中考数学模拟试题汇编 一元二次方程
中考数学模拟试卷精选汇编:一元二次方程及其应用附答案
一元二次方程及其应用一.选择题1.(2015·江苏高邮·一模).能说明命题“关于x 的一元二次方程x 2+mx +4=0,当m <-2时必有实数解”是假命题的一个反例为A. m =﹣4B. m =﹣3C. m =﹣2D. m =4 答案:B2.(2015·江苏常州·一模)已知一元二次方程062=−−c x x 有一个根为2,则另一个根为A .2B .3C .4D .-8答案:C3. (2015·吉林长春·二模)答案:A4.(2015·江苏江阴青阳片·期中)设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α、β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2答案:D5.(2015·安庆·一摸)已知βα、是一元二次方程x 2-2x -3=0的两个根,则βα+的值是( ) A.2 B.-2 C.3 D.-3 答案: A ;6. (2015·合肥市蜀山区调研试卷)方程0)3(2=+x x 的根的情况是: A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A7.(2015·广东高要市·一模)若1x ,2x 是一元二次方程016102=++x x 的两个根,则21x x +的值是( ▲ ) A . ﹣10B . 10C . ﹣16D . 16答案:A8.(2015•山东潍坊•第二学期期中)若关于x 的一元二次方程2(1)5m x x −++23m m −20+= 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0答案:B ;9.(2015•山东潍坊广文中学、文华国际学校•一模)若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是2−,则另一个根是( )A .2B .1C .1−D .0答案:C ;10.(2015·网上阅卷适应性测试)已知关于x 的一元二次方程2210mx x +−=有两个不相等的实数根,则m 的取值范围是( ▲ ).A .1m <−B .1m >C .1m <且0m ≠D .1m >−且0m ≠答案:D11.(2015·山东省枣庄市齐村中学二模)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2 B .a <2 C .a <2且a ≠1 D .a <-2答案:C12.( 2015·呼和浩特市初三年级质量普查调研)方程2650x x +−=的左边配成完全平方后所得方程为( )A .2(3)14x += B. 2(3)14x −= C. 2(6)41x += D .2(3)4x += .答案:A13.(2015·辽宁盘锦市一模)一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为 x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688答案:D14.(2015·山东省济南市商河县一模)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为A.100)1(1442=−xB.144)1(1002=−xC.100)1(1442=+xD.144)1(1002=+x 答案:D15.(2015.河北博野中考模拟)一元二次方程x 2﹣4x +5=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 答案:D16.(2015·广东中山·4月调研)已知关于x 的一元二次方程220x x a +−=有两个相等的实数根,则a 的值是( )A .4B .4−C .1D .1− 答案:D17.(2015·江苏南京溧水区·一模)一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .32答案: D18.(2015·江苏扬州宝应县·一模)已知关于x 的一元二次方程22x m x −= 有两个不相等的实数根,则m 的取值范围是A .m >-1B .m <-2C .m ≥0D .m <0 答案: A19.(2015·无锡市宜兴市洑东中学·一模)根据下列表格中的对应值,•判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或2 答案:A二.填空题1. (2015·湖南岳阳·调研)如果关于x 的方程23mx =有两个实数根,那么m 的取值范围是 ; 答案:0m >2.(2015·江苏江阴青阳片·期中)已知方程032=+−k x x 有两个相等的实数根,则k =▲ . 答案:k =49 3.(2015·江苏江阴要塞片·一模)若关于x 的一元二次方程kx 2+2(k +1)x +k -1=0有两个实数根,则k 的取值范围是 ▲ . 答案:k ≥﹣且k ≠04. (2015·安徽省蚌埠市经济开发·二摸)已知关天x 的一元二次方程2(1)10m x x −++=有实数根,则m 的取值范围是 . 答案:54m ≤且1m ≠ 5.(2015·广东广州·二模)已知错误!未找到引用源。
中考数学真题分类汇编及解析(十) 一元二次方程
(2022•泰州中考)如图,在长为50m 、宽为38m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m 2,道路的宽应为多少?【解析】设路宽应为x 米根据等量关系列方程得:(50﹣2x )(38﹣2x )=1260,解得:x =4或40,40不合题意,舍去,所以x =4.答:道路的宽应为4米.(2022·牡丹江中考)如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.【解析】(1)解方程x 2﹣14x +48=0得x 1=6,x 2=8.∵OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根,∴OC =6,OA =8.∴C (0,6);(2)设直线MN 的解析式是y =kx +b (k ≠0).由(1)知,OA =8,则A (8,0).∵点A 、C 都在直线MN 上,∴{8k +b =0b =6,解得,{k =−34b =6,∴直线MN 的解析式为y =−34x +6; (3)∵A (8,0),C (0,6),∴根据题意知B (8,6).∵点P 在直线MN :y =−34x +6上,∴设P (a ,−34a +6)当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论: ①当PC =PB 时,点P 是线段BC 的中垂线与直线MN 的交点,则P 1(4,3); ②当PC =BC 时,a 2+(−34a +6﹣6)2=64,解得,a =±325,则P 2(−325,545),P 3(325,65); ③当PB =BC 时,(a ﹣8)2+(34a ﹣6+6)2=64, 解得,a =25625,则−34a +6=−4225,∴P 4(25625,−4225). 综上所述,符合条件的点P 有:P 1(4,3),P 2(−325,545),P 3(325,65),P 4(25625,−4225).。
中考数学真题专项汇编解析—一元二次方程
中考数学真题专项汇编解析—一元二次方程一.选择题1.(2022·四川乐山)关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( )A .13B .23C .1D .13- 【答案】D【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =, 设另一根为2x ,则223x x +=,213x ∴=-,213xx ∴=-,故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2.(2022·天津)方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=- 【答案】D【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∵(1)(3)=0x x ++∵1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3.(2022·湖南怀化)下列一元二次方程有实数解的是( )A .2x 2﹣x +1=0B .x 2﹣2x +2=0C .x 2+3x ﹣2=0D .x 2+2=0 【答案】C【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4.(2022·甘肃武威)用配方法解方程x 2-2x =2时,配方后正确的是( ) A .()213x +=B .()216x +=C .()213x -=D .()216x -= 【答案】C【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.(2022·浙江温州)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A .36B .36-C .9D .9- 【答案】C【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯= 解得9c = 故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6.(2022·四川遂宁)已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A .2022-B .0C .2022D .4044【答案】B 【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∵2320220m m +-=,且m ≠0,∵32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7.(2022·浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A .0,4B .1,5C .1,-5D .-1,5【答案】D【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯,解得4m =-, ∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x -=B .2400(1)625x +=C .2625400x =D .2400625x =【答案】B【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9.(2022·山东滨州)一元二次方程22560x x -+=的根的情况为( ) A .无实数根 B .有两个不等的实数根 C .有两个相等的实数根 D .不能判定【答案】A【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∵方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10.(2022·四川泸州)已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A .3-B .1-C .3-或3D .1-或3【答案】A【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可.【详解】解:由题意可知:1221221x x m x x m +=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∵()22113+-+=m m ,解得:3m =-或1m =, ∵()22=2140∆--≥m m ,即14m ≤,∵3m =-,故选:A【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()22001242x += B .()22001242x -= C .()20012242x += D .()20012242x -= 【答案】A【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∵可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12.(2022·湖南常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A .4k >B .4k <C .4k <-D .1k >【答案】A 【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∵1640k ∆=-<解得:4k >故选:A .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A .8(12)11.52x +=B .28(1)11.52x ⨯+=C .28(1)11.52x +=D .()28111.52x +=【答案】C【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∵28(1+)=11.52x 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14.(2022·新疆)若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( )A .14k >-B .14k ≥-C .14k <-D .14k ≤- 【答案】B 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∵Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14,故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0∵方程有两个不相等的实数根;Δ=0∵方程有两个相等的实数根;Δ<0∵方程没有实数根是本题的关键. 15.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =【答案】A【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∵一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(2022·河南)一元二次方程210x x +-=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根【答案】A【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根,故选:A. 【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17.(2022·四川宜宾)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A .0B .-10C .3D .10【答案】A 【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∵mn =-5,m 2+2m -5=0,∵m 2+2m =5,∵22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.18.