通用版高考数学一轮复习2.4函数性质的综合问题讲义文
2025新高考数学一轮复习函数性质的综合应用教案
∴ -1 ≥ 0, 或 -1 ≤ 0, 解得 1≤x≤3 或-1≤x≤0,
-1 ≤ 2
-1 ≥ -2,
∴满足 xf(x-1)≥0 的 x 的取值范围是[-1,0]∪[1,3],故选 D.
规律方法
综合运用奇偶性与单调性解题的方法技巧
(1)比较大小:先利用奇偶性将不在同一单调区间上的自变量的函数值转化
又因为f(2x+1)是奇函数,所以f(x)的图象关于点(1,0)对称,
于是函数f(x)的周期为T=4×|2-1|=4.
由于f(2x+1)是奇函数,所以f(2×0+1)=f(1)=0,而f(x+2)是偶函数,
所以f(x+2)=f(-x+2),令x=1代入得f(3)=f(1)=0,因此f(-1)=0,故选B.
(2)当函数图象具有对称中心时,在对称中心两侧的单调性相同;当函数图
象具有对称轴时,在图象的对称轴两侧的单调性相反.
2.关于函数奇偶性与周期性的常用结论
(1)若f(a-x)=f(x)且f(x)为偶函数,则f(x)的周期为a;
(2)若f(a-x)=f(x)且f(x)为奇函数,则f(x)的周期为2a;
(3)若f(x+a)与f(x+b)(a≠b)都是偶函数,则f(x)的周期是2|a-b|;
[对点训练1](2024·江西赣州模拟)已知定义在R上的奇函数f(x),满足f(x+1)
因此|x-1|>1,解得x>2或x<0,即解集为(-∞,0)∪(2,+∞),故选B.
(3)(2020·新高考Ⅰ,8)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则
满足xf(x-1)≥0的x的取值范围是( D )
高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性
第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。
高考理科数学一轮总复习课标通用版课件:第2章函数2-4
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第26页
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 1.1] 已知 y=f(x)是二次函数,且 f(-32+x)=f(-23-x)对 x∈R 恒成立,f(- 32)=49,方程 f(x)=0 的两实根之差的绝对值等于 7.求此二次函数的解析式.
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第12页
经典品质/超出梦想
高考总复习/新课标版
答案
1.(1)ax2+bx+c (2)a(x-h)2+k
(3)a(x-x1)(x-x2) 2.(1)-2ba (2)(-2ba,4ac4-a b2) (3)向上 向下 (4)[4ac4-a b2,+∞) (-∞,4ac4-a b2]
经典品质/超出梦想
高考总复习/新课标版 数学·理
02 函数的概念、基本初等函数 (Ⅰ)及函数的应用
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第1页
经典品质/超出梦想
高考总复习/新课标版 数学·理
§2.4 二次函数
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第15页
经典品质/超出梦想
高考总复习/新课标版 数学·理
2.(教材改编)若函数 f(x)=4x2-kx-8 在区间[5,20]上是单调函数,则实数 k 的取 值范围是________.
解析:二次函数的对称轴方程是 x=8k,
故只需8k≤5 或8k≥20,即 k≤40 或 k≥160. 故所求 k 的取值范围是(-∞,40]∪[160,+∞) 答案:(-∞,40]∪[160,+∞)
高考理科数学第一轮复习第二章函数 函数的综合问题
函数的综合应用一.函数综合问题1.函数内容本身的相互综合,包括概念、性质、图象及几种基本初等函数的综合问题 2.函数与方程、不等式的综合问题 3.函数与数列、三角的综合问题 4.函数与几何的综合问题5.函数在实际应用(上一节)的综合问题 二、举例剖析 函数的性质综合 例1.书P32例2变式一:已知奇函数)(x f 满足)18(log ,2)(,)1,0(),()2(21f x f x x f x f x则时且=∈-=+的值为 。
解:())4()2()()2(+=+-=∴-=+x f x f x f x f x f892)89(log )89log ()98(log )18log 4()18log ()18(log 89log 22222212-=-=-=-==-=-=f f f f f f例2.书P33例4函数与几何例3.若f (x )是R 上的减函数,且f (x )的图象经过点)3,0(A 和)1,3(-B ,则不等式21)1(<-+x f 的解集 (-1,2) 。
函数与方程、不等式 例4.书P33例3函数与数列例5.书P32例1(备)变式一:设函数)(1log 2*∈=N n xy n(1)n=1,2,3……时,把已知函数的图象和直线y=1的交点横坐标依次记为a 1,a 2,a 3,…a n , …,求证:a 1+a 2+a 3+a n <1;(2)对于每一个n 值,设A n ,B n 为已知函数图象上与x 轴距离为1的两点,求证:n 取任意一个正整数时,以A n B n 为直径的圆都与一条定直线相切,求出这条定直线和切点坐标.解:(1)原函数化为n n n a a x x n y y x n y 21,)21(,log 11,log 12==⎪⎩⎪⎨⎧-==-=即得则1211211)211(21321<-=--=++++∴n n an a a a (2) 以A n,B n 为曲线上的点且与x 轴距离为1,则nn n n n n n n n n B A B A 2122)22(),1,2(),1,2(22+=+-=---,又A n,B n 的中点C 到y 轴的距离为n n n n B A 21222=+-,所以,以C 为圆心,以n n B A 为直线的圆与y 轴相切,故定直线为x=0,且切点为(0,0).三.小结变式一.已知定义在R 上的函数 满足: (1)求证: ,且当x<0时, (2)求证 在R 上是减函数)(x f ,1)(0,0),()()(<<>•=+x f x n f m f n m f 时且1)0(=f )(x f 1)(>x f1.函数的概念、性质及几种基本初等函数的综合问题。
高考数学一轮复习讲义 第二章 2.4 函数的奇偶性与周期性课件
一轮复习讲义
函数的奇偶性与周期性
要点梳理
忆一忆知识要点
1.奇、偶函数的概念 一般地,设函数 y=f(x)的定义域为 A.如果对于任意的 x∈A, 都有 f(-x)=f(x) ,那么称函数 y=f(x)是偶函数. 如果对于任意的 x∈A,都有f(-x)=-f(x),那么称函数 y =f(x)是奇函数. 奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.
函数奇偶性的判断
例 1 判断下列函数的奇偶性. (1)f(x)= 9-x2+ x2-9;(2)f(x)=(x+1) (3)f(x)=|x+4-3|-x23.
11-+xx;
确定函数的奇偶性时,必须先判定函数定义域是否关于原点 对称.若对称,再验证 f(-x)=±f(x)或其等价形式 f(-x)±f(x) =0 是否成立.
故原函数是奇函数.
(2)由22+-xx≥0 且 2-x≠0⇒-2≤x<2,
定义域关于原点不对称,故原函数是非奇非偶函数.
