【人教版】2020中考数学一轮复习第一部分教材同步复习第六章圆第24讲与圆有关的位置关系5年真题精选

合集下载

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。

考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。

4.中考数学一轮复习教材梳理第六单元 圆含答案精品

4.中考数学一轮复习教材梳理第六单元  圆含答案精品

第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6. (2019西安高新一中模拟)如图,四边形ABCD 内接于⊙O ,AD ∥BC ,∠DAB =48°,则∠AOC 的度数是( )A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O 中,弦AB ∥CD ,连接BC ,OA ,OD .若∠BCD =25°,CD =OD ,则∠AOD 的度数是( )A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 3 2第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O中,弦BC、DE所对的圆周角分别是∠A、∠F,且∠A+∠F=90°.若BC=4,则DE的长为()A. 13B. 4C. 5D. 2 5第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°.9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE =360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD 是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB =OA 2+OB 2=52+52=5 2.第4题解图5.174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图第六单元 圆第25课时 与圆有关的位置关系点对点·课时内考点巩固30分钟1. (2019广州)平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线的条数为( ) A. 0条 B. 1条 C. 2条 D. 无数条2. (2019重庆B 卷)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为( )第2题图A. 60°B. 50°C. 40°D. 30° 点对线·板块内考点衔接60分钟1. (2019哈尔滨)如图,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =50°,则∠ACB 的度数为( )A. 60°B. 75°C. 70°D. 65°第1题图2. (2019舟山)如图,已知⊙O 上三点A ,B 、C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A. 2B. 3C. 2D. 1 2第2题图3.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC.若AB=10,∠P =30°,则AC的长度是()A. 5 3B. 5 2C. 5D. 5 2第3题图4. (2019泰安)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P 的度数为()A. 32°B. 31°C. 29°D. 61°第4题图5. (北师九下P92例2题改编)如图,边长为23的等边△ABC的内切圆的半径为()A. 1B. 3C. 2D. 2 3第5题图6. (2019贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=3OD,AB=12,CD的长是()A. 2 3B. 2C. 3 3D. 4 3第6题图7.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,连接BD.若CD=BD=43,则OE的长度为()第7题图A. 3B. 2C. 2 3D. 48. (2018益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.第8题图9.(2019南京)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A +∠C=________°.第9题图10. (2019眉山)如图,在Rt△AOB中,OA=OB=42,⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为________.第10题图11.(2019陕师大附中模拟)如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.第11题图12.如图,MP与⊙O相切于点M,连接PO并延长,交⊙O于点A、B,弦AC∥MP,连接OM、BC、CM.(1)求证:OM∥BC;(2)若∠P=30°,求证:四边形BCMO为菱形.第12题图13.如图,AB为⊙O的直径,AD、BE为⊙O的弦,延长AD、BE交于点C,且AB=AC,过点B作⊙O的切线交AC 的延长线于点F .(1)求证:BE =CE ;(2)若BF =4,CF =2,求AD 的长.第13题图14. (2019西安交大附中模拟)如图,在△ABC 中,∠ACB =90°,点D 是AB 的中点,以AD 为直径的⊙O 交AC 于点E ,⊙O 的切线EF 交CD 于点F .(1)求证:EF ⊥CD ;(2)若AC =10,cos A =56,求线段DF 的长.第14题图15. (2019黄冈改编)如图,Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于点D ,过点D 作⊙O 的切线交BC 于点E ,连接OE .(1)求证:△DBE 是等腰三角形;(2)求证:CA ·CE =CO ·CB .第15题图16. (2019凉山州)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是⊙O 的切线; (2)若OB =BF ,EF =4,求AD 的长.第16题图17. 如图,在Rt △ACB 中,∠C =90°,D 是AB 上一点,以BD 为直径的⊙O 切AC 于点E ,交BC 于点F ,连接DF .(1)求证:DF =2CE ;(2)若BC =3,sin B =45,求线段BF 的长.第17题图18. (2019新疆)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D, CE⊥AB于点E.(1)求证:∠BCE=∠BCD;(2)若AD=10,CE=2BE,求⊙O的半径.第18题图参考答案第25课时 与圆有关的位置关系点对点·课时内考点巩固1. C 【解析】根据切线的定义进行判断,过圆外一点可以作两条直线和圆相切.2. B 【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,∵∠C =40°,∴∠B =50°. 点对线·板块内考点衔接1. D 【解析】如解图,连接OA 、OB ,∵P A 、PB 分别与⊙O 相切于A 、B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴∠AOB =180°-∠P =180°-50°=130°,∴∠ACB =12∠AOB =12×130°=65°.第1题解图2. B 【解析】如解图,连接OA ,∵∠AOC 与∠ABC 是AC ︵所对的圆心角和圆周角,∴∠AOC =2∠ABC =60°,∵AP 是⊙O 的切线,∴OA ⊥AP ,∴AP =OA ·tan ∠AOC =1·tan60°= 3.第2题解图3. A 【解析】如解图,连接BC ,∵AP 是⊙O 的切线,∴∠BAP =90°.∵∠P =30°,∴∠AOP =60°.∴∠BOC =60°.∵OC =OA ,∴∠ACP =∠BAC =12∠BOC =30°.