(2022·四川宜宾)若关于x的一元二次方程2210ax x有两个不相等的实数根,则a的取值范围是()A.0a≠D.1a>-a≥-且0a≠B.1a>-且0a≠C.1【答案】B【分析】根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∵a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac <0时,方程没有实数根.19.(2022·湖北荆州)关于x的方程2320x kx--=实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根【答案】B【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x的方程2320--=,x kx∵()22∆=--⨯⨯-=+>,341(2)980k k∵此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式∵的关系:(1)∵>0∵方程有两个不相等的实数根;(2)∵=0∵方程有两个相等的实数根;(3)∵<0∵方程没有实数根.20.(2022·湖南湘潭·中考真题)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12 D【答案】A 【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∵大正方形的面积为5,∵小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∵a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2,故选:A . 【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21.(2022·江苏扬州)请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一)【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a ,∵要使原方程有两个不同的实数根,∵()2=240a ∆-->,∵1a <,∵满足题意的常数可以为0,故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22.(2022·云南)方程2x 2+1=3x 的解为________. 【答案】1211,2x x ==【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∵()()2110x x --=,∵210x -=或10x -=,解得:1211,2x x ==,故答案为:1211,2x x ==.【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23.(2022·安徽)若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.【答案】2【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m = 240b ac =-=,∵16420m -⨯⨯=,解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24.(2022·四川成都)若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【分析】由题意解一元二次方程2640x x -+=得到3x =3x =再根据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得3x ===±∴故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25.(2022·江西)已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∵440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26.(2022·湖北荆州)一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解.【详解】解:2430x x -+=243101x x -++=+2441x x -+= ()221x -=∵1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27.(2022·湖北黄冈)已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____.【答案】3【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可.【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∵x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•cx x b a a =,.28.(2022·江苏宿迁)若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____.【答案】1k ≤【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案. 【详解】解: 关于x 的一元二次方程220x x k -+=有实数根,∵()22410k ∆=--⨯⨯≥, 即440,k 解得:1k ≤ .故答案为:1k ≤. 【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29.(2022·湖南娄底)已知实数12,x x 是方程210x x +-=的两根,则12x x =______.【答案】1-【解析】【分析】由一元二次方程根与系数的关系直接可得答案.【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x 故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12c x x a=”是解本题的关键.30.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示).【答案】30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户,依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去),∵x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31.(2022·四川眉山)设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案.【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根,∵122x x +=-,123x x =-,∵2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10. 【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32.(2022·湖北荆州·中考真题)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm ,∵EG 过圆心,且垂直于AD ,∵G 为AD 的中点,则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+,即222(12)6r r =-+,解方程得r =7.5,则球的半径为7.5cm .【点睛】本题考查主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33.(2022·湖南岳阳·中考真题)已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______.【答案】1m <【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>,解得1m <,所以实数m 的取值范围是1m <.故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34.(2022·四川宜宾·中考真题)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c +-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49, ∴()23492a b c a b +-=-=,,∴6a b c +-=∵,7a b -=∵, 131,22c c a b +-∴==,222a b c +=∵, 22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭,解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==,故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键. 35.(2022·四川凉山)已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________.【答案】6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案.【详解】∵a -b 2=4∵24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=-- ∵240b a =-≥ ∵4a ≥ 当a=4时,()213a --取得最小值为6 ∵222a a --的最小值为6∵22231422a a a b a --=-+-∵22314a b a -+-的最小值6答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36.(2022·四川凉山)解方程:x 2-2x -3=0【答案】121,3x x =-=【分析】利用因式分解法解一元二次方程即可得.【详解】解:2230x x --=,(1)(3)0x x +-=, 10x +=或30x -=,1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键.37.(2022·四川南充)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.【答案】(1)k 174≤;(2)k =3 【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【解析】 (1)解:∵一元二次方程2320x x k ++-=有实数根.∵∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)∵方程的两个实数根分别为12,x x ,∵12123,2x x x x k -+==-,∵()()12111x x ++=-,∵121211x x x x +++=-,∵2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可. 【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为x , 根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-, 经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%. (2)设该市在2022年可以改造y 个老旧小区, 由题意得:80(115%)1440(120%)y ⨯+≤⨯+,解得181823y ≤. ∵y 为正整数,∵最多可以改造18个小区. 答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式. 39.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=ba-,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∵m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n+的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【答案】(1)32;12-(2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n mm n+进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可.【解析】 (1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∵123322b x x a-+=-=-=,1212c x x a ⋅==-.故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∵3322bm n a-+=-=-=,12c mn a ==-,∵22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0, ∵s 、t 可以看作方程2x 2-3x -1=0的两个根,∵3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∵t s -=t s -=,当t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===-综上分析可知,11s t -或 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -=或t s -=,是解答本题的关键.40.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元? 【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,由题意得:()2100800x x +-=,解得:300x =,∵2100500x -=, 答:4月份再生纸的产量为500吨; (2)解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去) ∵20m =,∵m 的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∵()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41.(2022·湖北随州)已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值. 【答案】(1)34k >(2)2【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【解析】(1)解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根, ∴此方程根的判别式()()2221410k k ∆=+-+>,解得34k >. (2)解:由题意得:21215x x k =+=,解得2k =-或2k =, 由(1)已得:34k >,则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42.(2022·湖北十堰)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值. 【答案】(1)见解析 (2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【解析】(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∵241240m +≥>,∴该方程总有两个不相等的实数根; (2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-, ∵25αβ+=,∵52αβ=-,∵522ββ-+=, 解得:3β=,1α=-,。