(3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称, 又当 x>0 时,f(x)=x2+x,则当 x<0 时,-x>0, 故 f(-x)=x2-x=f(x); 当 x<0 时,f(x)=x2-x,则当 x>0 时,-x<0, 故 f(-x)=x2+x=f(x),故原函数是偶函数. (4)由1|x-2-x22>|-0,2≠0 得定义域为(-1,0)∪(0,1),关于原点对 称,∴f(x)=-l(gx(21--2x)2-) 2=-lg(1x-2 x2). ∵f(-x)=-lg[1(--(x-)2x)2]=-lg(1x-2 x2)=f(x),
专题四函数性质的综合问题(2021年高考数学一轮复习专题)
专题四函数性质的综合问题一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【解析】 由题意易知f (x )在(0,+∞)上是减函数,又因为|a |=ln 3>1,b =(ln 3)2>|a |,0<c =ln 32<|a |,所以f (c )>f (|a |)>f (b ).又由题意知f (a )=f (|a |),所以f (c )>f (a )>f (b ).故选C.题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .【解析】解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛4-25f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛+211-f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫⎝⎛21-f =-18. 解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以⎪⎭⎫ ⎝⎛25f =32-25-⎪⎭⎫⎝⎛=-18.题型三 函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f (x )满足f (x )+f (2-x )=0,现给出下列命题:①函数f (x )是以2为周期的周期函数;②函数f (x )是以4为周期的周期函数;③函数f (x -1)为奇函数;④函数f (x -3)为偶函数,其中真命题的个数是( ) A .1 B .2 C .3D .4【解析】 偶函数f (x )满足f (x )+f (2-x )=0,所以f (-x )=f (x )=-f (2-x ),f (x +2)=-f (x ), f (x +4)=-f (x +2)=f (x ),可得f (x )的最小正周期为4,故①错误,②正确; 由f (x +2)=-f (x ),可得f (x +1)=-f (x -1).又f (-x -1)=f (x +1),所以f (-x -1)=-f (x -1),故f (x -1)为奇函数,③正确; 若f (x -3)为偶函数,则f (x -3)=f (-x -3),又f (-x -3)=f (x +3),所以f (x +3)=f (x -3),即f (x +6)=f (x ),可得6为f (x )的周期,这与4为最小正周期矛盾,故④错误,故选B.题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.【例1】设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = .【解析】函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),所以g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .【解析】由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数. 由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),所以f (x )是最小正周期为8的偶函数,所以f (17)=f (1+2×8)=f (1)=2.结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( ) ①f (4)=0;②f (x )是以4为周期的函数;③f (x )的图象关于x =1对称;④f (x )的图象关于x =2对称. A .1 B .2 C .3 D .4【解析】 因为f (x )是(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),f (0)=0,因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的周期函数,f (4)=f (0)=0, 因为f (x +2)=-f (x ),所以f [(x +1)+1]=f (-x ),令t =x +1,则f (t +1)=f (1-t ),所以f (x +1)=f (1-x ), 所以f (x )的图象关于x =1对称,而f (2+x )=f (2-x )显然不成立.故正确的命题是①②③,故选C.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)【解析】:由f (a -3)+f (9-a 2)<0得f (a -3)<-f (9-a 2).又由奇函数性质得f (a -3)<f (a 2-9).因为f (x )是定义域为(-1,1)的减函数,所以⎩⎪⎨⎪⎧-1<a -3<1,-1<a 2-9<1,a -3>a 2-9,解得22<a <3.2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98D .98【解析】:由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3)=f (-1). 由f (1)=2×12=2得f (-1)=-f (1)=-2,所以f (2 019)=-2.故选A.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4D .-4【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.(2020·广东六校第一次联考)定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则⎪⎭⎫⎝⎛212019f =( ) A.94 B.14 C .-94D .-14【解析】:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以⎪⎭⎫ ⎝⎛212019f =⎪⎭⎫ ⎝⎛21-2020f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f .因为在[0,1]上有f (x )=x 2,所以⎪⎭⎫ ⎝⎛21f =221⎪⎭⎫ ⎝⎛=14, 故⎪⎭⎫ ⎝⎛212019f =-14,故选D. 5.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<⎪⎭⎫ ⎝⎛31f 的x 的取值范围是( )A.⎪⎭⎫ ⎝⎛3231, B.⎪⎭⎫⎢⎣⎡3231, C.⎪⎭⎫⎝⎛3221,D.⎪⎭⎫⎢⎣⎡3221,【解析】:因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x -1)<⎪⎭⎫⎝⎛31f ,所以|2x -1|<13,所以13<x <23.6.(2020·石家庄市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎥⎦⎤ ⎝⎛231,B.⎥⎦⎤⎢⎣⎡2523,C.⎪⎭⎫⎢⎣⎡323,D .[2,3)【解析】因为0≤x ≤1时,f (x )=4x -1,所以f (x )在区间[0,1]上是增函数,又函数f (x )是奇函数,所以函数f (x )在区间[-1,1]上是增函数,因为f (x )=f (2-x ),所以函数f (x )的图象关于直线x =1对称,所以函数f (x )在区间(1,3)上是减函数,又⎪⎭⎫ ⎝⎛21f =1,所以⎪⎭⎫ ⎝⎛23f =1,所以在区间(1,3)上不等式f (x )≤1的解集为⎪⎭⎫⎢⎣⎡323,,故选C.6.(2020·黑龙江齐齐哈尔二模)已知函数f (x )是偶函数,定义域为R ,单调增区间为[0,+∞),且f (1)=0,则(x -1)f (x -1)≤0的解集为( ) A .[-2,0] B .[-1,1]C .(-∞,0]∪[1,2]D .(-∞,-1]∪[0,1]【解析】:由题意可知,函数f (x )在(-∞,0]上单调递减,且f (-1)=0,令x -1=t ,则tf (t )≤0,当t ≥0时,f (t )≤0,解得0≤t ≤1;当t <0时,f (t )≥0,解得t ≤-1,所以0≤x -1≤1或x -1≤-1,所以x ≤0或1≤x ≤2.故选C. 7.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ) A .4和6 B .3和1 C .2和4D .1和2【解析】:设g (x )=a sin x +bx ,则f (x )=g (x )+c ,且函数g (x )为奇函数.注意到c ∈Z ,所以f (1)+f (-1)=2c 为偶数.故选D.8.(2020·甘肃甘谷一中第一次质检)已知定义在R 上的函数f (x )满足条件:①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2);③函数f (x +2)的图象关于y 轴对称,则下列结论正确的是( )A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (7)<f (6.5)D .f (4.5)<f (6.5)<f (7)【解析】:因为对任意的x ∈R ,都有f (x +4)=f (x ),所以函数是以4为周期的周期函数,因为函数f (x +2)的图象关于y 轴对称,所以函数f (x )的图象关于x =2对称, 因为x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2).所以函数f (x )在[0,2]上为增函数, 所以函数f (x )在[2,4]上为减函数.易知f (7)=f (3),f (6.5)=f (2.5),f (4.5)=f (0.5)=f (3.5),则f (3.5)<f (3)<f (2.5),即f (4.5)<f (7)<f (6.5).9.