2014届吉林省长春市高中毕业班第三次调研测试理科数学
吉林省长春市2013-2014学年高二上学期期末调研测试数学理试题 Word版含答案.pdf
长春市2013~2014学年度第一学期期末调研测试 高二数学(理科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分. 考试时间为100分钟. 注意事项: 答题前,考生必须将自己的姓名、班级、考号填写清楚. 选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀. 第Ⅰ卷(选择题,共48分) 一、选择题(本大题包括12小题,每小题4分,共48分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上). 1. 在中,,则最短边的长 A. B. C. D. 2. 已知,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3. 如图,在直三棱柱的底面中,,,,点是的中点,则异面直线与所成角的余弦值为 A. B. C. D. 4. 设数列为等差数列,若,则 A. B. C. D. 5. 中心在原点,焦点在轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是 B. C. D. 6. 等比数列的前n项和为,若,则 B. C. D. 7. 经过双曲线的右焦点,倾斜角为直线与双曲线的右支有且只有一个交点,则此双曲线的离心率为 B. C. D. 8. 已知,则的最小值是 B. C. D. 9. 中,角的对边分别为,若,则的形状一定为A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形 10. 已知正方体棱长为1,截面与平面相交于直线,则点到直线的距离为 B. C. D. 11. 抛物线与直线交于两点,则线段中点的坐标为 B. C. D. 12. 设过点的直线分别与轴的正半轴和轴的正半轴相交于两点,点Q与点P关于y轴对称,O为坐标原点,若且,则点P的轨迹方程为 B. C. D.第Ⅱ卷(非选择题,共72分) 二、填空题(本大题包括4小题,每小题4分,共16分,把正确答案填在答题卡中的横线上). 13. 若实数满足,则的最大值为________________14. 给出命题,则为_____________15. 已知是抛物线的焦点,过点且斜率为1的直线交抛物线于两点,,则________________16. 已知数列中,,则=________. 三、解答题(本大题包括5小题,共56分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分) 已知等比数列的各项均为正数, 求数列的通项公式; 设,求数列的前项和18.(本小题满分10分) 如图,如果你在海边沿着海岸线直线前行,请设计一种测量海中两个小岛A,B之间距离的方法. 19.(本小题满分12分) 如图,在四棱锥中,底面是直角梯形, ,侧棱底面, 点为侧棱的中点,且. 求证:; 求面与面所成锐二面角的余弦值. 20.(本小题满分12分) 如图,已知直线与抛物线交于两点, 为坐标原点,且求直线和抛物线的方程; 抛物线上一点从点运动到点时,求面积的最大值. 21.(本小题满分12分) 如图,在平面直角坐标系中,点是轴上的两个定点,,为坐标平面上的动点,,是的中点,点在线段上,且求点的轨迹方程; 若直线与点的轨迹有两个不同的交点,且,求实数的取值范围. 2013~20141. A 2. B 3. D4. B5. C6. A 7. C 8. C 9. B 10. D 11. B 12. D 简答与提示:1. A 因为角B最小,由正弦定理2. B 根据条件可求得,易知是的必要不充分条件3. D 以点为坐标原点,以所在直线分别作为轴建立空间直角坐标系,则可确定,于是,设所求角为,则4. B 由等差数列的性质,,所以由条件可得5.C 由已知可有,. 故6. A 根据等比数列的性质,设为其前n项和,时,仍成等比数列即可求解7. C 根据双曲线的几何性质,所给直线应与双曲线的一条渐近线平行,故有进而,可解得于是离心率8. C 根据基本不等式,可有9. B 由代入条件可得,,再根据正弦定理代换可有,于是10.D 因为∥,所以点到直线的距离是与之间距离,因为是等腰三角形,设点是的中点,则,所以为所求,(本题也可用空间向量求解) 11. B 将所给直线方程与抛物线方程联立有,由此可整理得: ,设,则,故线段中点的横坐标为,将其再代入直线方程即可得所求中点的坐标为12. D 由,可得,所以,代入可求得点的轨迹方程二、填空题(本大题共4小题,每小题4分,共16分) 13. 14. 15. 16. 简答与提示: 13. 2 根据线性规划的知识易求解14. . 15. ,设,由得,求得,,故由抛物线的定义可得16. ,由得,以及,所以, ① ②,由①②联立求得通项公式. 17.()由已知,解得,所以5分()根据条件易得, 7分于是… …,以上二式相减,可得, +…,所以10分18.如图,设,是两个观测点,到的距离为m,在处测出,在处测出, ,据正弦定理,在中,可求得, 4分同理,在中,可求得8分在中,由余弦定理可得:10分19.建立如图所示空间直角坐标系,根据已知条件可有: 于是2分()因为,所以故6分()由已知,是平面的一个法向量,可设平面的法向量为 ,由,可得,根据这个方程组,可取 8分设所求二面角的平面角为,则,故所求二面角的余弦值为12分19.()由得,设,则有 ,因为 ,所以,解得所以直线的方程为,抛物线的方程为6分()由,得,于是,8分设,,于是当点到直线的距离最大时,所求三角形面积最大,这里 10分由,可得当时,,此时,故面积的最大值为. 12分.(1)因为,所以,又为中点,故,于是 ,所以点的轨迹是以为焦点的椭圆, ,,故点的轨迹方程为 6分(2)由整理得,设,则有①,且,8分若,则,即,整理得,再将①代入可有: ,整理得, 10分又因为,故,所以或12分。
吉林省长春市2014届高三毕业班第一次调研测试数学(理)试题
1 x 1 x
2013
1 x 2013 0 1 x
所 以 f ( x) 0 在 R 上 恒 成 立 , 故 f ( x) 在 R 上 是 增 函 数 , 又
f (1) f (0) 0 ,
∴ f ( x) 只有一个零点,记为 x ,则 x 1,0 . 1 1 同理可证明 g ( x) 也只有一个零点,记为 x ,且 x 1,2 .故 2 2
4 S
11.【试题答案】 C 【试题解析】不等式
9 ,故选 D . 2
x y
表示的平面区域如图
所示,函数 f ( x) 具有性质 S ,则函 数图像必须完全分布在阴影区域① 和②部分, f ( x) e x 1 分布在区 域①和③内, f ( x) ln( x 1) 分布 在区域②和④内, f ( x) sin x 图像 分布在区域①和②内, f ( x) tan x 在每个区域都有图像,故选 C 12.【试题答案】 C 【试题解析】验证 f (0) 1 0 ,
7.【试题答案】 A 【试题解析】由 z x y ,得 y x z ,则 z 表示该 组平行直线在 y 轴的截距。又由约束条件
y
A O
x 1 y a a 1 x y 0
作出可行域如图,先画出 y x ,经 1
yx ya
x
平移至经过 y x 和 y a 的交点 Aa, a 时,z 取得 最大值,代入 Aa, a ,即 z
0
3
, 设 公 比 为 q , 又 a 9 , 则 3
,即 2q 2 q 1 0 ,解得 q 1 或 1 ,故选 C . 9 9 q 9 27 2 q2 q 6.【试题答案】 D 【试题解析】由题意可知,程序框图的运算原理可视为函数 , ab 1, a b S a b ab 1, a b
吉林省长春市2014届高三第三次调研测试 理综 扫描版含答案.pdf
【命题立意】考查学生对电阻定律和欧姆定律的理解和应用及结合图象处理数据的能力【解 析】由图象可知导
体柱a电压为6V,导体柱b电压为4V。导体柱a与导体柱b串联,故电压之比等于电阻之比,由电阻定律可以求出截面积之
比为1∶3。
19.【试题答案】BC
【命题立意】考查受力分析及动态平衡类问题。
【解 析】a球受三个力平衡,三个力构成封闭矢量三角形三个边,其中重力不变,其它两个力的夹角变小,开
物还能继续发生氧化还原反应;由项方程式可看出NO3-有剩余,故此反应是SO2少量的情况,不符合题意。
13.【参考答案】【命题立意】考查【试题解析】Fe3+水解加入Mg(OH)2、MgO等物质能促使Fe3+的水解转化为
Fe(OH)3沉淀而除去FeCl3,同时也不会引进新杂质26.【参考答案】Fe+H2OFeO+H2(2分)水蒸气(2分) (2分)
(2分) H2↑(2分)2Fe3++Fe=3Fe2+(2分)Fe3O4(2分)【命题立意】本题Fe粉考查考生对信息的处理能力对实验操
作的掌握情况【解析】由冷却后的固体消耗FeCl3的0.08mol,可知剩余Fe为0.04mol,故氧化物中
n(Fe)=-0.04mol=0.06mol,n(O)==0.08mol,即n(Fe)∶n(O)=3∶4,所得固体产物为Fe3O4
力。
【解 析】最终的收尾速度为2 m/s,此时有:,得;球在上升阶段速度大小变为2 m/s时,,得其加速度大小为
20 m /s2,故A正确;球在t1时刻的加速度为10 m /s2,球抛出瞬间的加速度大小60 m /s2,球从抛出到落地过程中空
气阻力所做的功为—9.6 J故B、C、D均错误。
18.【试题答案】A
2014年长春地区高三三模(理)Microsoft Word 文档
长春三模理科数学参考答案及评分参考1.【答案】A【解析】由(1i)2i z +=得,2i 2i(1i)2i+21i 1i (1i)(1i)2z -====+++-,则复数z 在复平 面内对应的点为(1,1)Z ,该点在第一象限,故选A .2.【答案】C【解析】∵,,a A b B x a b ∈∈=+,所以2,3,4,5,6,8x =,∴B 中有6个元素,故选C .3.【答案】C【解析】四个函数中,是偶函数的有A C ,,又2y x =在(0,)+∞内单调递增,故选C . 4.【答案】D【解析】在频率等高条形图中,a a b +与c c d+相差很大时,我们认为两个分类变量 有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类 变量,x y 关系越强,故选D .5.【答案】C【解析】初始值1,0k S ==,第1次进入循环体:012S =+,2k =;当第2次进入循环体时:011222S =+++,3k =,…,给定正整数n ,当k n =时, 最后一次进入循环体,则有:011222S =++++…12n n -++,1k n =+, 退出循环体,输出S =(123+++…)n +012(222++++…12)n -+,故选C . 6.【答案】D【解析】双曲线焦点到渐近线的距离为2c ,即2c b =,又222b c a =-,代入得2243a c =,解得243e =,即3e =,故选D . 7.【答案】A【解析】由1b c a c a b +≥++得:()()()()b a b c a c a c a b +++≥++,化简得: 222b c a bc +-≥,同除以2bc 得,222122b c a bc +-≥,即 1cos 2A ≥(0)A π<<,所以03A π<≤,故选A .8.【答案】A【解析】函数()sin(2)f x x ϕ=+向左平移6π个单位得 sin[2()]sin(2)63y x x ππϕϕ=++=++,又其为奇函数,故则3k πϕπ+=, Z k ∈,解得=3k πϕπ-,又||2πϕ<,令0k =,得3πϕ=-,∴()sin(2)3f x x π=-,又∵[0,]2x π∈,∴ sin(2)[3x π-∈,即当0x =时,min ()f x =,故选A . 9.【答案】C【解析】画出,x y 约束条件限定的可行域为如图阴影区域,令221u x y =--,则12u y x +=-, 先画出直线y x =,再平移直线y x =,当经过点(2,1)A -,12(,)33B 时,代入u ,可知 553u -≤<,∴||[0,5)z u =∈,故选C . 10.【答案】B【解析】设圆柱的底面半径为r ,高为h ,则22r h h rπ=,则2h =S 侧=2r h π⋅4r π=S 全242r r ππ=,故圆柱的侧面积与=,故选B . 11.【答案】D【解析】由题,221122(,),(,)A x x B x x ,()2f x x '=,则过,A B 两点的切线斜率112k x =,222k x =,又切线互相垂直,所以121k k =-,即1214x x =-.两 条切线方程分别为22111222:2,:2l y x x x l y x x x =-=-,联立得 1212()[2()]0x x x x x --+=,∵12x x ≠,∴122x x x +=,代入1l ,解得 1214y x x ==-,故选D . 12.【答案】B 【解析1】设00(,)Q x y ,中点(,)M x y ,则00(2,2)P x x y y --代入229x y +=,得20(2)x x -+20(2)9y y -=,化简得:22009()()224x y x y -+-=,又220025x y += 表示以原点为圆心半径为5的圆,故易知M 轨迹是在以0022x y (,)为圆心以32为半径的圆 绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有222(14)x y r r +=≤≤,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B . 【解析2】设(3cos ,3sin )P θθ,(5cos ,5sin )Q ϕϕ,(,)M x y ,则23cos 5cos x θϕ=+,①23sin 5sin y θϕ=+,②,①2+②2得:221715cos()22x y θϕ+=+-2r =,所以M 的轨迹是以原点为圆心, 以(14)r r ≤≤为半径的圆环,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B . 13.【答案】34- 【解析】31sin()sin()sin cos 22x x x x ππ+++=--=,∴1sin cos 2x x +=-,平方 得:11sin 24x +=,∴3sin 24x =-. 14.【答案】5 【解析】∵()()f x f x +-=12222sin sin 221212112x x x x x x x +-++-=+=++++,且 (0)1f =,∴(2)(1)(0)(1)(2)5f f f f f -+-+++=.15.【答案】3π【解析】过圆锥的旋转轴作轴截面,得△ABC 及其内切圆1O 和外切圆2O ,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意1O 的半径为1r =,∴△ABC 的边长为高为3,∴13333V ππ=⨯⨯⨯=. 16.【答案】15【解析】(1)AP OP OA OA λ=-=-,即OP OA λ=,则,,O P A 三点共线,72OA OP ⋅=,所以OA 与OP 同向,∴||||72OA OP =,设OP 与x 轴夹 角为θ,设A 点坐标为(,)x y ,B 为点A 在x 轴的投影,则OP 在x 轴上的投影长度为||cos OP θ⋅=2||72||||||||OB OB OP OA OA ⋅= 222||||1727272161699||2525||x x x y x x x =⋅=⋅=⋅+++ 7215≤=.