2024年中考数学复习练习专题:一元二次方程含参考答案
2024年中考数学复习练习专题:一元二次方程一、选择题1.把x 2−5x =31配方,需在方程的两边都加上()A.5B.25C.2.5D.2542.方程x 2−8x +16=0根的情况是().A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.若x =0是关于x 的一元二次方程(m −1)x 2+2x +m 2−1=0的解,则m 的值为()A.m =±1B.m =0C.m =1D.m =−14.一元二次方程3x 2−mx −3=0有一根是x =1,则另一根是()A.x =1B.x =−1C.x =2D.x =45.关于x 的一元二次方程kx 2+2x +1=0有两个实根,则实数k 的取值范围是()A.k ≤1B.k <1C.k ≤1且k ≠0D.k <1且k ≠06.在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某小组成员之间共互赠了30本图书,若设该组共有x 名同学,那么依题意可列出的方程是()A.x(x −1)=30B.x(x +1)=30C.2x(x −1)=30D.12x(x −1)=307.若a 是方程3x 2−6x −2=10的一个解,则2a 2−4a −2031的值是()A.2023B.-2023C.2022D.-20228.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条线,一共开了21条线,则这个航空公司共有飞机场()A.4个B.5个C.6个D.7个二、填空题9.若关于x 的方程(m −1)⋅x 2+x +m 2−1=0,有一根为0,则m =.10.已知抛物线y =x 2+2x +k −1与x 轴有两个交点,则k 的取值范围是.11.若x 1、x 2是一元二次方程x 2+2x=3的两根,则x 1•x 2的值是.12.游行队伍有8行12列,后又增加了69人,要使得队伍增加的行数和列数相同,需要增加行。
2023年中考数学真题汇编:一元二次方程(含答案)
2023年中考数学真题汇编——一元二次方程一、选择题1. (2023·吉林省)一元二次方程x2―5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. 172. (2023·天津市)若x1,x2是方程x2―6x―7=0的两个根,则( )A. x1+x2=6B. x1+x2=―6C. x1x2=76D. x1x2=73. (2023·甘肃省兰州市)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2―2(1+2c)=( )A. ―2B. 2C. ―4D. 44. (2023·江苏省无锡市)2020年―2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是( )A. 5.76(1+x)2=6.58B. 5.76(1+x2)=6.58C. 5.76(1+2x)=6.58D. 5.76x2=6.585. (2023·内蒙古自治区赤峰市)用配方法解方程x2―4x―1=0时,配方后正确的是( )A. (x+2)2=3B. (x+2)2=17C. (x―2)2=5D. (x―2)2=176. (2023·山东省菏泽市)一元二次方程x2+3x―1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. ―3 C. 3 D. ―327. (2023·河南省)关于x的一元二次方程x2+mx―8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. (2023·全国)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A. 3.2(1―x)2=3.7B. 3.2(1+x)2=3.7C. 3.7(1―x)2=3.2D. 3.7(1+x)2=3.29. (2023·福建省)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.8510. (2023·山东省聊城市)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A. m≥―1B. m≤1C. m≥―1且m≠0D. m≤1且m≠011. (2023·四川省广元市)关于x的一元二次方程2x2―3x+3=0根的情况,下列说法中正确2的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. (2023·山东省滨州市)一元二次方程x2+3x―2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定13. (2023·四川省乐山市)若关于x的一元二次方程x2―8x+m=0两根为x1、x2,且x1=3x2,则m的值为( )A. 4B. 8C. 12D. 1614. (2023·湖南省永州市)某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1―x)2=2.36D. 2.36(1―x)2=2.715. (2023·湖南省怀化市)下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程x2+x+3=0有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心16. (2023·四川省广安市)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断17. (2023·四川省眉山市)关于x的一元二次方程x2―2x+m―2=0有两个不相等的实数根,则m的取值范围是( )A. m<32B. m>3C. m≤3D. m<318. (2023·四川省泸州市)若一个菱形的两条对角线长分别是关于x的一元二次方程x2―10x+m=0的两个实数根,且其面积为11,则该菱形的边长为( )A. 3B. 23C. 14D. 21419. (2023·四川省泸州市)关于x的一元二次方程x2+2ax+a2―1=0的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 实数根的个数与实数a的取值有关二、填空题20. (2023·江苏省泰州市)关于x的一元二次方程x2+2x―1=0的两根之和为______ .21. (2023·辽宁省)若关于x的一元二次方程x2―6x+k=0有两个不相等的实数根,则k的取值范围是______ .22. (2023·四川省雅安市)已知关于x的方程x2+mx―4=0的一个根为1,则该方程的另一个根为______ .23. (2023·全国)方程x2―4x―m=0有两个相等的实数根,则m的值为______ .24. (2023·山东省泰安市)已知关于x的一元二次方程x2―4x―a=0有两个不相等的实数根,则a的取值范围是______ .25. (2023·辽宁省营口市)若关于x的方程x2+mx―12=0的一个根是3,则此方程的另一个根是______ .26. (2023·黑龙江省牡丹江市)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是______ .27. (2023·湖北省鄂州市)若实数a、b分别满足a2―3a+2=0,b2―3b+2=0,且a≠b,则1a +1b=______ .28. (2023·贵州省)若一元二次方程kx2―3x+1=0有两个相等的实数根,则k的值是______ .29. (2023·江苏省徐州市)若关于x的方程x2―4x+m=0有两个相等的实数根,则实数m的值为______ .30. (2023·湖南省常德市)若关于x的一元二次方程x2―2x+a=0有两个不相等的实数根,则实数a的取值范围是______ .31. (2023·辽宁省)若关于x的一元二次方程x2―x+k+1=0有两个实数根,则k的取值范围是______ .32. (2023·湖南省张家界市)已知关于x的一元二次方程x2―2x―a=0有两个不相等的实数根,则a的取值范围是______ .33. (2023·黑龙江省绥化市)已知一元二次方程x2+x=5x+6的两根为x1与x2,则1x1+1x2的值为______ .34. (2023·湖南省岳阳市)已知关于x的方程x2+mx―20=0的一个根是―4,则它的另一个根是______ .35. (2023·湖南省岳阳市)已知关于x的一元二次方程x2+2mx+m2―m+2=0有两个不相等的实数根,且x1+x2+x1⋅x2=2,则实数m=______ .36. (2023·湖北省随州市)已知关于x的一元二次方程x2―3x+1=0的两个实数根分别为x1和x2,则x1+x2―x1x2的值为______ .37. (2023·湖南省邵阳市)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .38. (2023·四川省达州市)已知x1,x2是方程2x2+kx―2=0的两个实数根,且(x1―2)(x2―2)=10,则k的值______ .39. (2023·重庆市)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .40. (2023·重庆市)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为______ .41. (2023·上海市)如果关于x的方程x2―4x+2c=0有实数根,那么实数c的取值范围是______ .三、解答题42. (2023·上海市)解方程:(x―2)2―4(x―2)=12.43. (2023·江苏省泰州市)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?44. (2023·辽宁省)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?45. (2023·江苏省无锡市)(1)解方程:2x2+x―2=0;(2)解不等式组:x+3>―2x2x―5<1.46. (2023·内蒙古自治区通辽市)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2―x―1=0的两个实数根,∴m+n=1,mn=―1.则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x―1=0的两个实数根为x1,x2,则x1+x2=______ ,x1x2 =______ .(2)类比:已知一元二次方程2x2+3x―1=0的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s―1=0,2t2+3t―1=0且s≠t,求1s ―1t的值.47. (2023·山东省东营市)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.48. (2023·浙江省杭州市)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=―1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.49. (2023·湖南省郴州市)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?参考答案1.C2.A3.A4.A5.C6.C7.A8.B9.B10.D11.C12.A13.C14.B15.B16.A17.D18.C19.C20.―221.k<922.―423.―424.a>―425.―426.20%27.3228.9429.430.a<131.k≤―3432.a>―133.―2334.535.336.237.1000(1+x)2=144038.739.301(1+x)2=50040.1501(1+x)2=181541.c≤242.解:(x―2)2―4(x―2)=12,(x―2)2―4(x―2)―12=0,(x―2―6)(x―2+2)=0,x(x―8)=0,x=0或x―8=0,∴x1=0,x2=8.43.解:(1)根据题意,当x=800时,y=800×(50―30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50―30―0.01(x―1000)=―0.01x+30,∴y=x(―0.01x+30)=―0.01x2+30x=―0.01(x2―3000)=―0.01(x―1500)2+22500,∵―0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)由(2)知,当x=1750时,y=―0.01(1750―1500)2+22500=16250<22100,∴当一次性销售量在1000~1750kg之间时,利润为22100元,∴―0.01(x ―1500)2+22500=22100,解得x 1=1700,x 2=1300,∴当一次性销售为1300或1700千克时利润为22100元.44.解:(1)设y 与x 之间的函数关系式为y =kx +b ,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴120k +b =80140k +b =40,解得k =―2b =320,即y 与x 之间的函数关系式为y =―2x +320;(2)设利润为w 元,由题意可得:w =(x ―100)(―2x +320)=―2(x ―130)2+1800,∴当x =130时,w 取得最大值,此时w =1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.45.解:(1)2x 2+x ―2=0,∵a =2,b =1,c =―2,∴b 2―4ac =12+4×2×(―2)=17,∴x =―b ±b 2―4ac 2a =―1±174,∴x 1=―1+ 174,x 2=―1― 174;(2)x +3>―2x①2x ―5<1②,解不等式①得x >―1,解不等式②得:x <3,∴不等式组的解集为:―1<x <3.46.―32 ―1247.解:(1)设矩形ABCD 的边AB =xm ,则边BC =70―2x +2=(72―2x)m .根据题意,得x(72―2x)=640,化简,得x 2―36x +320=0解得x 1=16x 2=20,当x =16时,72―2x =72―32=40;当x=20时,72―2x=72―40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为644m2的羊圈;(2)答:不能,理由:由题意,得x(72―2x)=650,化简,得x4―366+322=0,Δ=(―36)2―4×335=―4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.48.解:∵使这个方程有两个不相等的实数根,∴b2―4ac>0,即b2>4c,∴①②③均可,选①解方程,则这个方程为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=―1.49.解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,(不合题意舍去),解得:x=25%,x=―94答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.。