(2020·甘肃静宁一中一模)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<⎪⎭⎫ ⎝⎛25f <⎪⎭⎫ ⎝⎛27fB .⎪⎭⎫ ⎝⎛27f <⎪⎭⎫ ⎝⎛25f <f (1)C .⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫ ⎝⎛25fD .⎪⎭⎫ ⎝⎛25f <f (1)<⎪⎭⎫ ⎝⎛27f【解析】:函数f (x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f (x )的图象关于x =2对称,则⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛23f ,⎪⎭⎫ ⎝⎛27f =⎪⎭⎫ ⎝⎛21f ,函数y =f (x )在[0,2]上单调递增,则有⎪⎭⎫ ⎝⎛21f <f (1)<⎪⎭⎫ ⎝⎛23f ,所以⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫⎝⎛25f .故选C. 10.(2020·辽宁沈阳东北育才学校联考(二))函数f (x )是定义在R 上的奇函数,且f (-1)=0,若对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,则不等式f (x )<0的解集为( )A .(-∞,-1)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)【解析】:令F (x )=xf (x ),因为函数f (x )是定义在R 上的奇函数,所以F (-x )=-xf (-x )=xf (x )=F (x ), 所以F (x )是偶函数,因为f (-1)=0,所以F (-1)=0,则F (1)=0,因为对任意x 1,x 2∈(-∞,0),且x 1≠x 2时,都 有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,所以F (x )在(-∞,0)上单调递减,所以F (x )在(0,+∞)上单调递增,所以不等式f (x )<0的解集为(-∞,-1)∪(0,1),故选C.二、填空题1.若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为 .【解析】:由f (x )=x 3-8(x ≥0),知f (x )在[0,+∞)上单调递增,且f (2)=0.所以,由已知条件可知f (x -2)>0⇒f (|x -2|)>f (2).所以|x -2|>2,解得x <0或x >4. 2.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________; 【解析】 易知函数f (x )的定义域为R ,且f (x )为偶函数.当x ≥0时,f (x )=ln(1+x )-11+x 2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1.3.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)= . 【解析】:因为f (x )为偶函数,所以f (-1)=f (1).又f (x )的图象关于直线x =2对称,所以f (1)=f (3).所以f (-1)=3.4.已知定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2020)=________.【解析】因为定义在R 上的函数f (x )满足f (x +2)=1f (x ),所以f (x +4)=1f (x +2)=f (x ),所以函数f (x )的周期为4.当x ∈[0,2)时,f (x )=x +e x ,所以f (2020)=f (505×4+0)=f (0)=0+e 0=1. 5.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )= .【解析】:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为 .【解析】:因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为f (x )-f (-x )x =2·f (x )x <0,即⎩⎪⎨⎪⎧x >0,f (x )<0或⎩⎪⎨⎪⎧x <0,f (x )>0,解得x ∈(-1,0)∪(0,1). 三、解答题1.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论.【解析】:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)f (x )为偶函数.证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.2.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且⎪⎭⎫ ⎝⎛23f =12.(1)求实数a ,b 的值;(2)求函数f (x )的值域.【解析】:(1)因为f (x )+f (-x )=0,所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ),即函数f (x )是周期为2的周期函数,所以f (0)=0,即b =-1.又⎪⎭⎫⎝⎛23f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f =1-a =12,解得a =14. (2)当x ∈[0,1)时,f (x )=a x +b =x⎪⎭⎫⎝⎛41-1∈⎥⎦⎤⎢⎣⎡043-,,由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎪⎭⎫ ⎝⎛430,, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎪⎭⎫⎝⎛4343-,.。
高考数学一轮复习 第二章 函数、导数及其应用 2.4 指数函数课件(理)
【知识梳理】 1.根式 (1)根式的概念 ①若____,则x叫做a的n次方根,其中n>1且n∈N*.式子
叫x做n=a根式,这里n叫做根指数,a叫做被开方数.
na
②a的n次方根的表示:
xn=a⇒x=
(当n为奇数且n∈N*时), na ____(当n为偶数且n∈N*时). na
(2)根式的性质
【小题快练】
链接教材 练一练 1.(必修1P56例6改编)若函数f(x)=ax(a>0,且a≠1)的 图象经过点A( ),则f(-1)=________.
2 ,1 3
【解析】依题意可知a2=1 ,解得a= 3 ,
3
3
所以f(x)=( 3)x,所以f(-1)=( )-1=3
答案:
3
3
3.
3
2.(必修1P60B组T1改编)若函数y=(a2-1)x在R上为增函 数,则实数a的取值范围是________. 【解析】由y=(a2-1)x在(-∞,+∞)上为增函数,得a21>1,解得a> 或a<- . 答案:a> 或2a<- 2
2
2
感悟考题 试一试
3.(2016·泉州模拟)函数f(x)=ax-1(a>0,a≠1)的图象
恒过点A,下列函数中图象不经过点A的是 ( )
A.y=
B.y=|x-2|
C.y=2x1-1x
D.y=log2(2x)
【解析】选A.由f(x)=ax-1(a>0,a≠1)的图象恒过点
(1,1),又0= ,知(1,1)不在y= 的图象上.
1
【规范解答】(1)
4 16x8y4 2x2y
(16x8y4)4 2x2y
高考数学一轮复习第二章函数的概念及其基本性质2.4.2幂函数课件理
命题法 幂函数的图象及性质的应用 典例 (1)在同一直角坐标系中,函数 f(x)=xa(x>0),g(x)=logax 的图象可能是( )
(2)若
a=21
2 3
,b=51
2 3
,c=21
1 3
,则
a,b,c
的大小关系是(
)
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
[解析] (1)因为 a>0,所以 f(x)=xa 在(0,+∞)上为增函数,故 A 不符合;在 B 中,由 f(x)的图象知
第二章 函数的概念及其基本性质
第4讲 二次函数与幂函数
考点二 幂函数
撬点·基础点 重难点
1 幂函数的定义 一般地,形如 y=xα (α∈R)的函数称为幂函数.
2 五种幂函数图象的比较
3 幂函数的性质比较
注意点 α 的大小对幂函数图象的影响
幂函数在第一象限的图象中,以直线 x=1 为分界,当 0<x<1 时,α 越大,图象越低(即图象越靠近 x 轴, 可记为“指大图低”);当 x>1 时,α 越大,图象越高(即图象离 x 轴越远,不包含 y=x0).
a>1,由 g(x)的图象知 0<a<1,矛盾,故 B 不符合;在 C 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 a>1,
矛盾,故 C 不符合;在 D 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 0<a<1,相符.
(2)因为
y=x2Biblioteka 3在第一象限内是增函数,所以
a=21
高考数学大一轮复习第二章函数、导数及其应用2.4指数与指数函数课件文
突破考点 02
指数函数的图象及其应用
(题点多变型——一题多变)
指数函数的图象与性质 a>1
图 象
0<a<1
R (0,+∞) (0,1) ax>1 0<ax<1 0<ax<1 ax>1 增函数 减函数
【调研 2】 若直线 y=2a 与函数 y=|ax-1|(a>0,且 a≠1) 的图象只有两个公共点,则实数 a 的取值范围是________.
2.有理指数幂
(1)分数指数幂的意义:
①正分数指数幂:a
m n
=____________(a>0,m,n∈N*,
且 n>1);
②负分数指数幂:a-
m n
=__________=________(a>0,m,
n∈N*,且 n>1);
③0 的正分数指数幂等于 0,0 的负分数指数幂________.
(2)有理数指数幂的运算性质: ①aras=________(a>0,r,s∈Q); ②(ar)s=________(a>0,r,s∈Q); ③(ab)r=________(a>0,b>0,r∈Q); 上述有理数指数幂的运算性质,对于无理数指数幂也适 用.
