090317初中代数基础知识测试
初中数学基础代数测试卷
1. 下列各数中,是整数的是()A. -2.5B. 3/4C. √2D. -√32. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -53. 下列代数式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 - b^2 = (a - b)(a + b)D. a^2 + b^2 = (a - b)^24. 若x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 1,4C. 2,-3D. -1,-45. 下列各式中,能因式分解的是()A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 2x - 1D. x^2 - 2x - 16. 若x + 2 = 0,则x的值为()A. 2B. -2C. 0D. 无法确定7. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 3xD. y = 3/x8. 若m + n = 5,mn = 6,则m^2 + n^2的值为()A. 17B. 21C. 29D. 379. 若a^2 + b^2 = 1,则a + b的取值范围是()A. -1 ≤ a + b ≤ 1B. 0 ≤ a + b ≤ 2C. 1 ≤ a + b ≤ 3D. -2 ≤ a + b ≤ 210. 下列各式中,与x^2 + 4x + 4 = 0等价的是()A. x^2 + 4x - 4 = 0B. x^2 + 4x + 8 = 0C. x^2 - 4x - 4 = 0D. x^2 - 4x + 8 = 011. 若a = 3,b = -2,则a^2 - b^2的值为______。
12. 若x^2 - 5x + 6 = 0,则x的值为______和______。
13. 下列代数式中,a^2 - b^2的因式分解结果为______。
初中数学代数式基础测试题附答案
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
D.无法确定
【答案】A
【解析】
【分析】
利用面积的和差分别表示出 , ,利用整式的混合运算计算他们的差即可比较.
【详解】
=(AB-a)·a+(CD-b)(AD-a)
=(AB-a)·a+(AD-a)(AB-b)
=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)
A.63 【答案】D 【解析】
B.64
C.65
D.66
【分析】 根据图形中棋子的个数找到规律,从而利用规律解题. 【详解】 解:∵通过观察可以发现:
第1个图形中棋子的个数为1 1211 ; 第 2 个图形中棋子的个数为 6 22 2 1 ; 第 3 个图形中棋子的个数为15 3231 ; 第 4 个图形中棋子的个数为 28 424 1 ;
∴ - =(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)
=(AB-a)(AD-a-b)
∵AD<a+b,
∴ - <0,
故
选 A.
【点睛】
此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.
10.若多项式 x2+mx+4 能用完全平方公式分解因式,则 m 的值可以是( )
【答案】C 【解析】
B. 2a2 2a 2
C. 2a2 a
D. 2a2 a
【分析】
根据题意,一组数: 250 、 251 、 252 、 、 299 、 2100 的和为 250+251+252+…+299+2100
基础测试-初中数学1-代数初步知识
基础测试-初中数学1-代数初步知识
(满分100分,时间45分)
一、填空(每小题5分,共20分)
⑴ 任何一个数乘以1,等于它本身.这个性质可以用字母表示成 .
⑵同分母分数相加,分母不变,分子相加. 这个运算法则可以用字母表示成 .
⑶ a 的倒数与b 的倒数的差,用代数式表示是 .
⑷ m ,n 的和除以m ,n 的差,用代数式表示是 .
二、求下列代数式的值(每小题10分,共20分)
⑴ 1
12-+n n ,其中n =4; ⑵ ()b c a 412+-,其中a =7,b =3,c =5.
三、列式并求值(20分)
邮购一种图书,每册定价a 元,另加书价15%的邮费.购书n 册,总计金额Y 元,Y 是多少?计算当a =0.2,n =36时Y 的值.
四、解下列方程(每小题10分,共20分)
⑴ 5.67.32.1=+x ; ⑵
3116595=-y .
