高一年数学上学期期末考试卷

合集下载

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

2021~2022学年度第一学期期末学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。

2.答卷前,务必将姓名和准考证号填涂在答题纸上。

3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.sin 210=A.12−B.12C.2−2.函数ln(4)y x =−的定义域为A.(0,4)B.(0,4]C.[0,4)D.[0,4]3.下列选项中不能用二分法求图中函数零点近似值的是DB4.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是 A.2xy = B.sin y x = C.3y x=D.ln y x =5.已知 1.13a =,0.23b =,2log 0.3c =,则,,a b c 的大小关系为 A.b a c << B.b c a <<C.c a b<< D.c b a <<6.已知函数(1),1()1(),1ex f x x f x x +<⎧⎪=⎨≥⎪⎩ ,则(1ln 5)f −+的值为A.15B.5C.e 5D.5e7.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f = A.3mB.4mC.5mD.6m8.设,a b ∈R ,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为 A.1−B.2−C.12−D.0二、选择题:本题共4小题,每小题5分,共20分。

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

高淳中学2022-2023学年高一上学期期末考试数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则( ){}{}1,2,3,2A B x N x ==∈≤∣A B ⋃=A. B. C. D.{}2,3{}0,1,2,3{}1,2{}1,2,32.命题“”的否定是( )0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭A. B.0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭0,,sin 2x x x π⎛⎫∀∈> ⎪⎝⎭C. D.0,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭3.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()3π6πB. C. D.13π23π43π4.,不等式恒成立,则的取值范围为()x R ∀∈2410ax x +-<a A.B.或4a <-4a <-0a =C.D.4a ≤-40a -<<5.已知,则( )0.50.5e ,ln5,log e a b c -===A.B.c a b <<c b a <<C.D.b a c <<a b c <<6.已知函数是定义在上的奇函数,,且,则()f x R ()()4f x f x =+()11f -=-()()()20202021f f +=A. B.0 C.1D.21-7.已知函数的零点分别为,则的大小顺序为(()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+,,a b c ,,a b c )A.B.c b a <<b a c <<C.D.a c b <<c a b <<8.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为( ()()sin f x A x ωϕ=+)A.B.122y f x ⎛⎫=+ ⎪⎝⎭()21y f x =+C.D.122x y f ⎛⎫=+ ⎪⎝⎭12x y f ⎛⎫=+ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,既是偶函数又在区间上是增函数的是( )()0,∞+A. B.21y x =+3y x =C. D.23y x =3xy -=10.若,则下列不等式正确的是( )110a b <<A. B.a b <a b<C. D.a b ab +<2b a a b +>11.若函数,则下列选项正确的是( )()tan 23f x x π⎛⎫=+ ⎪⎝⎭A.最小正周期是πB.图象关于点对称,03π⎛⎫ ⎪⎝⎭C.在区间上单调递增7,1212ππ⎛⎫ ⎪⎝⎭D.图象关于直线对称12x π=12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令x ∈R []x x []y x =,以下结论正确的是( )()[]22f x x x =-A.()1.10.8f -=B.为偶函数()f x C.最小正周期为()f x 12D.的值域为()f x []0,1第II 卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)5log 25+=14.请写出一个同时满足下列两个条件的函数:__________.(1),若则12,x x R ∀∈12x x >()()12f x f x >(2)()()()121212,,x x R f x x f x f x ∀∈+=15.在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆相交于,两xOy Ox ,αβP Q 点,的纵坐标分别为.则的终边与单位圆交点的纵坐标为__________.,P Q 34,55αβ+16.已知函数,使方程有4个不同的解:,则()2log ,04,2cos ,482x x f x t R x x π⎧<<⎪=∃∈⎨≤≤⎪⎩()f x t =1234,,,x x x x 的取值范围是__________;的取值范围是__________.1234x x x x 1234x x x x +++四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题10.0分)求值:(1)22log 33582lg2lg22+--(2)251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭18.(本小题12.0分)已知全集,集合,集合.U R ={}2120A x x x =--≤∣{}11B x m x m =-≤≤+∣(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 19.已知函数的部分图象如图.()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移个单位,()f x 6π得到函数的图象,当时,求值域.()g x ,6x ππ⎡⎤∈-⎢⎥⎣⎦()g x 20.(本小题12.0分)已知函数()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭(1)化简;()f α(2)若,求的值.()1,052f παα=-<<sin cos ,sin cos αααα⋅-21.(本小题12.0分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要500m 500m ⨯建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.S(1)分别用表示和的函数关系式,并给出定义域;x y S (2)怎样设计能使取得最大值,并求出最大值.S 22.(本小题12.0分)已知函数.