【解析】 ①当 a>1 时,如图知 y=2a 与 y=|ax-1|的图 象只有一个公共点.
②当 0<a<1 时,由图知
当 0<2a<1,即 0<a<12时,y=2a 与 y=|ax-1|的图象只有 两个公共点.
【答案】
1 0<a<2
【题点发散一】 若将本例题干改为“函数 y=|2x-1|在 区间(-∞,k]上单调递减”,则 k 的取值范围是________.
高考数学大一轮复习 第二章 函数 2.4 幂函数与二次函数教案(含解析)-人教版高三全册数学教案
§2.4幂函数与二次函数考情考向分析以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为填空题,中档难度.1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y=x y=x2y=x312y x y=x-1图象性质定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)图象定义域R R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减对称性 函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0); (3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b24a.( × )(2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ ) (3)函数122yx 是幂函数.( × )(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当n <0时,幂函数y =x n是定义域上的减函数.( × ) 题组二 教材改编2.[P89练习T3]已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.答案 32解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝ ⎛⎭⎪⎫12α.∴k =1,α=12.∴k +α=32.3.[P40练习T3]已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值X 围是________. 答案 (-∞,-3]解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3. 题组三 易错自纠 4.幂函数21023a a f x x -+=(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a =________. 答案 5解析 因为a 2-10a +23=(a -5)2-2,2(5)2a f x x --=(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6, 又(a -5)2-2为偶数,所以只能是a =5.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减, ∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.已知幂函数223(22)n nf x n n x -=+-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 答案 1解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意.2.若四个幂函数y =x a,y =x b,y =x c,y =x d在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是________.(用“>”连接)答案 a >b >c >d解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d .3.若1133(1)(32)a a --+-,则实数a 的取值X 围是____________.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 解析 不等式1133(1)(32)a a --+-等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.4.已知幂函数f (x )=x α的部分对应值如下表,则不等式f (|x |)≤2的解集是________.x 112 f (x )122答案 [-4,4]解析 由题意知,22=⎝ ⎛⎭⎪⎫12α,∴α=12,∴f (x )=12x ,∴f (|x |)=12x ,由12x ≤2,得|x |≤4,故-4≤x ≤4.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1(1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2, ∴f (x )=x 2-2x +3.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x . 思维升华求二次函数解析式的方法跟踪训练1(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0), 又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线xf (x )的图象被x 轴截得的线段长为2,所以f (xf (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值X 围是________. 答案 [0,2]解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2), 则当f (m )≤f (0)时,有0≤m ≤2.命题点2 二次函数的单调性例3函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值X 围是________. 答案 [-3,0]解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值X 围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a=-1,∴a =-3.命题点3 二次函数的最值例4已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,某某数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题例5 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值X 围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1. (2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2. 思维升华解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值X 围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路的关键都是求函数的最值或值域. 跟踪训练2(1)(3-a )(a +6)(-6≤a ≤3)的最大值为________. 答案 92解析 易知函数y =(3-a )(a +6)的两个零点是3,-6,图象的对称轴为a =-32∈[-6,3],y =(3-a )(a +6)的最大值为y =⎝⎛⎭⎪⎫3+32·⎝⎛⎭⎪⎫-32+6=⎝ ⎛⎭⎪⎫922,则(3-a )(6+a )的最大值为92.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞),所以f (x )min f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由题意得a >2x -2x2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1, ∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.24m my x-=(m ∈Z )的图象如图所示,则m 的值为________.答案 2解析 ∵24m m y x -=(m ∈Z )的图象与坐标轴没有交点, ∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 2.若幂函数2268(44)m m f x m m x -+=-+在(0,+∞)上为增函数,则m 的值为________.答案 1解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.3.(2019·某某省某某中学月考)若函数f (x )=x 2-2ax -1在(-∞,5]上单调递减,则实数a 的取值X 围是________.答案 [5,+∞)解析 由题意可得--2a2≥5,解得a ≥5.4.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为________________. 答案 {x |x >4或x <0}解析 函数f (x )=ax 2+(b -2a )x -2b 为偶函数,则b -2a =0,故f (x )=ax 2-4a =a (x -2)(x +2),因为函数f (x )在(0,+∞)上单调递增,所以a >0.根据二次函数的性质可知,不等式f (2-x )>0的解集为{x |2-x >2或2-x <-2}={x |x <0或x >4}.5.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________.解析 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.6.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值X 围是________. 答案 (-∞,-2)解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2.7.已知f (x )=x 2,g (x )=12x ,h (x )=x -2,当0<x <1时,f (x ),g (x ),h (x )的大小关系是________________.答案 h (x )>g (x )>f (x )解析 分别作出f (x ),g (x ),h (x )的图象如图所示,可知h (x )>g (x )>f (x ).8.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________________.答案 f (x )=-4x 2-12x +40 解析 设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0), 方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 9.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值X 围是______.解析 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.10.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧ f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 11.已知函数22k k f x x -++=(k ∈Z )满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出q 的值;若不存在,请说明理由. 解 (1)∵f (2)<f (3),∴-k 2+k +2>0,解得-1<k <2.∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝ ⎛⎭⎪⎫2q -12q,4q 2+14q 处取得. 而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q≥0, ∴g (x )max =4q 2+14q =178, g (x )min =g (-1)=2-3q =-4.解得q =2.∴存在q =2满足题意. 12.(2018·某某省如皋中学考试)已知函数f (x )=x 2+bx +c 的图象与y 轴的交点坐标为(0,1),且满足f (1-x )=f (1+x ).(1)求f (x )的解析式;(2)设g (x )=x f (x ),m >0,求函数g (x )在[0,m ]上的最大值.解 (1)因为图象与y 轴的交点坐标为(0,1),所以c =1,因为f (1-x )=f (1+x ),所以函数f (x )的图象关于直线x =1对称,所以b =-2,所以f (x )=x 2-2x +1.(2)因为f (x )=x 2-2x +1=(x -1)2,所以g (x )=x |x -1|=⎩⎪⎨⎪⎧ x 2-x ,x ≥1,x -x 2,x <1.作出函数g (x )的图象如图所示.当0<m ≤12时,g (x )max =g (m )=m -m 2; 当12<m ≤1+22时,g (x )max =g ⎝ ⎛⎭⎪⎫12=14; 当m >1+22时,g (x )max =g (m )=m 2-m , 综上,g (x )max =⎩⎪⎨⎪⎧ m -m 2,0<m ≤12,14,12<m ≤1+22,m 2-m ,m >1+22.y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是________.(填序号)答案 ①④解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值X 围是________. 答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立, 即m <-⎝ ⎛⎭⎪⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,x ∈(1,2),则函数y =x +4x在x ∈(1,2)上是减函数. ∴4<y <5,∴-5<-⎝ ⎛⎭⎪⎫x +4x <-4, ∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧ m ≤-5,m ≤-4,即m ≤-5.15.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值X 围是__________. 答案 [-2,0]解析 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m 2≤0,即m ≤0; 当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m 2≤1,即m ≥-2. 综上,实数m 的取值X 围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由.解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧ f (-1)=-2,f (1)=2,得a =-1(舍去);当-1≤a ≤0时,由⎩⎪⎨⎪⎧ f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧ f (a )=-2,f (-1)=2,得a 不存在;综上可得,存在实数a 满足题目条件,a =-1.。
数学一轮复习第二章2.4二次函数与幂函数学案理含解析
第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。
(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。
2023版高考数学一轮总复习:函数的基本性质课件文
的周期是2|b-a|;
(6)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0)对称,则函数f(x)
的周期是4|b-a|.