当且仅当15||4x =时等号成立. 则线段OP 在x 轴上的投影长度的最大值为15.17.【解析】(1)当1n =时,114a S == ………………………2分由12n n S +=,得12n n S -=(2)n ³,∴11222n n n n n n a S S +-=-=-=(2)n ³∴4,12,2n n n a n ì=ïï=íï³ïî………………………6分 (2)当1n =时,121512log 44b =+=,∴154T = …………………7分 当2n ³时, 21111(1)log 2(1)1n n b n n n n n n n n =+=+=-++++ ……9分 5111111(4233445n T =+-+-+-+…+11)(2341n n -+++++…)n + 1111111(4233445=+-+-+-+…+11)(12341n n -++++++…)n + 31(1)412n n n +=-++ ………11分上式对于1n =也成立,所以31(1)412n n n T n +=-++. ………12分 18.【解析】(1)设事件“4个家庭中恰好有两个家庭是…低碳家庭‟”为A , ………1分则有以下三种情况:“低碳家庭”均来自东城小区,“低碳家庭”分别来自东城、西城两个小区,“低碳家庭”均来自西城小区. ∴100335454212151542121451512121)(=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=A P .…6分 (2)因为东城小区每周有20%的人加入“低碳家庭”行列,经过两周后,两 类家庭占东城小区总家庭数的比例如下:………8分由题意,两周后东城小区5个家庭中的“低碳家庭”的个数ξ服从二项分布, 即17(5,)25B ξ ………10分 ∴17175255E ξ=⨯= , ………11分 17813652525125D ξ=⨯⨯=. ………12分 19.【解析】『法一』(1)取BC 中点为N ,连结1,MN C N ,………1分∵,M N 分别为,AB CB 中点∴MN ∥AC ∥11AC ,∴11,,,A M N C 四点共面, ………3分且平面11BCC B I 平面11A MNC 1C N =又DE Ì平面11BCC B ,且DE ∥平面11A MC∴DE ∥1C N∵D 为1CC 的中点,∴E 是CN 的中点, ………5分∴13CE EB =. ………6分 (2)连结1B M , ………7分因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ∴1AA AB ^,即四边形11ABB A 为矩形,且12AB AA = ∵M 是AB 的中点,∴11B M A M ^, 又11AC ^平面11ABB A ,∴111AC B M ^,从而1B M ^平面11AMC ………9分 ∴1MC 是11B C 在平面11A MC 内的射影∴11B C 与平面11A MC 所成的角为∠11B C M 又11B C ∥BC ,∴直线BC 和平面11A MC 所成的角即11B C 与平面11A MC 所成的角…10分 设122AB AA ==,且三角形11A MC 是等腰三角形∴111AM AC ==,则12MC =,11B C =∴11111cos 3MC B C M B C ?= ∴直线BC 和平面11A MC所成的角的余弦值为3 ………12分 『法二』(1)因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ,又AC AB ⊥∴以A 为坐标原点,分别以1,,AB AA AC 所在直线为,,x y z 轴,建立如图空间直角坐标系. ………1分 设122AB AA ==,又三角形11A MC 是等腰三角形,所以111AM AC ==易得1(0,1,0)A ,(1,0,0)M,1(0,1C , 所以有1(1,1,0)A M =-uuuu r,11AC =uuu u r设平面11A MC 的一个法向量为(,,)n x y z =r ,则有11100n A M n AC ìï?ïíï?ïïîr uuuu r r uuu u r ,即00x y ì-=ïïíï=ïî,令1x =,有(1,1,0)n =r ………4分 (也可直接证明1B M 为平面11A MC 法向量) 设CE EB λ=,2(,0,)11E λλλ++,又1(0,2D ,∴21(,,121DE λλλ=-++ 若DE ∥平面11A MC ,则n r ^DE uuu r ,所以有21012λλ-=+, 解得13λ=,∴13CE EB = ………6分 (2)由(1)可知平面11A MC 的一个法向量是(1,1,0)n =r , (2,0,0)B,C,求得(BC =-设直线BC 和平面11A MC 所成的角为θ,[0,]2πθ∈,则||sin ||||2n BC n BC θ⋅===⋅,………11分所以cos q = ∴直线BC 和平面11A MC 所成的角的余弦值为3 ………12分 20.【解析】(1)由已知得:1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 联立2242y x x py ⎧=⎨=⎩解得00x y =⎧⎨=⎩或x y ⎧=⎪⎨=⎪⎩(0,0)O,A , ∴3(16OA = ………3分∵12F F OA ⊥,∴12F F 0OA ⋅= ,即=,解得2p =,∴2C 的方程为24x y =. ………5分『法二』设111(,)(0)A x y x >,有21121142y x x py ⎧=⎨=⎩①,由题意知,1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 ∵12F F OA ⊥,∴12F F 0OA ⋅= ,有1102p x y -+=, 解得112py x =, ………3分 将其代入①式解得114,4x y ==,从而求得2p =,所以2C 的方程为24x y =. ………5分(2)设过O 的直线方程为y kx =(0)k <联立24y kx y x =⎧⎨=⎩得244(,)M k k ,联立24y kx y x=⎧⎨=⎩得2(4,4)N k k ………7分 (1,1)P --在直线y x =上,设点M 到直线y x =的距离为1d ,点N 到直线y x =的距离为2d 则121()2PMN S OP d d =⋅⋅+ ………8分2244||12-= 22112(||||)k k k k=-+- 22112()k k k k =--++………10分8≥= 当且仅当1k =-时,“=”成立,即当过原点直线为y x =-时,…11分△PMN 面积取得最小值8. ………12分『法二』联立24y kx y x=⎧⎨=⎩得244(,)M k k , 联立24y kx y x=⎧⎨=⎩得2(4,4)(0)N k k k <, ………7分从而2244||4|(4)MN k k k k=-=-,点(1,1)P --到直线MN 的距离d =,进而214(4)2PMN S k k∆=- ………9分 32222(1)(1)2(1)(1)1122(2)(1)k k k k k k k k k k k---++===+-++令1(2)t k t k=+≤-,有2(2)(1)PMN S t t ∆=-+, ………11分 当2t =-,即1k =-时,即当过原点直线为y x =-时,△PMN 面积取得最小值8. ………12分21.【解析】(1)()2()x f x e x a '=-+ ………2分因为()y f x =在0x =处切线与x 轴平行,即在0x =切线斜率为0即(0)2(1)0f a '=+=,∴1a =-. ………5分(2)()2()x f x e x a '=-+, 令()2()x g x e x a =-+,则()2(1)0xg x e '=-≥, 所以()2()x g x e x a =-+在[)0,+∞内单调递增,(0)2(1)g a =+(i )当2(1)0a +≥即1a ≥-时,()2()(0)0x f x e x a f ''=-+≥≥,()f x 在 [)0,+∞内单调递增,要想()0f x ≥只需要2(0)50f a =-≥,解得a ≤1a -≤≤ ………8分 (ii )当2(1)0a +<即1a <-时,由()2()x g x e x a =-+在[)0,+∞内单调递增知,存在唯一0x 使得000()2()0x g x e x a =-+=,有00x e x a =-,令()0f x '>解 得0x x >,令()0f x '<解得00x x ≤<,从而对于()f x 在0x x =处取最小值, 0200()2()3x f x e x a =--+,又00x x e a =+0()f x 000022()3(1)(3)x x x x e e e e =-+=-+-,从而应有0()0f x ≥,即030x e -≤,解得00ln3x <≤,由00x e x a =-可得00x a x e =-,有ln 331a -≤<-,综上所述,ln33a -≤≤ ………12分22.【解析】(1)根据弦切角定理,知BAC BDA ∠=∠,ACB DAB ∠=∠,∴△ABC ∽△DBA ,则AB BC DB BA=,故250,AB BC BD AB =⋅==…5分 (2)根据切割线定理,知2CA CB CF =⋅, 2DA DB DE =⋅,两式相除,得22CA CB CF DA DB DE=⋅(*). 由△ABC ∽△DBA ,得102AC AB DA DB ===,2212CA DA =,又51102CB DB ==,由(*) 得1CF DE=. ………10分 23. 【解析】(1)将3cos 2sin x y θθ=⎧⎨=⎩ 代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩ ,得C '的参数方程为cos sin x y θθ=⎧⎨=⎩ ∴曲线C '的普通方程为221x y +=. ………5分(2)设(,)P x y ,00(,)A x y ,又(3,0)B ,且AB 中点为P所以有:00232x x y y =-⎧⎨=⎩ 又点A 在曲线C '上,∴代入C '的普通方程22001x y +=得22(23)(2)1x y -+= ∴动点P 的轨迹方程为2231()24x y -+=. ………10分 24.【解析】(1)()f x =|3||4|x x ==-++∴()(4)f x f ≥即|3||4|x x -++9≥∴4349x x x ≤-⎧⎨---≥⎩① 或43349x x x -<<⎧⎨-++≥⎩② 或3349x x x ≥⎧⎨-++≥⎩③ 解得不等式①:5x ≤-;②:无解 ③:4x ≥所以()(4)f x f ≥的解集为{|5x x ≤-或4}x ≥. ………5分(2)()()f x g x >即()|3||4|f x x x =-++的图象恒在()(3)g x k x =-图象的上方21,4()|3||4|7,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩()(3)g x k x =-图象为恒过定点P (3,0),且斜率k 变化的一条直线作函数(),()y f x y g x ==图象如图,其中2PB k =,(4,7)A -,∴1PA k =-由图可知,要使得()f x 的图象恒在()g x 图象的上方∴实数k 的取值范围为12k -<≤. ………10分。
吉林省吉大附中实验学校2014届下学期高三年级第三次模拟考试数学试卷(理科) 有答案
吉林省吉大附中实验学校2014届下学期高三年级第三次模拟考试数学试卷(理科)考试时间:120分钟 试卷满分:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不得折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R ,集合{|()0}M x f x =∈≠R ,{|()0N x g x =∈≠R ,则集合{|()()x f x g x ∈⋅=R 等于(A )()()M N R R 痧(B )()()M N R R 痧(C )()M N R ð (D )()M N R ð(2)若a b c ∈C ,,(C为复数集),则22()()0a b b c -+-=是a b c ==的(A )充要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件(3)某几何体的三视图如图所示,则该几何体的体积为(A)(B)(C)(D)(4)下列说法中表述恰当的个数为①相关指数2R可以刻画回归模型的拟合效果,2R越接近于1,说明模型的拟合效果越好;②在线性回归模型中,2R表示解释变量对预报变量的贡献率,2R越接近于1,表示解释变量和预报变量的线性相关关系越强;③若残差图中个别点的残差比较大,则应确认在采集样本点的过程中是否有人为的错误或模型是否恰当.(A)0 (B)1 (C)2 (D)3(5)若()sin()3sin()44f x a x xππ=++-是偶函数,则a的值为(A)3-(B)1(C)3(D)1-(6)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有(A)1226(C)·410A个(B)226A·410A个(C)1226(C)·104个(D)226A·104个(7)如图所示,F 为双曲线22:1916x y C -=的左焦点,双曲线C 上的点i P 与7(123)i P i -=,,关于y 轴对称,则123456||||||||||||PF P F P F P F P F P F ++---的值为(A )18(B )21 (C)(D )27(8)命题1220:2e d >0x p x x x x ∀∈-+⎰R ,,则(A )p 是真命题,1220:2e d 0x p x x x x ⌝∀∈-+⎰R ,≤ (B )p 是假命题,1220:2e d 0x p x x x x ⌝∀∈-+⎰R ,≤(C )p 是真命题,1220:2e d 0x p x x x x ⌝∃∈-+⎰R ,≤ (D )p 是假命题,1220:2e d 0x p x x x x ⌝∃∈-+⎰R ,≤(9)设00a b >>,,则下面不等式中不恒成立的是(A )114a b a b ++≥(B)211a b +(C(D )221a b a b ++>+(10)函数2y ax bx =+与log (0||||)b ay x ab a b =≠≠,在同一直角坐标系中的图象可能是(A )(B )(C )(D )(11)方程||||1169x x y y +=-的曲线为函数()y f x =的图象,对于函数()y f x =,下面结论中正确的是①()f x 在R 上单调递减;②函数()4()3F x f x x =+不存在零点; ③函数()y f x =的值域是R ;④若函数()g x 与()f x 的图象关于原点对称,则()y g x =的图象是方程||||1169y y x x +=所确定的曲线. (A )①②(B )①③ (C )①②③ (D )①②③④(12)设函数()|lg(1)|f x x =+,满足1()()2b f a f b +=-+,[10(1)6(2)1]4lg 2f a b +++-=,其中a b a b∈<R 且,,,则a b +的值为(A )0 (B )115 (C )1115-(D )-1第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
