勾股定理一定是直角三角形吗
勾股定理知识点总结
17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。
图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。
则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。
(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。
勾股定理还可以解决生产生活中的一些实际问题。
在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。
(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。
第17课第一章勾股定理2一定是直角三角形吗
※7.赖老师在一次“探究性学习”课中,设计了如下数表:
n
2
3
4
5
„
a„
b
4
6
8
10
„
c
22+1
32+1
42+1
52+1
„
(1)请你分别观察 a,b,c 与 n 之间的关系,并用含自然数 n(n>1)的代数式表示:
三角形.
① 2 , 3 , 5 ; ②1,1,2;③5,12,13;④6,7,8;⑤3,4,5
其中能作为直角三角形三边长的是:
(填序号).
6.如图,哪些是直角三角形,说说你的理由?
解:直角三角形有④,__________。
① ②
③
(1)由勾股定理可得三角形④的三边长的平方分
别为 10,10,20,得到 10+10=20,即三角形的两 ④
△勾股定理的逆定理: 如果三角形的两边的平方和等于第三边的______,那么这个三角形是直角三角形。
几何表达:∵������������������ + ������������������=������������������ ∴△ABC 是直角三角形(或∠C=90°)
△满足������������ + ������������ = ������������的三个正整数,称为勾股数。 常见的勾股数有:①3,4,5;②6,8,10;③9,12,15;④5,12,13;⑤10,24,
66
三、巩固练习
8. 因为0.32 + 0.42=0.52,所以以 0.3、0.4、0.5 为边长的三角形是直角三角形。
初中数学 勾股定理适用于锐角三角形吗
初中数学勾股定理适用于锐角三角形吗
是的,勾股定理同样适用于锐角三角形。
勾股定理是三角形中最基本的性质之一,它描述了直角三角形的关系。
然而,勾股定理并不仅限于直角三角形,而是适用于任何三角形,包括锐角三角形。
在锐角三角形中,勾股定理可以用来计算两个非直角边的夹角。
让我们来看看如何使用勾股定理来解决这个问题。
假设我们有一个锐角三角形ABC,其中∠C是一个锐角。
我们想要计算∠A和∠B之间的夹角。
首先,我们可以使用勾股定理计算边长。
假设边AC的长度为a,边BC的长度为b,边AB 的长度为c。
根据勾股定理,我们有:
c² = a² + b²
然后,我们可以使用三角函数来计算夹角。
对于锐角三角形,我们可以使用正弦、余弦或正切函数来计算角度。
在这种情况下,我们可以使用余弦函数来计算∠A和∠B之间的夹角。
根据余弦定理,我们有:
cos(∠A) = (b² + c² - a²) / (2bc)
cos(∠B) = (a² + c² - b²) / (2ac)
通过这两个余弦函数,我们可以计算出∠A和∠B的值。
需要注意的是,对于锐角三角形,夹角的值是小于90度的。
因此,使用余弦函数时,我们应该得到一个小于1的正数结果。
如果结果大于1,表示我们计算错误或者给出的边长不满足构成三角形的条件。
综上所述,勾股定理同样适用于锐角三角形。
它可以帮助我们计算夹角,并用于解决与锐角三角形相关的问题。
完整版)勾股定理知识点与常见题型总结
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
数学初二必背的知识点
数学初二必背的知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!数学初二必背的知识点数学源自古希腊语,是研究数量、结构、变化、空间以及信息等概念的一门学科。
初二数学--勾股定理讲义
初二数学 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在R t△AB C中,∠C=90°①若a=5,b=12,则c=___________; ②若a =15,c=25,则b =___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c =10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nﻩB 、n+1ﻩC 、n2-1ﻩD 、1n 2+(3)在R t△A BC 中,a,b,c为三边长,则下列关系中正确的是( )A.222a b c += B . 222a cb +=C. 222c b a += D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25ﻩﻩB 、14ﻩC 、7ﻩ ﻩD 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
《一定是直角三角形吗》勾股定理PPT
120
90
60
150
12
13
30
180
0
5
24
25 7
15
17
8
思考:从上述问题中,能发现什么结论吗? 如果三角形的三边长a,b,c满足a2+b2=c2,那么这
个三角形是直角三角形.
有同学认为测量结果可能有误差,不同意 这个发现.你觉得这个发现正确吗?你能给 出一个更有说服力的理由吗?
证明结论
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.