五、列方程解应用题(20分)
两地相距360千米,甲、乙两辆汽车同时分别从两地开出,相向而行,2.4相遇,甲车的速度是70千米,乙车的速度是多少?。
初中数学代数式基础测试题含答案
初中数学代数式基础测试题含答案一、选择题1.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.3.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.4.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.5.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.9.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅==()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .13.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.14.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】 解:单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.17.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .3 【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.20.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.。
七年级数学上第三章代数式复习基础测试题
七年级数学上第三章代数式复习基础测试题七年级数学上第三章代数式复习基础测试题代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
下面是应届毕业生店铺为大家提供的七年级数学上第三章代数式复习基础测试题。
一、选择题(每题3分,共24分)1.下列说法错误的是 ( )A.代数式x2+y2的意义是x,y的平方和B.代数式5(x+y)的意义是5与(x+y)的积C.x的5倍与y的和的一半,用代数式表示为5x+D.比x的2倍多3的数,用代数式表示为2x+32.已知a是两位数,b是一位数,把b放在百位上,a放在b的后面,就成为一个三位数.这个三位数可表示成 ( )A.10b+aB.baC.100b+aD.b+10a3.某企业今年3月份产值为a万元,若4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元4.如果单项式- xay2与 x3yb是同类项,那么a,b的值分别为 ( )A.2,2B.-3,2C.2,3D.3,25.当x分别等于3和-3时,多项式6x2+5x4-x6+3的值 ( )A.互为相反数B.互为倒数C.相等D.异号6.若一个多项式减去x2-3y2等于x2+2y2,则这个多项式是 ( )A.-2x2+y2B.2x2-y2C.x2-2 y2D.-2x2-y27.化简-[-(-a2)-b2]-[+(-b2)]的结果是 ( )A.2b2-a2B.-a2C.a2D.a2-2b28.若a,b两数在数轴上的位置如图所示,则化简代数式的结果是( )A.1B.2b+3C.2a-3D.-1二、填空题(每题2分,共24分)9.“比a的3倍大1的数”用代数式表示为_______.10.3月12日某班50名学生到郊外植树,若平均每人植树a棵,则该班一共植树____棵.11.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:____________________________.12.单项式-3x2y3的.系数是_______,多项式-2x2+3xy+y2的次数是_______.13.若单项式3x2yn与2xmy3是同类项,则m+n=_______.14.若一组数2,4,8,16,32,…,按此规律,则第n个数是_______.15.在三个连续偶数中,n是最小的一个,这三个数的和为_______.16.根据如图所示的程序计算,若输入的x的值为1,则输出的y 值为_______.17.若-4xay+x2y6=-3x2y,则a+b=18.一个多项式M减去多项式2x2+5x-3,马虎同学将减号抄成了加号,运算结果得-x2+3x-7,多项式M是_______19.若,则的值为 .20.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)三、解答题(共52分)21.(本题4分)已知多项式x-3x2ym+2+x3y--3x4-1是五次五项式,单项式3x3ny3-mz与该多项式的次数相同,求m,n的值.22.(本题8分)化简:(1)5(a2b-3ab2)-2(a2b-7ab2); (2)4x2-[3x-2(x-3)+2(x2-1)].23.(本题8分)先化简,再求值:(1)3(2x2-xy)-2(3x2-2xy),其中x=-2,y=-3;(2) 2x2+3x+5+[4x2-(5x2-x+1)] ,其中 x=3.24.(本题5分)有这样一道数学题:计算(3x+2y+1)-2(x+y)-(x-2)的值,其中x=1,y=-1.小磊同学把“x=1,y=-1”错抄成了“x=-1,y=1”,但他的计算结果又是正确的,能不能认为这个多项式的值与x,y的值无关?请说明理由.25.(本题8分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.26.(本题10分)为了能有效地使用电力资源,市区实行居民峰谷用电.居民家庭在峰时段(上午8:00-晚上21:00)用电的价格是每度0.55元,谷时段(晚上21:00-次日晨8:00)用电的价格是每度0.35元,若某居民户某月用电100度,其中峰时段用电x度.(1)请用含x的代数式表示该居民户这个月应缴纳的电费;(2)利用上述代数式计算当x=60时,应缴纳的电费是多少.27.(本题8分)A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪2万元,每年加工龄工资400元;B公司半年薪1万元,每半年加工龄工资100元,求A,B两家公司第n年的年薪分别是多少.从经济角度考虑,选择哪家公司有利?28.(本题10分)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f(1)当m,n百质(m,n除1外无其他公因数)时,观察下列图形并完成下表:猜想:当m,n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m,n的关系式是_______(不需要证明)(2)当m,n不互质时,请画图验证你猜想的关系式是否依然成立.参考答案一、选择题1.C2.C3.B4.D5.C6.B7.A8.B二、填空题9.3a+1 10.50a 11.答案不唯一 12.-3 2 13.514.2n(n为正整数) 15.3n+6 16.4 17.3 18.-3x2-2x-419.3 20.3n+1三、解答题21.122.(1)原式=3a2b-ab2 (2)原式=2x2-x-423.(1)6 (2)2524.原式的值与x,y的值无关25.(1)第5个图形有18颗黑色棋子 (2)2013颗26.(1)0.2x+35 (2)47(元)27.选择A公司有利28.(1)f=m+n-1 (2)(1)小题的猜想都不能成立下载全文。