吉林省实验中学2014届高三上学期第三次阶段检测数学(理)试题(含答案)
吉林省实验中学2013-2014学年度高三上学期第三次阶段检测数学(理) 试题一、选择题:第小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U =R ,{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =( )A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x >2.求曲线2y x =与y x =所围成图形的面积,其中正确的是 ( ) A .120()S x x dx =-⎰B .120()S x x dx =-⎰C .12)S yy dy =-⎰( D .1S y dy =⎰(3. 将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为 ( )A .5sin(2)()12y x x R π=+∈B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈4 ( )5.已知F 1和F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支的一点,1PF ⊥2PF ,1PF c =则该双曲线的离心率为 ( )A 1B .C 1D 6.如图,设A 、B 两点在河的两岸, 一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB=45o ,∠CAB=105o 后,就可 以计算出A 、B 两点的距离为 ( )A.B.B.D.2m 7.已知P 是边长为2的正ABC ∆边BC 上的动点,则()AP AB AC ⋅+ ( ) A .最大值为8 B .最小值为2 C .是定值6D .与P 的位置有关8.函数()2sin()25f x x ππ=+,若对任意x R ∈都有12()()()f x f x f x ≤≤12(,)x x R ∈ 成立,则12x x -的最小值为 ( )A .4B .2C .1D .129.已知1:0,:420x x x p q m x-≤+-≤,若p q 是的充分条件,则实数m 取值范围是( )A .2m >B .2m ≤C .2m ≥D .6m ≥10.已知各项为正数的等差数列{}n a 的前20项和为100,那么714a a ⋅的最大值为( ) A .25 B .50 C .100 D .不存在11.已知三边长分别为4、5、6的△ABC 的外接圆恰好是球O 的一个大圆,P 为球面上一点,若点P 到△ABC 的三个顶点的距离相等,则三棱锥P -ABC 的体积为 ( ) A .5 B .10 C .20 D .30 12.函数y =f(x)定义域为,f(1) =f(3) =1 ,f(x)的导数.,其中a 为常数且a>0,则不等式组所表示的平面区域的面积等于 ( )A .B .C .D .1二、填空题(本大题共4题,每小题5分,共20分)13.已知一个几何体是由上、下两部分构成的组合体,其三视图如右图,若图中圆的半径为l ,等是 .14.有下列说法:①n S 是数列{}n a 的前n 项和,若21n S n n =++,则数列{}n a 是等差数列; ②若实数x ,y 满足422=+y x ,则2-+y x xy的最小值是21-;③在ABC ∆中,a ,b ,c 分别是角A 、B 、C 的对边,若cos cos a A b B =,则ABC ∆ 为等腰直角三角形;④ABC ∆中,“A B >”是“sin sin A B >”的充要条件. 其中正确的有 .(填上所有正确命题的序号) 15.根据下面一组等式 S 1=1 S 2=2+3=5 S 3=4+5+6=15 S 4=7+8+9+10=34 S 5=11+12+13+14+15=65 S 6=16+17+18+19+20+21=111S 7=22+23+24+25+26+27+28=175, 可得S 1+S 2+…+S 99=16.设定义域为R 的函数()⎪⎩⎪⎨⎧<++≥-=-,0,44,0,1521x x x x x f x 若关于x 的方程()()()01222=++-m x f m x f 有7个不同的实数根,则实数=m .三、解答题:17.(满分12分)已知函数1)(+=x xx f , 若数列}{n a (n ∈N *)满足:11=a ,)(1n n a f a =+ (Ⅰ) 证明数列}1{na 为等差数列,并求数列}{n a 的通项公式; (Ⅱ)设数列}{n c 满足:nnn a c 2=,求数列}{n c 的前n 项的和n S .18. (满分12分)如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为 60.(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求二面角D BE F --的余弦值;19.(满分12分)某学校实施“十二五高中课程改革”计划,高三理科班学生的化学与物理水平测试的成绩抽样统计如下表.成绩分A(优秀)、B(良好)、C(及格)三种等级,设x 、y 分别表示化学、物理成绩. 例如:表中化学成绩为B 等级的共有20+18+4=42人.已知x 与y 均为B 等级的概率为0.18. (Ⅰ) 求抽取的学生人数;(Ⅱ)若在该样本中,化学成绩的优秀率是0.3,求b a ,的值;(Ⅲ)物理成绩为C 等级的学生中,已知10≥a ,1712≤≤b , 随机变量b a -=ξ,求ξ的分布列和数学期望.20.(满分12分) 设1C 是以F 为焦点的抛物线22(0)y px p =>,2C 是以直线032=-y x与20x +=为渐近线,以(0,为一个焦点的双曲线.(I) 求双曲线2C 的标准方程;(II) 若1C 与2C 在第一象限内有两个公共点A 和B ,求p 的取值范围,并求⋅ 的最大值.21.(满分12分)已知函数(I) 若直线l 1交函数f (x )的图象于P ,Q 两点,与l 1平行的直线与函数的图象切于点R ,求证A B CD F EP ,R ,Q 三点的横坐标成等差数列; (II) 若不等式恒成立,求实数a 的取值范围;(III) 求证:〔其中, e 为自然对数的底数).请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分。
吉林省长春市2014—2015学年新高三起点调研考试数学(理)试题1
长春市2014—2015学年新高三起点调研考试数学试题卷(理科)考生须知:1. 本试卷分试题卷和答题卡,满分150分,考试时间120分钟.2. 答题前,在答题卡指定位置上填写学校、班级、姓名和准考证号.3. 所有答案必须写在答题卡上,写在试卷上无效.4. 考试结束,只需上交答题卡.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题卡上) 1. 已知集合{1,16,4}A x =,2{1,}B x =,若B A ⊆,则x =A. 0B. 4-C. 0或4-D. 0或4±2. 如图,在复平面内,复数1z 和2z 对应的点分别是A 和B ,则12z z =A. 5B. 3C.D. 123. 下列函数中,既是奇函数又存在极值的是A. 3y x =B. ln()y x =-C. xy xe -= D.2y x x=+4. 已知向量m 、n 满足||2=m ,||3=n,||-=m n ||+=m nA. B. 3C.D.5. 已知x 、y 取值如下表:m 的值(精确到0.1)为A. 1.5B. 1.6C. 1.7D. 1.86. 右图为一个半球挖去一个圆锥的几何体的三视图,则该几何体的表面积为A. 8(3π+B. 8(3π+C. (4π+D. (8π+7. 已知数列{}n a 为等差数列,其前n 项和为n S ,若420S =,6236S S -=,则该等差数列的公差d =正视图侧视图俯视图A. 2-B. 2C. 4-D. 48. 函数2()sin ln(1)f x x x =⋅+的部分图像可能是Ox O yx O yx.Ox .CD9. 执行如图所示的程序框图,则输出的结果是A. 14B. 15C. 16D. 1710. 若2xa =,b =12log c x =,则“a b c >>”是“1x >”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件11. 过抛物线22y px =(0)p >的焦点F 作直线与此抛物线相交于A 、B 两点,O是坐标原点,当OB FB ≤时,直线AB 的斜率的取值范围是A. [(0,3]B. (,[22,)-∞-+∞C. (,[3,)-∞+∞D. [(0,22]-12. 已知定义在R 上的函数()f x 满足①()(2)0f x f x +-=,②()(2)0fx f x ---=,③在[1,1]-上表达式为[1,0]()1(0,1]x f x x x ∈-=- ∈⎪⎩,则函数()f x 与函数1220()log 0x x g x x x ⎧ ⎪=⎨ >⎪⎩≤的图像在区间[3,3]-上的交点个数为A. 5B. 6C. 7D. 8第Ⅱ卷(非选择题,共90分)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 若函数1()f x x x=+,则1()e f x dx =⎰____________.14. 在42()(1)x x x+-的展开式中,2x 项的系数是____________.15. 若实数,x y 满足2211y x y x y x -⎧⎪-+⎨⎪+⎩≥≥≤,则22z x y =+的取值范围是___________. 16. 底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为R 的球的内接正三棱柱的体积的最大值为__________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)在△ABC 中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,且c a C b -=2cos 2. (1) 求角B ;(2) 若△ABC的面积S =,4=+c a ,求b 的值. 18.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足22n n S a =-.(1) 求数列}{n a 的通项公式;(2) 设n n a b 2log =,求数列{}n n a b ⋅的前n 项和n T .19.(本小题满分12分) 每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1) 求某两人选择同一套餐的概率;(2) 若用随机变量X 表示某两人所获优惠金额的总和,求X 的分布列和数学期望.20.(本小题满分12分) 如图所示几何体是正方体1111ABCD A BC D -截去三棱锥111B A BC -后所得,点M 为11AC 的中点.(1) 求证:平面11AC D ⊥平面MBD ; (2) 求平面11A BC 与平面ABCD 所成锐二面角的余弦值.21.(本小题满分12分)如图,椭圆22221x y a b +=(0)a b >>的左焦点为F ,过点F 的直线交椭圆于,A B 两点. AF 的最大值是M ,BF 的最小值是m ,满足234M m a ⋅=.(1) 求该椭圆的离心率;(2) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于,D E 两点,O 是坐标原点. 记GFD ∆的面积为1S ,OED ∆的面积为2S ,求1222122S S S S +的取值范围.22.(本小题满分12分)已知函数2()1xe f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值;(2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.MAC 1DBCD 1A1长春市2014—2015学年新高三起点调研考试 数学(理科)试题答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. C2. A3. D4. B5. C6. D7. B8. B9. C 10. B 11. D 12. B简答与提示:1. 【命题意图】本题考查集合中子集的概念与集合中元素的互异性.【试题解析】C 由题可得216x =或24x x =,则4,0,4x =-,又当4x =时,A 集合出现重复元素,因此0x =或4-. 故选C.2. 【命题意图】本题考查复数的除法运算与复数模的概念,另外对复平面上点与复数的对应也提出较高要求.【试题解析】A 由图可知:1z i =,22z i =-,,则122z i z i =-故选A.3. 【命题意图】本题考查函数奇偶性的概念,同时也对函数单调性与函数极值做出考查. 【试题解析】D 由题可知,B 、C 选项不是奇函数,A 选项3y x =单调递增(无极值),而D选项既为奇函数又存在极值. 故选D.4. 【命题意图】本题主要对向量的运算进行考查,同时也对向量的几何意义等考点提出一定的要求.【试题解析】B 由||-m n 且2222||||2226-++=+=m n m n m n 可知,||3+=m n . 故选B.5. 【命题意图】本题考查了回归直线的特征,对解释变量的运算也有提及.【试题解析】C 将 3.2x =代入回归方程为ˆ1y x =+可得 4.2y =,则4 6.7m =,解得1.675m =,即精确到0.1后m 的值为1.7. 故选C.6. 【命题意图】本题通过三视图考查几何体表面积的运算.【试题解析】D 如图所示,该几何体的表面积为半球面积与圆锥侧面积之和,即2148(82S r rl ππππ=⋅+=+=+. 故选D.7. 【命题意图】本题考查数列基本量的求法.【试题解析】B 由题意,123420a a a a +++=,345636a a a a +++=,作差可得816d =,即2d =. 故选B.8. 【命题意图】本题通过图像考查函数的奇偶性以及单调性.【试题解析】B 由题可知,()f x 为奇函数,且sin x 存在多个零点导致()f x 存在多个零点,故()f x 的图像应为含有多个零点的奇函数图像. 故选B.9. 【命题意图】本题利用程序框图考查对数的运算性质及对数不等式的求解.【试题解析】C 由程序框图可知,从1n =到15n =得到3S <-,因此将输出16n =. 故选C.10. 【命题意图】本题考查指对幂三种基本初等函数的图像和充要条件的概念等基础知识.【试题解析】B 如右图可知,“1x >”⇒“a b c >>”,但“a b c >>” /⇒“1x >”,即“a b c >>”是“1x >”的必要不充分条件. 故选B.11. 【命题意图】本题考查抛物线的几何性质以及直线与抛物线的位置关系等知识.【试题解析】D 由题可知,点B 的横坐标4B px ≤时,满足OB FB ≤,此时22B y -≤≤,故直线AB (即直线FB)的斜率的取值范围是[(0,22]-. 