边同时乘以﹣3,不等式的符号方向改变,即﹣3a>﹣3b,故本选项正确;D、不等式a<b的两边同时除以3,不等式仍成立,即<,故本选项错误;故选:C.6.不等式组的解集是()A.﹣2≤x≤3B.x<﹣2,或x≥3C.﹣2<x<3D.﹣2<x≤3【分析】先求出各个不等式的解集,再求出这些不等式解集的公共部分即可.解:解不等式①,得:x>﹣2,解不等式②,得:x≤3,所以不等式组的解集是:﹣2<x≤3.故选:D.7.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°【分析】先根据平行线的性质,即可得到∠3的度数,再根据垂直的定义,即可得到∠2的度数.解:∵a∥b,∠1=64°,∴∠3=64°,又∵PA垂直于l于点P,∴∠2=90°﹣∠3=26°,故选:A.8.在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()A.﹣11<m<﹣4B.﹣7<m<﹣4C.m<﹣7D.m>﹣4【分析】首先根据平移表示出B点坐标,再根据B点所在象限列出不等式组,再解即可.解:∵点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,∴B(m+4,m+7),∵点B在第二象限,∴,解得:﹣7<m<﹣4,故选:B.9.已知面积为8的正方形的边长为x,那么下列对x的大小的估计正确的是()A.1<x<3B.2<x<3C.3<x<4D.4<x<5【分析】根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.解:根据题意,得正方形的边长是,∵4<8<9,∴2<<3,∴2<x<3.故选:B.10.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A 的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选:C.11.数学活动课上,张老师要将全班40名学生恰当的分成4人小组或6人小组,则分组方案有()A.1种B.2种C.3种D.4种【分析】设分成4人小组x组,6人小组y组,根据总人数共40人,即可得出关于x,y 的二元一次方程,结合x,y均为非负整数,即可得出分组方案的个数.解:设分成4人小组x组,6人小组y组,依题意得:4x+6y=40,∴x=10﹣y.又∵x,y均为非负整数,∴或或或,∴共有4种分组方案.故选:D.12.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【分析】设长方体长xcm,宽ycm,桌子的高为acm,由图象建立方程组求出其解就可以得出结论.解:设长方体长xcm,宽ycm,桌子的高为acm,由题意,得,解得:2a=152,∴a=76.故选:D.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.比较大小>0.5.【分析】首先计算出,再比较即可.解:=1,1>0.5,故答案为:>.14.已知关于x,y的二元一次方程组的解为,则a+2b的值是2.【分析】首先把x、y的值代入方程组,再把两个方程相减可得答案.解:把代入得,①﹣②得:a+2b═3﹣1=2,故答案为:2.15.已知A(1,0),B(0,2),点P在x轴上,且△PAB面积是5,则点P的坐标是(﹣4,0)或(6,0).【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又∵△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故答案为(﹣4,0)或(6,0).16.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出182辆自行车.【分析】设两个月售出x辆自行车,根据两个月后自行车的销售款已超过这批自行车的进货款,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最小整数值即可得出结论.解:设两个月售出x辆自行车,依题意,得:275x>250×200,解得:x>181,又∵x为正整数,∴x的最小值为182.故答案为:182.17.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=68°.【分析】根据平行线的性质求得∠CEF的度数,然后根据折叠的性质可得∠FEG=∠CEF,进而求得∠BEG的度数.解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17,则不等式x⊕4<2的解集为x<﹣5.【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.解:根据题意得:2x+12<2,解得:x<﹣5.故答案是:x<﹣5.三、解答下列各题(本题有8个小题共66分)19.(1)解方程组:(2)解方程组【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),把①代入②得:3y+12+y=16,解得:y=1,把y=1代入①得:x=5,则方程组的解为;(2),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则方程组的解为.20.完成下列各题.(1)计算:;(2)解不等式:.并在数轴上表示解集.【分析】(1)先利用算术平方根,立方根,有理数的乘方运算进行化简,然后再算加减;(2)先去分母,然后去括号,移项,合并同类项,系数化1求不等式的解集,然后再将不等式的解集表示在数轴上.解:(1)原式=﹣2﹣=﹣1;(2)去分母,得:2(x﹣2)≥3(3x﹣1)﹣12,去括号,得:2x﹣4≥9x﹣3﹣12,移项,得:2x﹣9x≥﹣3﹣12+4,合并同类项,得:﹣7x≥﹣11,系数化1,得:x≤,不等式的解集表示在数轴上为:21.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=A的人数,再补图即可;(3)计算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).22.如图,已知∠A=∠C,AB∥DC,试说明∠E=∠F的理由.【分析】根据平行线的性质定理和判定定理,即可解答.解:因为AB∥CD(已知),所以∠C=∠ABF(两直线平行,同位角相等).因为∠A=∠C(已知),所以∠A=∠ABF(等量代换).所以DA∥BC(内错角相等,两直线平行),所以∠E=∠F(两直线平行,内错角相等).23.如图所示,△ABC在方格中,方格纸中每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若直线BC上有一点P,使△PAC的面积是△ABC面积的2倍,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(m,﹣2),则PC=|1﹣m|,再根据三角形的面积公式得△ABC面积为×4×3=6,S△PBC=×PC×3=12,解得|1﹣m|=8,进而可得m的值,写出P的坐标即可.【解答】】解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(m,﹣2),则PC=|1﹣m|,∵△ABC面积为×4×3=6,∴S△PBC=×PC×3=12,解得|1﹣m|=8,∴m=﹣7或9,∴P点的坐标为(﹣7,﹣2)或(9,﹣2).24.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”前同样的电视每台x元,空调每台y元,根据题意,得.被墨水污染的条件是:同样的空调每台降价400元.被墨水污染的第一个方程是:x+y=5500.【分析】根据方程②可找出(y﹣400)表示每台空调在“五一”促销活动中的售价,进而可得出被墨水污染的条件为同样的空调每台降价400元,根据小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,可得出x+y=5500.解:∵设“五一”前同样的电视每台x元,空调每台y元,方程②为0.8x+2(y﹣400)=7200,∴(y﹣400)表示每台空调在“五一”促销活动中的售价,∴被墨水污染的条件是:同样的空调每台降价400元.