中考数学一元二次方程(大题培优 易错 难题)
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可; 试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.7.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵(a b -)2=a ﹣2ab +b ≥0∴a +b ≥2ab ,当且仅当a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80% 400⨯=.答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.10.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。
备战中考数学一元二次方程(大题培优 易错 难题)及答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了45m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50.【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.7.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值. 详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3, 将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.8. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0 ∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴x=2b a-±∴x1x 2.。
中考数学一元二次方程(大题培优 易错 难题)含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -)=2221111x x x x -+÷-- =()()22111x x x x x +-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m ﹣3)=0, 解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】 【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3, 由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.4.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=242b b c aa -±-=42461222-±=-±⨯ ∴x 1=-1+6,x 2=-1-6(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.5.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动. 【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x2+x=y,则原方程变形为y2+y﹣6=0,解得y1=﹣3,y2=2.①当y=2时,x2+x=2,即x2+x﹣2=0,解得x1=﹣2,x2=1;②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x1=﹣2,x2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元 【解析】 【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论. 【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩,解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件.()2当零售单价下降a 元/件时,每天可售出()5001000a +件, 根据题意得:()()250010001500a a -+=,整理得:22310a a -+=, 解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元. 【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
中考数学模拟题《一元二次方程及其应用》专项测试卷(附带答案)
中考数学模拟题《一元二次方程及其应用》专项测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·四川泸州·统考中考真题)关于x 的一元二次方程22210x ax a ++-=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关2.(2023·天津·统考中考真题)若12,x x 是方程2670x x --=的两个根,则( ) A .126x x +=B .126x x +=-C .127·6x x = D .12·7x x = 3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示 2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x 依题意可列方程为( ) A .23.2(1) 3.7x -= B .23.2(1) 3.7x += C .23.7(1) 3.2x -=D .23.7(1) 3.2x +=4.(2023·黑龙江·统考中考真题)如图 在长为100m 宽为50m 的矩形空地上修筑四条宽度相等的小路 若余下的部分全部种上花卉 且花圃的面积是23600m ,则小路的宽是( )A .5mB .70mC .5m 或70mD .10m5.(2023·河南·统考中考真题)关于x 的一元二次方程280x mx +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根6.(2023·四川眉山·统考中考真题)关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,则m 的取值范围是( ) A .32m < B .3m > C .3m ≤ D .3m <7.(2023·新疆·统考中考真题)用配方法解一元二次方程2680x x -+= 配方后得到的方程是( ) A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=8.(2023·四川乐山·统考中考真题)若关于x 的一元二次方程280x x m -+=两根为12x x 、 且123x x =,则m 的值为( ) A .4B .8C .12D .169.(2023·山东滨州·统考中考真题)一元二次方程2320x x +-=根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能判定10.(2023·全国·统考中考真题)一元二次方程2520x x -+=根的判别式的值是( ) A .33B .23C .17D11.(2023·四川·统考中考真题)关于x 的一元二次方程232302x x -+=根的情况 下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定12.(2023·山东聊城·统考中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( ) A .1m ≥-B .1mC .1m ≥-且0m ≠D .1m 且0m ≠13.(2023·山东·统考中考真题)一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A .32B .3-C .3D .32-14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程2410x x --=时 配方后正确的是( ) A .2(2)3x +=B .2(2)17x +=C .2(2)5x -=D .2(2)17x -=二 填空题15.(2023·湖南常德·统考中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是_________.16.(2023·湖北宜昌·统考中考真题)已知1x 2x 是方程22310x x -+=的两根,则代数式12121x x x x ++的值为_________.17.(2022秋·河南新乡·九年级统考期中)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是_____________.18.(2023·四川宜宾·统考中考真题)若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________.19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个 并按计划逐月增长 预计八月份将提供岗位1815个.设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意 可列方程为___________.21.(2023·四川达州·统考中考真题)已知12,x x 是方程2220x kx +-=的两个实数根 且()()122210x x --=,则k 的值为___________.22.(2023·四川遂宁·统考中考真题)若a b 是一元二次方程2310x x -+=的两个实数根,则代数式a b ab +-的值为_________.23.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________.24.(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________ 另一个根为__________.25.(2023·甘肃武威·统考中考真题)关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).26.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根 那么a 的取值范围是________.27.(2023·湖南·统考中考真题)已知关于x 的方程2200x mx +-=的一个根是4-,则它的另一个根是________.28.(2023·山东枣庄·统考中考真题)若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2﹣3x +1=0有两个实数根x 1 x 2,则x 1+x 2﹣x 1x 2的值等于_____.30.(2023·四川内江·统考中考真题)已知a b 是方程2340x x +-=的两根,则243a a b ++-=___________. 31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k -+=的两个实数根为12,x x 若1212221x x x x ++=,则实数k =_____________.32.(2023·湖南·统考中考真题)某校截止到2022年底 校园绿化面积为1000平方米.为美化环境 该校计划2024年底绿化面积达到1440平方米.利用方程想想 设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 且12122x x x x ++⋅=,则实数m =_________.三 解答题35.(2023秋·辽宁沈阳·九年级统考期末)解方程:2320x x -+=.36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯 某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元 2022年用于购买图书的费用是7200元 求20202022-年买书资金的平均增长率.37.(2023·湖北·统考中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时 方程都有两个不相等的实数根(2)设该方程的两个实数根为a b 若()()2220a b a b ++= 求m 的值.38.(2023·四川南充·统考中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值 方程总有实数根 (2)若1x 2x 是方程的两个实数根 且212152x x x x +=- 求m 的值.39.(2023·浙江杭州·统考中考真题)设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值 使这个方程有两个不相等的实数根 并解这个方程. ①2,1b c == ①3,1b c == ①3,1b c ==- ①2,2b c ==. 注:如果选择多组条件分别作答 按第一个解答计分.40.(2023·湖南郴州·统考中考真题)随旅游旺季的到来 某景区游客人数逐月增加 2月份游客人数为1.6万人 4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率(2)预计5月份该景区游客人数会继续增长 但增长率不会超过....前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?41.(2023·湖北荆州·统考中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围(2)当1k =时 用配方法...解方程.参考答案一 单选题1.(2023·四川泸州·统考中考真题)关于x 的一元二次方程22210x ax a ++-=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【答案】C【分析】根据一元二次方程根的判别式求出()()222224144440a a a a ∆=--=-+=> 即可得出答案.【详解】解:①()()222224144440a a a a ∆=--=-+=>①关于x 的一元二次方程22210x ax a ++-=有两个不相等的实数根 故C 正确. 故选:C .【点睛】本题考查了根的判别式 一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时 方程有两个不相等的实数根 当Δ0=时 方程有两个相等的实数根 当Δ0<时 方程无实数根. 2.