故选D.12. 【命题意图】本题借助分段函数考查函数的周期性、对称性以及函数图像交点个数等问题. 【试题解析】B 根据①可知()f x 图像的对称中心为(1,0),根据②可知()f x 图像的对称轴为1x =-,结合③画出()f x 和()g x 的部分图像,如图所示,据此可知()f x 与()g x 的图像在[3,3]-上有6个交点. 故选B.二、填空题(本大题共4小题,每小题5分,共20分)13. 212e +14. 12-15. 1[,25]216. 3R简答与提示:13. 【命题意图】本题考查利用微积分基本定理求解定积分的知识.【试题解析】计算可得221111()(ln )22ee x e x dx x x ++=+=⎰.14. 【命题意图】本题考查二项展开式系数问题.【试题解析】在42()(1)x x x+-的展开式中,2x 项是1332442()()12x C x C x x x⋅-+-=-,故2x 的系数为12-. 15. 【命题意图】本题考查线性规划以及目标函数的几何意义等知识.【试题解析】由题可知,可行域如右图,目标函数22z x y =+的几何意义为区域内点到原点距离的平方,故z 的取值范围是1[,25]2.16. 【命题意图】本题考查正棱柱与球体等基本几何体体积的最值问题.【试题解析】设三棱柱的高为2t,由题意可得,正三棱柱的体积为23)V R t t =-,求导可得当t R =时,V 取得最大值为3R . 三、解答题17. (本小题满分10分)【命题意图】本小题主要考查正弦定理与余弦定理在解三角形问题中的应用,结合三角形面积的求法综合考查学生的运算求解能力. 【试题解析】解:(1) 根据正弦定理c a C b -=2cos 2可化为2sin cos 2sin sin B C A C =-即2sin cos 2sin()sin B C B C C =+-整理得2sin cos sin C B C =,即1cos 2B =,3B π=. (5分)(2) 由△ABC的面积1sin 2S ac B ==3ac =,而4a c +=由余弦定理得b ===(10分)18. (本小题满分12分)【命题意图】本题考查数列通项公式及其前n 项和公式的求法,其中涉及错位相减法在数列求和问题中的应用.【试题解析】解:(1) 当1n =时,11122a S a ==-,解得12a = 当2n ≥时,112222n n n n n a S S a a --=-=--+,有12n n a a -=,所以数列{}n a 是以2为首项,2为公比的等比数列,有2n n a =. (6分)(2) 由(1)知2log 2n n b n ==,有2n n n a b n ⋅=⋅ 212222n n T n =⨯+⨯++⨯①①2⨯,231212222n n T n +=⨯+⨯++⨯② ①-②,得212222n n n T n +-=+++-⨯整理得1(1)22n n T n +=-⋅+. (12分)19. (本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,通过分布列的计算,考查学生的数据处理能力.【试题解析】解:(1) 由题意可得某两人选择同一套餐的概率为1111331388228832P =⋅+⋅+⋅=. (4分)(2) 由题意知某两人可获得优惠金额X 的可能取值为400,500,600,700,800,1000.111(400)8864P X ==⋅=12136(500)8864P X C ==⋅⋅=339(600)8864P X ==⋅=12118(700)8264P X C ==⋅⋅=121324(800)2864P X C ==⋅⋅=1116(1000)2264P X ==⋅= (8分)综上可得X(10分)X 的数学期望169824164005006007008001000775646464646464EX =⨯+⨯+⨯+⨯+⨯+⨯=.(12分)20. (本小题满分12分)【命题意图】本小题以正方体为载体,考查立体几何的基础知识. 本题通过分层设计,考查了空间平面的垂直关系,以及二面角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】(1) 证明:因为几何体是正方体1111ABCD A B C D -截取三棱锥111B A BC -后所得,11111111111111111111DA DC DM AC A M C M BA BC AC MBD BM AC AC D MBD A M C M DM BM M AC AC D ⎫⎫=⎫⇒⊥⎪⎬⎪=⎭⎪⎪⎪⎪=⎫⎪⎪⇒⊥⇒⊥⎬⎪⎬⇒⊥=⎬⎪⎭⎪⎪⎪⎪⎪⎪ =⎭⎪⊂⎪⎭平面平面平面平面.(6分) (2) 以D 为坐标原点,建立如图所示的空间直角坐标系,设1DA =, 依题意知,11(1,0,1),(1,1,0),(0,1,1)A B C , 有111(0,1,1),(1,1,0)A B AC =-=- 设平面11A BC 的一个法向量(,,)n x y z =,有11100n A B n AC ⎧⋅=⎪⎨⋅=⎪⎩代入得00y z x y -=⎧⎨-+=⎩, 设1x =,有(1,1,1)n =,平面ABCD 的一个法向量(0,0,1)m =, 设平面11A BC 与平面ABCD 所成锐二面角大小为α,有3cos ||||n m n m α⋅==, 所以平面11A BC 与平面ABCD .(12分)21. (本小题满分12分)【命题意图】本小题考查椭圆的离心率的有关运算,直线和椭圆的综合应用,考查学生的逻辑思维能力和运算求解能力. 【试题解析】解:(1) 设(,0)(0)F c c ->,则根据椭圆性质得,,M a c m a c =+=-而234M m a ⋅=,所以有22234a c a -=,即224a c =,2a c =, 因此椭圆的离心率为12c e a ==.(4分)(2) 由(1)可知2a c =,b =,椭圆的方程为2222143x y c c+=.根据条件直线AB 的斜率一定存在且不为零,设直线AB 的方程为()y k x c =+,并设1122(,),(,)A x y B x y 则由2222()143y k x c x y c c=+⎧⎪⎨+=⎪⎩消去y 并整理得 222222(43)84120k x ck x k c c +++-=从而有21212122286,(2)4343ck ckx x y y k x x c k k +=-+=++=++,(6分)所以22243(,)4343ck ckG k k -++. 因为DG AB ⊥,所以2223431443D ckk k ckx k +⋅=---+,2243D ck x k =-+. 由Rt FGD ∆与Rt EOD ∆相似,所以22222222122222243()()943434399()43ck ck ck S GD k k k ck S OD k k -+++++===+>-+. (10分)令12St S =,则9t >,从而 1222122229114199S S S S t t =<=+++,即1222122S S S S +的取值范围是9(0,)41. (12分)22. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性、极值等,以及函数与不等式知识的综合应用,考查学生解决问题的综合能力.【试题解析】解:(1)222(21)()(1)xax ax e f x ax -+'=+ (2分)因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点. 因此95a =. (4分)(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得1x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)++∞; (9分)(3) 当a 取正实数时,222(21)()(1)xax ax e f x ax -+'=+, 令()0f x '=得2210ax ax -+=,当1a >时,解得12x x ==. ()f x 在1(,)x -∞和2(,)x +∞上单调递增,在12(,)x x 上单调递减,但是函数值恒大于零,极大值1()f x ,极小值2()f x ,并且根据指数函数和二次函数的变化速度可知当x →+∞时,2()1xe f x ax =→+∞+,当x →-∞时,2()01xe f x ax=→+. 因此当21()()f x m f x <<时,关于x 的方程()f x m =一定总有三个实数根,结论成立;当01a <≤时,()f x 的单调增区间是(,)-∞+∞,无论m 取何值,方程()f x m =最多有一个实数根,结论不成立.因此所求a 的取值范围是(1,)+∞. (12分)。
2014届高三第三次调研考试理科数学含答案
2014届高三第三次调研考试数 学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+如果事件A B 、相互独立,那么()()()P AB P A P B =一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .1-2.已知集合{|2}xS y y ==,集合{|ln(1)0}T x x =-<,则S T ⋂=( ) A .φ B .(0,2)C .(0,1)D . (1,2)3.设等比数列{}n a 的公比2q =,前n 项和为n S ,则=24a S(A .2B .4C .152D .1724. 执行右边的程序框图,若0.8p =,则输出的n =( )A .3B .4C .5D .65. 设椭圆22221(0,0)x y m n m n+=>>的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211612x y += B .2211216x y += C .2214864x y += D .2216448x y +=6.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( )A . 6万元B .8万元C .10万元D .12万元7. 右图是一个几何体的三视图,根据图中数据可得该几何体的表面积是( )A .9πB .10πC .11πD .12π8.已知函数3()),f x x x =-则对于任意实数,(0)a b a b +≠, 则()()f a f b a b++的值为( )A .恒正 B.恒等于0 C .恒负 D. 不确定二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.设随机变量ξ服从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a 的值为 .10. 已知向量(0,1,1)a =- ,(4,1,0)b =,||a b λ+=0λ>,则λ= .11. 某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 .(用数字作答)12. 若0,0a b ≥≥,且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 .13. 对于*n N ∈,将n 表示为1101102222kk k k n a a a a --=⨯+⨯+⋅⋅⋅+⨯+⨯,当i k =时,1i a =;当01i k ≤≤-时,i a 为0或1. 定义n b 如下:在n 的上述表示中,当012,,,,ka a a a ⋅⋅⋅中等于1的个数为奇数时,1nb =;否则0n b =.则3456b b b b +++= .俯视图正(主)视图 侧(左)视图FADBC(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
吉林省长春市2014届高三高中毕业班第三次调研测试数学(文)试题纯Word版含答案
数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150分,考试时间为120分钟,其中第Ⅱ卷22题—24题为选考题,其它题为必考题。
考试结束后,将试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿 纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有___个元素 A .4B .5C .6D . 73.下列函数中,在(0,)+∞上单调递减,并且是偶函数的是A .2y x = B .3y x =- C .lg ||y x =- D .2xy = 4.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是A .B .C .D . 5.如图所示的程序框图,该算法的功能是A .计算012(12)(22)(32)++++++…(12)nn +++的值 B .计算123(12)(22)(32)++++++…(2)nn ++的值 C .计算(123+++…)n +012(222++++ (1)2)n -+的值D .计算[123+++…(1)]n +-012(222++++…2)n+的值6.已知双曲线C :22221x y a b-=(0,0)a b >>的焦距为2c ,焦点到双曲线C 的渐近线的距离为2c,则双曲线C 的离心率为 A .2BC.2D.3第5题图7.△ABC 各角的对应边分别为c b a ,,,满足 b c a c a b +++1,则角A 的范围是 A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ8.函数)2|)(|2sin()(πϕϕ<+=x x f 的图象向左平移6π个单位后关于原点对称,则函 数()f x 在[0,]2π上的最小值为A.B .12-C .12D9.已知实数,x y 满足:210210x y x x y -+ ⎧⎪<⎨⎪+- ⎩,221z x y =--,则z 的取值范围是A .5[,5]3B .[]0,5C .[)0,5D .5[,5)310.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为 ABCD11.已知函数2()f x x =的图象在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直,并交于点P ,则点P 的坐标可能是 A .3(,3)2-B . (0,4)-C .(2,3)D .1(1,)4-12.已知点P ,Q 为圆22:25C x y +=上的任意两点,且6PQ <,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为 A .35B .925C .1625D .25第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
吉林省吉林市2014届高三数学第三次模拟考试试题 理
吉林市普通中学2013—2014学年度高中毕业班下学期期末教学质量检测数学(理科)本试卷分第І卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其他题为必考题。
考生作答时将答案答在答题卡上,在本试卷上答题无效。
注意事项:1、答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号,并将条形码粘贴在答题卡指定的位置上。