∵小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,∴被墨水污染的第一个方程是:x+y=5500.故答案为:同样的空调每台降价400元;x+y=5500.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.【分析】(1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;(3)当∠O=60°时,根据平行线的性质,得出∠DCO=∠O=60°,再根据角平分线的定义,即可得到∠DCF=60°,据此可得∠DCO=∠DCF.解:(1)∵DE∥OB,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,(平角定义)∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,(角平分线定义)∴∠ECF=70°+40°=110°;(2)证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,(平角定义)∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,(等角的余角相等)即CG平分∠OCD.(3)结论:当∠O=60°时,CD平分∠OCF.当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.26.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用(注:户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米。
2020-2021初二数学下期末试卷(及答案)
2020-2021初二数学下期末试卷(及答案)一、选择题1.若(5-x)2=x﹣5,则x的取值范围是()A.x<52.若代数式x+1x-1B.x≤5C.x≥5D.x>5有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 3.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S∆AOB =S四边形DEOF中正确的有A.4个B.3个C.2个D.1个4.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x-k的图象大致是()A.B.C.D.5.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.±3B.3C.-3D.无法确定6.如图,以△Rt ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC的长等于()A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△P AD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.79.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD10.如图,在ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.611.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.812.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则y=kx-k的图象大致是()A.B.C.D.二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.在函数y=x-4x+1中,自变量x的取值范围是______.15.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.16.如图所示,将四根木条组成的矩形木框变成ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.17.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.18.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.19.已知a<0,b>0,化简(a-b)2=________20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.三、解答题21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:8(1)班8(2)班平均数(分)m91中位数(分)9090方差n29请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;22.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)学生甲学生乙数与代数9394空间与图形9392统计与概率8994综合与实践9086(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.如图所示,ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为a2=-a(a≤0),由此性质求得答案即可.【详解】∵(5-x)2=x-5,∴5-x≤0∴x≥5.故选C.【点睛】此题考查二次根式的性质:a2=a(a≥0),a2=-a(a≤0).2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.⎨∠BAD=∠ADE DEOF【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF =S△DAE,则S△ABF△-S AOF=S△DAE△-S AOF,即S△AOB=S四边形.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,△在ABF和△DAE中⎧AB=DA⎪⎪⎩AF=DE∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,形-∵BE >BC ,∴BA≠BE , 而 BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF △-S AOF =S △DAE △-S AOF ,∴S △AOB =S 四边DEOF ,所以(4)正确.故选 B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.B解析:B【解析】 【分析】先根据正比例函数 y = kx 的函数值 y 随 x 的增大而增大判断出 k 的符号,再根据一次函数 的性质进行解答即可. 【详解】解:Q 正比例函数 y = kx 的函数值 y 随 x 的增大而增大,∴ k >0, k <0 ,∴ 一次函数 y = x - k 的图象经过一、三、四象限.故选 B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出 k 的取值范围.5.C解析:C【解析】 【分析】根据一次函数的定义可得 k -3≠0,|k|-2=1,解答即可. 【详解】一次函数 y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为 1. 所以|k|-2=1, 解得:k=±3,因为 k -3≠0,所以 k≠3, 即 k=-3.故选:C .(62)+(62)=12,【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.B解析:B【解析】【分析】首选在AC上截取C G=AB=4,连接OG,利用SAS△可证ABO≌△GCO,根据全等三角形的性质可以得到:O A=OG=62,∠AOB=∠COG,则可证△AOG是等腰直角三角形,利用勾股定理求出AG=12,从而可得AC的长度.