(2023·天津·统考中考真题)若12,x x 是方程2670x x --=的两个根,则( ) A .126x x += B .126x x +=- C .127·6x x = D .12·7x x = 【答案】A【分析】根据一元二次方程的根与系数的关系即可得. 【详解】解:方程2670x x --=中的1,6,7a b c ==-=- 12,x x 是方程2670x x --=的两个根126b x x a ∴+=-= 12·7cx x a==- 故选:A .【点睛】本题考查了一元二次方程的根与系数的关系 熟练掌握一元二次方程的根与系数的关系是解题关键.3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示 2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x 依题意可列方程为( )A .23.2(1) 3.7x -=B .23.2(1) 3.7x +=C .23.7(1) 3.2x -=D .23.7(1) 3.2x +=【答案】B【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x 根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x 根据题意得 23.2(1) 3.7x +=. 故选:B .【点睛】本题考查了一元二次方程的应用 根据题意列出一元二次方程是解题的关键.4.(2023·黑龙江·统考中考真题)如图 在长为100m 宽为50m 的矩形空地上修筑四条宽度相等的小路 若余下的部分全部种上花卉 且花圃的面积是23600m ,则小路的宽是( )A .5mB .70mC .5m 或70mD .10m【答案】A【分析】设小路宽为m x ,则种植花草部分的面积等于长为()1002m x - 宽为()502m x -的矩形的面积 根据花草的种植面积为23600m 即可得出关于x 的一元二次方程 解之取其符合题意的值即可得出结论. 【详解】解:设小路宽为m x ,则种植花草部分的面积等于长为()1002m x - 宽为()502m x -的矩形的面积 依题意得:()()1002502=3600x x -- 解得:15=x 270x =(不合题意 舍去) ①小路宽为5m . 故选:A .【点睛】本题考查了一元二次方程的应用 找准等量关系 正确列出一元二次方程是解题的关键. 5.(2023·河南·统考中考真题)关于x 的一元二次方程280x mx +-=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】对于20(0)ax bx c a ++=≠ 当0∆>, 方程有两个不相等的实根 当Δ0=, 方程有两个相等的实根Δ0<, 方程没有实根 根据原理作答即可.【详解】解:①280x mx +-=①()2248320m m ∆=-⨯-=+>所以原方程有两个不相等的实数根 故选:A .【点睛】本题考查了一元二次方程根的判别式 熟练掌握一元二次方程根的判别式是解题关键.6.(2023·四川眉山·统考中考真题)关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,则m 的取值范围是( ) A .32m < B .3m > C .3m ≤ D .3m <【答案】D【分析】利用一元二次方程根的判别式求解即可.【详解】解:①关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根 ①()()22420m ∆=---> ①3m < 故选:D .【点睛】本题主要考查了一元二次方程根的判别式 对于一元二次方程()200ax bx c a ++=≠ 若240b ac ∆=->,则方程有两个不相等的实数根 若240b ac ∆=-=,则方程有两个相等的实数根 若24<0b ac ∆=-,则方程没有实数根.7.(2023·新疆·统考中考真题)用配方法解一元二次方程2680x x -+= 配方后得到的方程是( ) A .()2628x += B .()2628x -=C .()231x +=D .()231x -=【答案】D【分析】方程两边同时加上一次项系数一半的平方即262-⎛⎫⎪⎝⎭计算即可.【详解】①2680x x -+=①22268+6622x x --⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭-=①()22869+3x x -=-- ①()231x -= 故选:D .【点睛】本题考查了配方法 熟练掌握配方法的基本步骤是解题的关键.8.(2023·四川乐山·统考中考真题)若关于x 的一元二次方程280x x m -+=两根为12x x 、 且123x x =,则m 的值为( ) A .4 B .8C .12D .16【答案】C【分析】根据一元二次方程根与系数的关系得出128x x += 然后即可确定两个根 再由根与系数的关系求解即可.【详解】解:①关于x 的一元二次方程280x x m -+=两根为12x x 、 ①128x x += ①123x x = ①212,6x x == ①1212m x x == 故选:C .【点睛】题目主要考查一元二次方程根与系数的关系 熟练掌握此关系是解题关键. 9.(2023·山东滨州·统考中考真题)一元二次方程2320x x +-=根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .不能判定【答案】A【分析】根据题意 求得2498170b ac ∆=-=+=> 根据一元二次方程根的判别式的意义 即可求解. 【详解】解:①一元二次方程2320x x +-=中 1,3,2a b c -==- ①2498170b ac ∆=-=+=>①一元二次方程2320x x +-=有两个不相等的实数根 故选:A .【点睛】本题考查了一元二次方程的根的判别式的意义 熟练掌握一元二次方程根的判别式的意义是解题的关键.10.(2023·全国·统考中考真题)一元二次方程2520x x -+=根的判别式的值是( )A .33B .23C .17D 【答案】C【分析】直接利用一元二次方程根的判别式24b ac =-△求出答案. 【详解】解:①1a = =5b - 2c = ①()224541172b ac =-=-⨯⨯-=. 故选:C .【点睛】此题主要考查了一元二次方程的根的判别式 正确记忆公式是解题关键.11.(2023·四川·统考中考真题)关于x 的一元二次方程232302x x -+=根的情况 下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+= 其中2a = 3b =- 32c = ①()23Δ342302=--⨯⨯=-< ①方程没有实数根. 故选:C .【点睛】本题主要考查了一元二次方程根的判别式 对于一元二次方程()200ax bx c a ++=≠ 若240b ac ∆=->,则方程有两个不相等的实数根 若240b ac ∆=-=,则方程有两个相等的实数根 若24<0b ac ∆=-,则方程没有实数根.12.(2023·山东聊城·统考中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( ) A .1m ≥- B .1mC .1m ≥-且0m ≠D .1m 且0m ≠【答案】D【分析】由于关于x 的一元二次方程2210mx x ++=有实数根 根据一元二次方程根与系数的关系可知0∆≥且0m ≠ 据此列不等式求解即可.【详解】解:由题意得 440m -≥ 且0m ≠ 解得 1m 且0m ≠. 故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系 熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时 一元二次方程有两个不相等的实数根 当Δ0=时 一元二次方程有两个相等的实数根 当Δ0<时 一元二次方程没有实数根. 13.(2023·山东·统考中考真题)一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A .32B .3-C .3D .32-【答案】C【分析】先求得123x x +=- 121x x ⋅=- 再将1211+x x 变形 代入12x x +与12x x ⋅的值求解即可. 【详解】解:①一元二次方程2310x x +-=的两根为12x x 、 ①123x x +=- 121x x ⋅=- ①1211+x x 1212x x x x +=31=-- 3=.故选:C .【点睛】本题主要考查了一元二次方程根与系数的关系 牢记12b x x a+=- 12cx x a ⋅=是解决本题的关键.14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程2410x x --=时 配方后正确的是( ) A .2(2)3x += B .2(2)17x +=C .2(2)5x -=D .2(2)17x -=【答案】C【分析】根据配方法 先将常数项移到右边 然后两边同时加上4 即可求解. 【详解】解:2410x x --= 移项得 241x x -=两边同时加上4 即2445x x +=- ①2(2)5x -= 故选:C .【点睛】本题考查了配方法解一元二次方程 熟练掌握配方法是解题的关键.二 填空题15.(2023·湖南常德·统考中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是_________. 【答案】1k <【分析】若一元二次方程有两个不相等的实数根,则根的判别式24>0b ac ∆=- 建立关于k 的不等式 解不等式即可得出答案.【详解】解:①关于x 的方程220x x k -+=有两个不相等的实数根 ①()224240b ac k ∆=-=--> 解得1k <. 故答案为:1k <.【点睛】此题考查了根的判别式.一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:(1)0∆>①方程有两个不相等的实数根 (2)Δ0=①方程有两个相等的实数根 (3)Δ0<①方程没有实数根.16.(2023·湖北宜昌·统考中考真题)已知1x 2x 是方程22310x x -+=的两根,则代数式12121x x x x ++的值为_________. 【答案】1【分析】根据1x 2x 是一元二次方程20ax bx c ++=的两个根,则有1212·b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩求解即可. 【详解】解:由题意得 1212321·2x x x x ⎧+=⎪⎪⎨⎪=⎪⎩原式321112==+.故答案:1.【点睛】本题考查了韦达定理 掌握定理是解题的关键.17.(2022秋·河南新乡·九年级统考期中)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是_____________. 【答案】m >-1【分析】根据有两个不相等的实数根得到()()2Δ241m =--⨯⨯->0 解不等式即可. 【详解】解:根据题意 得()()2Δ241m =--⨯⨯->0 解得 m >-1 故答案为m >-1.【点睛】本题考查一元二次方程的判别式 解决问题的关键是掌握判别式和方程根之间的关系:当∆>0时 原方程有两个不相等的实数根 当∆=0时 原方程有两个相等的实数根 当∆<0时 原方程无实数根.18.(2023·四川宜宾·统考中考真题)若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________. 【答案】2【分析】根据根与系数的关系即可求出答案. 【详解】解:设方程的两个根分别为a b 由题意得:()+2+1a b m = 4ab m =+ ①()2+111+++4m a b a bab m == ①()2+11+4m m = 解得:2m =经检验:2m =是分式方程的解检验:()()()()22Δ2144421424120m m =-+-+=⨯+-⨯+=>⎡⎤⎣⎦ ①2m =符合题意 ①2m =. 故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系 掌握一元二次方程根与系数的关系是解题的关键.19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______. 【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-, 将分式通分 代入即可求解. 【详解】解:①一元二次方程256x x x +=+ 即2460x x --= 的两根为1x 与2x ①121246x x x x +==-, ①1211+x x 12124263x x x x +===-- 故答案为:23-.【点睛】本题考查了分式的化简求值 一元二次方程根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个 并按计划逐月增长 预计八月份将提供岗位1815个.设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意 可列方程为___________. 【答案】()2150111815x +=【分析】设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意列出一元二次方程 即可求解. 【详解】解:设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意得()2150111815x +=故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用 增长率问题 根据题意列出方程是解题的关键.21.(2023·四川达州·统考中考真题)已知12,x x 是方程2220x kx +-=的两个实数根 且()()122210x x --=,则k 的值为___________. 【答案】7【分析】根据根与系数的关系求出12x x +与12x x 的值 然后整体代入求值即可. 【详解】①12,x x 是方程2220x kx +-=的两个实数根 ①122b kx x a +=-=- 12212c x x a -===-①()()122210x x --= ①121222410x x x x --+= 12122()60x x x x -+-=12602k ⎛⎫--⨯--= ⎪⎝⎭①解得7k =. 故答案为:7.【点睛】本题考查一元二次方程根与系数的关系 代数式求值.熟记一元二次方程根与系数的关系:12b x x a+=-和12cx x a ⋅=是解题关键.22.(2023·四川遂宁·统考中考真题)若a b 是一元二次方程2310x x -+=的两个实数根,则代数式a b ab +-的值为_________. 【答案】2【分析】根据根与系数的关系得到31a b ab +==, 由此即可得到答案. 【详解】解:①a b 是一元二次方程2310x x -+=的两个实数根 ①31a b ab +==, ①31312a b ab +-=-=-= 故答案为:2.【点睛】本题主要考查了一元二次方程根与系数的关系 对于一元二次方程()200ax bx c a ++=≠ 若12x x ,是该方程的两个实数根,则1212b ca x x x x a+=-=,.23.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________. 【答案】6【分析】解方程 将解得的12,x x 代入()()1222x x +⋅+即可解答. 