九年级数学代数的初步知识考试题
九年级数学代数的初步知识考试题《代数的初步知识》提高测试一.填空(本题20分,每题4分):1.某水库水位原来为a米,又上升了-3米,现在的水位是米;2.周长为s米的正方形,面积为平方米;3.电影院有n排座位。
如果每排有12个座位少于排数,则电影院共有座位;4.与2x2的和是y的式子是;5.全校师生人数为万人,其中教师占7%,学生总数为万人。
答:1。
A-3;2.-m7%。
二选择题(本题30分,每小题6分):1.代数表达式用于表示小于a和B之间差值一半的数字,1的数字表示为。
()(a)a-×b-1(b)a-×b+1(c)×(a-b)-1(d)×a-b-12.某校有男生x人,女生y人,教师与学生人数之比为1∶15,则教师的人数是……()1.(x?y)(b)15?(x?y)151(c)?十、y(d)15?十、Y1513.如果x-2=0,那么,代数式x3-+1的值X121212s;3.n(n-12);4.y-2x2;5.m16(a)对()(a)19131714(b)(c)(d)22224。
A每小时走一米,B每小时走一米(A>B)。
他们同时朝着同一个方向出发发,t他们在一小时内相隔多远米……………………………………………………………………………………………()(a)(a+b)×t(b)t×(a-b)(c)t×a-b(d)t×b-a5.某厂一月份产值为a万元,二月份起每月增产15%,三月份的产值可以表示为………()(a)(1+15%)2×A 10000元(b)(1+15%)3×A 10000元(c)(1+a)2×15%万元(d)(2+15%)2×a万元答案:1.c;2.a;3.c;4.b;5.a.三求下列代数式的值(本题10分,每小题5分):1.×(a3?×b)(其中a=,b?2?a);解:用2b代替a,再把a=代入,得×(a3?×b)=×[()3??2?a]11?) 2733105=×=;227921232131213321321213=×(321324×2×42.2x°(其中x°)x2xx解:把x?看作一个整体,把原式变形为含x?的式子,再把十、13? 替换进来,得到x21x24?x2?42x??xx=1x2?12(x?)?4?xx=112(x?)?4(x?)xx33=2?+4?=3+6=9.22 IV(本问题得10分)如图,a=4,b=7,求阴影部分的面积(精确到0.01,圆周率取3.14).解决方案:阴影部分是矩形和四分之二圆的面积之差。
初中一年级数学代数基础试题
初中一年级数学代数基础试题一、选择题(每小题 3 分,共 30 分)1、下列式子中,是代数式的是()A x + y = 5B 4 > 3C 0D a + b > c2、下列式子中,符合代数式书写要求的是()A -3xyB 213abC a×bD x÷y3、用代数式表示“a 的 3 倍与 b 的差的平方”,正确的是()A (3a b)²B 3(a b)²C 3a b²D (a 3b)²4、当 x = 1 时,代数式 4 3x 的值是()A 1B 2C 3D 45、已知代数式 x + 2y 的值是 3,则代数式 2x + 4y + 1 的值是()A 1B 4C 7D 不能确定6、下列各式中,去括号正确的是()A a +(b c + d) = a b + c dB a (b c + d) = a b c + dC a (b c + d) = a b + c dD a (b c + d) = a b + c + d7、化简(a b)的结果是()A a + bB a bC a bD a + b8、若单项式-3x^{a}y^{3}与 13x^{2}y^{b}是同类项,则 a+ b 的值为()A 5B 6C 7D 89、下列合并同类项正确的是()A 3x + 2x = 5x²B 7a² 5a²= 2C 3x²+ 2x³= 5x⁵D 4ab² 5b²a = ab²10、下列方程中,是一元一次方程的是()A x² 4x = 3B 3x 1 = 2yC 3x + 1 = 0D 1x + 2 = 0二、填空题(每小题 3 分,共 24 分)11、单项式-2πab²5 的系数是_____,次数是_____。
12、多项式 3x² 5x + 2 是_____次_____项式。
中考数学第01章代数基础知识复习试题(共18页)
第01章代数根底知识(zhī shi)复习第一节用字母表示数1、什么是代数式?用运算符号将数或者者表示数的字母连接起来的式子,叫代数式。
单独一个数或者字母也叫代数式。
代数式总能表达一个意思。
2、什么是单项式?任意个字母和数字的积的形式的代数式。
一个单独的数或者字母也叫单项式。
单项式中的数字因数叫做这个单项式的系数。
所有字母的指数和叫做这个单项式的次数。
任何一个非零数的零次方等于“1〞。
单项式分母中不含字母(单项式是整式,而不是分式〕。
3、什么是多项式?假设干个单项式的和组成的式子叫做多项式。
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
不含字母的项叫做常数项。
4、循环小数(xún huán xiǎo shù)化为分数纯循环小数:小数中除了循环节外没有其它小数。
如、、等。
混循环小数:小数中除了循环节外还有其它小数。
如、等。
例、纯循环小数化为分数。
〔1〕3.0 〔2〕82.0〔3〕283.0解:〔1〕〔2〕〔1〕-〔2〕得:〔1〕-〔2〕得: 〔1〕-〔2〕得:例、混循环小数(x ún hu án xi ǎo sh ù)化为分数。
将〔1〕1032.0 、〔2〕1032.5 化为分数。
解:〔1〕设, 那么:;; 。
∴解:〔2〕设x =1032.0 ,那么1032.5 =5+ 那么:103.210 =x ;103.230110000 =x ; 2230199901010000-==-x x x 99902299=x ∴。
总结: 〔1〕纯循环小数化为分数:分数的分子是循环小数的循环节,分母是都是9,9的个数与循环节的位数一样;〔2〕混循环小数化为分数:分数的分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环数字所组成的数所得的差;分母的头几位数字是9,末几位数字都是0,其中9的个数与循环节的位数一样,0的个数与不循环局部的位数一样。
初中数学代数式基础测试题附答案解析
D、(a+b)2=a2+2ab+b2,故此选项错误;
故选 B.
【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式
乘以单项式等知识,正确化简各式是解题关键.
3.下列计算正确的是( )
A. x2 x3 x5
B. x2 x3 x6
C. x6 x3 x3
D. x3 2 x9
故选 B. 【点睛】 本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.
故选 C. 【点睛】 此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是 解决此题的关键.