理解自测
判断正误(正确的打“√”,错误的打“✕”).
(1)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.( ✕ )
1 −2
2.函数单调性的常用结论
若函数f(x),g(x)在区间I上具有单调性,则在区间I上有:
(1)f(x)与a·f(x)在a>0时单调性相同,在a<0时单调性相反;
考点1
函数的单调性与最值
(2)当f(x),g(x)都是增(减)函数时,f(x)+g(x)是增(减)函数;
(3)当f(x)为增函数,g(x)为减函数时,f(x)-g(x)为增函数,g(x)-f(x)为
减函数;
(4)当f(x)≠0时,函数f(x)与-f(x),
1
()
在公共定义域内单调性相反;
(5)复合函数y=f(g(x))的单调性与y=f(t),t=g(x)单调性有关,即“同增
异减”.
考点1
函数的单调性与最值
3.对勾函数的单调性
函数y=x+ (a>0)在(-∞,
]和[ ,+∞)上单调递增,在[- ,0)和
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,
都有 f(x+T)=f(x) ,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
2.最小正周期
如果在周期函数f(x)的所有周期中存在最小的正数,那么这个最小的正数
2024届高考数学一轮复习第二章《函数》第二节+函数的基本性质-第2课时+奇偶性与周期性
第2课时 奇偶性与周期性
必备知识·整合关键能力·突破Fra bibliotek课标要求
1.结合具体函数,了解函数奇偶性的概念和几何意义.
2.会运用函数的图象理解和研究函数的奇偶性.
3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
必备知识·整合
〔知识梳理〕
1.函数的奇偶性
奇偶性
6. (新教材改编题)已知 是定义在 上的周期为3的奇函数,且 ,则 ____.
[解析] 由题意知 ,且 ,即 ,故 .
关键能力·突破
考点一 函数的奇偶性
角度1 奇偶性的判断
例1
(1) 多选题 下列函数是偶函数的是( )
A. B. C. D.
A. B. C. D.
C
[解析] 因为 是定义在 上的奇函数,所以 .又 ,所以 ,所以函数 是以2为周期的周期函数,则 .
4. (2023山东日照模拟)已知 是定义域为 的奇函数,当 时, ,则 ( )
A. B. C. D.
(2) (2021新高考Ⅰ,13,5分)已知函数 是偶函数,则 ___.
[解析] 解法一:因为 的定义域为 ,且是偶函数,所以 对任意的 恒成立,所以 对任意的 恒成立,所以 对任意的 恒成立,所以 .解法二:因为 的定义域为 ,且是偶函数,所以 ,所以 ,解得 ,经检验, 为偶函数,所以 .
〔课前自测〕
1. 概念辨析(正确的打“√”,错误的打“×”).
(1) 函数 在 上是偶函数.( )
×
(2) 若函数 为奇函数,则一定有 .( )
×
(3) 若 是函数的一个周期,则 也是函数的周期.( )
√
(4) 若函数 满足关系 ,则函数 的图象关于点 对称.( )
2025年新人教版高考数学一轮复习讲义 第二章 §2.4 函数的对称性
2025年新人教版高考数学一轮复习讲义第二章§2.4 函数的对称性1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.奇函数、偶函数的对称性(1)奇函数关于 对称,偶函数关于 对称.(2)若f (x +a )是偶函数,则函数f (x )图象的对称轴为 ;若f (x +a )是奇函数,则函数f (x )图象的对称中心为 .2.若函数y =f (x )满足f (a -x )=f (a +x ),则函数的图象关于直线x =a 对称;若函数y =f (x )满足f (a -x )=-f (a +x ),则函数的图象关于点 对称.原点y 轴x =a (a ,0)(a ,0)3.两个函数图象的对称(1)函数y =f (x )与y =f (-x )的图象关于 对称;(2)函数y =f (x )与y =-f (x )的图象关于 对称;(3)函数y =f (x )与y =-f (-x )的图象关于 对称.y 轴x 轴原点1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若函数y =f (x )是奇函数,则函数y =f (x -1)的图象关于点(1,0)对称.( )(2)若函数y =f (x +1)是偶函数,则函数y =f (x )的图象关于直线x =1对称.( )(3)函数y =5x 与y =5-x 的图象关于x 轴对称.( )(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.( )√√√×2.函数f(x)= 的图象的对称中心为√A.(0,0)B.(0,1)C.(1,0)D.(1,1)3.已知定义在R上的函数f(x)在(-∞,2)上单调递增,且f(x+2)=f(2-x)对任意x∈R恒成立,则√A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)因为f(x+2)=f(2-x),所以f(x)的图象关于直线x=2对称,所以f(3)=f(1),由于f(x)在(-∞,2)上单调递增,所以f(-1)<f(1)=f(3),f(0)<f(1)=f(3).4.(2023·南昌检测)已知函数y=f(x)的图象经过点P(1,-2),则函数y=(-1,2)-f(-x)的图象必过点________.y=f(x)与y=-f(-x)的图象关于原点对称,y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点(-1,2).返回第二部分探究核心题型题型一 轴对称问题√由函数f(x+1)为偶函数,可得函数f(x)的图象关于直线x=1对称,所以f(2+x)=f(-x),因为f(x)是定义在R上的奇函数,所以f(4+x)=f(-2-x)=-f(2+x)=-f(-x)=f(x),可得函数f(x)的周期为4,(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单(-1,1)调递减,则不等式f(-x2)>f(-1)的解集为________.∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又-x2,-1∈(-∞,2],f(-x2)>f(-1),∴-x2>-1,即x2<1,∴-1<x<1,∴原不等式的解集为(-1,1).思维升华函数y=f(x)的图象关于直线x=a对称⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x);跟踪训练1 (1)(2023·郴州检测)已知函数f(x)=-x2+bx+c,且f(x+1)是偶函数,则f(-1),f(1),f(2)的大小关系是A.f(-1)<f(1)<f(2)B.f(1)<f(2)<f(-1)C.f(2)<f(-1)<f(1)√D.f(-1)<f(2)<f(1)因为f(x+1)是偶函数,所以其对称轴为直线x=0,所以f(x)的对称轴为直线x=1,又二次函数f(x)=-x2+bx+c的开口向下,根据自变量与对称轴的距离可得f(-1)<f(2)<f(1).(2)(2023·银川模拟)已知函数f(x)(x∈R)满足f(4+x)=f(-x),若函数y=|x2-4x-5|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则所有交点的横坐标之和为√A.0B.mC.2mD.4m依题意,函数f(x)(x∈R)满足f(4+x)=f(-x),即y=f(x)的图象关于直线x=2对称.函数y=|x2-4x-5|的图象也关于直线x=2对称,所以若函数y=|x2-4x-5|与y=f(x)图象的交点分别为(x1,y1),(x2,y2),…,(x m,y m),题型二 中心对称问题例2 (1)(多选)下列说法中,正确的是√√√f(x-1)=-f(-x-1),所以f(x)=-f(-x-2),所以函数f(x)关于点(-1,0)中心对称,B正确;对于C,函数y=f(x)的图象向右平移1个单位长度,再向上平移1个单位长度得到函数y=f(x-1)+1的图象,由于y=f(x)过定点(0,1),故函数y=f(x-1)+1过定点(1,2),C正确;所以b+c=4,D不正确.√因为函数y=f(x)的图象关于直线x=1对称,所以f(-x)=f(2+x),因为函数y=f(x)的图象关于点(2,0)对称,所以f(-x)=-f(4+x),所以f(x+2)+f(x+4)=0,所以f(x)-f(x+4)=0,即f(x)=f(x+4),所以函数f(x)的周期为4,所以f(2 024)=f(4×506+0)=f(0)=0.思维升华函数y=f(x)的图象关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔2b-f(x)=f(2a-x);若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点 成中心对称.跟踪训练2 (1)(2023·扬州模拟)已知定义域为R的函数f(x)在[1,+∞)上单调递减,且f(x+1)为奇函数,则使得不等式f(x2-x)<f(2-2x)成立的实数x的取值范围是A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)√D.(-∞,-2)∪(1,+∞)因为f(x+1)为奇函数,所以f(x)的图象关于点(1,0)对称,因为f(x)在[1,+∞)上单调递减,所以f(x)在R上单调递减,所以x2-x>2-2x,即x2+x-2>0,解得x<-2或x>1,所以x的取值范围为(-∞,-2)∪(1,+∞).(2)(2023·唐山模拟)已知函数f(x)=x3+ax2+x+b的图象关于点(1,0)对称,则b等于√A.-3B.