2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卡面清洁,不折叠、不破损。
第 I 卷 一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=2014iA .1-B .1C .i -D .i2. 命题“2>∀x ,022>-x x ”的否定是 A .2≤∃x ,022≤-x x B .2≤∀x ,022>-x x C .2>∀x ,022≤-x xD .2>∃x ,022≤-x x3.抛物线24x y =的焦点坐标为A .)1,0(B .)0,1(C . )161,0( D . )0,161( 4.等差数列}{n a 的前n 项和为n S (n =1,2,3,…),若当首项1a 和公差d 变化时,1185a a a ++是一个定值,则下列选项中为定值的是A .17SB .16SC .15SD .14S5.设随机变量X 服从正态分布)8,6(N ,若)52()2(-<=+>a X P a X P 则=aA .6B .5C .4D .36.下列哪个函数的图像只需平移变换即可得到()sin cos f x x x =+的函数图像A .1()f x x =.2()sin f x x =C.3()cos )f x x x =+ D.4()(sin cos )222x x x f x =+7. 已知若干个正方体小木块堆放在一起形成的组合体的三视图如图所示,则所需小木块 最少有多少个 A . 7 个 B . 8 个 C . 9 个 D . 10个8.已知实数1[∈x ,]10,执行如图所示的流程图,则输出的x 不小于63的概率为 A. 31B. 94C. 52D. 1039.已知实数y x ,满足⎩⎨⎧≤++≤++1|||22||12|y y x y x ,则y x Z -=2的最小值是A. 3B. 3-C. 5D. 5-10.如图,1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ∆为等边三角形,则双曲线的离心率为 A. 4 B. 7C.332 D. 311. 定义在R 上的函数()(2)()1,[0,1],()4xf x f x f x x f x +=+∈=满足且时,(1,2)x ∈ 时,(1)()f f x x=,令4)(2)(--=x x f x g ]2,6[-∈x 则 函 数)(x g 的零点个数为 A . 9B. 8C. 7D. 612.在四面体ABCD 中,已知060=∠=∠=∠CDA BDC ADB ,3==BD AD ,2=CD , 则四面体ABCD 的外接球半径为 A .23B. 3C.23D. 3第Ⅱ卷二、填空题:本大题共4个小题,每小题5分, 共20分。
数学_2014年吉林省吉林市高考数学三模试卷(理科)(含答案)
2014年吉林省吉林市高考数学三模试卷(理科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 2014=( )A −1B 1C −iD i2. 命题“∀x >2,x 2−2x >0”的否定是( )A ∃x ≤2,x 2−2x ≤0B ∀x ≤2,x 2−2x >0C ∀x >2,x 2−2x ≤0D ∃x >2,x 2−2x ≤03. 抛物线y =4x 2的焦点坐标是( )A (0, 1)B (1, 0)C (0,116)D (116,0)4. 等差数列{a n }的前n 项和S n (n =1, 2, 3…)当首项a 1和公差d 变化时,若a 5+a 8+a 11是一个定值,则下列各数中为定值的是( )A S 17B S 18C S 15D S 165. 设随机变量X 服从正态分布N(6, 8),若P(X >a +2)=P(X <2a −5),则a =( )A 6B 5C 4D 36. 下列哪个函数的图象只需平移变换即可得到f(x)=sinx +cosx 的函数图象( )A f 1(x)=√2sinx +√2B f 2(x)=sinxC f 3(x)=√2(sinx +cosx)D f 4(x)=√2cos x 2(sin x 2+cos x 2) 7. 已知若干个正方体小木块堆放在一起形成的组合体的三视图如图所示,则所需小木块最少有多少个( )A 7个B 8个C 9个D 10个8. 已知实数x ∈[1, 10],执行如图所示的流程图,则输出的x 不小于63的概率为( )A 79B 37C 15D 13 9. 已知实数x ,y 满足{|2x +y +1|≤|x +2y +2||y|≤1,则Z =2x −y 的最小值是( ) A 3 B −3 C 5 D −5 10. 如图,F 1,F 2分别是双曲线C :x 2a 2−y 2b 2=1(a >0, b >0)的左、右焦点,过F 1的直线l与C 的左、右两支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线C 的离心率为( )A 4B √7C 2√33D √3 11. 定义在R 上的函数f(x)满足f(x +2)=f(x)+1,且x ∈[0, 1]时,f(x)=4x ,x ∈(1, 2)时,f(x)=f(1)x ,令g(x)=2f(x)−x −4,x ∈[−6, 2],则函数g(x)的零点个数为( )A 9B 8C 7D 612. 在四面体ABCD 中,已知∠ADB =∠BDC =∠CDA =60∘,AD =BD =3,CD =2,则四面体ABCD 的外接球半径为( )A √32B √3C 32D 3二、填空题:本大题共4个小题,每小题5分,共20分.13. 已知a >0,b >0,且点(a, b)在直线x +y −2=0上,若c =1a +1b ,则c 的最小值为________.14. 已知a →,b →均为单位向量,且它们的夹角为60∘,当|a →+λb →|(λ∈R)取最小值时,λ=________.15. 在随机数模拟试验中,若x =2rand( ),y =3rand( ),共做了m 次试验,其中有n 次满足x 24+y 29≤1,则椭圆x 24+y 29=1的面积可估计为________.(rand ( )表示生成0到1之间的均匀随机数).16. 如图:ABCD 是一个边长为100m 的正方形地皮,其中AST 是一个半径为90m 的扇形小山,其余部分都是平地,政府为方便附近住户,计划在平地上建立一个矩形停车场,使矩形的一个顶点P 在弧ST̂上,相邻两边CQ 、CR 落在正方形的边BC 、CD 上,则矩形停车场PQCR 的面积最小值为________m 2.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{a n }的前n 项和为S n ,且S n =n(n +1),(1)求数列{a n}的通项公式a n(2)数列{b n}的通项公式b n=1,求数列{b n}的前n项和为T n.a n⋅a n+218. 某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:求出a的值,并估计该店铺6月份的产品销售量;(单位:百件)(II)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.19. 如图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,圆柱OQ的底面圆的半径OA=2,侧面积为8√3π,∠AOP=120∘.(1)求证:AG⊥BD;(2)求二面角P−AG−B的平面角的余弦值.20. 已知A(−2, 0),B(2, 0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2√3.(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.21. 已知函数f(x)=lnx−a,g(x)=f(x)+ax−6lnx,其中a∈Rx(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数ℎ(x)=x2−mx+4,当a=2时,若∃x1∈(0, 1),∀x2∈[1, 2],总有g(x1)≥ℎ(x2)成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. 如图,AB、CD是圆的两条平行弦,BE // AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;(2)试比较BE与EF的长度关系.23. 在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ−sinθ)=6.(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的√3、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.24. 已知关于x的不等式:|2x−m|≤1的整数解有且仅有一个值为2.(1)求整数m的值;(2)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.2014年吉林省吉林市高考数学三模试卷(理科)答案1. A2. D3. C4. C5. B6. A7. C8. D9. D10. B11. B12. B13. 214. −1215. 24nm16. 95017. 解:(1)n=1时,S1=a1=2…,n≥2时,a n=S n−S n−1=n(n+1)−(n−1)n=2n…经检验n=1时成立,…综上a n=2n…(2)由(1)可知b n=12n⋅2(n+2)=14×1n⋅(n+2)=18(1n−1n+2)…T n=b1+b2+b3+...+b n=18(1−13+12−14+13−15+⋯−1n+1+1n−1n+2)…=18(1+12−1n+1−1n+2)=18(32−1n+1−1n+2)…18. 解:(1)x¯=15(1+2+3+4+5)=3,y¯=5…且b =0.6,代入回归直线方程可得a=3.2∴ ŷ=0.6x+3.2,x=6时,ŷ=6.8,…(2)X的取值有0,1,2,3,则P(X=0)=C53C93=542,P(X=1)=C52C41C93=1021,P(X=2)=C42C51C93=514,P(X=3)=C43C93=121…其分布列为:E(X)=542×0+1021×1+514×2+121×3=43…19. 解:(1)(解法一):由题意可知8√3π=2×2π×AD,解得AD=2√3,在△AOP中,AP=√22+22−2×2×2×cos120∘,∴ AD=AP,又∵ G是DP的中点,∴ AG⊥DP.①∵ AB为圆O的直径,∴ AP⊥BP.由已知知DA⊥面ABP,∴ DA⊥BP,∴ BP⊥面DAP.分∴ BP⊥AG.②∴ 由①②可知:AG⊥面DBP,∴ AG⊥BD.(2)由(1)知:AG⊥面DBP,∴ AG⊥BG,AG⊥PG,∴ ∠PGB 是二面角P −AG −B 的平面角.PG =12PD =13×√2AP =√6, BP =OP =2,∠BPG =90∘,.∴ BG =√PG 2+BP 2=√10.cos∠PGB =PG BG =√6√10=√155. (解法二):建立如图所示的直角坐标系,由题意可知8√3π=2×2π×AD , 解得AD =2√3,则A(0, 0, 0),B(0, 4, 0),D(0, 0, 2√3),P(√3, 3, 0),∵ G 是DP 的中点,∴ 可求得G(√32, 32, √3). (1)BP →=(√3, −1, 0),BD →=(0, −4, 2√3), ∴ AG →=(√32, 32, √3). ∵ AG →⋅BP →=(√32, 32, √3)•(0, −4, 2√3)=0,∴ AG ⊥BD (2)由(1)知,)BP →=(√3, −1, 0),AG →=(√32, 32, √3).PG →=(−√32, −32, √3) BG →=(√32, −52, √3)∵ AG →⋅PG →=0,AG →⋅BP →=0.∴ BP →是平面APG 的法向量.设n →=(x, y, 1)是平面ABG 的法向量,由n →⋅AG →=0,n →⋅AB →=0,解得n →=(−2, 0, 1)分cosθ=|n →||BP →|˙=√32√5=−√155. 所以二面角二面角P −AG −B 的平面角的余弦值√155 20. (1)由题意可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),F(c, 0).由题意知{12⋅2a ⋅b =2√3a =2a 2=b 2+c 2解得b =√3,c =1. 故椭圆C 的方程为x 24+y 23=1,离心率为12. (2)以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为y =k(x +2)(k ≠0).则点D 坐标为(2, 4k),BD 中点E 的坐标为(2, 2k).由{y =k(x +2)x 24+y 23=1 得(3+4k 2)x 2+16k 2x +16k 2−12=0. 设点P 的坐标为(x 0, y 0),则−2x 0=16k 2−123+4k 2. 所以x 0=6−8k 23+4k 2,y 0=k(x 0+2)=12k 3+4k 2.因为点F 坐标为(1, 0),当k =±12时,点P 的坐标为(1,±32),点D 的坐标为(2, ±2). 直线PF ⊥x 轴,此时以BD 为直径的圆(x −2)2+(y ±1)2=1与直线PF 相切. 当k ≠±12时,则直线PF 的斜率k PF =y 0x 0−1=4k 1−4k 2. 所以直线PF 的方程为y =4k 1−4k 2(x −1).点E 到直线PF 的距离d =|8k 1−4k 2−2k−4k 1−4k 2|√16k 2(1−4k 2)2+1=|2k+8k 31−4k 2|1+4k 2|1−4k 2|=2|k|.又因为|BD|=4|k|,所以d =12|BD|. 故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.21. 解:(1)当a =1时,f(x)=lnx −1x ,∴ f′(x)=1x +1x 2=x+1x 2,x >0.∵ x >0,∴ f′(x)>0,∴ f(x)在(0, +∞)上是增函数.(2)∵ f(x)=lnx −a x ,g(x)=f(x)+ax −6lnx ,a >0.∴ g(x)=ax −a x −5lnx ,x >0∴ g′(x)=a +a x 2−5x =ax 2−5x+ax 2,若g′(x)>0,可得ax2−5x+a>0,在x>0上成立,∴ a>5xx2+1=5x+1x,∵ 5x+1x ≤2√1=52(x=1时等号成立),∴ a≥52.(3)当a=2时,g(x)=2x−2x−5lnx,ℎ(x)=x2−mx+4=(x−m2)2+4−m24,∃x1∈(0, 1),∀x2∈[1, 2],总有g(x1)≥ℎ(x2)成立,∴ 要求g(x)的最大值,大于ℎ(x)的最大值即可,g′(x)=2x2−5x+2x2=(2x−1)(x−2)x2,令g′(x)=0,解得x1=12,x2=2,当0<x<12,或x>2时,g′(x)>0,g(x)为增函数;当12<x<2时,g′(x)<0,g(x)为减函数;∵ x1∈(0, 1),∴ g(x)在x=12处取得极大值,也是最大值,∴ g(x)max=g(12)=1−4+5ln2=5ln2−3,∵ ℎ(x)=x2−mx+4=(x−m2)2+4−m24,若m≤3,ℎmax(x)=ℎ(2)=4−2m+4=8−2m,∴ 5ln2−3≥8−2m,∴ m≥11−5ln22,∵ 11−5ln22>3,故m不存在;若m>3时,ℎmax(x)=ℎ(1)=5−m,∴ 5ln2−3≥5−m,∴ m≥8−5ln2,实数m的取值范围:m≥8−5ln2;22. 解:(1)∵ 过A点的切线交DC的延长线于P,∴ PA2=PC⋅PD,∵ PC=1,PA=2,∴ PD=4又PC=ED=1,∴ CE=2,∵ ∠PAC=∠CBA,∠PCA=∠CAB,∴ △PAC∽△CBA,∴ PCAC =ACAB,∴ AC 2=PC ⋅AB =2,∴ AC =√2; …(2)BE =AC =√2,由相交弦定理可得CE ⋅ED =BE ⋅EF .∵ CE =2,ED =1,∴ EF =√2,∴ EF =BE .…23. 由题意可知:直线l 的直角坐标方程为:2x −y −6=0, 因为曲线C 2的直角坐标方程为:(√3)2+(y2)2=1. ∴ 曲线C 2的参数方程为:{x =√3cosθy =2sinθ(θ为参数). 设P 的坐标(√3cosθ,2sinθ),则点P 到直线l 的距离为: d =√3cosθ−2sinθ−6|√5=√5,∴ 当sin(60∘−θ)=−1时,点P(−√32,1), 此时d max =√5=2√5.24. 解:(1)由|2x −m|≤1,得m−12≤x ≤m+12.∵ 不等式的整数解为2,∴ m−12≤2≤m+12⇒3≤m ≤5.又不等式仅有一个整数解2,∴ m =4.(2)由(1)知,m =4,故a 4+b 4+c 4=1, 由柯西不等式可知;(a 2+b 2+c 2)2≤(12+12+12)[(a 2)2+(b 2)2+(c 2)2] 所以(a 2+b 2+c 2)2≤3,即a 2+b 2+c 2≤√3, 当且仅当a 2=b 2=c 2=√33时取等号,最大值为√3.。