∵AB 是⊙O 的直径,∴∠ACB =90°.在Rt △ABC 中,∵∠BAC =30°,AB =10,∴AC =5 3.第3题解图4. A 【解析】如解图,设BP 与⊙O 交于点M ,连接OC ,CM .∵PC 是⊙O 的切线,∴∠OCP =90°.∵四边形ABMC 是圆内接四边形,∠A =119°,∴∠BMC =180°-119°=61°.∵OC =OM ,∴∠OCM =∠OMC =61°.∴在△COM 中,∠COM =58°.∴在△COP 中,∠P =180°-∠COM -∠OCP =180°-58°-90°=32°.第4题解图5. A 【解析】如解图,连接OA ,过点O 作OD ⊥AB 于点D ,∵⊙O 是等边三角形ABC 的内切圆,∴OD ⊥AB ,D 为AB 的中点.∵AB =23,∴AD =12AB = 3.∵在等边△ABC 中,∠CAB =60°,∴∠OAD=30°. ∴tan ∠OAD =ODAD. ∴ OD =AD ·tan30°=1.第5题解图6. A 【解析】∵AD 是⊙O 的切线,∴OD ⊥AD .在Rt △AOD 中,AD =3OD ,∴tan A =OD AD =OD3OD =33.∴∠A =30°.∴∠AOD =60°.∵OD =OB ,∴∠ODB =∠ABD =12∠AOD =30°.∵BD 平分∠ABC ,∴∠CBD =∠ABD =30°,∴∠ABC =60°,∴∠C =90°. 在Rt △ABC 中,sin A =BC AB ,AB =12,∴BC =AB ·sin A =12×12=6. 在Rt △CBD 中,CD =BC ·tan ∠CBD =6×33=2 3. 7. B 【解析】如解图,连接OD ,∵直线CD 与⊙O 相切于点D ,∴OD ⊥CD ,∴∠ODC =90°,∵CD =BD =43,∴∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴∠DOE =∠B +∠ODB =2∠B =2∠C ,在Rt △OCD 中,∠DOE =2∠C ,则∠DOE =60°,∠C =30°,∴OD =CD ·tan C =43×33=4,∵DF ⊥AB ,∴∠DEO =90°,在Rt △ODE 中,OE =OD ·cos ∠EOD =4×12=2.第7题解图8. 45 【解析】∵AB 为⊙O 的直径,∴∠ADB =90°,∵BC 为⊙O 的切线,∴AB ⊥BC ,∴∠ABC =90°,∵AD =CD ,∴△ABC 为等腰直角三角形,∴∠C =45°.9. 219 【解析】如解图,连接AB ,∵P A 、PB 是⊙O 的切线,∴P A =PB ,∵∠P =102°,∴∠P AB =∠PBA =12(180°-102°)=39°,∵∠DAB +∠C =180°,∴∠P AD +∠C =∠P AB +∠DAB +∠C =180°+39°=219°.第9题解图10. 23 【解析】如解图,连接OQ ,则PQ =OP 2-OQ 2,根据题意可知OQ 长为定值,若使得PQ 最小,只要OP 最小即可,当OP ⊥AB 时能取得最小值.∵OA =OB =42,∴AB =8,∴OP =4,∴PQ =42-22=2 3.第10题解图11. (1)证明:如解图,连接OD , ∵BC 是⊙O 的切线, ∴OD ⊥BC , 又∵AC ⊥BC , ∴OD ∥AC , ∴∠2=∠3; ∵OA =OD , ∴∠1=∠3, ∴∠1=∠2, ∴AD 平分∠BAC ;第11题解图(2)解:设⊙O的半径为r,在Rt△BOD中,有OD2+BD2=OB2,即r2+42=(2+r)2,解得r=3.∴⊙O的半径为3.12.证明:(1)∵MP与⊙O相切于点M,∴OM⊥MP,又∵AC∥MP,∴OM⊥AC,又∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OM∥BC;(2)∵AC∥MP,∠P=30°,∴∠BAC=∠P=30°,∵∠ACB=90°,∴AB=2BC,又∵AB=2OB,∴BC=OB=OM,∵OM∥BC,∴四边形BCMO为平行四边形,又∵OB=OM,∴四边形BCMO为菱形.13. (1)证明:如解图,连接AE.∵AB=AC,∴△ABC是等腰三角形.∵AB是⊙O的直径,∴∠AEB=90°,即AE⊥BC,∴E为BC边的中点,∴BE=CE;第13题解图(2)解:如解图,连接BD ,设⊙O 的半径为r . ∵BF 为⊙O 的切线, ∴∠ABF =90°.在Rt △ABF 中,AB 2+BF 2=AF 2, 即(2r )2+42=(2r +2)2, 解得r =32.∴AB =AC =2r =3,AF =2r +2=5. ∵AB 是⊙O 的直径, ∴∠ADB =∠ABF =90°. 又∵∠BAD =∠F AB , ∴Rt △ABD ∽Rt △AFB . ∴AB AF =AD AB ,即35=AD3. ∴AD =95.14. (1)证明:如解图,连接OE , ∵OA =OE , ∴∠A =∠OEA ,∵∠ACB =90°,点D 是AB 的中点, ∴AD =CD , ∴∠A =∠DCA , ∴∠OEA =∠DCA , ∴OE ∥CD , ∵EF 为⊙O 的切线, ∴OE ⊥EF , ∴EF ⊥CD ;第14题解图(2)解:∵cos A =56,∴AC AB =56, ∵AC =10, ∴AB =12,∵∠ACB =90°,点D 是AB 的中点, ∴AD =DC =12AB =6,由(1)可得,OE ∥CD ,∴AE =12AC ,△OEA ∽△DCA ,∴AO AD =AE AC =12, ∴AE =EC =12AC =5,∵cos A =cos ∠DCA =CFCE ,∴CF =256,∴DF =CD -CF =6-256=116.15. 证明:(1)如解图,连接OD 、CD , ∵DE 是⊙O 的切线, ∴∠ODE =90°,在Rt △OCE 和Rt △ODE 中,⎩⎪⎨⎪⎧OC =OD OE =OE , ∴Rt △OCE ≌Rt △ODE (HL), ∴DE =CE , ∴∠ECD =∠CDE , ∵AC 是⊙O 的直径, ∴∠CDA =90°, ∴∠CDB =90°,∴∠B +∠ECD =90°,∠CDE +∠BDE =90°, ∵∠ECD =∠CDE , ∴∠BDE =∠B , ∴BE =DE ,∴△DBE 是等腰三角形;第15题解图(2)由(1)可得,BE =DE =CE , ∴点E 是BC 的中点, ∴OE 是△ABC 的中位线, ∴OE ∥AB , ∴△COE ∽△CAB . ∴CO CA =CE CB, ∴CA ·CE =CO ·CB .16. (1)证明:如解图,连接OD ,BD , ∵BC 是⊙O 的切线, ∴BC ⊥OB , ∴∠OBC =90°. ∵AB 为⊙O 的直径, ∴∠ADB =90°. ∴∠CDB =90°. ∵E 是BC 的中点, ∴ED =EB =12BC ,∴∠EDB =∠EBD . ∵OD =OB , ∴∠ODB =∠OBD , ∴∠ODF =∠OBC =90°, ∴DF ⊥OD .∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;第16题解图(2)解:由(1)知∠ODF =90°,∵OD =OB =BF , ∴sin F =OD OF =12,∴∠F =30°,∵∠DOB +∠F =90°, ∴∠DOB =60°, ∴△ODB 是等边三角形, ∴∠OBD =60°, ∴tan ∠OBD =ADBD =3,∴AD =3BD . ∵BC ⊥AF , ∴BE EF =sin F =12. ∵EF =4, ∴BE =2,∴BF =EF 2-BE 2=23=OB =DB , ∴AD =3BD =6.17. (1)证明:如解图,连接OE 交DF 于点G , ∵AC 切⊙O 于点E , ∴∠CEO =90°, 又∵BD 为⊙O 的直径, ∴∠DFC =∠DFB =90°, ∵∠C =90°,∴四边形CEGF 为矩形, ∴CE =GF ,∠EGF =90°, ∴DF =2CE ;第17题解图(2)解:在Rt △ABC 中,∵∠C =90°,BC =3,sin B =45,∴AB =5,设OE =x ,∵OE ∥BC , ∴△AOE ∽△ABC ,∴OE BC =AO AB, ∴x 3=5-x 5, ∴x =158,∴BD =2OE =154,在Rt △BDF 中,∵∠DFB =90°,sin B =45,∴cos B =35=BF BD =BF154,∴BF =94.18. (1)证明:如解图,连接OC ,AC , ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠ACO +∠OCB =90°, 又∵CD 是⊙O 的切线, ∴∠OCD =90°, ∴∠OCB +∠BCD =90°. ∴∠ACO =∠BCD . ∵CE ⊥AB , ∴∠CEB =90°, ∴∠BCE +∠ABC =90°. ∵∠A +∠ABC =90°, ∴∠BCE =∠A . ∵OA =OC ,∴∠A =∠ACO =∠BCD . ∴∠BCE =∠BCD ;第18题解图(2)解:如解图,过点B 作BF ⊥CD 于点F ,得△BFD ∽△CED . 