【详解】解:2340x x --=对左边式子因式分解 可得()()410x x -+= 解得14x = 21x =-将14x = 21x =-代入()()1222x x +⋅+可得原式()()42126=+⨯-+= 故答案为:6.【点睛】本题考查了因式分解法解一元二次方程 熟练掌握计算方法是解题的关键.24.(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________ 另一个根为__________. 【答案】1- 2【分析】将=1x -代入原方程 解得m 根据一元二次方程根与系数的关系 得出122x x ⨯=- 即可求解. 【详解】解:①关于x 的一元二次方程220x mx +-=的一个根为1- ①120m --= 解得:1m =-设原方程的另一个根为2x ,则12·2x x =- ①11x =- ①22x =故答案为:12-,. 【点睛】本题考查了一元二次方程根的定义 一元二次方程根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.25.(2023·甘肃武威·统考中考真题)关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值). 【答案】2-(答案不唯一 合理即可)【分析】先根据关于x 的一元二次方程2240x x c ++=有两个不相等的实数根得到4160c ∆=-> 解得14c <根据c 的取值范围 选取合适的值即可. 【详解】解:①关于x 的一元二次方程2240x x c ++=有两个不相等的实数根 ①224144160c c ∆=-⨯⨯=-> 解得14c <当2c =-时 满足题意故答案为:2-(答案不唯一 合理即可).【点睛】此题考查了一元二次方程根的判别式 熟练掌握当240b ac ∆=->时 一元二次方程()200ax bx c a ++=≠有两个不相等的实数根是解题的关键.26.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根 那么a 的取值范围是________. 【答案】9a >【分析】根据一元二次方程根的判别式可进行求解.【详解】解:①关于x 的一元二次方程2610ax x ++=没有实数根 ①243640b ac a ∆=-=-< 解得:9a > 故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式 熟练掌握一元二次方程根的判别式是解题的关键. 27.(2023·湖南·统考中考真题)已知关于x 的方程2200x mx +-=的一个根是4-,则它的另一个根是________. 【答案】5【分析】根据一元二次方程根与系数的关系可得1220cx x a⋅==- 根据该方程一个根为4- 即可求出另一个根.【详解】解:根据题意可得:1,,20a b m c ===- ①1220cx x a⋅==- ①该方程一个根为4- 令14x =- ①2420x -=- 解得:25x =. 故答案为:5.【点睛】本题主要考查了一元二次方程根与系数的关系 解题的关键是掌握一元二次方程()200ax bx c a ++=≠有两根为1x 2x ,则12cx x a ⋅= 12b x x a+=-.28.(2023·山东枣庄·统考中考真题)若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________. 【答案】2019【分析】将3x =代入方程 得到32a b -= 利用整体思想代入求值即可. 【详解】解:①3x =是关x 的方程26ax bx -=的解 ①2336a b ⋅-= 即:32a b -=①202362a b -+()202323a b =-- 202322=-⨯ 20234=-2019=故答案为:2019.【点睛】本题考查方程的解 代数式求值.熟练掌握方程的解是使等式成立的未知数的值 是解题的关键. 29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2﹣3x +1=0有两个实数根x 1 x 2,则x 1+x 2﹣x 1x 2的值等于_____. 【答案】2【分析】先根据根与系数的关系得x 1+x 2=3 x 1x 2=1 然后利用整体代入的方法计算. 【详解】解:根据根与系数的关系得: x 1+x 2=3 x 1x 2=1 ①x 1+x 2﹣x 1x 2=3﹣1=2. 故答案为:2.【点睛】本题考查了根与系数的关系:若x 1 x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时 x 1+x 2b a=- x 1x 2ca=.熟练掌握根与系数的关系是解决本题的关键. 30.(2023·四川内江·统考中考真题)已知a b 是方程2340x x +-=的两根,则243a a b ++-=___________. 【答案】2-【分析】利用一元二次方程的解的定义和根与系数的关系 可得23,340a b a a +=-+-= 从而得到234+=a a 然后代入 即可求解.【详解】解:①a b 是方程2340x x +-=的两根 ①23,340a b a a +=-+-= ①234+=a a ①243a a b ++- 233a a a b =+++-()433=+--2=-.故答案为:2-.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系 熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k -+=的两个实数根为12,x x 若1212221x x x x ++=,则实数k =_____________.【答案】5-【分析】根据一元二次方程的根与系数的关系 得出12123,x x x x k +== 代入已知等式 即可求解. 【详解】解:①一元二次方程230x x k -+=的两个实数根为12,x x ①12123,x x x x k +== ①1212221x x x x ++= ①61k += 解得:5k =- 故答案为:5-.【点睛】本题考查了一元二次方程的根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.32.(2023·湖南·统考中考真题)某校截止到2022年底 校园绿化面积为1000平方米.为美化环境 该校计划2024年底绿化面积达到1440平方米.利用方程想想 设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________. 【答案】()2100011440x +=【分析】设这两年绿化面积的年平均增长率为x 依题意列出一元二次方程即可求解. 【详解】解:设这两年绿化面积的年平均增长率为x ,则依题意列方程为()2100011440x += 故答案为:()2100011440x +=.【点睛】本题考查了一元二次方程的应用 根据题意列出一元二次方程是解题的关键.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______. 【答案】k <1.【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式 解不等式即可得出结论.【详解】①关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根 ①①=2241k 0-⨯⨯> 解得:k 1< 故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式 解题的关键是得出关于k 的一元一次不等式.熟知“在一元二次方程()2ax bx c 0a 0++=≠中 若方程有两个不相等的实数根,则①=2b 4ac 0->”是解答本题的关键.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 且12122x x x x ++⋅=,则实数m =_________. 【答案】3【分析】利用一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根求出m 的取值范围 由根与系数关系得到212122,2x x m x x m m +=-=-+ 代入12122x x x x ++⋅= 解得m 的值 根据求得的m 的取值范围确定m 的值即可.【详解】解:①关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 ①()()22242480m m m m ∆=--+=->解得m>2①212122,2x x m x x m m +=-=-+ 12122x x x x ++⋅=①2222m m m -+-+=解得123,0m m ==(不合题意 舍去) ①3m = 故答案为:3.【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系 熟练掌握根的判别式和根与系数关系的内容是解题的关键.三 解答题35.(2023秋·辽宁沈阳·九年级统考期末)解方程:2320x x -+=.【答案】11x = 22x =【分析】首先将方程进行因式分解 然后根据因式分解的结果求出方程的解.【详解】解:2320x x -+=(1)(2)0x x --=①10x -=或20x -=①11x = 22x =.【点睛】本题考查了解一元二次方程 解题的关键是掌握因式分解法求解方程.36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯 某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元 2022年用于购买图书的费用是7200元 求20202022-年买书资金的平均增长率.【答案】20%【分析】设20202022-年买书资金的平均增长率为x 根据2022年买书资金=2020年买书资金()21x ⨯+建立方程 解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x由题意得:()2500017200x +=解得0.220%x ==或 2.20x =-<(不符合题意 舍去)答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用 找准等量关系 正确建立方程是解题关键.37.(2023·湖北·统考中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=. (1)求证:无论m 取何值时 方程都有两个不相等的实数根(2)设该方程的两个实数根为a b 若()()2220a b a b ++= 求m 的值.【答案】(1)见解析 (2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:①()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦ ①无论m 取何值 方程都有两个不相等的实数根.(2)解:①()22210x m x m m -+++=的两个实数根为,a b。
中考数学一元二次方程-经典压轴题及答案
中考数学一元二次方程-经典压轴题及答案一、一元二次方程真题与模拟题分类汇编(难题易错题)21.解方程:(1-2x)(x2-6x+9)。
答案】x1=1/4,x2=-2/3.解析】题目分析:先对方程的右边因式分解,然后直接开平方或移项之后再因式分解法求解即可。
解题分析】因式分解,得到22(1-2x)=(x-3)。
开平方,得到1-2x=x-3,或1-2x=-(x-3)。
解得x1=1/4,x2=-2/3.2.已知关于x的一元二次方程mx-(m+2)x+2m-3=0.1)当m取什么值时,方程有两个不相等的实数根?2)当m=4时,求方程的解。
答案】(1)当m>-1且m≠0时,方程有两个不相等的实数根;(2)x1= (3+5)/4,x2= (3-5)/4.解析】分析】(1)方程有两个不相等的实数根,Δ>0,代入求m取值范围即可,注意二次项系数≠0;(2)将m=4代入原方程,求解即可。
详解】1) 当mx-(m+2)x+2m-3=0,即(m-2)x+2m-3=0.根据求根公式,得到Δ=(m+2)2-4m(m-2)=4m+4>0.因为m≠0,所以m>-1,解得m>-1.因为二次项系数≠0,所以m≠2,解得m≠2.所以当m>-1且m≠0时,方程有两个不相等的实数根。
2) 当m=4时,将m=4代入原方程,得到4x2-6x+1=0.根据求根公式,得到x1=(3+5)/4,x2=(3-5)/4.所以当m=4时,方程的解为x1=(3+5)/4,x2=(3-5)/4.点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是解决本题的关键。
3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到1344m2?答案】当x=13m时,活动区的面积达到1344m2.解析】分析】根据“活动区的面积=矩形空地面积-阴影区域面积”列出方程,可解答。
中考数学一元二次方程(大题培优)附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用2.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.3.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=2b a-±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.5.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.6.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。
中考数学一元二次方程综合经典题
1.关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1、x2. (1)求 k 的取值范围; (2)若 x1+x2=1﹣ k 3
2 【解析】
试题分析:(1)方程有两个实数根,可得 b2 4ac 0,代入可解出 k 的取值范围;
5.图 1 是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为 △ ABC 和△ DEF,其中∠ B=90°,∠ A=45°,BC= ,∠ F=90°,∠ EDF=30°, EF=2.将△ DEF 的斜边 DE 与△ ABC 的斜边 AC 重合在一起,并将△ DEF 沿 AC 方向移动.在移动过程中, D、E 两点始终在 AC 边上(移动开始时点 D 与点 A 重合). (1)请回答李晨的问题:若 CD=10,则 AD= ; (2)如图 2,李晨同学连接 FC,编制了如下问题,请你回答: ①∠ FCD 的最大度数为 ; ②当 FC∥ AB 时,AD= ; ③当以线段 AD、FC、BC 的长度为三边长的三角形是直角三角形,且 FC 为斜边时,AD= ; ④△ FCD 的面积 s 的取值范围是 .
角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.
6.将 m 看作已知量,分别写出当 0<x<m 和 x>m 时, 与 之间的函数关系式;
7.已知 为正整数,二次方程
的两根为
,求下式的值:
【答案】
【解析】 由韦达定理,有
,
.于是,对正整数
,有
原式=
8.工人师傅用一块长为 10dm,宽为 6dm 的矩形铁皮制作一个无盖的长方体容器,需要将 四角各裁掉一个正方形.(厚度不计)求长方体底面面积为 12dm2 时,裁掉的正方形边长 多大?