数学理卷·2014届吉林省长春市高中毕业班第一次调研测试(2013.12)word版
2014年长春市高中毕业班第一次调研试题 数学试题卷(理科)及参考答案与评分标准本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120分 钟,其中第II 卷22题一24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡 一并交回.第I 卷 (选择题60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中, 只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.复数Z=1-i 的虚部是( )(A).i (B) -i (C) -1 (D)1 2.已知集合M={},集合N={ x|lg(3-x)>0},则=( )(A).{ x|2<x<3} (B). { x|1<x<3} (C) . { x|1<x<2} (D) ∅ 3.函数f(x)=(sinx+cosx)2 的一条对称轴的方程是( )4.抛物线212x y =的焦点到准线的距离是( ) (A) 2 (B)1 (C).12 (D). 145.等比数列中,前三项和为,则公比q 的值是( )(A).1 (B)-12(C) 1或-12 (D)- 1或-126.定义某种运算,运算原理如图所示,则式子的值为( A).-3 (B).-4 (C).-8 (D). 07.实数x,y 满足,若函数z=x+y 的最大值为4,则实数a 的值为(A). 2 (B). 3 (C).32(D).4 8.已知三条不重合的直线m,n,l 和两个不重合的平面α,β ,下列命题正确的是:( ) (A). 若m//n ,n ⊂α,则m// α (B). 若α⊥β, α β=m, n ⊥m ,则n ⊥α. (C) .若 l ⊥n ,m ⊥n, 则l//m (D). 若l ⊥α,m ⊥β, 且l ⊥m ,则α⊥β 9.已知双曲线的右顶点、左焦点分别为A 、F ,点B (0,-b ),若,则双曲线的离心率值为( )(A(B(C(D10.一个半径为1有球体经过切割后,剩下部分几何体的三视图如图所示,则剩下部分几何体的表面积为( )11.若函数y=f(x)图象上的任意一点p 的坐标(x,y)满足条件|x|≥|y |,则称函数具有性质S,那么下列函数中具有性质S 的是( ) (A). f(x)=tanx (B).()x f x e =-1 (C). f(x)=sinx (D). f(x)= ln(x+1) 12.已知设函数F(x)= f(x+3) g(x -4),且F(x)的零点均在区间[a,b] (a<b,a,b Z ∈) 内,则b -a 的最小值为( )(A) 8 (B). 9 (C). 10 (D). .11第二卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作 答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13、在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则=___14.已知三棱柱ABC-A 1B 1C 1,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为 . 15.已知数列,圆,第10题图俯视图侧视图正视图圆,若圆C2平分圆C1的周长,则的所有项的和为.16.定义[x]表示不超过x的最大整数,例如:[1.5]=1,[-1.5]=-2,若f(x)=sin(x-[x]),则下列结论中①y=f(x)是奇是函数②.y=f(x)是周期函数,周期为2 ③..y=f(x)的最小值为0 ,无最大值④. y=f(x)无最小值,最大值为sin1.正确的序号为.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(本小题满分12分)设等差数列的前n项和为Sn, 且,(1).求数列的通项公式(2).若成等比数列,求正整数n的值 .18. (本小题满分12分)已知向量,设函数f(x)= .(1).求函数f(x)的最小正周期;(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且f(A)恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.19.(本小题满分12分)如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E 为AB 的中点, (1).求证:D 1E ⊥A 1D ;(2).在线段AB 上是否存在点M ,使二面角长,若不存在,说明理由20.(本小题满分12分) 已知椭圆=1(a>b>0)的左焦为F,右顶点为A,上顶点为B,O 为坐标原点,M 为椭圆上任意一点,过F,B,A 三点的圆的圆心为(p,q). (1).当p+q ≤0时,求椭圆的离心率的取值范围;(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时, 的最小值为,求椭圆的方程.E D 1A 1D CBA第19题图21. (本小题满分12分)已知函数(1).a ≥-2时,求F(x)= f(x)- g(x)的单调区间;(2).设h(x)= f(x)+ g(x),且h(x)有两个极值点为x 1 , x 2 ,其中,求h(x 1)- h(x 2)的最小值.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明学科网选讲.如图,四边形为边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的圆O 交于F,连接CF 并延长交AB 于点 E. (1).求证:E 为AB 的中点;(2).求线段FB 的长.23. (本小题满分10分)选修4-4:坐标系与参数方程选讲.以直角坐标系的原点为极点O ,x 轴正半轴为极轴,已知点P 的直角坐标为(1,-5),点C 的极坐标为,若直线l 经过点P,且倾斜角为,圆C 的半径为4.(1).求直线l 的参数方程及圆C 的极坐标方程; (2).试判断直线l 与圆C 有位置关系.24. 本小题满分10分)选修4-5:不等式选讲. 已知f(x)=|x+1|+|x-1| ,不等式f(x)的解集为M. (1).求M;(2).当a,b M 时,证明:2|a+b|<|4+ab|.O FEDCBA2014年长春市高中毕业班第一次调研测试 数学(理科)试题参考答案及评分标准第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有B 【试题解析】由复数虚部定义:复数i b a +()R R ∈∈b a ,的虚部为b ,得i 1-=z 的虚部为1-,故选B .2.【试题答案】B【试题解析】因为{}31|<<=x x M ,{}2|<=x x N ,所以{}21|<<=x x N M ,故选B .3.【试题答案】A 【试题解析】化简x x x x x x x x f 2sin 1cos sin 2cos sin )cos (sin )(222+=++=+=,∴将选项代入验证,当4π=x 时,)(x f 取得最值,故选A .4.【试题答案】D【试题解析】由抛物线标准方程py x 22=()0>p 中p 的几何意义为:抛物线的焦点到准线的距离,又41=p ,故选D . 5.【试题答案】C 【试题解析】3233300327027S x dx x ===-=⎰,设公比为q ,又93=a ,则279992=++q q,即0122=--q q ,解得1=q 或21-=q ,故选C . 6.【试题答案】D【试题解析】由题意可知,程序框图的运算原理可视为函数()()⎩⎨⎧<-≥+=⊗=ba b a ba b a b a S ,1,1, 所以412ln 45tan 2=⊗=⊗e π,43231100lg 1=⊗=⎪⎭⎫ ⎝⎛⊗-,1512tan ln lg10044043e π-⎡⎤⎡⎤⎛⎫⎛⎫⊗-⊗=-=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦,故选D .7.【试题答案】A【试题解析】由y x z +=,得z x y +-=,则z 表示该组平行直线在y 轴的截距。
2014年吉林省吉林市高考数学三模试卷(理科)
2014年吉林省吉林市高考数学三模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.i2014=()A.-1B.1C.-iD.i【答案】A【解析】解:i2014=(i2)1007=(-1)1007=-1.故选:A.直接利用虚数单位i的运算性质化简求值.本题考查了虚数单位i的运算性质,是基础的计算题.2.命题“∀x>2,x2-2x>0”的否定是()A.∃x≤2,x2-2x≤0B.∀x≤2,x2-2x>0C.∀x>2,x2-2x≤0D.∃x>2,x2-2x≤0【答案】D【解析】解:命题“∀x>2,x2-2x>0”是全称命题,则命题“∀x>2,x2-2x>0”的否定是:∃x>2,x2-2x≤0,故选:D.根据全称命题的否定是特称命题即可得到结论.本题主要考查含有量词的命题的否定,比较基础.3.抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.,D.,【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C.把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.4.等差数列{a n}的前n项和S n(n=1,2,3…)当首项a1和公差d变化时,若a5+a8+a11是一个定值,则下列各数中为定值的是()A.S17B.S18C.S15D.S16【答案】C【解析】解:由等差数列的性质得:a5+a11=2a8∴a5+a8+a11为定值,即a8为定值又∵∴s15为定值故选C根据选择项知,要将项的问题转化为前n项和的问题,结合前n项和公式,利用等差数列的性质求得注意本题中的选择项也是解题信息.5.设随机变量X服从正态分布N(6,8),若P(X>a+2)=P(X<2a-5),则a=()A.6B.5C.4D.3【答案】B【解析】解:∵随机变量ξ服从正态分布N(6,8),P(X>a+2)=P(X<2a-5),∴2a-5与a+2关于x=6对称,∴2a-5+a+2=12,∴3a=15,∴a=5,故选:B.根据随机变量符合正态分布,又知正态曲线关于x=6对称,得到两个概率相等的区间关于x=6对称,得到关于a的方程,解方程即可.本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线关于x=6对称,是一个基础题.6.下列哪个函数的图象只需平移变换即可得到f(x)=sinx+cosx的函数图象()A.f1(x)=sinx+B.f2(x)=sinxC.f3(x)=(sinx+cosx)D.f4(x)=cos(sin+cos)【答案】A【解析】解:f(x)=sinx+cosx=,f1(x)=sinx+,通过向上向左平移即可得到f(x)=sinx+cosx的函数图象.故选:A.利用两角和与差的三角函数化简函数的表达式,然后判断选项即可.本题考查三角函数的图象的平移变换,两角和与差的三角函数的应用,考查计算能力.7.已知若干个正方体小木块堆放在一起形成的组合体的三视图如图所示,则所需小木块最少有多少个()A.7个B.8个C.9个 D.10个【答案】C【解析】解:由题意可知,组成几何体的小正方体共有6摞,如俯视图所示:由主视图可知最右边一列只能是一层,由侧视图可知最前面一行只能是一层,若要小木块最小,则第一行第一列交叉的那一摞应该有3层;第二行第二列交叉的那一摞应该有2层;其它均为一层;如下图所示:此时小木块最少有:3+1+1+1+2+1=9个,故选:C结合三视图,分析俯视图中每摞正方体的个数,可得答案.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.已知实数x∈[1,10],执行如图所示的流程图,则输出的x不小于63的概率为()A. B. C. D.【答案】D【解析】解:由程序框图知:第一次运行x=2x+1,n=2;第二次运行x=2(2x+1)+1,n=3;第三次运行x=2×[2(2x+1)+1]+1,n=4;不满足条件n≤3,程序运行终止,输出x=8x+4+2+1=7+8x,解8x+7≥63得x≥7,∴输入x∈[1,10],输出的x不小于63的概率为=.故选:D.根据框图的流程,依次计算程序运行的结果,直到不满足条件n≤3,求出输出x=7+8x,再解不等式7+8x≥63,得x≥7,利用数集的长度比求几何概型的概率.本题考查了循环结构的程序框图,考查了几何概型的概率计算,根据条件判断程序运行的次数是解答本题的关键.9.已知实数x,y满足,则Z=2x-y的最小值是()A.3B.-3C.5D.-5【答案】D【解析】解:由|y|≤1,∴-1≤y≤1,可得0≤y+1≤2设y+1=k,则0≤k≤2∵|2x+y+1|≤|x+2y+2|,∴|2x+k|≤|x+2k|两边平方化简可得x2≤k2,∴|x|≤|k|∵0≤|k|≤2,∴|x|≤2∴-2≤x≤2∴-4≤2x≤4∵-1≤y≤1∴-5≤2x+y≤5∴z的最小值是-5,故选:D.利用换元法,根据|2x+y+1|≤|x+2y+2|,且|y|≤1,确定x的范围,从而利用不等式的性质,可得z=2x+y的最小值.