由(1)得∵BC 平分∠ECD ,∴BF =BE . ∵CE =2BE , ∴BD CD =BF CE =BE CE =12. 即CD =2BD .∵∠BCD =∠A ,∠CDB =∠ADC , ∴△CBD ∽△ACD , ∴BD CD =CD AD. ∵AD =10, ∴BD =52,∴AB =152,∴OA =154.∴⊙O 的半径为154.第六单元 圆第26课时 与圆有关的计算点对点·课时内考点巩固5分钟1. (2019长沙)一个扇形的半径为6,圆心角为120°,则这个扇形的面积是( ) A. 2π B. 4π C. 12π D. 24π2. (2019青海)如图,在扇形AOB 中,AC 为弦,∠AOB =140°,∠CAO =60°,OA =6,则BC ︵的长为( )第2题图A. 4π3 B. 8π3C. 23πD. 2π3. (2019哈尔滨)一个扇形的弧长是11π cm ,半径是18 cm ,则此扇形的圆心角是________度.点对线·板块内考点衔接15分钟1. (2019枣庄)如图,在边长为4的正方形ABCD 中,以点B 为圆心,AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是(结果保留π)( )A. 8-πB. 16-2πC. 8-2πD. 8-12π第1题图2. (2019绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =22,则BC ︵的长为( ) A. π B. 2π C. 2π D. 22π第2题图3. (2019青岛)如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )A. πB. 2πC. 22πD. 4π第3题图4. (2019南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为( )A. 6πB. 33πC. 23πD. 2π第4题图5. (2019山西)如图,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.534-π2 B. 534+π2C. 23-πD. 43-π2第5题图6. (2019泰安)如图,将⊙O 沿弦AB 折叠,AB ︵恰好经过圆心O ,若⊙O 的半径为3,则AB ︵的长为( ) A. 12π B. π C. 2π D. 3π第6题图7. (2019重庆A 卷)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2.分别以点A ,点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)第7题图8. (全国视野创新题推荐·2019贵阳)如图,用等分圆的方法,在半径为OA 的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是________.第8题图点对面·跨板块考点迁移2分钟1. (2019天水)如图,在平面直角坐标系中,已知⊙D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,B 点坐标为(0,23),OC 与⊙D 相交于点C ,∠OCA =30°,则图中阴影部分的面积为________.(结果保留根号和π)第1题图参考答案第26课时 与圆有关的计算点对点·课时内考点巩固1. C 【解析】∵扇形的半径为6,圆心角为120°,∴S 扇形=120·π·62360=12π.2. B 【解析】如解图,连接CO ,∵OC =OA ,∠CAO =60°,∴△AOC 为等边三角形.∴∠AOC =60°,∴∠BOC =∠AOB -∠AOC =80°,∴BC ︵的长为80×6π180=8π3.第2题解图3. 110 【解析】设此扇形的圆心角为n °,根据题意得l =nπr 180=nπ·18180=11π,解得n =110. 点对线·板块内考点衔接1. C 【解析】∵正方形ABCD 的边长为4,∴AB =4,∠ABD =45°.∴S 阴影=S △ABD -S 扇形ABE =12×AB 2-45π×AB 2360=12×42-45π×42360=8-2π.2. A 【解析】如解图,连接OB ,OC .∵∠ABC =65°,∠ACB =70°,∴∠A =180°-∠ABC -∠ACB =45°,∵∠1=2∠A =90°,OB =OC ,∴△OBC 是等腰直角三角形,∵BC =22,∴OB =OC =2,∴BC ︵的长为90×π×2180=π.第2题解图3. B 【解析】如解图,连接OC ,OD .∵AC ,BD 分别与⊙O 相切于点C ,D ,∴OC ⊥AC ,OD ⊥BD . ∵∠A =45°,∴△ACO 是等腰直角三角形,∴AC =OC =OD =4.∵AC =BD =4,∴△BDO 是等腰直角三角形,∴∠AOC =∠BOD =45°,∴∠COD =90°. ∴CD ︵的长为90π×4180=2π.第3题解图4. A 【解析】如解图,连接OB ,交AC 于点D .由题意易知四边形OABC 为菱形,∴△OAB 为等边三角形,∴S △OAD =S △BCD ,∠AOB =60°,∵⊙O 的半径为6.∴S 阴影=S 扇形AOB =60360×π×62=6π.第4题解图5. A 【解析】如解图,连接OD ,过点D 作DE ⊥AB 于点E .∵在Rt △ABC 中,AB =23,BC =2,∴S △ABC =12AB ·BC =2 3.在Rt △ABC 中,∵tan ∠BAC =BC AB =223=33,∴∠BAC =30°,∴∠BOD =60°.∵OA =OB =OD =12AB =3,∴S 扇形BOD =60·π·OD 2360=π2.∵DE =OD ·sin60°=32,∴S △AOD =12OA ·DE =334.∴S 阴影=S △ABC -S △AOD -S 扇形BOD =534-π2.第5题解图6. C 【解析】如解图,过点O 作OM ⊥AB 于点M ,连接AO 、BO ,∵⊙O 的半径为3,∴OM =12×3=32.∵在Rt △AOM 中,OM =12OA ,∴∠OAB =30°,∵OA =OB ,∴∠OBA =∠OAB =30°,∴∠AOB =120°.∴AB ︵的长为120π×3180=2π.第6题解图7. 23-2π3 【解析】∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,∵∠ABC =60°,∴∠BAD =∠BCD =120°,∵AB =2,∴AO =1,BO =3,∴S 菱形ABCD =12AC ·BD =2AO ·BO =23,S 扇形=2×120π×12360=2π3,∴S 阴影=23-2π3. 8. 42π 【解析】如解图,根据题意可知四叶幸运草的周长是以AB 为直径的4个半圆弧长,∵OA =OB =2,∠AOB =90°,在Rt △AOB 中,AB =OA 2+OB 2=22+22=22,∴AB ︵的长为12×π×22=2π,∵四叶幸运草的周长为2π×4=42π.第8题解图点对面·跨板块考点迁移1. 2π-23 【解析】如解图,连接OD 、AB ,∵∠AOB =90°,A 、O 、B 在⊙D 上,∴AB 是⊙D 的直径,∵∠OCA =30°,∴∠ODA =60°,∠ABO =30°.∴△AOD 为等边三角形,∴OD =OA =OB ·tan30°=23×33=2.∴S 阴影=12S ⊙D -S △AOB =12π×22-12×2×23=2π-2 3.第1题解图。