4.下列运算正确的是 ( )
A. a2 a3 a6
B. a6 a3 a2
C. 2a2 2a2
D. a2 3 a6
【答案】D 【解析】 【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最 后进一步判断即可. 【详解】
故选 C.
本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.
18.图(1)是一个长为 2a ,宽为 2b(a b) 的长方形,用剪刀沿图中虚线(对称轴)剪
开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则 中间空的部分的面积是( )
A. ab
B. (a b)2
【答案】C 【解析】 【分析】 根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判 断即可得解. 【详解】
A. x2 与 x3 不能合并,故该选项错误;
B. x2 x3 x5 ,故该选项错误;
C. x6 x3 x3 ,计算正确,故该选项符合题意;
初中数学代数式基础测试题附解析
初中数学代数式基础测试题附解析一、选择题1.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x4+ 4x2+8x3=(2x2+2x)2,∴A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.8.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.13.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.14.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .16.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.17.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy +=∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类. 19.若x +y =2,x ﹣y =3﹣222x y -的值为( )A .2B .1C .6D .3﹣2【答案】B【解析】【分析】根据二次根式的性质解答.【详解】 解:∵x+y =2,x ﹣y =3﹣2,22()()(322)(322)x y x y x y -=+-=+-1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.。
最新初中数学代数式基础测试题附答案解析(1)
最新初中数学代数式基础测试题附答案解析(1)一、选择题1.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.2.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a+2a+22a+ (250)=a+(2+22+…+250)a,∵23+=-,2222234++=-,222222345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)=(AB-a)(AD-a-b)∵AD<a+b,∴-<0,故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.13.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.14.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.15.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.16.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.20.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.。
中考数学总复习代数的初步知识基础测试试题
2021年中考数学总复习代数的初步知识根底测试一 填空题〔此题20分,每一小题4分〕:1.正方形的边长为a cm ,假设把正方形的每边减少1cm ,那么减少后正方形的面积为cm 2;2.a ,b ,c 表示3个有理数,用 a ,b ,c 表示加法结合律是 ;3.x 的41与y 的7倍的差表示为 ;4.当1=x 时,代数式231-x 的值是 ;5.方程x -3 =7的解是 .答案:1.〔a -1〕2;2.a +〔b +c 〕=〔a +b 〕+c ;3.41x -7y ;4.1;5.10.二 选择题〔此题30分,每一小题6分〕:1.以下各式是代数式的是…………………………………………………………〔 〕〔A 〕S =πr 〔B 〕5>3 〔C 〕3x -2 〔D 〕a <b +c2.甲数比乙数的71大2,假设乙数为y ,那么甲数可以表示为………………………〔〕 〔A 〕71y +2 〔B 〕71y -2 〔C 〕7y +2 〔D 〕7y -23.以下各式中,是方程的是………………………………………………………〔 〕〔A 〕2+5=7 〔B 〕x +8 〔C 〕5x +y =7 〔D 〕ax +b4.一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数可以表示为〔 〕 〔A 〕abc 〔B 〕100a +10b +c 〔C 〕100abc 〔D 〕100c +10b +a5.某厂一月份产值为a 万元,二月份增产了15%,二月份的产值可以表示为〔 〕 〔A 〕〔1+15%〕× a 万元 〔B 〕15%×a 万元〔C 〕〔1+a 〕×15% 万元 〔D 〕〔1+15%〕2 ×a 万元答案:1.C;2.A;3.C;4.D;5.A.三 求以下代数式的值〔此题10分,每一小题5分〕:1.2×x 2+x -1 〔其中x = 21〕; 解:2×x 2+x -1 =121)21(22-+⨯ =2×41+21-1=21+21-1=0; 2.ab b a 222- 〔其中 31,21==b a 〕. 解:ab b a 222-=39131365931914131212)31()21(22⨯=-=-=⨯⨯- = 31. 四 〔此题10分〕如图,等腰梯形中有一个最大的圆,梯形的上底为5cm ,下底为7cm ,圆的半径为3cm ,求图中阴影局部的面积.解:由,梯形的高为6cm ,所以梯形的面积S 为1S = 21×〔 a +b 〕×h = 21×〔 5+7〕×6= 36〔cm 2〕.圆的面积为26.28314.3πR 222=⨯==S 〔cm 2〕. 所以阴影局部的面积为74.726.283621=-=-=S S S 〔cm 2〕. 五 解以下方程〔此题10分,每一小题5分〕:1.5x -8 = 2 ; 2.53x +6 = 21. 解:5x = 10, 解:53x = 15, x = 2 ; x =15÷53=15 ×35=25. 六 列方程解应用问题〔此题20分,每一小题10分〕:1.甲乙两人练习赛跑,假如甲让乙先跑10米,甲跑5秒就能追上乙;假设甲每秒跑9米,乙的速度应是多少?解:设乙的速度是每秒x 米,可列方程〔9-x 〕×5 = 10,解得 x = 7 〔米/秒〕2.买三支铅笔和一支圆珠笔一共用去2元零5分,假设圆珠笔的售价为1元6角,那么铅笔的售价是多少?解:设铅笔的售价是x 元,可列方程3x +,解得 x = 0.15〔元〕励志赠言经典语录精选句;挥动**,放飞梦想。