-1C.1D.3∵f(x)的图象关于点(1,0)对称,∴f(x)+f(2-x)=0,又f(2-x)=(2-x)3+a(2-x)2+(2-x)+b=-x3+(a+6)x2-(4a+13)x+10+4a+b,∴f(x)+f(2-x)=(2a+6)x2-(4a+12)x+10+4a+2b=0,题型三 两个函数图象的对称例3 已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)与y=f(4-x)的图象√A.关于直线x=1对称B.关于直线x=3对称C.关于直线y=3对称D.关于点(3,0)对称设P(x0,y0)为y=f(x+2)图象上任意一点,则y0=f(x0+2)=f(4-(2-x0)),所以点Q(2-x0,y0)在函数y=f(4-x)的图象上,而点P(x0,y0)与点Q(2-x0,y0)关于直线x=1对称,所以函数y=f(x+2)与y=f(4-x)的图象关于直线x=1对称.思维升华跟踪训练3 下列函数与y=e x的图象关于直线x=1对称的是A.y=e x-1B.y=e1-x√C.y=e2-xD.y=ln x与f(x)=e x的图象关于直线x=1对称的是f(2-x)=e2-x,即y=e2-x.知识过关一、单项选择题1.下列函数的图象中,既是轴对称图形又是中心对称图形的是√A.y=B.y=lg|x|C.y=tan xD.y=x3y=lg|x|为偶函数,其图象关于y轴对称,但无对称中心,故B错误;故D错误.2.(2024·聊城检测)函数y=2-x与y=-2x的图象A.关于x轴对称B.关于y轴对称√C.关于原点对称D.关于直线y=x轴对称令f(x)=2x,则-f(-x)=-2-x,∵y=f(x)与y=-f(-x)的图象关于原点对称,∴y=2-x与y=-2x的图象关于原点对称.3.(2023·襄阳模拟)已知函数f(x)=2x+ (x∈R),则f(x)的图象√A.关于直线x=1对称B.关于点(1,0)对称C.关于直线x=0对称D.关于原点对称√因为f(x)在区间(a,2a-1)上单调递减,5.已知函数f(1-x)的图象与函数f(2+x)的图象关于直线x=m对称,则m等于√设点P(x,y)在函数y=f(1-x)的图象上,点P关于直线x=m的对称点Q(x′,y′),则y′=f(1-2m+x′),即y=f(1-2m+x)与y=f(1-x)关于直线x=m对称,6.(2023·重庆模拟)已知函数y=f(x)的定义域为R,且函数y=f(x+1)为偶函数,函数y=f(x+2)-1为奇函数,则√因为函数y=f(x+1)为偶函数,所以y=f(x)的图象关于直线x=1对称,因为函数y=f(x)的定义域为R,函数y=f(x+2)-1为奇函数,所以函数y=f(x)的图象关于点(2,1)对称,且f(2)=1,所以f(0)=f(2)=1.二、多项选择题7.设函数f (x )=2x -1+21-x ,则下列说法错误的是A.f (x )在(0,+∞)上单调递增B.f (x )为奇函数C.f (x )的图象关于直线x =1对称D.f (x )的图象关于点(1,0)对称√√√∵f(x)=2x-1+21-x,∴f(2-x)=2(2-x)-1+21-(2-x)=21-x+2x-1=f(x),即f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C正确,A,D错误;∵f(-1)≠-f(1),∴f(x)不是奇函数,故B错误.8.(2023·恩施模拟)定义在R 上的函数f (x ),f (x +1)的图象关于点(-1,0)对称,恒有f (x -1)=f (3-x ),且f (x )在[1,2]上单调递减,则下列结论正确的是A.直线x =1是f (x )的图象的对称轴B.周期T =2C.函数f (x )在[4,5]上单调递增D.f (5)=0√√。
高三数学第二章函数+导数高考一轮复习教案2.4函数的奇偶性
2.4函数的奇偶性一、学习目标:考纲点击:掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题.热点提示:1.函数的奇偶性作为函数的一个重要性质,常与函数的单调性、周期性等知识交汇命题2.每年的高考试题中,各种题型都可能出现,多以小题形式出现,属中低档题 本节复习重点:函数的奇偶性的定义及应用. 二、知识要点:1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有_________,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有_________,则称函数()y f x =为偶函数;2.奇偶函数的性质:()1函数具有奇偶性的必要条件:_________ ()2()f x 是偶函数⇔()f x 的图象_________;()f x 是奇函数⇔()f x 的图象关于_________;()3奇函数在对称的单调区间内有_________的单调性,偶函数在对称的单调区间内具有_________的 单调性.(4)()f x 为偶函数()()(||)f x f x f x ⇔=-=. (5)若奇函数()f x 的定义域包含0,则_________. 3.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式;()2图象法;()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 三、课前检测:1.(09江西文)已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+= 2.(09四川文)已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f =3.(09辽宁文)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是4.(09陕西卷文)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则f(3),f(-2),f(1)三者大小的关系为5.(09重庆理)若1()21xf x a =+-是奇函数,则a = . 四.典型例题;热点考向一:一般函数的奇偶性判断 例1.判断下列各函数的奇偶性:()1()(f x x =- ()2 2lg(1)()|2|2x f x x -=--; (3)2|2|)1lg()(22---=x x x f(4)())f x x =(5))111lg()(22+-+-=x x x f (6)22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩热点考向二:分段函数的奇偶性例2.()1已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,12)(2+-=x x x f ,则()f x 的解析式为()2设奇函数()f x 的定义域为[]5,5-若当[x ∈ ()f x 的图象如右图,则不等式()0f x <热点考向三:抽象函数的奇偶性 例3.(1)已知函数()f x 满足:()()2()()f x y f x y f x f y ++-=⋅对任意的实数x 、y 总成立,且(1)(2)f f ≠.求证:()f x 为偶函数.()2设定义在[]2,2-上的偶函数()f x 在区间[]0,2上单调递减,若(1)()f m f m -<,求实数m 的取值范围热点考向四:函数奇偶性与单调性的综合应用 例4.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,f (x1·x2)=f(x1)+f(x2)(1) 求f(1)的值(2) 判断f(x)的奇偶性并证明你的结论 (3) 若f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在),(∞+0上是增函数,求x 的取值范围。
高考理科数学第一轮复习第二章函数 2.4函数的奇偶性
函数的奇偶性一.知识点1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数。
设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数。
如果函数()f x 是奇函数或偶函数,则称函数y=()f x 具有奇偶性。
2.性质:①函数具有奇偶性的必要条件是其定义域关于原点对称,②y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称,③偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,④偶函数无反函数,奇函数的反函数还是奇函数,⑤若函数f(x)的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和)]()([21)]()([21)(x f x f x f x f x f --+-+= ⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] ⑦对于F(x)=f[g(x)]:若g(x)是偶函数,则F(x)是偶函数若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数⑧奇函数在定义域内若有零:则f (0)=03.奇偶性的判断1.定义①看定义域是否关于原点对称, ②看f(x)与f(-x)的关系。
2.看图形的对称性。
二.应用举例关于从定义出发例1.(或书例2)判断下列函数的奇偶性、 ①xx x x f -+-=11)1()( 非奇非偶函数 ②22)1lg()(22---=x x x f 偶函数 ③⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 奇函数 ④33)(22-+-=x x x f 既是奇函数又是偶函数 ⑤2)(2+--=a x x x f a=0时偶函数,a ≠0时非奇非偶函数例2.定义在实数集上的函数f(x),对任意x ,y ∈R ,有f(x+y)+f(x-y)=2f(x)·f(y)且f(0)≠0①求证:f(0)=1 ②求证:y=f(x)是偶函数证:①令x=y=0,则f(0)+f(0)=2f 2(0) ∵f(0)≠0 ∴f(0)=1②令x=0,则f(y)+f(-y)=2f(0)·f(y) ∴f(-y)=f(y) ∴y=f(x)是偶函数变式:定义在R 上的函数y=f(x),对任意x 1,x 2都有f(x 1+x 2)=f(x 1)+f(x 2),判断函数y=f(x)的奇偶性并证明。