()1ln1x f x x -=+(1)求证:是奇函数;()f x (2)若对于任意都有成立,求的取值范围;[]3,5x ∈()3f x t >-(3)若存在,且,使得函数在区间上的值域为(),1,αβ∞∈+αβ<()f x [],αβ,求实数的取值范围.ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m 高淳中学2022-2023学年高一上学期期末考试数学试题参考答案)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】【分析】先求出集合,再求.B A B ⋃【详解】因为,所以.{}{}1,2,3,0,1,2A B =={}0,1,2,3A B ⋃=故选:B2.【答案】D【解析】【分析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭按照改量词否结论的法则,所以否定为:,0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭故选:D3.【答案】B【解析】【分析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.326ππ=12233ππ⋅⋅=故选:B4.【答案】A【解析】【分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】,不等式恒成立,x R ∀∈2410ax x +-<当时,显然不恒成立,0a =所以,解得:.0Δ1640a a <⎧⎨=+<⎩4a <-故选:A.5.【答案】A【解析】【分析】借助指对函数的单调性,利用中间量0或1比较即可.【详解】因为,0.500.50.50e e 1,ln5lne <1,log e log 10a b c -<===>==<=所以,c a b <<故选:A.6.【答案】C【解析】【分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值.()()4f x f x =+【详解】是奇函数,,()f x ()()()00,111f f f ∴==--=又是周期函数,周期为4.()()()4,f x f x f x =+∴.()()()()2020202101011f f f f ∴+=+=+=故选:C.7.【答案】C【解析】【分析】利用数形结合,画出函数的图象,判断函数的零点的大小即可.【详解】函数的零点转化为与()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+e ,ln ,sin x y y x y x ===的图象的交点的横坐标,因为零点分别为,y x =-,,a b c 在坐标系中画出与的图象如图:e ,ln ,sin x y y x y x ===y x =-可知,0,0,0a b c <>=满足.a cb <<故选:C.8.【答案】B【解析】【分析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把()1y f x =+的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,()1y f x =-12所以如图的图象所对应的解析式为.()21y f x =+故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.【答案】AC【解析】【分析】利用函数的奇偶性和单调性的概念进行判断.【详解】对于A :22()11y x x =-+=+函数是偶函数,在上是增函数,故A 正确;∴21y x =+()0,∞+对于:B 33()y x x =-=- 函数是奇函数,故错误;∴3y x =B 对于:C 2233()y x x=-= 是偶函数,在上是增函数,故C 正确;23y x ∴=()0,∞+对于:D 33x x y ---== 是偶函数,在上是减函数,故错误.3xy -∴=()0,∞+D 故选:AC10.【答案】BCD【解析】【分析】利用不等式的基本性质求解即可【详解】由于,则,故错误;110a b <<0b a <<a b <正确;正确;,正确0a b ab +<<a b <2222,2a b a b ab b a b a ab ab a b ++=>=∴+>故选:BC D.11.【答案】BC【解析】【分析】利用正切函数的周期,对称中心,函数的单调性,判断选项即可.【详解】函数,函数的最小正周期为:错误;tan 23y x π⎛⎫=+ ⎪⎝⎭,A 2π令,2,3246k k x x k Z ππππ+=⇒=-∈当时,,所以图象关于点对称,正确;2k =3x π=,03π⎛⎫ ⎪⎝⎭B 因为,解得,当时,,所2,232k x k k Z πππππ-<+<+∈5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭1k =7,1212x ππ⎛⎫∈ ⎪⎝⎭以在区间上单调递增,C 正确;又正切函数不具有对称轴,所以D 错误7,1212ππ⎛⎫ ⎪⎝⎭故选:B C.12.【答案】AC【解析】【分析】根据高斯函数的定义逐项检验即可,对于,直接求解即可,对于,取,检验可得反A B 1.1x =-例,对于,直接求解即可;对于,要求的值域,只需求时的C ()12f x f x ⎛⎫+= ⎪⎝⎭D ()f x 102x ≤<()f x 值域即可.【详解】对于A ,,故A 正确.()[]1.1 2.2 2.2 2.230.8f -=---=-+=对于,取,则,而,B 1.1x =-()1.10.8f -=()[]1.1 2.2 2.2 2.220.2f =-=-=故,所以函数不偶函数,故B 错误.()()1.1 1.1f f -≠-()f x 对于,则,故C 正确.C [][]()1212121212f x x x x x f x ⎛⎫+=+-+=+--= ⎪⎝⎭对于,由的判断可知,为周期函数,且周期为,D C ()f x 12要求的值域,只需求时的值域即可.()f x 102x ≤<()f x 当时,则,0x =()[]0000f =-=当时,,102x <<()[]()222020,1f x x x x x =-=-=∈故当时,则有,故函数的值域为,故错误.102x ≤<()01f x ≤<()f x [)0,1D 故选:A C.第II卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.【答案】6【解析】【分析】利用根式性质与对数运算进行化简.,5log 25426+=+=故答案为:614.【解析】【分析】由条件(1),若则.可知函数为上增函数;12,x x R ∀∈12x x >()()12f x f x >()f x R 由条件(2).可知函数可能为指数型函数.()()()121212,,x x R f x x f x f x ∀∈+=()f x 【详解】令,()2x f x =则为上增函数,满足条件(1).()2x f x =R 又()()()12121212122,222x x x x x x f x x f x f x +++==⨯=故()()()1212f x x f x f x +=即成立.()()()121212,,x x R f x x f x f x ∀∈+=故答案为:等均满足题意()()()(2,3,4x x x f x f x f x ===)15.【答案】1【解析】【分析】根据任意角三角函数的定义可得,再由展开3443sin ,cos ,sin ,cos 5555ααββ====()sin αβ+求解即可.【详解】以轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,的纵坐标分别Ox ,αβ,P Q ,P Q 为34,55所以是锐角,可得,3sin ,5αα=4cos 5α=因为锐角的终边与单位圆相交于点,且纵坐标为,βQ 45所以是锐角,可得,4sin ,5ββ=3cos 5β=所以,()3344sin sin cos cos sin 15555αβαβαβ+=+=⨯+⨯=所以的终边与单位圆交点的纵坐标为1.