人教版初中数学代数式基础测试题含答案解析
人教版初中数学代数式基础测试题含答案解析一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.5.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.6.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.7.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.8.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.13.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .14.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.15.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.16.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.17.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.18.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.。
七年级数学《代数的初步知识》基础测试
《代数的初步知识》基础测试一 填空题(本题20分,每题4分):1.正方形的边长为a cm ,若把正方形的每边减少1cm ,则减少后正方形的面积为 cm 2;2.a ,b ,c 表示3个有理数,用a ,b ,c 表示加法结合律是;3.x 的41与y 的7倍的差表示为;4.当1=x 时,代数式231-x 的值是;5.方程x -3 =7的解是.答案:1.(a -1)2;2.a +(b +c )=(a +b )+c ;3.41x -7y ;4.1;5.10.二 选择题(本题30分,每小题6分):1.下列各式是代数式的是…………………………………………………………() (A )S =πr (B )5>3 (C )3x -2 (D )a <b +c2.甲数比乙数的71大2,若乙数为y ,则甲数可以表示为………………………() (A )71y +2(B )71y -2(C )7y +2 (D )7y -23.下列各式中,是方程的是………………………………………………………()(A )2+5=7 (B )x +8 (C )5x +y =7 (D )ax +b4.一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数可以表示为( )(A )abc (B )100a +10b +c (C )100abc (D )100c +10b +a 5.某厂一月份产值为a 万元,二月份增产了15%,二月份的产值可以表示为( )(A )(1+15%)×a 万元 (B )15%×a 万元(C )(1+a )×15% 万元 (D )(1+15%)2×a 万元答案: 1.C;2.A;3.C;4.D;5.A.三 求下列代数式的值(本题10分,每小题5分):1.2×x 2+x -1 (其中x = 21); 解:2×x 2+x -1 =121)21(22-+⨯ =2×41+21-1=21+21-1=0; 2.ab b a 222- (其中 31,21==b a ). 解:ab b a 222-=39131365931914131212)31()21(22⨯=-=-=⨯⨯- = 31. 四 (本题10分)如图,等腰梯形中有一个最大的圆,梯形的上底为5cm ,下底为7cm ,圆的半径为3cm ,求图中阴影部分的面积.解:由已知,梯形的高为6cm ,所以梯形的面积S 为1S = 21×( a +b )×h = 21×( 5+7)×6 = 36(cm 2).圆的面积为 26.28314.3πR 222=⨯==S (cm 2).所以阴影部分的面积为74.726.283621=-=-=S S S (cm 2).五 解下列方程(本题10分,每小题5分):1.5x -8 = 2 ; 2.53x +6 = 21. 解:5x = 10, 解:53x = 15, x = 2 ; x =15÷53=15×35=25. 六 列方程解应用问题(本题20分,每小题10分):1.甲乙两人练习赛跑,如果甲让乙先跑10米,甲跑5秒就能追上乙;若甲每秒 跑9米,乙的速度应是多少?解:设乙的速度是每秒x 米,可列方程(9-x )×5 = 10,解得 x = 7 (米/秒)2.买三支铅笔和一支圆珠笔共用去2元零5分,若圆珠笔的售价为1元6角,那么铅笔的售价是多少?解:设铅笔的售价是x元,可列方程3x+1.6=2.05,解得x=0.15(元)。
初中数学必备——代数基础知识及练习
初中数学必备——代数基础知识及练习一、整式的加减乘除1. 整式及其系数的概念2. 整式的加减法和乘法3. 整式的除法及其应用练习题:1. 化简下列整式:3x+4y-2z+2x-5y+3z。
答案:5x-y+z2. 计算下列整式的和:3x^2+5xy-2y^2-4x^2+7xy-3y^2。
答案:-x^2+12xy-5y^23. 计算(2x^2-11x+5):(x-3)。
答案:2x-5二、一元一次方程式1. 一元一次方程式的概念和基本形式2. 解一元一次方程式的方法3. 解决实际问题的应用练习题:1. 解方程:2x+7=15。
答案:x=42. 解方程:3(x-4)-5x=8。
答案:x=-33. 解方程:4x-2(x+3)=12-2x。