中考数学一元二次方程(大题培优 易错 难题)附详细答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.2.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.解方程: 2212x x 6x 9-=-+() 【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-, 4.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
中考数学模拟试题汇编 一元二次方程(含解析)
一元二次方程一、单选题1、设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A、2B、1C、﹣2D、﹣12、一元二次方程x2﹣3x﹣2=0的两根为x1, x2,则下列结论正确的是()A、x1=﹣1,x2=2B、x1=1,x2=﹣2C、x1+x2=3D、x1x2=23、下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A、a>0B、a=0C、c>0D、c=04、若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A、x1=0,x2=6B、x1=1,x2=7C、x1=1,x2=﹣7D、x1=﹣1,x2=75、若一次函数y=mx+6的图象与反比例函数y= 在第一象限的图象有公共点,则有()A、mn≥﹣9B、﹣9≤mn≤0C、mn≥﹣4D、﹣4≤mn≤06、关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A、B、-C、4D、﹣47、已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A、m>1B、m<1C、m≥1D、m≤18、若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A、M>NB、M=NC、M<ND、不确定9、已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、010、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m的值是()A、﹣B、C、﹣或D、111、已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A、﹣2B、﹣1C、1D、212、已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A、4,﹣2B、﹣4,﹣2C、4,2D、﹣4,213、若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则 + 的值是()A、3B、﹣3C、5D、﹣514、青山村种的水稻xx年平均每公顷产7200kg,xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A、7200(1+x)=8450B、7200(1+x)2=8450C、7200+x2=8450D、8450(1﹣x)2=720015、若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A、B、C、D、二、填空题(共5题;共5分)16、方程2x2﹣3x﹣1=0的两根为x1, x2,则x12+x22=________.17、已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.18、关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.19、某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.20、如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________ m.三、解答题(共4题;共25分)21、关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.22、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23、周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?24、随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.四、综合题(共2题;共25分)25、已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2, k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从xx年底的2万个增长到xx年底的2.88万个,求该市这两年(从xx年度到xx年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;答案解析部分一、单选题【答案】D【考点】根与系数的关系【解析】【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ= ,故选D.【分析】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【答案】C【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣3x﹣2=0的两根为x1, x2,∴x1+x2=﹣ =3,x1•x2= =﹣2,∴C选项正确.故选C.【分析】根据根与系数的关系找出“x1+x2=﹣ =3,x1•x2= =﹣2”,再结合四个选项即可得出结论.本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.【答案】D【考点】根的判别式【解析】【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【答案】D【考点】解一元二次方程-因式分解法,二次函数的性质【解析】【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣ =3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.【答案】A【考点】根的判别式,反比例函数与一次函数的交点问题【解析】【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y= 中,得:mx+6= ,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.【答案】D【考点】根与系数的关系【解析】【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴ ,∴则m2()= = =﹣4.故答案选D.【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键.【答案】C【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.【答案】B【考点】一元二次方程的解【解析】【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】C【考点】一元二次方程的解,根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2= ,解得m=﹣;若是﹣1时,则m= .故选:C.【分析】由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m的值.本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣ =2.故选D.【分析】本题考查了根与系数的关系,解题的关键是找出m+n=2.本题属于基础题,难度不大,解决该题型题目时,利用根与系数的关系找出两根之和与两根之积是关键.根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【答案】D【考点】根与系数的关系【解析】【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【分析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+ = = = ﹣2= ﹣2=﹣5.故选D.【分析】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将 + 变形成﹣2,代入数据即可得出结论.【答案】B【考点】一元二次方程的应用【解析】【解答】解:由题意可得,7200(1+x)2=8450,故选B.【分析】本题考查由实际问题抽象出一元二次方程组,解题的关键是明确题意,列出相应的一元二次方程组.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题【答案】【考点】根与系数的关系【解析】【解答】解:∵方程2x2﹣3x﹣1=0的两根为x1, x2,∴x1+x2=﹣ = ,x1•x2= =﹣,∴x12+x22= ﹣2x1•x2= ﹣2×(﹣)= .故答案为:.【分析】根据根与系数的关系得出“x1+x2=﹣ = ,x1•x2= =﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.本题考查了根与系数的关系以及完全平方公式,解题的关键是求出x1+x2= ,x1•x2=﹣.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再利用完全平方公式将原代数式转化成只含两根之和与两根之积的代数式是关键.【答案】6【考点】一元二次方程的解【解析】【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.【答案】m>【考点】根的判别式,根与系数的关系,解一元一次不等式组【解析】【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次不等式组,解题的关键是得出关于m的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的情况结合根的判别式以及根与系数的关系得出关于m的一元一次不等式组是关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】2【考点】一元二次方程的应用【解析】【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.三、解答题【答案】解:设方程的另一根为t.依题意得:3×()2+ m﹣8=0,解得m=10.又 t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10【考点】根与系数的关系【解析】【分析】由于x= 是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.【答案】(1)证明:∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根(2)解:∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.【考点】一元二次方程的解,根的判别式【解析】【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.【答案】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛【考点】一元二次方程的应用【解析】【分析】设要邀请x支球队参加比赛,则比赛的总场数为 x(x﹣1)场,与总场数为28场建立方程求出其解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时单循环形式比赛规则的总场数为等量关系建立方程是关键.【答案】解:设该种药品平均每场降价的百分率是x,由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%【考点】一元二次方程的应用【解析】【分析】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1﹣x)2,据此列出方程求解即可.此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.四、综合题【答案】(1)解:∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x= ≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2= =1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠-1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)解:|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣ = =﹣m,x1x2= = ,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3× =(﹣1)2,m2﹣4=1,m2=5,m=± ,∴|m|≤2不成立.【考点】根的判别式,根与系数的关系,分式方程的解【解析】【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.【答案】(1)解:设该市这两年(从xx年度到xx年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)解:设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【考点】一元一次方程的应用,一元二次方程的应用,一次函数的应用【解析】【分析】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.(1)设该市这两年(从xx年度到xx 年底)拥有的养老床位数的平均年增长率为x,根据“xx年的床位数=xx年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.。
中考数学一元二次方程(大题培优)及详细答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm;∴经过2s时P、Q两点之间的距离是;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.考点:一元二次方程的应用.2.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.3.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15﹣15h 就会进入台风影响区;(3)215小时.【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t15由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(1515h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为15151515h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.8.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解9.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。
中考数学培优(含解析)之一元二次方程附答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-==;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0, ∵b 2﹣4ac=13>0 ∴.∴12313313,22x x +-==.(2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根; (2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I )kx 2+(2k -3)x+k -3 = 0是关于x 的一元二次方程.∴由求根公式,得. ∴或(II ),∴.而,∴,. 由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:3.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】5.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.6.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0). (1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值. 【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3. 【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论; (2)利用公式法可求出x 1=3m,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程, ∴△=(m -3)2-4m ×(-3) =(m +3)2,∵(m +3)2≥0,即△≥0, ∴方程总有两个实数根; (2)解:∵x =()()332m m m--±+ ,∴x1=-3,x2=1,m∵m为正整数,且方程的两个根均为整数,∴m=-1或-3.点睛: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.7.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.8.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元. 此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.9.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=, 0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7 【解析】 【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值. 【详解】(1)∵x 2+2xy +2y 2+2y +1=0 ∴(x 2+2xy +y 2)+(y 2+2y +1)=0 ∴(x +y )2+(y +1)2=0 ∴x +y =0 y +1=0 解得:x =1,y =﹣1 ∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0 ∴(a 2﹣6a +9)+(b 2﹣8b +16)=0 ∴(a ﹣3)2+(b ﹣4)2=0 ∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7. 故答案为7. 【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
2024年深圳市中考数学模拟题汇编:一元二次方程(附答案解析)