αβ+故答案为:1.16.【答案】①.②.()32,354⎝⎭【解析】【分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把()f x 12,x x 34,x x 和转化成只有一个自变量的代数式,再去求取值范围即可.1234x x x x +++1234x x x x 【详解】做出函数的图像如下:()2log ,042cos ,482x x f x x x π⎧<<⎪=⎨≤≤⎪⎩在单调递减:最小值在单调递增:最小值0,最大值2;()f x (]0,1()0;f x []1,4在上是部分余弦型曲线:最小值,最大值2.()f x []4,82-若方程有4个不同的解:,则()f x t =1234,,,x x x x 02t <<不妨设四个解依次增大,则12341145,784x x x x <<<<<<<<是方程的解,则,即;12,x x 2log (04)x t x =<<2122log log x x =-121x x =是方程的解,则由余弦型函数的对称性可知.34,x x ()2cos 482x t x π=≤≤3412x x +=故,()()212343433312636x x x x x x x x x ==-=--+由得即345x <<()233263635x <--+<12343235x x x x <<1234121111212x x x x x x x x +++=++=++当时,单调递减,1114x <<()112m x x x =++则1116514124x x <++<故答案为:①;②()32,354⎝⎭四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(1)解:;()()22log 33582lg 2lg243lg5lg22lg27lg5lg27162+--=+---=-+=-=(2)解:251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭sin 4cos 3tan 3634ππππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11sin cos tan 1063422πππ=+-=+-=18.解:(1)集合,{}34A x x =-≤≤∣当时,或,4m ={}35,{3U B x x B x x =≤≤=<∣∣ 5}x >所以或;(){4U A B x x ⋃=≤∣ 5}x >(2)由题可知或,{3U A x x =<-∣ 4}x >由可得或,U B A ⊆ 13m +<-14m ->解得或,4m <-5m >故的取值范围为或.m {4mm <-∣5}m >19.(1)由图象可知,的最大值为2,最小值为,又,故,()f x 2-0A >2A =周期,则,452,,03123T πππππωω⎡⎤⎛⎫=--=∴=> ⎪⎢⎥⎝⎭⎣⎦2ω=从而,代入点,得,()()2sin 2f x x ϕ=+5,212π⎛⎫ ⎪⎝⎭5sin 16πϕ⎛⎫+= ⎪⎝⎭则,即,52,Z 62k k ππϕπ+=+∈2,Z 3k k πϕπ=-+∈又,则.2πϕ<3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭(2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,()f x 故可得;2sin 3y x π⎛⎫=- ⎪⎝⎭再将所得图象向左平移个单位,得到函数的图象6π()g x 故可得;()2sin 6g x x π⎛⎫=- ⎪⎝⎭,5,,,sin 66366x x x ππππππ⎡⎤⎡⎤⎡⎤⎛⎫∈-∴-∈--∈⎢⎥ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦ 的值域为.()2sin 2,6x g x π⎛⎫⎡⎤-∈∴ ⎪⎣⎦⎝⎭2⎡⎤⎣⎦20.解(1)()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭()sin cos sin cos cos cos tan ααααααα-=+⋅-,sin cos αα=+故;()sin cos f ααα=+(2)由,()1sin cos 5f ααα=+=平方可得,221sin 2sin cos cos 25αααα++=即.242sin cos 25αα⋅=-所以,12sin cos 25αα⋅=-因为,249(sin cos )12sin cos 25αααα-=-=又,所以,2πα-<<sin 0,cos 0αα<>所以,sin cos 0αα-<所以.7sin cos 5αα-=-21.解:(1)由已知,其定义域是.30003000,xy y x =∴=()6,500,()()()46210S x a x a x a=-+-=-,150026,332y a y a x +=∴=-=- ,其定义域是.()150015000210330306S x x x x ⎛⎫⎛⎫∴=-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭()6,500(2),15000303063030303023002430S x x ⎛⎫=-+≤-=-⨯= ⎪⎝⎭当且仅当,即时,上述不等式等号成立,150006x x =()506,500x =∈此时,.max 50,60,2430x y S ===答:设计时,运动场地面积最大,最大值为2430平方米.50m,60m x y ==22.(1)证明:由函数,可得,()1lg 1x f x x -⎛⎫= ⎪+⎝⎭101x x ->+即,解得,故函数的定义域为,关于原点对称.101x x -<+11x -<<()1,1-再根据,可得是奇函数.()()11lg lg 11x x f x f x x x +-⎛⎫⎛⎫-==-=- ⎪ ⎪-+⎝⎭⎝⎭()f x (2)由(1)知,其定义域为.()1ln 1x f x x -=+()(),11,∞∞--⋃+.因为在上为增函数,()2ln 11f x x ⎛⎫=- ⎪+⎝⎭()211u x x =-+()1,∞+在上为增函数,当,时,()f x ()1,∞+[]3,5x ∈()ln2ln2ln3f x -≤≤-对任意都有成立,,即,[]3,5x ∈()3f x t >-ln23t ->-3ln2t <-的取值范围是.t (),3ln2∞--(3)由(2)知在上为增函数,()f x ()1,∞+又因为函数在上的值域为.()f x [],αβ11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以,且,0m >1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩所以1,121,12m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩则是方程的两实根,,αβ112x m mx x -=-+问题等价于放程在上有两个不等实根,211022m m mx x ⎛⎫--+-= ⎪⎝⎭()1,∞+令,对称轴()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭1124x m =-则,即解得.()2011124Δ14102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩0,20,522,9m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或209m <<。