答案:x=3三、二元一次方程式1. 二元一次方程式的概念和基本形式2. 解二元一次方程式的方法3. 解决实际问题的应用练习题:1. 解方程组:{x+y=7, x-y=1}。
答案:x=4, y=32. 解方程组:{2x-3y=1, 3x+2y=17}。
答案:x=4, y=33. 解方程组:{2x-y=3, 3x+4y=18}。
答案:x=3, y=6四、一元二次方程式1. 一元二次方程式的概念和基本形式2. 求解一元二次方程式的方法3. 解决实际问题的应用练习题:1. 解方程:x^2-5x+6=0。
答案:x=2或x=32. 解方程:x^2+4x+4=0。
答案:x=-23. 解方程:3x^2-7x+2=0。
答案:x=1/3或x=2/3总结:代数基础是初中数学中的重要知识点,包括整式的加减乘除、一元一次方程式、二元一次方程式和一元二次方程式等内容。
需要掌握整式的加减乘除运算方法和应用、解一元一次方程式和二元一次方程式的方法以及解一元二次方程式的方法和实际应用。
只有全面掌握这些知识,才能够在初中数学学习中取得好成绩。
以上练习题仅供参考,学生应结合教材和练习题集等全面复习。
初中数学代数式基础测试题附答案(1)
初中数学代数式基础测试题附答案(1)一、选择题1.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.2.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.3.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .6.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.8.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b = 故选B .9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果是( )A.3 B.27 C.9 D.1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27,第2次,13×27=9,第3次,13×9=3,第4次,13×3=1,第5次,1+2=3,第6次,13×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D.【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( )A .12B .11C .10D .9【答案】B【解析】【分析】 项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.16.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.17.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.解:∵x+y =3+22,x ﹣y =3﹣22,∴22()()(322)(322)x y x y x y -=+-=+-=1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【解析】【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c)c=ac+bc-c2,故选项B、D正确,或“L”型钢材的截面的面积为:bc+(a-c)c=bc+ac-c2,故选项C正确,选项A错误,故选:A.【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.。
最新初中数学代数式基础测试题含答案解析(2)
最新初中数学代数式基础测试题含答案解析(2)一、选择题1.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.2.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.3.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.5.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.6.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.7.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.8.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.计算 2017201817(5)()736-⨯ 的结果是( )A .736-B .736C .- 1D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.13.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.14.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b = 故选B .15.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.16.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.17.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算. 解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.18.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .19.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .20.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意; 故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中代数基础知识测试题(满分100分,考试时间40分钟)班级 学号 姓名 得分一、填空题(本大题共40小题,每小题2分,满分80分): 1、无限不循环小数是 .2、 的相反数是-8;0的绝对值是 .3、比较大小:—32 0;-2 -47. 4、用代数式表示:a 的平方减去b 的3倍的差是 .5、当x =32,y =-3时,代数式6x 2y 3的值是 . 