【详解】解:如下图所示,在AC上截取C G=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90︒,∴OB=OC,∠BAC=∠BOC=90︒,∴点B、A、O、C四点共圆,∴∠ABO=∠ACO,△在ABO△和GCO中,BA=CG{∠ABO=∠ACO,OB=OC∴△ABO≌△GCO,∴OA=OG=62,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90︒,∴∠AOG=∠AOB+∠BOG=90︒,∴△AOG是等腰直角三角形,∴AG=22∴AC=12+4=16.故选:B.【点睛】⨯ ⨯ 4 = 5;本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越 大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新河北省七年级(下)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.52.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直B.平行C.重合D.相交4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣16.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.47.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.11.不等式组的整数解共有()A.3个B.4个C.5个D.6个12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.36413.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个B.2个C.3个D.4个14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= .16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第象限.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.18.已知是二元一次方程组的解,则m+3n的立方根为.19.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在80分以上.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.22.解方程组:.23.解不等式组:,并在数轴上表示出不等式组的解集.24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,∠2=∠B又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°证法二:提示:如图3,过点C作DE∥AB.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率50≤x<60 20 0.1060≤x<70 28 b70≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 0.09110≤x<120 16 0.08(1)表中a和b所表示的数分别为:a ,b ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,共2个.故选A.2.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故A选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故B选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故C选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直B.平行C.重合D.相交【考点】平行线的性质.【分析】作出图形,然后根据两直线平行,同旁内角互补以及角平分线的定义可得∠1+∠2=90°,再根据三角形的内角和定理求出∠C=90°,从而得解.【解答】解:如图,∵a∥b,∴∠DAB+∠ABE=180°,∵AC、BC分别是角平分线,∴∠1=∠DAB,∠2=∠ABE,∴∠1+∠2=×180°=90°,∴∠C=180°﹣(∠1+∠2)=180°﹣90°=90°,∴AC⊥BC,∴同旁内角的平分线互相垂直,故选A.4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都减5,不等号的方向不变,故A错误;B、不等式的两边都加2,不等号的方向不变,故B错误;C、不等式的两边都乘以2,不等号的方向不变,故C正确;D、不等式的两边都除以3,不等号的方向不变,故D错误;故选:C.5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】二元一次方程的解.【分析】将方程的解代入方程得到关于k的一元一次方程,于是可求得k的值.【解答】解:将代入方程kx﹣y=3得:2k﹣1=3,解得k=2.故选:A.6.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.4【考点】平行线的性质.【分析】根据平行线的性质,平角等于180°对各小题进行验证即可得解.【解答】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,故(1)(2)正确;∵三角板是直角三角板,∴∠2+∠4=180°﹣90°=90°,故(3)正确;∴∠3+∠5=180°,∴∠4+∠5=180°,故(4)正确,综上所述,正确的个数是4.故选D.7.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.【解答】解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交【考点】坐标与图形性质.【分析】根据坐标与图形的性质可知,两点纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交.【解答】解:由题可知:MN两点的纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交,故选D.9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化﹣平移的有关结论进行求解.【解答】解:将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,相对把△ABC向左平移6个单位,再向下平移3个单位.故选:C.10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系:①长江比黄河长836千米;②黄河长度的6倍比长江长度的5倍多1284千米.【解答】解:设长江长x千米,黄河长y千米,根据长江比黄河长836千米,则x﹣y=836;根据黄河长度的6倍比长江长度的5倍多1284千米,则6y=5x+1284.可列方程组为.故选A.11.不等式组的整数解共有()A.3个B.4个C.5个D.6个【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,在取值范围内可以找到整数解.【解答】解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.364【考点】扇形统计图.【分析】利用扇形统计图得到男生所占的百分比为52%,然后用七年级学生总人数乘以这个百分比即可得到该校七年级男生人数.【解答】解:该校七年级男生人数=700×52%=364(人).故选D.13.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个B.2个C.3个D.4个【考点】不等式的性质.【分析】根据不等式的基本性质进行判断.【解答】解:①∵a>b,∴a﹣b>0.故①正确;②若c≤0时,ac≤bc.