中考数学总复习 第一部分 教材同步复习 第六章 圆 第24讲 与圆有关的计算课件

中考数学总复习 第一部分 教材同步复习 第六章 圆 第24讲 与圆有关的计算课件

12/10/2021
第二十三页,共二十三页。
12/10/2021
21
第二十一页,共二十三页。
12/10/2021
第二十二页,共二十三页。
内容(nèiróng)总结
教材同步复习。知识要点 ·归纳。(2)应区分弧、弧长这两个概念,弧长相等的弧不一定是等弧.。5.如图所示,⊙O是正方形ABCD的 外接圆,P是⊙O上不与A,B重合的任意一点,则∠APB等于________.。重难点 ·突破(tūpò)。证明△ABE是等边三角形,∠B=60°,根据扇形
例2 (2018·广安)如图,已知⊙O 的半径是 2,点 A,B,C 在⊙O 上.若四 边形 OABC 为菱形,则图中阴影部分面积为( C )
A.23π-2 3 C.43π-2 3
B.23π- 3 D.43π- 3
12/10/2021
16
第十六页,共二十三页。
思路(sīlù)点 拨
• 连接OB,AC,交于点D,根据菱形(línɡ xínɡ)及直角三角形的性质先求出AC的长及
12/10/2021
5
第五页,共二十三页。
知识点三 阴影部分(bùfen)的面积计算
1.规则图形:如果所求面积的图形是规则扇形、圆环、特殊四边形等, 可直接利用公式计算.
如:圆环 S 环=πR2-πr2.
12/10/2021
6
第六页,共二十三页。
• 2.不规则图形 • 求与圆有关的不规则图形的面积(miàn jī)时,最基本的思想就是转化思想,即把
∴S
12/10/2021
阴影=S
扇形
AOD-S△AOD=603π6×0 22-12×2×
3=23π-
3.
20

中考数学第1轮复习第6章 第24讲 与圆有关的位置关系课件

中考数学第1轮复习第6章 第24讲 与圆有关的位置关系课件
A.5 B.7 C.8 D.10
9
5.三角形的内心与外心: (1)不在同一直线上的三点确定一个圆. (2)内心:三角形内切圆的圆心,是三角形三条角平分线的交 点,内心到三角形三边的距离相等. (3)外心:三角形外接圆的圆心,是三角形三边垂直平分线的 交点,外心到三角形三个顶点的距离相等.
10
5.三角形的外心是( C ) A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平分线的交点
36
∵BC 与⊙O 相切于点 B,∴OB⊥BC. ∴∠OBC=90°. ∴∠ODC=90°.∴OD⊥CD. ∴CD 是⊙O 的切线.
37
4.如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,AC 平分∠BAD,连接 BF.
(1)求证:AD⊥ED.
38
证明:连接 OC. ∵AC 平分∠BAD, ∴∠1=∠2. ∵OA=OC,∴∠1=∠3. ∴∠2=∠3.∴OC∥AD. ∵ED 切⊙O 于点 C, ∴OC⊥DE. ∴∠D=∠OCE=90°. ∴AD⊥ED.
33
3.如图所示,AB 是⊙O 的直径,BC 与⊙O 相切于点 B,弦 AD∥OC.求证:CD 是⊙O 的切线.
34
证明:连接 OD. ∵AD∥OC, ∴∠A=∠COB,∠ADO=∠COD. ∵OA=OD, ∴∠A=∠ADO. ∴∠COB=∠COD.
35
在△COB 和△COD 中, OB=OD, ∠COB=∠COD, OC=OC, ∴△COB≌△COD(SAS). ∴∠OBC=∠ODC.
29
解:根据切线长定理,设 AE=AF=x cm,BD=BF=(9- x)cm,CD=CE=(13-x)cm.

数学中考一轮复习学案 第24节 圆的有关概念与性质(含解析)

数学中考一轮复习学案 第24节 圆的有关概念与性质(含解析)

第四章图形的性质第24节圆的有关概念与性质■知识点一:圆的有关概念(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.(2)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(3)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(4)相关概念:同心圆、弓形、等圆、等弧.(5)圆心角:顶点在圆心的角叫做圆心角.(6)圆周角:顶点在圆上,并且两边和圆相交的角是圆周角.(7)确定圆的条件:过已知一点可作无数个圆,过已知两点可作无数个圆,过不在同一条直线上的三点可作一个圆.(8)圆的对称性:圆是轴对称图形,其对称轴是直径所在的直线;圆是中对称图形,对称中心为圆心,并且圆具有旋转不变性.■知识点二:垂径定理及推论:①垂直于弦的直径平分弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,③弦的垂直平分线经过圆心,并且平分弦所对的两条弧.④平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑤圆的两条平行弦所夹的弧相等.■知识点三:圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.■知识点四:圆周角定理及推论①圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.推论2:直径所对的网周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.②圆内接四边形的任意一组对角互补.■考点1.圆的有关概念◇典例:(2017年黑龙江大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ 为正方形.若半圆的半径为,则正方形的边长为.【考点】正方形的性质;勾股定理;圆的认识.【分析】连接OP,设正方形的边长为a,则ON=,PN=a,再由勾股定理求出a的值即可.解:连接OP,设正方形的边长为a,则ON=,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【点评】本题考查的是正方形的性质,勾股定理;圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.◆变式训练(2017•宁夏)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 __________■考点2.垂径定理及其推论◇典例:(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,AB为⊙O 的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.【考点】垂径定理,勾股定理【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.◆变式训练1.(2018年山东省烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为.2.(2018年浙江省绍兴市)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)■考点3. 圆心角、弧、弦的关系◇典例(2017•牡丹江)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.【考点】圆心角、弧、弦的关系;垂径定理.【分析】连接OC,先根据=得出∠AOC=∠BOC,再由已知条件根据AAS定理得出△COD ≌△COE,由此可得出结论.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.◆变式训练(2017•宜昌)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C. D.∠BCA=∠DCA■考点4. 圆周角定理及其推论◇典例:1.(2018 年广西梧州市)如图,已知在⊙O 中,半径 OA=2,弦 AB=2,∠BAD=18°,OD 与AB 交于点 C,则∠ACO=__________度.【考点】圆周角定理,勾股定理的逆定理,等腰三角形的性质【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.解:∵OA=2,OB=2,AB=2,∴OA 2+OB2=AB2,OA=OB,∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.◆变式训练1.(2018年四川省南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B 的度数是()A.58° B.60° C.64° D.68°2.(2017•锦州)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°一、选择题1.(2018年广西柳州市)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°2.(2018年内蒙古赤峰市)如图,AB是⊙O的直线,C是⊙O上一点(A.B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°3.(2018年浙江省衢州市)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°4.(2018年湖北省襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C. D.25.(2018年四川省甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD二、填空题6.(2018年广东省)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.7.(2018年青海省)如图,A.B、C是错误!未找到引用源。