本题考查目标函数的最值,考查不等式的性质,考查学生的计算能力,属于中档题.10.如图,F1、F2是双曲线=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4B.C.D.【答案】B【解析】解:∵△ABF2为等边三角形,∴|AB|=|AF2|=|BF2|,.由双曲线的定义可得|AF1|-|AF2|=2a,∴|BF1|=2a.又|BF2|-|BF1|=2a,∴|BF2|=4a.∴|AF2|=4a,|AF1|=6a.在△AF1F2中,由余弦定理可得:=-,∴,化为c2=7a2,∴=.故选B.利用双曲线的定义可得可得|AF1|-|AF2|=2a,|BF2|-|BF1|=2a,利用等边三角形的定义可得:|AB|=|AF2|=|BF2|,.在△AF1F2中使用余弦定理可得:=-,再利用离心率的计算公式即可得出.熟练掌握双曲线的定义、余弦定理、离心率的计算公式是解题的关键.11.定义在R上的函数f(x)满足f(x+2)=f(x)+1,且x∈[0,1]时,f(x)=4x,x∈(1,2)时,f(x)=,令g(x)=2f(x)-x-4x∈[-6,2],则函数g(x)的零点个数为()A.9B.8C.7D.6【答案】B【解析】解:∵x∈[0,1]时,f(x)=4x,∴f(1)=4∴x∈(1,2)时,f(x)==,∵g(x)=2f(x)-x-4,x∈[-6,2],令g(x)=2f(x)-x-4=0,即f(x)=x+2∵函数f(x)满足f(x+2)=f(x)+1,即自变量x每增加2个单位,函数图象向上平移1个单位,自变量每减少2个单位,函数图象向下平移1个单位,分别画出函数y=f(x)在x∈[-6,2],y=x+2的图象,∴y=f(x)在x∈[-6,2],y=x+2有8个交点,故函数g(x)的零点个数为8个.故选:B.由x∈[0,1]时,f(x)=4x,可得f(1)=4,x∈(1,2)时,f(x)==,而由函数f(x)满足f(x+2)=f(x)+1,即自变量x每增加2个单位,函数图象向上平移1个单位,自变量每减少2个单位,函数图象向下平移1个单位,画出函数图象,结合函数的图象可求.本题考查的知识点是对数函数的图象与性质,利用转化思想,将函数的零点个数问题,转化为函数图象交点个数问题,是解答本题的关键.12.在四面体ABCD中,已知 ADB=BDC=CDA=60 ,AD=BD=3,CD=2,则四面体ABCD的外接球半径为()A. B. C. D.3【答案】B【解析】解:设四面体ABCD的外接球球心为O,则O在过△ABD的外心N且垂直于平面ABD的垂线上.由题设知,△ABD是正三角形,则点N为△ABD的中心.设P,M分别为AB,CD的中点,则N在DP上,且ON⊥DP,OM⊥CD.因为 CDA=CDB=ADB=60 ,设CD与平面ABD所成角为θ,∴cosθ=,sinθ=.在△DMN中,DM=CD=1,DN=•DP=••3=.由余弦定理得MN2=12+()2-2•1••=2,故MN=.∴四边形DMON的外接圆的直径OD===.故球O的半径R=.故选:B.设四面体ABCD的外接球球心为O,则O在过△ABD的外心N且垂直于平面ABD的垂线上,且点N为△ABD的中心.设P,M分别为AB,CD的中点,则N在DP上,且ON⊥DP,OM⊥CD,从而可求DM,MN,进而可求四边形DMON的外接圆的直径,即可求得球O的半径.本题考查四面体ABCD的外接球,考查学生的计算能力,确定四面体ABCD的外接球球心位置是关键.二、填空题(本大题共4小题,共20.0分)13.已知a>0,b>0,且点(a,b)在直线x+y-2=0上,若c=+,则c的最小值为______ .【答案】2【解析】解:∵a>0,b>0,且点(a,b)在直线x+y-2=0上,∴a+b=2.∴c=+===2,当且仅当a=b=1时取等号.∴c的最小值为2.故答案为:2.由点(a,b)在直线x+y-2=0上,可得a+b=2.再利用“乘1法”和基本不等式的性质即可得出.本题考查了“乘1法”和基本不等式的性质,属于基础题.14.已知,均为单位向量,且它们的夹角为60 ,当取最小值时,λ= ______ .【答案】【解析】解:由题意可得=1×1×cos60=,由于==,故当λ=-时,取得最小值,故答案为-.由题意可得=,由于=,利用二次函数的性质可得当λ=s时,取得最小值,从而得到答案.本题主要考查两个向量的数量积的定义,求向量的模,二次函数的性质应用,属于中档题.15.在随机数模拟试验中,若x=2rand(),y=3rand(),共做了m次试验,其中有n次满足+≤1,则椭圆+=1的面积可估计为______ .(rand()表示生成0到1之间的均匀随机数).【答案】【解析】解:根据题意:满足条件+≤1的点(x,y)的概率是,设阴影部分的面积为S,则有=,∴S=.故答案为:.先根据题意:满足条件+≤1的点(x,y)的概率是,再转化为几何概型的面积类型求解.本题主要考查模拟方法估计概率以及几何概型中面积类型,将两者建立关系,引入方程思想是解题的关键.16.如图:ABCD是一个边长为100m的正方形地皮,其中AST是一个半径为90m的扇形小山,其余部分都是平地,政府为方便附近住户,计划在平地上建立一个矩形停车场,使矩形的一个顶点P在弧上,相邻两边CQ、CR落在正方形的边BC、CD上,则矩形停车场PQCR的面积最小值为______ m2.【答案】950【解析】解:建立如图所示直角坐标系设P(90cosx,90sinx)∴PR=100-90sinx,PQ=100-90cosx∴s PQCR=(100-90sinx)(100-90cosx)=10000-9000(sinx+cosx)+8100sinxcosx令sinx+cosx=t∈[1,]∴sinxcosx=∴s PQCR=4050t2-9000t+5950,∴当t=时,取得最小值950m2.故答案为:950.先建立直角坐标系,再设P(90cosx,90sinx),然后过P分别BC与CD的垂线,再求出PR,PQ的长度,然后建立面积模型,再按照函数模型求解最值.本题主要考查函数模型的建立与应用,要注意先建系,再设点,表示相关的量,建立模型,最后解模型.三、解答题(本大题共8小题,共94.0分)17.已知数列{a n}的前n项和为S n,且S n=n(n+1),(1)求数列{a n}的通项公式a n(2)数列{b n}的通项公式b n=,求数列{b n}的前n项和为T n.【答案】解:(1)n=1时,S1=a1=2…(1分),n≥2时,a n=S n-S n-1=n(n+1)-(n-1)n=2n…(3分)经检验n=1时成立,…(4分)综上a n=2n…(5分)(2)由(1)可知…(7分)T n=b1+b2+b3+…+b n=…(9分)==…(12分)【解析】(1)当n≥2时,由a n=S n-S n-1=2n,再求得n=1时a1的值,检验是否满足n≥2时的关系式,从而可得数列{a n}的通项公式a n;(2)利用裂项法可得b n=(-),从而可得数列{b n}的前n项和为T n.本题考查数列的求和,着重考查裂项法的应用,(2)中求得b n=(-)是关键,属于中档题.18.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.【答案】解:(1),=5…(2分)且,代入回归直线方程可得∴=0.6x+3.2,x=6时,=6.8,…(4分)(2)X的取值有0,1,2,3,则,,,…(8分)其分布列为:…(12分)【解析】(1)求出横标和纵标的平均数,利用最小二乘法做出线性回归方程的系数,再根据样本中心点满足线性回归方程,把样本中心点代入,做出a的值,写出线性回归方程;(2)X的取值有0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.19.如图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,圆柱OQ的底面圆的半径OA=2,侧面积为, AOP=120 .(1)求证:AG⊥BD;(2)求二面角P-AG-B的平面角的余弦值.【答案】解:(1)(解法一):由题意可知8=2×2π×AD,解得AD=2,在△AOP中,AP=,∴AD=AP,又∵G是DP的中点,∴AG⊥DP.①∵AB为圆O的直径,∴AP⊥BP.由已知知DA⊥面ABP,∴DA⊥BP,∴BP⊥面DAP.分∴BP⊥AG.②∴由①②可知:AG⊥面DBP,∴AG⊥BD.(2)由(1)知:AG⊥面DBP,∴AG⊥BG,AG⊥PG,∴ PGB是二面角P-AG-B的平面角.PG=PD=×AP=,BP=OP=2, BPG=90 ,.∴BG==.cos PGB===.(解法二):建立如图所示的直角坐标系,由题意可知8=2×2π×AD,解得AD=2,则A(0,0,0),B(0,4,0),D(0,0,2),P(,3,0),∵G是DP的中点,∴可求得G(,,).(1)=(,-1,0),=(0,-4,2),∴=(,,).∵=(,,)•(0,-4,2)=0,∴AG⊥BD(2)由(1)知,)=(,-1,0),=(,,).=(-,-,)=(,-,)∵,.∴是平面APG的法向量.设=(x,y,1)是平面ABG的法向量,由,,解得=(-2,0,1)分cosθ==.所以二面角二面角P-AG-B的平面角的余弦值【解析】解法一:(1)由题设条件知可通过证明AG⊥面DBP证AG⊥BD;(2)作辅助线,如图,找出 PGB是二面角P-AG-B的平面角,由于其所在的三角形各边已知,且是一个直角三角形,故易求.解法二:建立如图的空间坐标系,给出图中各点的坐标(1)求出AG,BD两线段对应的向量的坐标,验证其内积为0即可得出两直线是垂直的;(2)求出两个平面的法向量,然后求出两法向量夹角的余弦值的约对值即是二面角P-AG-B的平面角的余弦值.本题考查空间的线面关系、二面角、空间向量及坐标运算、余弦定理等知识,考查数形结合、化归转化的数学思想和方法,以及空间想象能力、推理论证能力和运算求解能力20.已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为.(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.【答案】解:(Ⅰ)由题意可设椭圆C的方程为>>,F(c,0).由题意知解得,c=1.故椭圆C的方程为,离心率为.(Ⅱ)以BD为直径的圆与直线PF相切.证明如下:由题意可设直线AP的方程为y=k(x+2)(k≠0).则点D坐标为(2,4k),BD中点E的坐标为(2,2k).由得(3+4k2)x2+16k2x+16k2-12=0.设点P的坐标为(x0,y0),则.所以,.因为点F坐标为(1,0),当时,点P的坐标为,,点D的坐标为(2,±2).直线PF⊥x轴,此时以BD为直径的圆(x-2)2+(y±1)2=1与直线PF相切.当时,则直线PF的斜率.所以直线PF的方程为.点E到直线PF的距离=.又因为|BD|=4|k|,所以.故以BD为直径的圆与直线PF相切.综上得,当直线AP绕点A转动时,以BD为直径的圆与直线PF相切.【解析】(I)根据椭圆的特征可得当点P在点(0,b)时,△APB面积的最大,结合题中的条件可得a、b与c的关系进而得到答案.(II)设点P的坐标为(x0,y0),由题意可设直线AP的方程为y=k(x+2),可得点D 与BD中点E的坐标,联立直线与椭圆的方程得(3+4k2)x2+16k2x+16k2-12=0,进而表示出点P的坐标,结合点F坐标为(1,0),再写出直线PF的方程,根据点E到直线PF的距离等于直径BD的一半,进而得到答案.解决此类问题的关键是熟练掌握椭圆中有关数值的关系,以及椭圆与直线的位置关系、圆与直线的位置关系.21.已知函数f(x)=lnx-,g(x)=f(x)+ax-6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g (x1)≥h(x2)成立,求实数m的取值范围.【答案】解:(1)当a=1时,f(x)=lnx-,∴f′(x)=+=,x>0.∵x>0,∴f′(x)>0,∴f(x)在(0,+∞)上是增函数.(2)∵f(x)=lnx-,g(x)=f(x)+ax-6lnx,a>0.∴g(x)=ax--5lnx,x>0∴g′(x)=a+-=,若g′(x)>0,可得ax2-5x+a>0,在x>0上成立,∴a>=,∵≤=(x=1时等号成立),∴a≥.(3)当a=2时,g(x)=2x--5lnx,h(x)=x2-mx+4=(x-)2+4-,∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,∴要求g(x)的最大值,大于h(x)的最大值即可,g′(x)==,令g′(x)=0,解得x1=,x2=2,当0<x<,或x>2时,g′(x)>0,g(x)为增函数;当<x<2时,g′(x)<0,g(x)为减函数;∵x1∈(0,1),∴g(x)在x=处取得极大值,也是最大值,∴g(x)max=g()=1-4+5ln2=5ln2-3,∵h(x)=x2-mx+4=(x-)2+4-,若m≤3,h max(x)=h(2)=4-2m+4=8-2m,∴5ln2-3≥8-2m,∴m≥,∵>3,故m不存在;若m>3时,h max(x)=h(1)=5-m,∴5ln2-3≥5-m,∴m≥8-5ln2,实数m的取值范围:m≥8-5ln2;【解析】(1)当a=1时,f(x)=lnx-,f′(x)=+=,由此能推导出f(x)在(0,+∞)上是增函数.(2)将函数为增函数,转化为导函数大于等于0恒成立,分离出参数a,求出a的范围.(3)对h(x)进行配方,讨论其最值问题,根据题意∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,只要要求g(x)max≥h(x)max,即可,从而求出m的范围.本题考查函数单调性与导数的关系,和分类讨论思想,及二次函数的知识,是导数中常见的恒成立问题,属难题.22.如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)试比较BE与EF的长度关系.【答案】解:(I)∵过A点的切线交DC的延长线于P,∴PA2=PC•PD,∵PC=1,PA=2,∴PD=4又PC=ED=1,∴CE=2,∵ PAC=CBA, PCA=CAB,∴△PAC∽△CBA,∴,∴AC2=PC•AB=2,∴AC=;…(5分)(II),由相交弦定理可得CE•ED=BE•EF.∵CE=2,ED=1,∴EF=,∴EF=BE.…(10分)【解析】(Ⅰ)先求出CE,再证明△PAC∽△CBA,利用相似比,即可求AC的长;(Ⅱ)由相交弦定理可得CE•ED=BE•EF,求出EF,即可得出结论.本题考查相似三角形的性质,考查相交弦定理,判断三角形相似是关键.23.在平面直角坐标系x O y中,已知曲线C1:x2+y2=1,以平面直角坐标系x O y的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.【答案】解:(1)由题意可知:直线l的直角坐标方程为:2x-y-6=0,因为曲线C2的直角坐标方程为:.∴曲线C2的参数方程为:(θ为参数).(2)设P的坐标(,),则点P到直线l的距离为:=,∴当sin(60-θ)=-1时,点P(,),此时.【解析】(1)直接写出直线l的直角坐标方程,将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线C2的方程,然后写出曲线C2的参数方程;(2)设出曲线C2上一点P的坐标,利用点P到直线l的距离公式,求出距离表达式,利用三角变换求出最大值.本题是中档题,考查直线的参数方程,直线与圆锥曲线的位置关系,点到直线的距离的应用,考查计算能力,转化思想.24.已知关于x的不等式:|2x-m|≤1的整数解有且仅有一个值为2.(Ⅰ)求整数m的值;(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.【答案】解:(I)由|2x-m|≤1,得.∵不等式的整数解为2,∴⇒3≤m≤5.又不等式仅有一个整数解2,∴m=4.(2)由(1)知,m=4,故a4+b4+c4=1,由柯西不等式可知;(a2+b2+c2)2≤(12+12+12)[(a2)2+(b2)2+(c2)2]所以(a2+b2+c2)2≤3,即,当且仅当时取等号,最大值为.【解析】(I)由条件可得,求得3≤m≤5.根据不等式仅有一个整数解2,可得整数m的值.(2)根据a4+b4+c4=1,利用柯西不等式求得(a2+b2+c2)2≤3,从而求得a2+b2+c2的最大值.本题主要考查绝对值不等式的解法,二维形式的柯西不等式的应用,属于基础题.。