二 勾股数
概念学习
如果三角形的三边长a,b,c满足a2+b2=c
那么这个三角形是直角三角形. 满足a2+b2=c2的三个正整数,称为勾股数.
常见勾股数: 3,4,5;5,12,13;6,8,10;7,24,25;8,15 ,17;9,40,41;10,24,26等等.
勾股数拓展性质:
一组勾股数,都扩大相同倍数k,得到一组新数,这 组数同样是勾股数.
符合勾股定理的逆定理,所以这个三角形不是直角三角形.
(3) a:b: c=3:4:5; 解:设a=3k,b=4k,c=5k, 因为(3k)2+(4k)2=25k2,(5k)2=25k2, 所以(3k)2+(4k)2=(5k)2,根据勾股定理的逆定理,这个三角 形是直角三角形,∠C是直角.
归纳 根据勾股定理及其逆定理,判断一个三角形是不是直角三角形,只要看 两条较小边长的平方和是否等于最大边长的平方.
例2 下面以a,b,c为边长的三角形是不是直角三角形?如果是, 那么哪一个角是直角? (1) a=15 , b=8 ,c=17;
解:因为152+82=289,172=289,所以152+82=172,根据勾 股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
《一定是直角三角形吗》微课教学设计
《一定是直角三角形吗》教学设计一、教学内容及内容解析1.教学内容探索勾股定理逆定理,了解勾股数。
2.内容解析本课是北师大版数学八年级上册第一章勾股定理第二节《一定是直角三角形吗》一节的内容。
本节课主要是在上一节“勾股定理”之后,继续学习的一个直角三角形的判定定理,是前面知识的继续和深化。
我们知道如果有一个直角三角形,那么有两直角边的平方和等于斜边的平方。
将条件和结论反过来是否仍然成立呢?在探究勾股定理逆定理的过程中,主要能理解勾股定理逆定理实际上是直角三角形的一个判定方法,学生在探究过程中经历一般规律的发现过程,发展抽象思维能力。
能根据所给三角形三边的条件判断是否是直角三角形,弄清勾股定理和勾股定理逆定理之间的互逆关系。
二、教学目标1.理解勾股定理逆定理的具体内容及勾股数的概念。
2.能根据所给三角形三边的条件判断是否是直角三角形,弄清勾股定理和勾股定理逆定理之间的互逆关系。
3.经历一般规律的探索发现,发展学生的抽象思维能力。
三、教学重难点1.教学重点理解勾股定理逆定理的具体内容及勾股数的概念,能根据所给三角形三边的条件判断是否是直角三角形2.教学难点弄清勾股定理和勾股定理逆定理之间的互逆关系。
学科数学学期/学段:八年级上学期序号画面呈现讲解词大致流程1大家好,今天我们一起来学习北师大版,八年级上册第一章《一定是直角三角形吗》一节的内容!课题介绍2 准备一根用13个等距的结把它分成等长的12段的绳子,然后按以下要求多人同时操作或者借助工具进行操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,用量角器,测出这三角形中的最大角.发现这个角是多少度?按下暂停键,试一试。
古埃及人结绳得直角进行引入最大角的度数为90度。
古埃及人就是用这个方法来得到直角。
三角形三边长为3,4,5,其中较小两边的平方和等于第三边的平方,则这是一个直角三角形。
3那如果三角形的三边长是以下几组数据,1.这三组数都满足a2+b2=c2吗?请按下赞同建算一算。
【课件】一定是直角三角形吗++课件北师大版数学八年级上册
第一章 勾股定理
今天你学到了什么?
1. 如果三角形的三边长, , 满足2+2=2,
那么这个三角形是直角三角形.
2. 满足 + = 的三个正整数,称为勾股
数.
教学过程——课后巩固
第一章 勾股定理
完成相关作业
教学过程——结束新课
第一章 勾股定理
感谢观看
教学过程——典例解析
第一章 勾股定理
解:连接AC,
∵AB=8,∠B=90°,BC=6,
∴ = ,
在△ACD中,CD=24, AD=26
∴ = =
= =
∵ + =
∴ + =
∴△ACD是直角三角形.
∴S=S△ACD-S△ABC= × × −
× × =
∴这块土地的面积是96.
教学过程——课后反思
第一章 勾股定理
如果三角形的三边长为, , ,满足
2+2=2,则该三角形是直角三角形.
如果2+2>2是什么三角形?
如果2+2<2是什么三角形?