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆
(3)解:如图,连接 BD,AD,DO,作∠BAF=∠DBA,交 BD 于点 F,
∵DO=BO, ∴∠ODB=∠OBD, ∴∠AOD=2∠ODB=∠EDO. ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB, ∴∠ODB=15°=∠OBD. ∵∠BAF=∠DBA=15°,
∴AF=BF,∠AFD=30°. ∵AB 是直径,∴∠ADB=90°, ∴AF=2AD,DF= AD, ∴BD=DF+BF= AD+2AD,
C.G,H,E
D.H,E,F
5.(2018 福建)如图,AB 是☉O 的直径,BC 与☉O 相切于点 B,AC 交
☉O 于点 D,若∠ACB=50°,则∠BOD 等于( D )
A.40°
B.50°
C.60°
D.80°
第 5 题图
第 6 题图
6.(2018 哈尔滨)如图,点 P 为☉O 外一点,PA 为☉O 的切线,A 为切
(1)求证:EG 是☉O 的切线;
(2)延长 AB 交 GE 的延长线于点 M,若 AH=2,CH=2 2,求 OM 的 长. (1)证明:连接 OE,如图,
∵GE=GF,∴∠GEF=∠GFE. 而∠GFE=∠AFH,∴∠GEF=∠AFH. ∵AB⊥CD,∴∠OAF+∠AFH=90°, ∴∠GEA+∠OAF=90°. ∵OA=OE,∴∠OEA=∠OAF, ∴∠GEA+∠OEA=90°,即∠GEO=90°, ∴OE⊥GE,
第23讲 与圆有关的位置关系
1.(2011.(2019 南岗)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以
点 A 为圆心作圆,如果圆 A 与线段 BC 没有公共点,那么圆 A 的半

(广西共享)新2020中考数学一轮新优化复习 第一部分 教材同步复习 第六章 圆 第24讲 圆的相关概念及性质真

(广西共享)新2020中考数学一轮新优化复习 第一部分 教材同步复习 第六章 圆 第24讲 圆的相关概念及性质真

第一部分第六章第24讲命题点1 垂径定理及其推论(2018年2考,2017年河池考)1.(2017·河池8题3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( B )A.18°B.36°C.54° D.72°2.(2018·贺州11题3分)如图,AB是⊙O的直径,且经过弦CD的中点H.已知si n∠CDB=35,BD=5,则AH的长为( B )A .253B .163C .256D .1663.(2018·玉林16题3分)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2 cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是__10__cm.命题点2 圆周角定理及其推论(2018年4考,2017年4考,2016年4考)4.(2018·柳州8题3分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为( D )A.84°B.60°C.36°D.24°5.(2016·南宁9题3分)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( B )A.140° B.70°C.60°D.40°6.(2018·贵港9题3分)如图,点A,B,C均在⊙O上.若∠A=66°,则∠OCB的度数是( A )A.24°B.28°C.33°D.48°7.(2016·玉林、防城港、崇左6题3分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=( C )A.30° B.45°C.60°D.70°8.(2018·河池10题3分)如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为( B )A.20° B.25°C.50°D.100°9.(2018·梧州16题3分)如图,已知在⊙O中,半径OA=2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=__81__度.10.(2016·河池16题3分)如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,∠ABC =50°,则∠BDC 的大小是__40°__.11.(2016·贵港16题3分)如图,AB 是半圆O 的直径,C 是半圆O 上一点,弦AD 平分∠BAC ,交BC 于点E .若AB =6,AD =5,则DE 的长为__115__.命题点3 正多边形与圆(2018年玉林考) 12.(2018·玉林18题3分)如图,正六边形ABCDEF的边长是6+43,点O1,O2分别是△ABF,△CDE的内心,则O1O2=。

2025年甘肃中考数学一轮复习中考命题探究第6章 圆第24讲 与圆有关的位置关系

2025年甘肃中考数学一轮复习中考命题探究第6章 圆第24讲 与圆有关的位置关系
∵OB 是⊙O 的半径,∴BE 是⊙O 的切线.
(2)当⊙O的半径为2,BC=3时,求tan∠AEB的值.
解:∵OB=2,
∴AB=2OB=4,
∴AC= AB 2-BC2= 42-32= 7,
AC
7
∴tan∠AEB=tan∠ABC= = .
BC 3
2.[2023省卷25题]如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO
2025年甘肃中考数学一轮复习中考命题探究
第24讲
与圆有关的位置关系
(省卷:5年5考;兰州:3年3考)
1 考点梳理
2 重难点突破
3 甘肃5年中考真题及拓展
考点梳理
2022年版课标重要变化
探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切
线.(删除)
考点 1
点、直线与圆的位置关系
点与圆的位置关系
考点 41
三角形的外接圆与内切圆
三角形的外接圆
圆心
垂直平分线
外心:三角形三条边的⑧____________
内心:三角形三条
的交点
描述 经过三角形的三个顶点的圆
图示
三角形的内切圆
角平分线
⑨_________的交点
与三角形三边都相切的圆
性质
三角形的外心到三个顶点的
三角形的内心到三角形三边的
距离相等,即OA=OB=OC 距离相等,即OD=OE=OF
3
(2)当⊙O的半径为5,sinB= 5 时,求CE的长.
解:∵AB 是⊙O 的直径,∴∠ACB=90°.
AC 3
∵sin B= = ,AB=10,∴AC=6.
AB 5
∵∠OCE=∠ACB=90°,∴∠ACE=∠OCB=∠B,