故②错误;③∵a>b>0,∴<.故③正确;④∵a>b>0,∴0<b<a,则b•b<ab,即b2<ab.故④错误.综上所述,正确的不等式是①③,共2个.故选:B.14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°【考点】条形统计图;扇形统计图.【分析】首先根据打篮球的人数是20人,占40%,求出总人数,用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.【解答】解:总人数是:20÷40%=50(人),360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.故选C.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= 2 .【考点】二次根式的乘除法.【分析】直接利用二次根式的性质进而化简求出即可.【解答】解:==2.故答案为:2.16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第二象限.【考点】点的坐标.【分析】根据x轴上点的纵坐标为0求出n,然后确定出点B的坐标,再根据各象限内点的坐标特征解答.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B(n﹣1,n+1)为(﹣1,1),∴点B位于第二象限.故答案为:二.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于 2 .【考点】角平分线的性质;平行线之间的距离.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判断出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=+=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.18.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】把x与y的值代入方程组求出m+3n的值,利用立方根定义计算即可.【解答】解:把代入方程组得:,①+②得:m+3n=8,则m+3n的立方根为2,故答案为:219.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对17 道题,成绩才能在80分以上.【考点】一元一次不等式的应用.【分析】利用答对一道得5分,答错一道扣2分,不答得0分,表示出所得分数以及所扣分数,进而得出答案.【解答】解:设这个同学答对x道题,故5x﹣2(20﹣1﹣x)>80,解得:x>16,故这个同学至少要答对17道题,成绩才能在80分以上.故答案为:17.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是60 .【考点】实数;规律型:数字的变化类.【分析】观察图形可知,每一排的数字的个数与排数相同,先求出前10排的数字的总个数,然后根据有序数对的实际意义写出第11排的第5个数即可.【解答】解:由图可知,前10排共有:1+2+3+4+5+6+7+8+9+10=55个,∵(11,5)表示第11排从左到右第5个数,∴(11,5)表示的实数是60.故答案为:60.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.【考点】实数的运算;绝对值;立方根;二次根式的性质与化简.【分析】根据乘方、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=6+﹣1+2+5=12+.22.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:5x=10,即x=2,将x=2代入①得:y=3,则原方程组的解是.23.解不等式组:,并在数轴上表示出不等式组的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.【解答】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B 两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°平角的定义∴∠A+∠B+∠ACB=180°等量代换证法二:提示:如图3,过点C作DE∥AB.【考点】平行线的性质;三角形内角和定理.【分析】(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;(2)根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;【解答】解:(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B,两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°,平角定义,∴∠A+∠B+∠ACB=180°,等量代换;故答案为:两直线平行,内错角相等,两直线平行,同位角相等,平角定义,等量代换.(2)如图,∵DE∥AB,则∠1=∠B,(两直线平行,内错角相等),∠2=∠A(两直线平行,内错角相等),又∵∠1+∠ACB+∠2=180°平角定义∴∠A+∠ACB+∠B=180°等量代换.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (+2 ,0 ),C→ D (+1,﹣2 );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?【考点】坐标确定位置;有理数的加减混合运算;整式的加减.【分析】(1)根据规定及实例可知B→C (+2,0),C→D(+1,﹣2);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)根据M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2)可知5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到答案.【解答】解:(1)∵向上向右走为正,向下向左走为负,∴图中B→C (+2,0),C→D(+1,﹣2);故答案为:+2,0,D,﹣2.(2)甲虫走过的路程为1+4+2+1+2=10(3)∵M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),∴5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,∴点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率50≤x<60 20 0.1060≤x<70 28 b70≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 0.09110≤x<120 16 0.08(1)表中a和b所表示的数分别为:a 40 ,b 0.14 ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)可先求出抽查的人数,根据50≤x<60这个分数段可求出抽查的人数为:20÷0.10=200人,根据频率=,可求出a和b的值.(2)根据(1)求出的a的值,画在图上就可以.(3)由70分以上频率和×20000,即可求出该市20000名九年级考生数学成绩为合格的学生人数.【解答】解:(1)抽查人数:20÷0.10=200(人),则a=200×0.20=40(人),b==0.14.(2)补全频数分布直方图,如图:(3)20000×(0.27+0.20+0.12+0.09+0.08)=15200(人).答:该市20000名九年级考生数学成绩为合格的学生约有15200人.27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【考点】一元一次不等式组的应用.【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.2016年8月29日。