6、方程53+y =1+25-y 的解为 .7、从甲地到乙地步行要比骑自行车多用80分钟.已知步行每分钟走70米,骑行车每分钟行150米.如果设甲、乙两地相距为x 米,那么可以列成方程是 . 8、不等式6-2x ≥1的正整数解是 .9、在155米的长度内铺设25根水管.甲管每根长5米,乙管每根长8米.在求两种水管各要多少根时,如果设甲管有x 根,乙管有y 根,那么可得到方程组 .10、计算:2x 3y 2·7xy 2= . 11、因式分解:x 2-x -2= .12、因式分解:m 2n -mn 2+m -n = .13、当x 时,分式32--x x有意义;又当x 时,其值为零. 14、计算:y x x 2--yx y22+= ;(a 2-b 2)÷b a b a -+= .15、用科学记数法表示:2006000= ;-0.000001219= . 16、16的平方根为 ;-2764的立方根为 . 17、计算:31278-⎪⎭⎫⎝⎛= ;2164= .18、计算:24-23= ;(5-2)2= . 19、分母有理化:71= ;yx y x +-= .20、一元二次方程x 2+px +q =0的解是 .21、我国北方某地决定加快植树造林的速度,计划用两年时间将防风林的面积从现在的2万亩扩大到2.42万亩,则平均每年增长率是 .22、如果关于x 方程2x 2-4x +k =0没有实数根,那么k 的取值范围是 . 23、若x 1、x 2是方程2x 2-5x —1=0的两个根,则(x 1+2)(x 2+2)= .24、布袋里装有3个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黑球的概率为 .25、从2、4、6这三个数中任意选取两个数组成一个两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被3整除的概率是 .26、如果设y = ,那么分式方程21⎪⎭⎫⎝⎛-x x -5⎪⎭⎫⎝⎛-1x x +6=0可以化为关于y 的整式方程 .27、已知正比例函数y =kx 的图象经过点(43,-3),那么k = . 28、反比例函数y =x6-的图象在第 象限内. 29、当x =-2时,y =5;当x =1时,y =-1,那么y 关于x 的函数的解析式是 .30、若一次函数y =kx +b 的图象经过第一、三、四象限,则k 0,b 0 .31、某仓库里有煤1000吨,每天运出80吨,x 天后仓库里剩有煤y 吨,那么y 与x 之间的函数解析式是 .32、二次函数y =-21x 2+x -3的图象的开口向 ;顶点是 . 33、经过点(1,0)、(0,-7)、(-2,0)的抛物线的解析式是 . 34、把抛物线y =65(x +4)2-7向上平移3个单位,向左平移2个单位后,所得到的抛物线的解析式是 .35、糖果的单价分别为8元、10元、14元,若分别取4斤、9斤、2斤拌和成什锦糖,则什锦糖的单价是 元.36、数据12、8、15、11、7、9的中位数是 .37、红苹果中学抽取200名学生的身高资料进行数据分析,这些数据被分为5组.如果已知前4个组的频率分别为0.04、0.12、0.16、0.40,那么第5组的频数为 .38、样本9、3、0、7、1的标准差是 .39、若样本x 1、x 2、x 3、…、x n 的方差为s 2,则样本2+x 1、2+x 2、2+x 3、…、2+x n 的方差为 .40、甲组数据的标准差是1.2,乙组数据的方差是1.21,那么可以说明 组的数据波动较大.二、解答题(本大题共4小题,每小题5分,满分20分) 41、一次函数的图象与双曲线y =-x4交于点A (-1,m ),且经过点B (0,2). (1)求一次函数解析式;(2)如果一次函数的图象与x 轴交于点C ,求△BOC 的面积.42、甲、乙两人分别从相距20千米的A 、B 两地同时出发,以相同的速度相向而行.相遇后,两人继续前进.乙的速度不变,而甲每小时比原来多走1千米.结果甲到达B 地以后,乙还需30分钟才能到达A 地.求乙的速度.43、如图一是某地—次私人汽车牌照竞买时, 120位竞标者的竞标价的频率分布直方图(每组可含最低值,不含最高值).(1)图一中各个小长方形的面积的和等 于 ; (2)竞标价在[1.0,1.1 的频率 ; (3)如果竞标价是1.2万元及1.2万元以上者可以中标购买私人汽车牌照,那么共有 人 中标.0.9 1.1 1.3 1.5(图一))44、已知二次函数y=x2+bx+c的图象经过A(-2,-3)、B(2,5)两点,(1)求二次函数的解析式;(2)若(1)中的二次函数图象过点分别与x、y轴交于点M、N、P,求△PMN的面积.答案一、填空题(本大题共40小题,每小题2分,满分80分):1、无理数.2、8;0 .3、<;<.4、a 2-3b .5、-72 .6、y =7 .7、70x -150x =80 .8、1和2 . 9、⎩⎨⎧=+=+1558525y x y x .10、14x 4y 4 . 11、(x -2)(x +1).12、(m -n )(mn +1).13、≠3;=2 . 14、222244yx y x -+;(a -b )2 .15、2.006×106;-1.219×10-6 . 16、±2;-34. 17、23;8 . 18、236;9-45.19、77;yx y y x x -+-222. 20、x =242qp p -±-. 21、10% . 22、k >2 .23、821. 24、73 . 25、31. 26、y 2-y +6=0 .27、-4 . 28、二、四. 29、y =-2x +1 . 30、>;<. 31、y =-80x +1000,0≤x ≤12.5 . 32、下;(1,-25). 33、y =27(x -1)(x +2). 34、y =65(x +6)2-4 .35、10 . 36、10 . 37、56 . 38、23. 39、s 2 . 40、甲.二、解答题(本大题共4小题,每小题5分,满分20分) 41、解:(1)∵一次函数的图象与双曲线y =-x4交于点A (-1,m ),∴m =4 . ∴图象经过点A (-1,4)、B (0,2)的一次函数解析式为y =-2x +2; (2)∵一次函数y =-2x +2的图象与x 轴的交点是C (1,0),且B (0,2). ∴△BOC 的面积为1 .42、解:设乙的速度为x 千米/小时,依题意得x 10-110+x =6030 .整理,得x 2+x -20=0 ,解得x 1=-5 ,x 2=4 .经检验知,以上两解都是原方程的解,但x 1=-5 ,不合题意,舍去.所以取x =4 .答:乙的速度为4千米/小时.43、解:(1)1;(2)0.2;(3)48 .44、解:(1)y=x2+2x-3;(2)可以求得:M(1,0)、N(-3,0)、P(0,-3),∴S△PMN=6 .