2020深圳中考数学一轮复习宝典课件 第1部分 第6章 第1讲 圆的有关概念与性质

2020深圳中考数学一轮复习宝典课件 第1部分  第6章  第1讲 圆的有关概念与性质
A.直径相等的两个圆是等圆 B.长度相等的两条弧是等弧 C.圆中最长的弦是直径 D.一条弦把圆分成两条弧,这两条弧可能是等弧
2.★(2019·深圳光明新区期中)如图,AB 是⊙O 的直径,弦 CD⊥AB
于点 E,若 AB=10,AE=2,则弦 CD 的长是( C )
A.4
B.6
C.8
D.10
3.★(2018 广州)如图,AB 是⊙O 的弦,OC⊥AB,交⊙O 于点 C,
思路分析:∵四边形 ABCD 内接于⊙O, ∴∠C+∠A=180°, ∴∠C=180°-40°=140°.
2.如图,四边形 ABCD 为⊙O 的内接四边形,若∠BOD=150°,
则∠A= 101505 °.
——基于全国中考的 13 道过关强化题 基础训练
1.★下列说法中,结论错误的是( B )
谢谢您的观看与聆听
O、C,点 C 在 y 轴上,点 E 在 x 轴上,点 A 的坐标为(-2,
1),则 sin∠OBC 的值是
5 5

12.★★如图,点 A,B,C,D 在⊙O 上,且 AD 为直径,如果
∠BAD=70°,∠CDA=50°,BC=2 5,那么 AD= 4 45 .
中考预测 13.★★如图,以△ABC 的一边 AB 为直径的半圆与其它两边 AC,
A.4 cm C.8 cm
B.6 cm D.10 cm
思路分析:如图,连接 OA, ∵⊙O 的直径 CD=10 cm,AB⊥CD, ∴OA=5 cm,AM=BM, ∴AM= OA2-OM2= 52-32=4(cm), ∴AB=2AM=8 cm.
2.(2016·深圳竹林中学月考)如图,半径为 10 的⊙O 中,弦 AB 的
是优弧 AB 上的一点(不与点 A、B 重合),若∠AOC=50°,则

2020深圳中考数学一轮复习宝典课件 第1部分 第6章 第3讲 与圆有关的计算

2020深圳中考数学一轮复习宝典课件 第1部分  第6章  第3讲 与圆有关的计算

度数为( C )
A.30°
B.45°
C.60°
D.90°
︵ 2.如图,圆内接正方形 ABCD,在BC上有一点 E,则 tan∠AEB
的值为( A )
A.1
B.
3 3
C.
3 2Leabharlann D. 33.已知扇形的弧长为 6π cm,该弧所对的圆心角为 90°,则此扇
形的面积为( A )
A.36π cm2
B.72π cm2
线 BD 于点 E,则阴影部分的面积为( C )
A.π
B.32π
C.6-π
D.2 3-π
——基于深圳考纲的 1 个中考考点
考点 1 与圆有关的计算(6 年 1 考) 2014 年 2015 年 2016 年 2017 年 2018 年 2019 年
考情分析 11 题
1.(2016·深圳,11 题,3 分)如图,在扇形 AOB 中∠AOB=90°,
第一部分 单元知识复习
第六章 圆
第3讲 与圆有关的计算
——基于课程标准的 4 个复习要点
知识清单
序号 知识点名称
序号
知识点名陈
正多边形的相
混淆正多边形的有关
知识点 1
易错点 1
关概念
概念,在求解时出错
求不规则图形的面积 知识点 2 圆的相关计算 易错点 2
时出错
导学对点练 知识点 1:正多边形的相关概念
A.1
B.1.5
C. 3
D.2
6.数学与我们的日常生活息息相关,汽车雨刮器摆动的轨迹是以点
O 为圆心的扇形,如图所示,已知雨刮器摆动的角度为 120°,
雨刮器的总长为 1,雨刮器上有橡胶的部分(即线段 AC 的长)为35.

中考数学一轮优化复习 第一部分 教材同步复习 第六章 圆 第24讲 圆的相关概念及性质课件

中考数学一轮优化复习 第一部分 教材同步复习 第六章 圆 第24讲 圆的相关概念及性质课件
第 4 页12/9/2021
知识点二 圆周角定理及其推论
• 1.定理
内容 一条弧所对的圆周角等于它所对的圆心角的①___一__半_____
圆心在圆周 情况
角的一条边上
圆心在圆 周角内部
圆心在圆 周角外部
图形
结论
第 5 页12/9/2021
∠APB=②____12_∠__A_O_B_______
【易错警示】 由于圆中一条弦对应两段弧,故若题干中并未明确弦对应哪段 弧,而要求圆中一段弦对应的圆周角的度数时,就要分情况讨论,图形如下:
• ∴∠CBA=∠BCA=65°,∠A=50°.
• ∵CD∥AB,∴∠ACD=∠A=50°.
• 又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA-∠ABD= 15°. 第 14 页12/9/2021
☞ 方法指导
• (1)图中通常将圆周角和圆心角以及它们所对的弧的度数进行转换,常用 公式为:同弧(或等弧)所对的圆周角等于圆心角的一半.
第 3 页12/9/2021
• 2.圆的有关性质 • (1)轴对称性:圆是轴对称图形,任何一条⑤
_____直_径____所在的直线都是圆的对称轴. • (2)中心对称性:圆是中心对称图形,对称中
心是⑥_圆_心________. • (3)圆具有旋转不变性,即圆绕着它的圆心旋
转⑦___任_意______角度,都能与原来的图形重 合.
知识点三 弧、弦、圆心角的关系
• 1.定理 • 在同圆或等圆中,相等的圆心角所对的弧① 相等__________,所对的弦也②_____相_等____. • 2.推论 • (1)在同圆或等圆中,如果两条弧相等,那么它们所
对的圆心角③__相_等_______,所对的弦也④ _____相_等____. • (2)在同圆或等圆中,如果两条弦⑤____相_等_____, 那么它们所对的圆心角⑥____相_等_____,所对的弧也 相等.