教学过程——课堂小结
AB,AC,BC,则△ABC 的形状是(
)
A.锐角三角形
C.钝角三角形
B.直角三角形
D.无法确定
教学过程——典例解析
认真阅读课本第9页例题,体会勾股
定理逆定理在解决实际问题中的应用.
第一章 勾股定理
教学过程——典例解析
例
第一章 勾股定理
有一块土地,如图所示,已知∠B=90°,
AB=8,BC=6,CD=24, AD=26,求这块土地的面积..
90°
八年级数学上册 第一章 勾股定理 2 一定是直角三角形
第一章勾股定理2. 一定是直角三角形吗一、依据新课标制定教学重点:学生已经了勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,理解勾股定理逆定理的具体内容。
依据新课标制定教学难点:本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路。
二、学习任务分析1. 教学目标:(1).理解勾股定理逆定理的具体内容及勾股数的概念;(2).能根据所给三角形三边的条件判断三角形是否是直角三角形;(3).经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力;(4).体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
三、教法学法1.教学方法:实验—猜想—归纳—论证本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情。
北师大版八年级数学上勾股定理
初中数学试卷勾股定理一 探索勾股定理(一) 勾股定理知识链接(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a 2+b 2=c 2 的变形有:a 2=c 2-b 2,b 2=c 2-a 2及c 2=a 2+b 2.(4)由于a 2+b 2=c 2>a 2,所以c >a ,同理c >b ,即直角三角形的斜边大于该直角三角形中的每一条直角边. 同步练习1.如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离是( )A .3B .4C .5D .62.(2014•乐山)如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为( )A .532B .543C .554D .5533.(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.7 C.5 D.5或74.(2013•六合区一模)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3 B.4 C.5 D.75.(2014•增城市一模)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.6.(2014•金华模拟)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠B=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.7.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm8.(2014•徐汇区二模)如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=5,BO=4,则AO 的长为.9.(2014•香坊区三模)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC 的面积为()A.16 B.18 C.24 D.3210.(2014•南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A ′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.11.(2014•房山区一模)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为5、10、13,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为______;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).2、29的格点△DEF;①利用构图法在答题卡的图2中画出三边长分别为13、5②计算△DEF的面积为______.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=22,PR=13,QR=17,则六边形AQRDEF的面积为______.(二)勾股定理证明知识链接(1)勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.(2)证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.同步练习1.用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2 C.c2=a2-2ab+b2 D.c2=(a+b)2.2.下列选项中,不能用来证明勾股定理的是()A. B. C. D.3.(2014•满洲里市模拟)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.14.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.1215、(2011•温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是______.6.由8个相同的直角三角形(图中带阴影的三角形)与中间的小正方形拼成的一个大正方形.如果最大的正方形的面积是25,最小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么222a3-333b3=______.7.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为____ __,该定理的结论其数学表达式是 ____ __.8.如图,网格中的图案是美国总统Garfield于1876年给出的一种验证某个著名结论的方法:(1)请你画出直角梯形EDBC绕EC中点O顺时针方向旋转180°的图案,你会得到一个美丽的图案.(阴影部分不要涂错).(2)若网格中每个小正方形边长为单位1,旋转后A、B、D的对应点为A′、B′、D′,求四边形ACA′E 的面积?(3)根据旋转前后形成的这个美丽图案,你能说出这个著名的结论吗?若能,请你写出这个结论.9.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.10..如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.(三)等腰直角三角形知识链接(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,两腰相等,斜边上中线、角平分线、斜边上的高,三线合一;(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r :R=1:2+1. 同步练习1.如图,在Rt △ABC 中,AB=AC ,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足为点E .若CD=25,则AD 的长是( )A .225B .22C .25 D .52.在△ABC 中,BC :AC :AB=1:1:2,则△ABC 是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形3.如图,等腰直角三角形ABC 中,AC=BC >3,点M 在AC 上,点N 在CB 的延长线上,MN 交AB 于点O ,且AM=BN=3,则S △AMO 与S △BNO 的差是( )A .9B .4.5C .0D .