初中代数基础知识测试题(满分100分,考试时间45分钟)班级 学号 姓名 得分一、填空题(本大题共40小题,每小题2分,满分80分):1、无限不循环小数是 . 无理数.2、 的相反数是-8;0的绝对值是 . 8;0 .3、比较大小:—32 0;-2 -47. <;<. 4、用代数式表示:a 的平方减去b 的3倍的差是 . a 2-3b .5、当x =32,y =-3时,代数式6x 2y 3的值是 . -72 . 6、方程53+y =1+25-y 的解为 . y =7 .7、从甲地到乙地步行要比骑自行车多用80分钟.已知步行每分钟走70米,骑行车每分钟行150米.如果设甲、乙两地相距为x 米,那么可以列成方程是 .70x -150x =80 . 8、不等式6-2x ≥1的正整数解是 . 1和2 .9、在155米的长度内铺设25根水管.甲管每根长5米,乙管每根长8米.在求两种水管各要多少根时,如果设甲管有x 根,乙管有y 根,那么可得到方程组 .解:设甲、乙两种水管各需要x 、y 根,则⎩⎨⎧=+=+1558525y x y x ,可解得x =15,y =10 .答:甲种水管需要15根,乙种水管需要10根.10、计算:2x 3y 2·7xy 2= . 14x 4y 4 . 11、因式分解:x 2-x -2= . (x -2)(x +1). 12、因式分解:m 2n -mn 2+m -n = . (m -n )(mn +1).13、当x 时,分式32--x x有意义;又当x 时,其值为零. ≠3;=2 .14、计算:y x x 2--yx y 22+= ;(a 2-b 2)÷b a ba -+= .222244yx y x -+;(a -b )2. 15、用科学记数法表示:2006000= ;-0.000001219= .2.006×106;-1.219×10-6 . 16、16的平方根为 ;-2764的立方根为 . ±2;-34. 17、计算:31278-⎪⎭⎫⎝⎛= ;2164= . 23;8 .18、计算:24-23= ;(5-2)2= .236;9-45.19、分母有理化:71= ;yx y x +-= .77;yx yy x x -+-222. 20、一元二次方程x 2+px +q =0的解是 .x =242qp p -±-.21、我国北方某地决定加快植树造林的速度,计划用两年时间将防风林的面积从现在的2万亩扩大到2.42万亩,则平均每年增长率是 . 10%22、如果关于x 方程2x 2-4x +k =0没有实数根,那么k 的取值范围是 . k >2 . 23、若x 1、x 2是方程2x 2-5x —1=0的两个根,则(x 1+2)(x 2+2)= .821. 24、以6和—5为根的关于x 一元二次方程是 . x 2-x -30=0 . 25、在实数范围内因式分解:x 2-x -1= .(x -251+)(x -251-). 26、如果设y = ,那么分式方程21⎪⎭⎫⎝⎛-x x -5⎪⎭⎫⎝⎛-1x x +6=0可以化为关于y 的整式方程 . y 2-y +6=0 .27、已知正比例函数y =kx 的图象经过点(43,-3),那么k = .-4 .28、反比例函数y =x6的图象在第 象限内. 二、四. 29、当x =-2时,y =5;当x =1时,y =-1,那么y 关于x 的函数的解析式是 . y =-2x +1 .30、若一次函数y =kx +b 的图象经过第一、三、四象限,则k 0,b 0 . >;<.31、某仓库里有煤1000吨,每天运出80吨,x 天后仓库里剩有煤y 吨,那么y 与x 之间的函数解析式是 . y =-80x +1000,0≤x ≤12.5 .32、二次函数y =-21x 2+x -3的图象的开口向 ;顶点是 . 下;(1,-25).33、经过点(1,0)、(0,-7)、(-2,0)的抛物线的解析式是 . y =27(x -1)(x +2). 34、把抛物线y =65(x +4)2-7向上平移3个单位,向左平移2个单位后,所得到的抛物线的解析式是 . y =65(x +6)2-4 .35、糖果的单价分别为8元、10元、14元,若分别取4斤、9斤、2斤拌和成什锦糖,则什锦糖的单价是 元. 10 .36、数据12、8、15、11、7、9的中位数是 . 10 .37、红苹果中学抽取200名学生的身高资料进行数据分析,这些数据被分为5组.如果已知前4个组的频率分别为0.04、0.12、0.16、0.40,那么第5组的频数为 . 56 .38、样本9、3、0、7、1的标准差是 . 23.39、若样本x 1、x 2、x 3、…、x n 的方差为s 2,则样本2+x 1、2+x 2、2+x 3、…、2+x n 的方差为 . s 2 .40、甲组数据的标准差是1.2,乙组数据的方差是1.21,那么可以说明 组的数据波动较大. 甲.二、解答题(本大题共4小题,每小题5分,满分20分)41、一次函数的图象与双曲线y =-x4交于点A (-1,m ),且经过点B (0,2). (1)求一次函数解析式;(2)如果一次函数的图象与x 轴交于点C ,求△BOC 的面积. 解:(1)∵一次函数的图象与双曲线y =-x4交于点A (-1,m ),∴m =4 . ∴图象经过点A (-1,4)、B (0,2)的一次函数解析式为y =-2x +2; (2)∵一次函数y =-2x +2的图象与x 轴的交点是C (1,0),且B (0,2).∴△BOC 的面积为1 .42、甲、乙两人分别从相距20千米的A 、B 两地同时出发,以相同的速度相向而行.相遇后,两人继续前进.乙的速度不变,而甲每小时比原来多走1千米.结果甲到达B 地以后,乙还需30分钟才能到达A 地.求乙的速度.解:设乙的速度为x 千米/小时,依题意得x 10-110 x =6030 .整理,得x 2+x -20=0 ,解得x 1=-5 ,x 2=4 .经检验知,以上两解都是原方程的解,但x 1=-5 ,不合题意,舍去.所以取x =4 .答:乙的速度为4千米/小时.43、如图一是某地—次私人汽车牌照竞买时, 120位竞标者的竞标价的频率分布直方图(每组 可含最低值,不含最高值).(1)图一中各个小长方形的面积的和等于 ; (2)竞标价在[1.0,1.1 的频率 ; (3)如果竞标价是1.2万元及1.2万元以 上者可以中标购买私人汽车牌照,那么共有 人中标. 解:(1)1;(2)0.2;(3)48 .44、已知二次函数y =x 2+bx +c 的图象经过A (-2,-3)、B (2,5)两点, (1)求二次函数的解析式;(2)若(1)中的二次函数图象过点分别与x 、y 轴交于点M 、N 、P ,求△PMN 的面积. 解:(1)y =x 2+2x -3; (2)可以求得:M (1,0)、N (-3,0)、P (0,-3), ∴S △PMN =6 .0.9 1.1 1.3 1.5(图一))。