人教版九年级数学第六单元《圆》中考知识点梳理

人教版九年级数学第六单元《圆》中考知识点梳理

第六单元《圆》中考知识点梳理第21讲圆的基本性质知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.图a 图b 图c( 2 )推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.②直径所对的圆周角是直角.如图c,∠C=90°.③圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是⊙O的直径,C,D是⊙O上ADC=180°. 两点,∠BAC=40°,则∠D的度数为130°.第22讲与圆有关的位置关系知识点一:与圆有关的位置关系关键点拨及对应举例1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.例:已知:⊙O的半径为2,圆心到直线l的距离为1,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是1或3.图形公共点个数0个1个2个数量关系d>r d=r d<r知识点二:切线的性质与判定3.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.4.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.*5.切线长(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.例:如图,AB、AC、DB是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为2.知识点四:三角形与圆5.三角形的外接圆图形相关概念圆心的确定内、外心的性质内切圆半径与三角形边的关系:(1)任意三角形的内切圆(如图a),设三角形的周长为C,则S△ABC=1/2Cr.(2)直角三角形的内切圆(如图b)①若从切线长定理推导,可得r=1/2(a+b+c);若从面积推导,则可得r=.这两种结论可在做选择题和填空题时直接应用.例:已知△ABC的三边长a=3,b=4,c=5,则它的外切圆半径是2.5.经过三角形各定点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形三角形三条垂直平分线的交点到三角形的三个顶点的距离相等6.三角形的内切圆与三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫圆的外切三角形到三角形三条角平分线的交点到三角形的三条边的距离相等第23讲与圆有关的计算知识点一:正多边形与圆关键点拨与对应举例1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.(2)半径为6的正四边形的边心距为32,中心角等于90°,面积为72.知识点二:与圆有关的计算公式2.弧长和扇形面积的计算扇形的弧长l=180n rπ;扇形的面积S=2360n rπ=12lr例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:,S侧==πrl在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为。

中考数学一轮复习 第六单元 圆 第24讲 圆的有关概念及性质课件

中考数学一轮复习 第六单元 圆 第24讲 圆的有关概念及性质课件

识,还有助于提高学生的阅读能力.
解题思路
认真阅读题中所给“阿基米德折弦定理”的内容,分析清楚定理的条件与结
论,然后进行证明.
开放解答
解析 (1)证明:又∵∠A=∠C,∴△MBA≌△MGC.∴MB=MG.
又∵MD⊥BC,∴BD=GD.∴CD=CG+GD=AB+BD.
(2)2+2 .
2
第十页,共二十页。
2.连接圆上任意两点的线段叫做⑥弦;经过圆心的弦叫做⑦直径;圆上任意两 点间的部分叫做⑧弧;圆的任意一条直径的两个端点分圆成两条弧,每一条弧
都叫做⑨半圆.
3.⑩能够重合的两个圆叫做等圆;在同圆或等圆中, 能够互相重合的弧叫做 等弧.
第二页,共二十页。
考点(kǎo 二 diǎn) 圆的对称性(5年1考) 1.圆是轴对称图形,经过 圆心的每一条直线都是它的对称轴;圆是中心对称
A. 1