2025年高考数学一轮复习-2.4.2-简单幂函数的图象和性质【课件】
[基础自测]
1.判断正误.(正确的画“√”,错误的画“×”) (1)幂函数的图象都过点(0,0),(1,1).( × ) (2)幂函数的图象一定不能出现在第四象限,但可能出现在第二象 限.( √ ) (3)当幂指数α取 1,3,1时,幂函数 y=xα是增函数.( √ )
2 (4)当幂指数α=-1 时,幂函数 y=xα在定义域上是减函数.( × ) (5)当α=0 时,幂函数 y=xα的图象是一条直线.( × ) (6)若幂函数 y=xα的图象关于原点对称,则 y=xα在定义域内 y 随 x 的增大而增大.( × )
2.4.2简单幂函数的图象和性质
[知识要点] 知识点一 幂函数的概念
一般地,形如__y=__x_α___(α为常数)的函数,即底数是自变量、指 数是常数的函数称为幂函数.
知识点二 幂函数的图象和性质
函数
定义 域 值域 奇偶 性
y=x
R R 奇函数
y=x2
y=x3
y=x
1 2
y=1x
R
R
_{_x_|_x_≥__0_} _{_x_|x_≠__0_}_
且在(0,+∞)上单调递减,因此 A,B 错误;当 x=1 时,f(1)=1, 因此 C 正确,D 错误.故选 ABD. 答案:ABD
4.已知幂函数 y=f(x)的图象过点(3, 3),则 f(9)=________.
解析:设幂函数 f(x)=xα(α为常数), ∵幂函数 y=f(x)的图象过点(3, 3), ∴ 3=3α,解得α=1,
2.若函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,则
m 的值为( )
A.1
B.-3
C.-1
D.3
解析:因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节函数性质的综合问题考点一 函数的单调性与奇偶性[典例] (1)(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3](2)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 [解析] (1)∵f (x )为奇函数, ∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)上单调递减, ∴-1≤x -2≤1,∴1≤x ≤3.(2)∵函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,∴函数y =f (x )在[2,4]上单调递减,且在[0,4]上函数y =f (x )满足f (2-x )=f (2+x ),∴f (1)=f (3),f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.[答案] (1)D (2)B[解题技法]函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性, 列出不等式(组),要注意函数定义域对参数的影响.[题组训练]1.已知函数f (x )满足以下两个条件:①任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0;②对定义域内任意x 有f (x )+f (-x )=0,则符合条件的函数是( )A .f (x )=2xB .f (x )=1-|x |C .f (x )=-x 3D .f (x )=ln(x 2+3)解析:选C 由条件①可知,f (x )在(0,+∞)上单调递减,则可排除A 、D 选项,由条件②可知,f (x )为奇函数,则可排除B 选项,故选C.2.(2018·石家庄一模)设f (x )是定义在[-2b,3+b ]上的偶函数,且在[-2b,0]上为增函数,则f (x -1)≥f (3)的解集为( )A .[-3,3]B .[-2,4]C .[-1,5]D .[0,6]解析:选B 因为f (x )是定义在[-2b,3+b ]上的偶函数, 所以有-2b +3+b =0,解得b =3,由函数f (x )在[-6,0]上为增函数,得f (x )在(0,6]上为减函数,故f (x -1)≥f (3)⇒f (|x -1|)≥f (3)⇒|x -1|≤3,故-2≤x ≤4.考点二 函数的周期性与奇偶性[典例] (2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.[解析] ∵f (x +4)=f (x -2), ∴f (x +6)=f (x ),∴f (x )的周期为6, ∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. [答案] 6[解题技法]已知f (x )是周期函数且为偶函数,求函数值,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内,把未知区间上的函数性质转化为已知区间上的函数性质求解.[题组训练]1.已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (1)=2,则f (2 018)=________.解析:因为f (x )=-f ⎝ ⎛⎭⎪⎫x +32,所以f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ).所以f (x )是以3为周期的周期函数.则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. 答案:-22.已知f (x )是定义在R 上以3为周期的偶函数,若f (1)<1,f (5)=2a -3,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3<1,即a <2.答案:(-∞,2)考点三 函数性质的综合应用[典例] (1)(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50(2)定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫x +32=f (x ),当x ∈⎝ ⎛⎦⎥⎤0,12时,f (x )=log 12(1-x ),则f (x )在区间⎝ ⎛⎭⎪⎫1,32内是( )A .减函数且f (x )>0B .减函数且f (x )<0C .增函数且f (x )>0D .增函数且f (x )<0[解析] (1)法一:∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0.又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.法二:由题意可设f (x )=2sin ⎝ ⎛⎭⎪⎫π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,所以f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.(2)当x ∈⎝ ⎛⎦⎥⎤0,12时,由f (x )=log 12(1-x )可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以f (x )在区间⎣⎢⎡⎭⎪⎫-12,0上也单调递增,且f (x )<0.由f ⎝ ⎛⎭⎪⎫x +32=f (x )知,函数的周期为32,所以在区间⎝ ⎛⎭⎪⎫1,32上,函数f (x )单调递增且f (x )<0.[答案] (1)C (2)D[解题技法](1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.[题组训练]1.定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,2)上单调递减,则下列结论正确的是( )A .0<f (1)<f (3)B .f (3)<0<f (1)C .f (1)<0<f (3)D .f (3)<f (1)<0解析:选C 由函数f (x )是定义在R 上的奇函数,得f (0)=0. 由f (x +2)=-f (x ),得f (x +4)=-f (x +2)=f (x ), 故函数f (x )是以4为周期的周期函数, 所以f (3)=f (-1). 又f (x )在[0,2)上单调递减, 所以函数f (x )在(-2,2)上单调递减,所以f (-1)>f (0)>f (1), 即f (1)<0<f (3).2.已知函数y =f (x )的定义域为R ,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f x 1-f x 2x 1-x 2>0恒成立;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (17),则a ,b ,c 的大小关系正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a解析:选B 由①知函数f (x )在区间[4,8]上单调递增.由②知f (x +8)=-f (x +4)=f (x ),所以函数f (x )的周期为8,所以b =f (11)=f (3),c =f (17)=f (2×8+1)=f (1).由③可知f (x )的图象关于直线x =4对称,所以b =f (11)=f (3)=f (5),c =f (1)=f (7).因为函数f (x )在区间[4,8]上单调递增,所以f (5)<f (6)<f (7),即b <a <c .[课时跟踪检测]A 级——保大分专练1.(2019·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选D 选项A ,B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0, +∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.2.