因为AC 、BC 的长度未知,所以无法确定4.(2011•万州区模拟)如图,△ACD 和△AEB 都是等腰直角三角形,∠EAB=∠CAD=90°,下列五个结论:①EC=BD ;②EC ⊥BD ;③S 四边形EBCD = 21EC •BD ;④S △ADE =S △ABC ;⑤△EBF ∽△DCF ;其中正确的有( )A .①②④⑤B .①②③④C .①②③⑤D .①②③④⑤5.如图,已知△ABC 是腰长为1的等腰直角三形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2015个等腰直角三角形的斜边长是____ __.6.如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .有下列结论:①∠DEO=45°;②△AOD ≌△COE ;③S 四边形CDOE = 21S △ABC ;④OD 2=OP •OC . 其中正确的结论序号为____ __.(把你认为正确的都写上)7.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,若∠1=20°,则∠2的度数为____ __.8.(2014•徐州模拟)如图,在△ABC 中,∠A=90°,∠C=45°,AB=6cm ,∠ABC 的平分线交AC 于点D ,DE ⊥BC ,垂足为E ,则DC+DE= ____ _cm .9.(2014•温州五校一模)如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,点E在BC边上,且CE=CD,连结AE、BD、DE.①求证:△ACE≌△BCD;②若∠CAE=25°,求∠BDE的度数.二能得到直角三角形吗(一)勾股定理的逆定理知识链接(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.同步练习1.(2012•广西)已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.② B.①② C.①③ D.②③2.(2012•连云港一模)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数()A.6 B.7 C.8 D.93.(2014•江西模拟)下列各三角形中,面积为无理数的是()A. B. C. D.4.下列能构成直角三角形三边长的是()A.1,1,2 B.5,8,10 C.5,12,13 D.6,7,85.(2012•松北区二模)如图△ABC中,AB=5,AC=3,中线AD=2,则BC长为____ _.6.在直角三角形中,满足条件的三边长可以是____ _(写出一组即可).7.三角形的三边a ,b ,c 满足(a+b )2=c 2+2ab ,则这个三角形是____ _三角形.8.(2014•萧山区模拟)如图,在四边形ABCD 中,∠B=90°,∠BCD=135°,且AB=3cm ,BC=7cm ,CD=25cm ,点M 从点A 出发沿折线A-B-C-D 运动到点D ,且在AB 上运动的速度为21cm/s ,在BC 上运动的速度为1cm/s ,在CD 上运动的速度为2cm/s ,连接AM 、DM ,当点M 运动时间为____ _(s )时,△ADM 是直角三角形.9.(2014•高安市模拟)如图,方格纸中的每个正方形的边长均为1,点A 、B 在小正方形的顶点上,在图中画△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形(要求画两个且不全等)10.(2014•顺义区一模)在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边.当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,可以判断△ABC 的形状(按角分类).(1)请你通过画图探究并判断:当△ABC 三边长分别为6,8,9时,△ABC 为______三角形;当△ABC 三边长分别为6,8,11时,△ABC 为______三角形.(2)小明同学根据上述探究,有下面的猜想:“当a 2+b 2>c 2时,△ABC 为锐角三角形;当a 2+b 2<c 2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,△ABC 是直角三角形、锐角三角形、钝角三角形?(二)勾股数三勾股定理应用(一)勾股定理的应用知识链接(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.同步练习1.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A.100 B.180 C.220 D.2602.如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为()米.4A.25 B.12 C.13 D.33.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.5米 B.3米 C.(5+1)米 D.3米4.(2014•和平区一模)如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点,当它靠在另一侧墙时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离DE=32m,则点B到地面的垂直距离BC为___ .5.(2013•池州一模)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为___ .6.(2014•西湖区一模)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,开始时B到墙C的距离为0.7米,若梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离相等,则下滑的距离是___米.7.(2014•三门县一模)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm、4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口的大小),则设计的吸管总长度L的范围是__ _.8.(2014•西宁)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).9.(2014•广东一模)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.10.(2013•本溪)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:2=1.41,3=1.73)(二)平面展开----最短路径问题 知识链接(1)平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.同步练习1.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=32BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+)cm B .5cm C .35cm D .7cm2.如图,若圆柱的底面周长是30cm ,高是40cm ,从圆柱底部A 处沿侧面缠绕一圈丝线到顶部B 处做装饰,则这条丝线的最小长度是( )A .80cmB .70cmC .60cmD .50cm3.如图,为了庆祝“五•一”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m ,高为3m .如果要求彩带从柱子底端的A 处均匀地绕柱子4圈后到达柱子顶端的B 处(线段AB 与地面垂直),那么应购买彩带的长度为( )A . 45m B .3m C .4m D .5m4.如图,圆柱底面半径为2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为( ) A .12cm B . 