B.5 C. 5 3 D.5 3
2
2
第四页,共二十页。
2.(2018·广东广州,7,3分)如图,AB是☉O的弦,OC⊥AB,交☉O于点C,连接(liánjiē)OA, OB,BC,若∠ABC=20°,则∠AOB的度数是 ( D ) A.40° B.50° C.70° D.80°
第五页,共二十页。
错解 A
错误鉴定 在应用“圆周角度数等于(děngyú)它所对弧上的圆心角度数的一半”时,
圆周角和圆心角之间的大小关系不清楚,或者不能正确找出同弧或等弧所对
的圆周角、圆心角,从而导致错误.
第十八页,共二十页。
如图,☉O中,弦AB,CD相交(xiāngjiāo)于点P,若∠A=42°,∠APD=77°,则∠B的大小是 (B)
第十二页,共二十页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 第六章 第24讲命题点1 切线的判定及相关计算1.(2016·云南20题8分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .(1)求证:DE 是⊙O 的切线;(2)若AE =6,∠D =30°,求图中阴影部分的面积. (1)证明:如答图,连接OC ,答图∵OA =OC ,∴∠OAC =∠OCA . ∵AC 平分∠BAE ,∴∠OAC =∠CAE , ∴∠OCA =∠CAE , ∴OC ∥AE ,∴∠OCD =∠E . ∵AE ⊥DE ,∴∠E =90°, ∴∠OCD =90°,∴OC ⊥CD . ∵点C 在⊙O 上,OC 为⊙O 的半径, ∴DE 是⊙O 的切线. (2)解:在Rt △AED 中, ∵∠D =30°,AE =6, ∴AD =2AE =12,在Rt △OCD 中,∠D =30°, ∴DO =2OC =DB +OB =DB +OC , ∴DB =OB =OC =13AD =4,DO =8,∴CD =DO 2-OC 2=82-42=43, ∴S △OCD =12CD ·OC =43×42=8 3.∵∠D =30°,∠OCD =90°,∴∠DOC =60°,∴S 扇形BOC =16·π·OC 2=83π,∴S 阴影=S △COD -S 扇形OBC =83-8π3, ∴阴影部分面积为83-8π3.2.(2015·昆明22题8分)如图,AH 是⊙O 的直径,AE 平分∠FAH ,交⊙O 于点E ,过点E 的直线FG ⊥AF ,垂足为点F ,B 为半径OH 上一点,点E ,F 分别在矩形ABCD 的边BC 和CD 上.(1)求证:直线FG 是⊙O 的切线; (2)若CD =10,EB =5,求⊙O 的直径. (1)证明:连接OE , ∵OA =OE ,∴∠EAO =∠AEO . ∵AE 平分∠FAH ,∴∠EAO =∠FAE ,∴∠FAE =∠AEO , ∴AF ∥OE ,∴∠AFE +∠OEF =180°.∵AF ⊥GF ,∴∠AFE =∠OEF =90°,∴OE ⊥GF . ∵点E 在圆上,OE 是半径,∴直线FG 是⊙O 的切线. (2)解:∵四边形ABCD 是矩形,CD =10, ∴AB =CD =10,∠ABE =90°, 设OA =OE =x ,则OB =10-x , 在Rt △OBE 中,∠OBE =90°,BE =5, 由勾股定理得OB 2+BE 2=OE 2, ∴(10-x )2+52=x 2,∴x =254, ∴AH =2× 254=252,∴⊙O 的直径为252.3.(2017·云南23题12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线; (2)设OP =32AC ,求∠CPO 的正弦值;(3)设AC =9,AB =15,求d +f 的取值范围. (1)证明:连接OC ,如答图1.答图1∵AC ∥OP ,∴∠CAO =∠POB ,∠ACO =∠COP . ∵OA =OC ,∴∠CAO =∠ACO , ∴∠POB =∠POC .在△POB 和△POC 中,⎩⎪⎨⎪⎧OB =OC ,∠POB =∠POC ,PO =PO ,∴△POB ≌△POC (SAS),∴∠PBO =∠PCO . ∵PB 是⊙O 的切线,∴∠PBO =90°, ∴∠OCP =90°,即OC ⊥PC , ∴PC 是⊙O 的切线.(2)解:如答图1,作ON ⊥AC 于点N , ∵OP =32AC ,∴OP AC =32.设OP =3x ,则AC =2x , ∵ON ⊥AC ,∴AN =CN =x . ∵∠NAO =∠POB ,∠ONA =∠OBP ,∴△NAO ∽△BOP ,∴OA x=3x OB.∵OA =OB ,∴OA =OB =3x .在Rt △OBP 中,∴sin ∠BPO =sin ∠CPO =3x 3x =33.(3)解:如答图2,连接BC ,作AF ⊥CM ,BE ⊥CM ,垂足分别为点F ,E ,作CQ ⊥AB ,垂足为点Q .答图2∵AB 是⊙O 的直径, ∴∠ACB =90°.∵AC =9,AB =15,∴BC =12.①当点M 与点B 重合时,d =AC =9, f =0,d +f =9; ②当点M 在线段BQ (不包括端点)上时,设∠AMF =∠BME =α. ∵sin α=AF ∶AM ,∴AF =AM sin α. ∵sin α=BE ∶BM ,∴BE =BM sin α. ∴AF +BE =(AM +BM )sin α=AB sin α. ∴d +f =15sin α.∵35<sin α<1,∴9<d +f <15; ③当点M 与点Q 重合时,d +f =AB =15;④当点M 在线段QA (不包括端点)上时,设∠AMF =∠BME =α. ∵d +f =15sin α,且45<sin α<1,∴12<d +f <15;⑤当点M 与点A 重合时,d =0, f =BC =12,d +f =12 . 综上所述,9≤d +f ≤15.命题点2 切线的性质及其相关计算4.(2018·昆明21题8分)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,AC 平分∠BAD ,连接BF .(1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径. (1)证明:连接OC ,如答图,答图∵AC平分∠BAD,∴∠1=∠2.∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD.∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED.(2)解:设OC交BF于点H,如答图,∵AB为⊙O的直径,∴∠AFB=90°,∴四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8.在Rt△ABF中,AB=AF2+BF2=22+82=217,∴⊙O的半径为17.5.(2018·云南22题9分)如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.(1)证明:连接OC,∵OA=OC,∴∠BAC=∠OCA.∵∠BCD=∠BAC,∴∠BCD=∠OCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=∠BCD+∠OCB=90°,∴∠OCD=90°.∵OC是⊙O的半径,∴CD是⊙O的切线.(2)解:设⊙O的半径为r,则AB=2r.∵∠D=30°,∠OCD=90°,∴OD =2r ,∠COB =60°, ∴△BOC 为等边三角形. ∴BC =r ,r +2=2r ,∴r =2,∠AOC =120°,∴BC =2, ∴由勾股定理可知AC =23, ∴S △AOC =12×23×1=3,S 扇形OAC =120π×4360=4π3. ∴S 阴影=S 扇形OAC -S △OAC =43π- 3.6.(2018·曲靖22题9分)如图,AB 为⊙O 的直径,点C 为⊙O 上一点,将弧BC 沿直线BC 翻折,使弧BC 的中点D 恰好与圆心O 重合,连接OC ,CD ,BD ,过点C 的切线与线段BA 的延长线交于点P ,连接AD ,在PB 的另一侧作∠MPB =∠ADC .(1)判断PM 与⊙O 的位置关系,并说明理由; (2)若PC =3,求四边形OCDB 的面积. 解:(1)PM 与⊙O 相切. 理由如下:连接DO 并延长交PM 于点E ,如答图,答图∵弧BC 沿直线BC 翻折,弧BC 的中点D 恰好与圆心O 重合, ∴OC =DC ,BO =BD , ∴OC =DC =BO =BD ,∴四边形OBDC 为菱形,∴OD ⊥BC , ∴△OCD 和△OBD 都是等边三角形, ∴∠COD =∠BOD =60°, ∴∠COP =∠EOP =60°.∵∠MPB =∠ADC ,而∠ADC =∠ABC , ∴∠ABC =∠MPB ,∴PM ∥BC ,∴OE ⊥PM ,∴OE =12OP .∵PC 为⊙O 的切线,∴OC ⊥PC , ∴OC =12OP ,∴OE =OC ,而OE ⊥PC ,∴PM 是⊙O 的切线. (2)在Rt △OPC 中,OC =33PC =33×3=1, ∴S 四边形OCDB =2S △OCD =2×34×12=32. 7.(2014·曲靖23题10分)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,AC ,PB 的延长线相交于点D .(1)若∠1=20°,求∠APB 的度数;(2)当∠1为多少度时,OP =OD ,并说明理由. 解:(1)∵PA 是⊙O 的切线, ∴∠BAP =90°-∠1=70°.又∵PA ,PB 是⊙O 的切线,∴PA =PB . ∴∠BAP =∠ABP =70°, ∴∠APB =180°-70°×2=40°. (2)当∠1=30°时,OP =OD . 理由如下:当∠1=30°时, 由(1)知∠BAP =∠ABP =60°, ∴∠APB =180°-60°× 2=60°. ∵PA ,PB 是⊙O 的切线, ∴∠OPB =12∠APB =30°.又∵∠D =∠ABP -∠1=60°-30°=30°, ∴∠OPB =∠D ,∴OP =OD .8.(2016·曲靖22题9分)如图,在Rt △ABC 中,∠BAC =90°,O 是AB 边上的一点,以OA 为半径的⊙O 与边BC 相切于点E .(1)若AC =5,BC =13,求⊙O 的半径;(2)过点E 作弦EF ⊥AB 于M ,连接AF .若∠F =2∠B ,求证:四边形ACEF 是菱形. 解:(1)连接OE ,设⊙O 的半径为r , 在Rt △ABC 中,AB =BC 2-AC 2=12. ∵BC 与⊙O 相切,∴OE ⊥BC , ∴∠OEB =∠BAC =90°.又∵∠EBO =∠ABC ,∴△BOE ∽△BCA , ∴OE AC =BO BC ,即r 5 =12-r 13,解得r =103, 即⊙O 的半径为103.(2)证明:∵A E =A E ,∠F =2∠B , ∴∠AOE =2∠F =4∠B . ∵∠AOE =∠OEB +∠B , ∴∠B =30°,∠F =60°.∵EF ⊥AD ,∴∠EMB =∠CAB =90°, ∴∠MEB =∠F =60°,∴CA ∥EF ,CB ∥AF , ∴四边形ACEF 是平行四边形. ∵∠CAB =90°,OA 是⊙O 的半径, ∴CA 是⊙O 的切线. 又∵BC 是⊙O 的切线,∴CA =CE ,∴平行四边形ACEF 是菱形.。

相关文档
最新文档