吉林省吉林市普通高中2014届高三上学期摸底测试数学(理)试题含答案
吉林市普通中学2013—2014学年度高中毕业班摸底测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,共4页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0。
5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.已知{}{}|24,|3A x x B x x =-<<=>,则AB =A 。
{}|24x x -<< B. {}|3x x > C. {}|34x x << D. {}|23x x -<< 2. 复数ii -+13等于A. i 21-B. i 21+C. i -2D.i +23.()tan sin 1f x x x =++,若2)(=b f ,则=-)(b fA. 0B. 3C. —1D. -2 4。
如图. 程序输出的结果s=132 , 则判断框中应填 A 。
i ≥10?B 。
i ≥11?C. i ≤11?D. i ≥12?5. 某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为A 。
600 B. 288 C. 480 D. 5046. 设n m ,是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:① 若αβαβ⊥⊥⊂m m 则,,; ② 若βαβα//,,//m m 则⊂; ③ 若βαβα⊥⊥⊥⊥m m n n 则,,,; ④ 若//,//,//m m αβαβ则 其中正确命题的序号是A. ①③B. ①②C. ③④D. ②③ 7。
吉林省长市第二中学高三数学上学期第三次月考试题新人
长春市第二中学2013-2014学年度上学期高二年级综合素质测试数学试卷(B )一、选择题(每题仅有一个答案正确,每题4分,共48分) 1.下列语句中,不能成为命题的是( )A .5>12B .x >0C .若b a ⊥,则0=⋅b aD .三角形的三条中线交于一点2.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是( ) A .21B .31 C .61 D .41 3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是( )A .60%B .30%C .10%D .50%4.对变量y x ,有观测数据),(i i y x (10,,2,1⋅⋅⋅=i ),得散点图1;对变量v u ,有观测数据),(i i v u )10,,2,1(⋅⋅⋅=i ,得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 5.“y x ,均为奇数”是“y x +为偶数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样③简单随机抽样7.直线1+=kx y 与椭圆1522=+my x 总有公共点,则m 的取值范围是( ) A .m >1B .m ≥1或0<m <1C .0<m <5且m ≠1D .m ≥1且m ≠58.已知施肥量与水稻产量之间的回归方程为25775.4+=x y ,则施肥量30=x 时,对产量y 的估计值为( ) A .398.5B .399.5C .400D .400.59.椭圆1252=+y x上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .810.命题0log 1:2>,>x x p ∀,则p ⌝是( ) A .0log 12≤∀x x ,>B .0log 12≤∀x x ,>C .0log 12≤∃x x ,>D .0log 12>,x x ≤∃ 11.已知直线1:x+y-3=0,椭圆1422=+y x ,则直线与椭圆的位置关系式( ) A .相交B .相切C .相离D .相切或相交12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A .54B .53 C .52 D .51 二、填空题(每题4分,共16分)13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是_____________.甲 乙 丙 丁 x7 8 8 7 s2.52.52.8314.执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为________________.15.已知方程110422=---k y k x 表示焦点在x 轴上的椭圆,则实数k 的取值范围为_______________.16.若椭圆122=+my x 的离心率为23,则=m _______________ 三、解答题17.(10分)已知离心率是32,长轴长是6.求椭圆的标准方程: 18(12分)某工厂生产甲、乙、丙三中样式的杯子,每种样式均有500ml 和800ml 两种型号,某月 甲样式 乙样式 丙样式 500ml 2000 2500 3000 800ml30004500z按样式用分层抽样的方法在这个月生产的杯子中抽取100个,其中有家样式杯子25个. (1)求z 的值;(2)用分层抽样的方法在甲样式杯子中抽取一个容量为5的样本,从这个样本中任取2个杯子,求至少有1个500ml 杯子的概率. 19.(10分)已知关于x 的一次函数n mx y +=.实数n m ,满足条件⎪⎩⎪⎨⎧≤≤-≤≤-≤-+111101n m n m ,求函数n mx y +=的图像经过第一、二、三象限的概率.20.(12分)已知点M 在椭圆193622=+y x 上,'MP 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段'PP 的中点,求P 点的轨迹方程.21.(12分)”“0cos sin ,:000=-+∈∃m x x R x p 啊”>“02,:22m x x R x q ++∈∀若q p ∨为真命题,q p ∧为假命题,求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届吉林省长春市高中毕业班第三次调研测试数学试题(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150分,考试时间为120分钟,其中第Ⅱ卷22题—24题为选考题,其它题为必考题。
考试结束后,将试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿 纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)
一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,
只有一项....
是符合题目要求的,请将正确选项填涂在答题卡上). 1.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.设集合}421{,,=
A ,集合},,|{A b A a b a x x
B ∈∈+==,则集合B 中有___个元素 A .4
B .5
C .6
D . 7
3.下列函数中,在(0,)+∞上单调递减,并且是偶函数的是 A .2y x =
B .3y x =-
C .lg ||y x =-
D .2x y =
4.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是
A .
B .
C .
D . 5.如图所示的程序框图,该算法的功能是
A .计算0
1
2
(12)(22)(32)++++++…(12)n
n +++的值 B .计算1
2
3
(12)(22)(32)++++++…(2)n
n ++的值
C .计算(
123+++...)n +012(222++++ (1)
2)n -+的值
D .计算[
123+++…(1)]n +-012(222++++…2)n +的值 第5题图
6.已知双曲线C :22
221x y a b
-=(0,0)a b >>的焦距为2c ,焦点到双曲线C 的渐近线
的距离为
2
c
,则双曲线C 的离心率为 A .2
B
C
.
2
D
.3
7.△ABC 各角的对应边分别为c b a ,,,满足 b c a c a b +++
1,则角A 的范围是 A .(0,
]3
π
B .(0,
]6
π
C .[
,)3
π
π
D .[
,)6
π
π
8.函数)2
|)(|2sin()(πϕϕ<+=x x f 的图象向左平移
6
π
个单位后关于原点对称,则函数()f x 在[0,]2
π
上的最小值为
A
.2-
B .12
-
C .
12
D
.
2
9.已知实数,x y 满足:210210x y x x y -+ ⎧⎪
<⎨⎪+- ⎩
,221z x y =--,则z 的取值范围是
A .5
[,5]3
B .[]0,5
C .[)0,5
D .5[,5)3
10.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为 A
B
C
D
11.已知函数2
()f x x =的图象在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直,
并交于点P ,则点P 的坐标可能是 A .3(,3)2
-
B . (0,4)-
C .(2,3)
D .1(1,)4
-
12.P 为圆1C :2
2
9x y +=上任意一点,Q 为圆2C :2
2
25x y +=上任意一点,PQ 中 点组成的区域为M ,在2C 内部任取一点,则该点落在区域M 上的概率为 A .
1325
B .
35
C .
13
25π
D .
35π
≥ ≥ ≥
第Ⅱ卷(非选择题,共90分)
本卷包括必考题和选考题两部分。
第13题~21题为必考题,每个试题考生都必须作 答。
第22题~24题为选考题,考生根据要求作答。
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.若21
)23sin()sin(=+++x x ππ,则=x 2sin .
14.已知函数2
()sin 21
x f x x =
++,则(2)(1)(0)(1)(2)f f f f f -+-+++= . 15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为 .
16.在平面直角坐标系xOy 中,已知点A 在椭圆
22
1259
x y +=上,点P 满足(1)()A P OA λλ=-∈R ,且72OA OP ⋅=,则线段OP 在x 轴上的投影长度的最大值为 .
三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).
17.(本小题满分12分)
设数列{}n a 的前n 项和12n n S +=,数列{}n b 满足21
(1)log n n
b n n a =
++.
(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T . 18.(本小题满分12分)
低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数0.785⨯,家用天然气的二氧化碳排放量(千克)=天然气使用立方数0.19⨯等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经
个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”
中有20%的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选5个家庭,记ξ表示5个家庭中“低碳家庭”的个数,求E ξ和D ξ.
19.(本小题满分12分)
如图,直三棱柱111A B C A B C
-中,AC AB ⊥ ,12AB AA =,M 是AB 的中点,△11A MC 是等腰三角形,D 为1CC 的中点,E 为BC 上一点. (1)若DE ∥平面11A MC ,求
CE
EB
; (2)求直线BC 和平面11A MC 所成角的余弦值.
20.(本小题满分12分)
已知抛物线1C :24y x =和2C :22x py =(0)p >的焦点
分别为12,F F ,12,C C 交于,O A 两点(O 为坐标原点),且12F F OA ⊥.
(1)求抛物线2C 的方程;
(2)过点O 的直线交1C 的下半部分于点M ,交2C 的左半部分于点N ,点P 坐标
为(1,1)--,求△PMN 面积的最小值.
21.(本小题满分12分)
已知函数2
()2()3x
f x e x a =--+,a ∈R .
(1)若函数()y f x =的图象在0x =处的切线与x 轴平行,求a 的值; (2)若x 0,()f x 0恒成立,求a 的取值范围.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4─1:几何证明选讲.
如图,圆M 与圆N 交于,A B 两点,以A 为切点作两圆的切线分别交圆M 和圆N 于,C D 两点,延长DB 交圆M 于点E ,延长CB 交圆N 于点F .已知5,10BC DB ==. (1)求AB 的长; (2)求
CF
DE
. 23.(本小题满分10分)选修4─4:坐标系与参数方程选讲.
已知曲线C 的参数方程为3cos 2sin x y θ
θ=⎧⎨
=⎩
(θ为参数),在同一平面直角坐标系中,将曲线
C 上的点按坐标变换1312
x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '. (1)求曲线C '的普通方程;
(2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的
轨迹方程.
24.(本小题满分10
已知函数()f x = (1)求()f x f (2)设函数()(3),g x k x =-k ∈R ,若()()f x g
x >对任意的x ∈R 都成立,求k 的
取值范围.
第19题图 第22题图
≥ ≥ ≥。