97cm C .15cm D . 21cm5.(2014•博山区模拟)如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )A.3 B.2+2 C.10D.46.(2013•荆州模拟)如图所示,有一圆柱形油罐,现要以油罐底部的一点A环绕油罐建梯子(图中虚线),并且要正好建到A点正上方的油罐顶部的B点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为___ 米.7.(2013•盐城模拟)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___ cm.8.(2014•西湖区一模)如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A、B两点均在容器顶部,现有一只小甲虫在容器外A点正下方距离顶部5cm处,要爬到容器内B点正下方距离底部5cm 处,则这只小甲虫最短爬行的距离是___ cm.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------9.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则L12=______.设路线2的长度为L2,则L22=______.所以选择路线______(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=______.路线2:L22=______.所以选择路线______(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.信达。
21勾股定理及证明
初中数学勾股定理及其证明编稿老师蔡宝霞一校杨雪二校黄楠审核隋冬梅【考点精讲】知识点1 勾股定理如果直角三角形中两条直角边为a,b,斜边为c,那么a2+b2=c2。
注意:勾股定理应用的前提条件必须是直角三角形,解题时,只能是在同一直角三角形中,才能利用它求第三边的长。
知识点2 勾股定理的证明对于勾股定理的内容,世界上几个文明古国相继发现和研究过这个定理,并给出了勾股定理的许多证明,有人统计,现在世界上已找出370多种运用图形的割、补、移、拼表示出方法指导思想手段目的拼图法数形转换图形的拼补各部分面积和等于整体面积,整理变形推导出勾股定理。
【典例精析】例题1如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b。
利用这个图试说明勾股定理。
思路导航:根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×12ab+(a-b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理。
点评:应用图形的面积关系证明勾股定理内容时,通常是根据图形的面积和差之间的关系建立等式,从而推导得出勾股定理的内容。
例题2 观察探究:小明同学非常细心,火柴盒在桌面上倒下,便启迪他得到很多发现。
如图,火柴盒的一个侧面ABCD沿逆时针方向倒下后到AB′C′D′的位置,连接CC'′。
设AB=b,BC=a,AC =c。
(1)他在学习了因式分解后,意外地发现,代数式a2-b2表示了图中一个长方形的面积,请你把这个长方形画完整,并把它指出来;(2)学过勾股定理之后,他又惊奇地发现,利用四边形BCC′D′的面积可以得到证明勾股定理的新方法,请你利用这个四边形的面积证明勾股定理:a2+b2=c2。
思路导航:(1)根据题意作出长为(a+b),宽为(a-b)的长方形图形;(2)四边形BCC′D′的面积从大的方面来说属于直角梯形,可利用直角梯形的面积公式即为所求,如图所示。
勾股定理
OA2
OA3
OA4
OA5
OA6
OA7
OA8
例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么 的值为()
2.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25 B.三角形周长为25
C.斜边长为5 D.三角形面积为20
3.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )
A.0B.1
C.2D.3
4.如图,数轴上的点A所表示的数为x,则x2—10的立方根为( )
它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》.
类型之四:勾股定理的应用
(一)求边长
例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
.
(二)求面积
例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)
①观察图1-1.
(2)写出各数都大于30的两组商高数.
10、2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是.
11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是.
勾股定理-讲义
勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2 2. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2 B.2n﹣1 C.2n D.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A. B. C. D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米 B.2×()9厘米C.2×()10厘米 D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米 D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm 练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.185.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m 3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C 地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个 B.2个 C.4个 D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、25 4.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A 点爬行到C点,那么,最近的路程长为()A.7 B. C. D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm 10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB 的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD 中,AB =6,BC =8。
勾股定理及直角三角形的判定
勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
北师版勾股定理第二节_一定是直角三角形吗
10倍
30,40,50
50,120,130
20,48,52
32,60,68
28,96,100
16,30,34
14,48,50
24,45,51
21,72,知识点3:角的比例与边的比例
满足下列条件的△ABC中,哪些是直角三角形?
(1)、 a:b:c=3:4:5 (3 )、 a:b:c=1:1:2 (5 )、 a:b:c=2:3:5 (2)、 ∠A: ∠B: ∠C=3:4:5 (4)、∠A: ∠B:∠C=1:1:2 (6)、∠A: ∠B:∠C=2:3:5 )
1、哪条边是斜边?哪个角是直角?