下列函数中,与函数y =12x -2x的定义域、单调性与奇偶性均一致的函数是( )A .y =cos xB .y =x 13C .y =1xD .y =⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0解析:选D 函数y =12x -2x为奇函数,且在R 上单调递减.函数y =cos x是偶函数,且在R 上不单调.函数y =x 13是奇函数,但在R 上单调递增.函数y=1x 的定义域是{x |x ≠0},不是R.画出函数y =⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0的大致图象如图所示,可知该函数是奇函数,且在R 上单调递减.故选D.3.已知定义在R 上的奇函数f (x )有f ⎝ ⎛⎭⎪⎫x +52+f (x )=0,当-54≤x ≤0时,f (x )=2x +a ,则f (16)的值为( )A.12 B .-12C.32D .-32解析:选A 由f ⎝⎛⎭⎪⎫x +52+f (x )=0,得f (x )=-f ⎝⎛⎭⎪⎫x +52=f (x +5),∴f (x )是以5为周期的周期函数, ∴f (16)=f (1+3×5)=f (1). ∵f (x )是R 上的奇函数, ∴f (0)=1+a =0,∴a =-1. ∴当-54≤x ≤0时,f (x )=2x-1,∴f (-1)=2-1-1=-12,∴f (1)=12,∴f (16)=12.4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B. 法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间[-b ,-a ]上,f (x )min =-4,f (x )max =3,故选B. 5.(2018·惠州一调)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞) B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D .(2,+∞)解析:选B 因为f (x )是R 上的偶函数,且在(-∞,0]上是减函数, 所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2019·合肥调研)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( )A .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14B .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14D .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14 解析:选C 因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数的周期为4,作出f (x )的草图,如图,由图可知f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14.7.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________. 解析:f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-128.(2018·合肥二模)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则函数f (x )在[1,2]上的解析式是________________.解析:令x ∈[-1,0],则-x ∈[0,1],结合题意可得f (x )=f (-x )=log 2(-x +1), 令x ∈[1,2],则x -2∈[-1,0],故f (x )=log 2[-(x -2)+1]=log 2(3-x ). 故函数f (x )在[1,2]上的解析式是f (x )=log 2(3-x ). 答案:f (x )=log 2(3-x )9.已知定义在R 上的奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝ ⎛⎭⎪⎫12=0,则f (x )>0的解集为_______________.解析:由奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝ ⎛⎭⎪⎫12=0,可知函数y =f (x )在(-∞,0)内单调递增,且f ⎝ ⎛⎭⎪⎫-12=0.由f (x )>0,可得x >12或-12<x <0. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0或x >1210.已知函数f (x )为偶函数,且函数f (x )与g (x )的图象关于直线y =x 对称,若g (3)=2,则f (-2)=________.解析:因为函数f (x )与g (x )的图象关于直线y =x 对称,且g (3)=2,所以f (2)=3.因为函数f (x )为偶函数,所以f (-2)=f (2)=3.答案:311.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判断f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. 解:(1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ). 又f (x )的定义域为R ,∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 从而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0],x ,x ∈,,-x +2,x ∈[1,2].12.设函数f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求函数f (x )的图象与x 轴所围成图形的面积.解:(1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数且f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ). 故函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. B 级——创高分自选1.已知f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上单调递增,则( ) A .f (0)>f (log 32)>f (-log 23) B .f (log 32)>f (0)>f (-log 23) C .f (-log 23)>f (log 32)>f (0) D .f (-log 23)>f (0)>f (log 32)解析:选C ∵log 23>log 22=1=log 33>log 32>0,且函数f (x )在(0,+∞)上单调递增, ∴f (log 23)>f (log 32)>f (0),又函数f (x )为偶函数,∴f (log 23)=f (-log 23), ∴f (-log 23)>f (log 32)>f (0).2.定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三种叙述:①8是函数f (x )的一个周期; ②f (x )的图象关于直线x =2对称; ③f (x )是偶函数.其中正确的序号是________.解析:由f (x )+f (x +2)=0,得f (x +2)=-f (x ), 则f (x +4)=-f (x +2)=f (x ),即4是f (x )的一个周期,8也是f (x )的一个周期,故①正确; 由f (4-x )=f (x ),得f (x )的图象关于直线x =2对称,故②正确; 由f (4-x )=f (x )与f (x +4)=f (x ), 得f (4-x )=f (-x ),f (-x )=f (x ), 即函数f (x )为偶函数,故③正确. 答案:①②③3.设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈⎣⎢⎡⎦⎥⎤0,12,都有f (x 1+x 2)=f (x 1)·f (x 2).(1)设f (1)=2,求f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫14; (2)证明:f (x )是周期函数.解:(1)由f (x 1+x 2)=f (x 1)·f (x 2),x 1,x 2∈⎣⎢⎡⎦⎥⎤0,12,知f (x )=f ⎝ ⎛⎭⎪⎫x 2·f ⎝ ⎛⎭⎪⎫x 2≥0,x ∈[0,1]. ∵f (1)=f ⎝ ⎛⎭⎪⎫12+12=f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫12=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫122,f (1)=2,∴f ⎝ ⎛⎭⎪⎫12=212. ∵f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫14+14=f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫14=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫142,f ⎝ ⎛⎭⎪⎫12=212, ∴f ⎝ ⎛⎭⎪⎫14=214. (2)证明:依题设,y =f (x )关于直线x =1对称, ∴f (x )=f (2-x ).又∵f (-x )=f (x ),∴f (-x )=f (2-x ),∴f (x )=f (2+x ), ∴f (x )是定义在R 上的周期函数,且2是它的一个周期.。