2024年深圳市中考数学模拟题汇编:一元二次方程一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2 3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.844.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣15.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.47.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=08.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.29.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠110.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为m.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利元;(2)储存几周后出售利润可达到4960元?2024年深圳市中考数学模拟题汇编:一元二次方程参考答案与试题解析一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根【考点】解一元二次方程﹣直接开平方法.【专题】常规题型;运算能力.【答案】B【分析】根据一元二次方程的解法即可求出答案.【解答】解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2【考点】解一元二次方程﹣配方法.【专题】一元二次方程及应用;运算能力.【答案】A【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+2=0,变形得:x2﹣4x=﹣2,配方得:x2﹣4x+4=﹣2+4,即(x﹣2)2=2,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.84【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】C【分析】利用该市2023年人均纸质阅读量=该市2021年人均纸质阅读量×(1+人均纸质阅读量年均增长率)2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:4(1+x)2=4.84.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣1【考点】一元二次方程的解.【专题】一元二次方程及应用;推理能力.【答案】A【分析】根据一元二次方程的解的定义把x=1代入方程得到关于a的一次方程,然后解一次方程即可.【解答】解:∵x=1是一元二次方程x2+ax﹣3=0的一个根,∴1+a﹣3=0,∴a=2.故选:A.【点评】本题考查了一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.5.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【专题】判别式法;运算能力.【答案】A【分析】根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ=28>0,进而可得出原方程有两个不相等的实数根.【解答】解:∵a=1,b=﹣2,c=﹣6,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴关于x的一元二次方程x2﹣2x﹣6=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根”是解题的关键.6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.4【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】C【分析】求出2x2﹣4x+1=0,再找出一次项系数即可.【解答】解:2x2+1﹣4x=0,2x2﹣4x+1=0,所以一元二次方程2x2+1﹣4x=0的一次项系数是﹣4.故选:C.【点评】本题考查了一元二次方程的一般形式,能熟记一元二次方程的一般形式(ax2+bx+c=0,其中a、b、c为常数,a≠0)是解此题的关键.7.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=0【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据多项式乘多项式的运算法则化简,再通过移项,合并同类项即可.【解答】解:(x+3)(x﹣1)=2x﹣4,x2+2x﹣3=2x﹣4,x2+2x﹣2x﹣3+4=0,x2+1=0,故选:D.【点评】此题主要考查了一元二次方程的一般形式,掌握多项式乘多项式的运算法则是解题关键.8.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.2【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【答案】C【分析】直接利用根与系数的关系求解.【解答】解:∵x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,∴x1•x2=12.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−,x1•x2=.9.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠1【考点】一元二次方程的定义.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据一元二次方程的定义判断即可.【解答】解:∵关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,∴m﹣1≠0,∴m≠1,故选:D.【点评】本题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.10.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】A【分析】如果设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据总面积即可列出方程.【解答】解:设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据题意可得出方程为:(60+2x)(40+2x)=3500,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=﹣1.【考点】一元二次方程的解.【答案】见试题解答内容【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案为:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0x1=72,x2=﹣2.【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【答案】x1=72,x2=﹣2.【分析】利用因式分解法把方程转化为2x﹣7=0或x+2=0,然后解一次方程即可.【解答】解:(2x﹣7)(x+2)=0,2x﹣7=0或x+2=0,所以x1=72,x2=﹣2.故答案为:x1=72,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率20%.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】20%.【分析】设该市改造老旧小区投入资金的年平均增长率为x,利用2022年投入资金金额=2020年投入资金金额×(1+x)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x1=﹣2.2(不合题意,舍去),∴该市改造老旧小区投入资金的年平均增长率为20%.故答案为:20%.【点评】本题考查一元二次方程的应用.解题的关键是找准等量关系,正确列出一元二次方程.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为2m.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】2.【分析】设绿地的长、宽增加的长度为xm,根据绿地面积增加了18m2,可列出关于x 的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设绿地的长、宽增加的长度为xm,根据题意得:(4+x)(3+x)﹣4×3=18,整理得:x2+7x﹣18=0,解得:x1=2,x2=﹣9(不符合题意,舍去).答:绿地的长、宽增加的长度为2m.故答案为:2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为1000(1+x)2=1440.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】1000(1+x)2=1440.【分析】根据2022年底绿化面积×(1+年平均增长率)2=2024年底绿化面积,列出一元二次方程即可.【解答】解:根据题意得:1000(1+x)2=1440,故答案为:1000(1+x)2=1440.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【专题】一元二次方程及应用;运算能力.【答案】(1)x1=x2=(2)x1=2,2=52.【分析】(1)方程利用公式法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)∵a=1,b=3,c=﹣2,∴Δ=b2﹣4ac=32﹣4×1×(﹣2)=17,∴x==∴x1=x2=(2)移项得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(2x﹣5)(x﹣2)=0,∴2x﹣5=0或x﹣2=0,解得:x1=2,2=52.【点评】此题考查了解一元二次方程﹣因式分解法及公式法,熟练掌握各自的解法是解本题的关键.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.【考点】根与系数的关系;一元二次方程的解;根的判别式.【专题】一元二次方程及应用;运算能力.【答案】(1)m=﹣3,另一实数根是−32;(2)m<18.【分析】(1)把x=1代入原方程,得到关于m的方程,即可求m的值,再利用根与系数的关系即可求另一根;(2)利用根的判别式进行求解即可.【解答】解:(1)∵x=1是该方程的一个实数根,∴2×12+1+m=0,解得:m=﹣3,∴原方程为:2x2+x﹣3=0,令方程的另一实数根为y,则有:1+y=−12,解得:y=−32;(2)∵方程有两个不相等的实数根,∴Δ=12﹣4×2m>0,解得:m<18.【点评】本题主要考查根与系数的关系,根的判别式,解答的关键是对相应的知识的掌握与灵活运用.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)20%;(2)50元.【分析】(1)设该景区七、八月游客人数的月平均增长率为x,利用该景区八月份的游客人数=该景区六月份的游客人数×(1+该景区七、八月游客人数的月平均增长率)2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为(180﹣2y)件,利用每天销售这种纪念品获得的总利润=每件的销售利润×日销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:(1)设该景区七、八月游客人数的月平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该景区七、八月游客人数的月平均增长率为20%;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为100﹣10×K405=(180﹣2y)件,根据题意得:(y﹣30)(180﹣2y)=1600,整理得:y2﹣120y+3500=0,解得:y1=50,y2=70,又∵要利于游客,∴y=50.答:该纪念品的销售价应定为50元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】售价应定为3.5元/斤.【分析】设每斤玉露香梨降价x元,根据题意得到方程,解方程即可得到结论.【解答】解;设每斤玉露香梨降价x元,根据题意得(4.5﹣2﹣x)(200+0.1×20)=600,解得x1=1,x2=0.5,因为要让利于顾客,所以x取1,∴4.5﹣1=3.5(元),答:售价应定为3.5元/斤.【点评】本题考查了一元二次方程的应用,正确地列出方程是解题的关键.20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利2400元;(2)储存几周后出售利润可达到4960元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)2400;(2)储藏了8个星期后出售,利润可达到4960元.【分析】(1)根据题意列式计算即可;(2)设储藏了x个星期后出售,利润可达到4960元,根据题意列方程即可得到结论.【解答】解:(1)当前直接出售可获利800×12﹣7200=2400(元),故答案为:2400;(2)设储藏了x个星期后出售,利润可达到4960元,由题意得:(12+2x)(800﹣10x)﹣7200﹣1000x=4960,解得x1=16,x2=8,当x=16时,12+2x=44>40(不合题意舍去),当x=8时,12+2x=28,答:储藏了8个星期后出售,利润可达到4960元.【点评】本题考查了一元二次方程的应用,正确地理解题意,列出方程是解题的关键.。
2024年广东省中考数学模拟题汇编:一元二次方程(附答案解析)
2024年广东省中考数学模拟题汇编:一元二次方程一.选择题(共10小题)1.若关于x的方程(3﹣a)x2﹣x=0是一元二次方程,则a的取值范围()A.a≠0B.a≠3C.a<3D.a>32.下列方程属于一元二次方程的是()A.x2﹣4=0B.x﹣y=5C.ax2+bx﹣c=0D.x+1=33.电影《孤注一掷》于2023年8月8日在中国大陆上映,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达13亿元,若把每天的平均增长率记作x,则方程可以列为()A.3(1+x)=13B.3(1+x)2=13C.3+3(1+x)2=13D.3+3(1+x)+3(1+x)2=134.方程x2=4的解是()A.±2B.2C.±2D.25.一元二次方程x2﹣2x﹣3=0的一次项系数、常数项分别是()A.﹣2,3B.﹣2,﹣3C.2,﹣3D.2,106.李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,若设2月到4月每月盈利的平均增长率为x,则可列方程为()A.2400(1+x)2=3456B.2400(1﹣x)2=3456C.2400(1+2x)=3456D.2400(1﹣2x)=34567.一元二次方程x2﹣3x+2=0的两根为x1,x2,则下列结论错误的是()A.x1+x2=3B.x1•x2=2C.(1−2)2=1D.12+22=68.2023年某电影上映的第一天票房为2亿元,第二天、第三天单日票房持续增长,三天累计票房为6.62亿元,若第二天、第三天单日票房按相同的增长率增长,设平均每天票房的增长率为x,则根据题意,下列方程正确的是()A.2(1+x)=6.62第1页(共15页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学模拟试题汇编 一元二次方程【例1】已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。
第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。
事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。
根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。
于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏)∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,m 取任何实数时,方程总有实数根.(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称, ∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0)∴1=m∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,(判断大小直接做差)∴12y y ≥(当且仅当1x =时,等号成立).(3)由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉)∵对于x 的同一个值,132y y y ≥≥,∴23y ax bx c =++的图象必经过()1,0.又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=. ∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立,∴320y y -≥,图7∴2(42)(25)0y ax a x a =+-+-≥.又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.(a>0时,顶点纵坐标就是函数的最小值) ∴2(42)4(25)0a a a ---≤.∴2(31)0a -≤.而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .【例2】关于x 的一元二次方程22(1)2(2)10m x m x ---+=.(1)当m 为何值时,方程有两个不相等的实数根; (2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。
第二问给点求解析式,比较简单。
值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得[]22224(1)0m m ∆=---->() 解得54m <210m -≠ 解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-解得31m m =-=,(舍) (始终牢记二次项系数不为0) 28101y x x =++(3)抛物线的对称轴是58x = 由题意得114B ⎛⎫-- ⎪⎝⎭, (关于对称轴对称的点的性质要掌握) 14x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏) 另设过点B 的直线y kx b =+(0k ≠)把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =- 114y kx k =+- 28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+= 有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+= 解得6k =162y x =+ 综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+【例3】已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组, 十分麻烦,计算量大,浪费时间并且可能出错。
但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称。
而抛物线只有一个未知系数,所以轻松写出对称轴求出b 。
第二问依然是判别式问题,比较简单。
第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。
考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。
【解析】(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等. 所以,抛物线对称轴3142b x -+=-=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2241x x ++=0.因为,24b ac =-=16-8=8>0.所以,方程有两个不同的实数根,分别是11x ==-+,21x ==--. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++=无实数解即可.由24b ac =-=168(1)k -+=88k -<0,得1k >又k 是正整数,所以k 得最小值为2.【例4】已知抛物线2442y ax ax a =-+-,其中a 是常数.(1)求抛物线的顶点坐标;(2)若25a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给25a >,合理变换以后代入判别式,求得整点的可能取值. (1)依题意,得0a ≠,∴2442y ax ax a =-+-()()224422 2.a x x a x =-+-=--∴抛物线的顶点坐标为(2,2)-(2)∵抛物线与x 轴交于整数点,∴24420ax ax a -+-=的根是整数.∴2x == ∵0a >,∴2x = ∴2a是整数的完全平方数. ∵25a >, ∴25a <. (很多考生想不到这种变化而导致后面无从下手) ∴2a取1,4,当21a =时,2a =; 当24a =时,12a = . ∴a 的值为2或12. ∴抛物线的解析式为2286y x x =-+或2122y x x =-.【例5】已知:关于x 的一元二次方程()()21210m x m x -+--=(m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.【思路分析】本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0。
第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y 的取值.对于本题来说,直接将抛物线中的m 提出,对其进行因式分解得到y=(mx -x -1)(x+1)就可以看出当x=-1时,Y=0,而这一点恰是抛物线横过的X 轴上固定点.如果想不到因式分解,由于本题固定点的特殊性(在X 轴上),也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.解:(1)()()22241m m m ∆=-+-=∵方程有两个不相等的实数根,∴0m ≠∵10m -≠,∴m 的取值范围是0m ≠且1m ≠.(2)证明:令0y =得()()21210m x m x -+--=.∴()()()()222121m m mx m m --±--±==--.∴()()12221121211m m m m x x m m m -+--++==-==---, (这样做是因为已经知道判别式是2m ,计算量比较小,如果根号内不是完全平方就需要注意了)∴抛物线与x 轴的交点坐标为()11001m ⎛⎫- ⎪-⎝⎭,,,, ∴无论m 取何值,抛物线()()2121y m x m x =-+--总过定点()10-,(3)∵1x =-是整数 ∴只需11m -是整数. ∵m 是整数,且01m m ≠≠,, ∴2m =当2m =时,抛物线为21y x =-.把它的图象向右平移3个单位长度,得到的抛物线解析式为 ()223168y x x x =--=-+。