2、如果c2+b2=a2 呢,还是直角三角形吗?哪个是直角?
3、如果c2-b2=a2 呢,还是直角三角形吗?哪个是直角?
注意:格式很重要 在△ABC中,两边a=3,b=4,c=5,试判断△ABC的形状 B 5 3 解:在△ABC中, A C 4
∵a2+b2=32+42=9+16=25=c2
1、满足下列条件的△ABC中,不是直角三角形的是( A、b2=c2-a2 B、 ∠C= ∠A- ∠B
C、 a:b:c=3:4:5
D、∠A: ∠B:∠C=5:12:13
随 堂 练 习
1、下列几组数能否作为直角三角形的三 边长?说说你的理由。 (1)9,12,15; (2)12,18,22; (3)12,35,36; (4)15,36,39。 2、判断下列哪组数是勾股数: (1)6,7,8; (2)8,15,6;
√
√
(3)a=n2-1,b=2n,c=n2+1 (n>1) (4)a=m2-n2,b=2mn,c=m2+n2 (m>n>0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
一定是直角三角形吗
一、1.学习内容:教材P9-12
2.学习目标:掌握直角三角形的判别条件,并能进行简单的应用。
二、预习设计:
1、勾股定理:
条件:
结论:
2、分别以下列每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?
(1)3, 4, 5, (2)6, 8, 10 (3)9,12,15
勾股逆定理:
条件:
结论:
3、勾股数: 。
下列几组数是否为勾股数?说说你的理由。
(1)12,18,22 (2) 9, 12, 15 (3)12,35,36 (4)15,36,39
三、师生互动:
例1、一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角。
工人师傅量得AB=3,AD=4,BD=5,BC=12,DC=13,这个零件符合要求吗?
例2、如图,在正方形ABCD 中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?
例3、(1)如果将一组勾股数扩大相同的倍数,得到的还是勾股数吗?填写下表,并验证。
(2)如果一直角三角形的三边长为a 、b 、c(c 是斜边长),将三边长都扩大k 倍(k 为任意正整数)后,得到的还是直角三角形吗?说明理由。
四、训练达标:
基础巩固:
1. 下列说法正确的是( )
A. 若a 、b 、c 是ABC 的三边,则222a b c +=
B. 若a 、b 、c 是Rt ABC 的三边,则222a b c +=
C. 若a 、b 、c 是Rt ABC 的三边90A ∠= ,则222a b c +=
D. 若a 、b 、c 是Rt ABC 的三边90C ∠= ,则222a b c +=
2、以下列各组数为边长,能构成直角三角形的是( )
A、8,15,17; B、4,5,6;C、5,8,10;D、8,39,40
3、下列几组数中,是勾股数的是( )
A 、4,5,6
B 、12,16,20
C 、-10,24,26
D 、2.4,4.5,5.1
4、若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A、等腰三角形 B、直角三角形 C、等腰直角三角形 D、等腰三角形或直角三角形
5、 有一个木工师傅测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来﹙ ﹚
A .13,12,12 ;
B .12,12,8;
C .13,10,12 ;
D .5,8,4
6、三角形的三边长a, b, c 满足等式(a+b )-c =2ab,则此三角形的是 三角形。
7、如图,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形ABCD 的面积为
8、当m= 时,以m+1,m+2,m+3的长为
边的三角形是直角三角形。
9.一个三角形的三边之长分别为15,20,25,则这个三角形的最大角为 ,这个三角形的面积为 。
10、如果三条线段a 、b 、c 满足a 2=c 2−b 2,这三条线段组成的三角形是直角三角形吗?为什
么? 22
能力提升:
11、如图,在∆DEF 中,DE=17cm, EF=30cm, EF 边上的中线DG=8cm ,问∆DEF 是等腰三角形吗?为什么?
12、已知:在△ABC 中,三条边长分别为a,b,c,a=n 2-1,b=2n,c=n 2+1(n >1)。
试判断△ABC
的形状.
13、 如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=900,
求这块草地的面积。
14、如图,有一零件是等腰三角形ABC ,AB=AC ,底边BC=20,D 是AB 上的一点,且CD=16,BD=12,⊿ACD 的形状,并求⊿ABC 的周长。
15、若⊿A BC 三边长分别为a,b,c,且满足条a +b +c +338=10a+24b+26c,试判断⊿
ABC G F E D
222
A
B
的形状,并证明为什么。