第1套:浙江宁波市镇海中学2023-2024学年高三上学期期末考试数学试卷与答案

第1套:浙江宁波市镇海中学2023-2024学年高三上学期期末考试数学试卷与答案

镇海中学2023学年第一学期期末考试高三数学试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卷上.一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2{560},{13},A x x x B x x =-+≤=-≤<则A B = ()A.{13}x x -≤<B.{13}x x -≤≤C.{23}x x ≤<D.{23}x x ≤≤2.函数3()29x f x x =+-的零点所在区间为()A.()0,1 B.()1,2 C.(2,3)D.()3,45.已知直线a ,m ,n ,l ,且m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若l 满足l m ⊥,l n ⊥,则下列说法中正确的是()A.//l αB.l β⊥ C.若a αβ⋂=,则//a lD.αβ⊥e ..C .D .8.设实数,x y 满足3,32x y >>,不等式3322(23)(3)8123k x y x y x y --≤+--恒成立,则实数k 的最大值为()A.12B.24C. D.二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得部分分,有选错的得0分。

9.已知复数12,z z ,则下列结论正确的有()A.2211z z = B.1212z z z z ⋅=⋅ C.1212z z z z =⋅ D.1212z z z z +=+10.已知()f x ,()g x 的定义域为R ,且()()1f x g x a +-=(0a ≠),()()11g x g x +=-,若()2f x +为奇函数,则()A.()g x 关于x =1对称B.()g x 为奇函数C.()02f = D.()f x 为偶函数11.已知O 为坐标原点,曲线()()22222:3x y ay x y Γ+=-,0a >,()00,P x y 为曲线Γ上动点,则()A.曲线Γ关于y 轴对称B.曲线Γ的图象具有3条对称轴C.09,16y a a ⎡⎤∈-⎢⎥⎣⎦D.OP 三、填空题:本题共3小题,每小题5分,共15分。

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。

2022-2023学年安徽省皖南十校高一上学期期末考试数学试卷(解析版)

2022-2023学年安徽省皖南十校高一上学期期末考试数学试卷(解析版)

2022-2023学年安徽省皖南十校高一上学期期末考试数学试卷考生注意:1.本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟. 2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚. 3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂里:非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章一第五章第3节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合5{1,3,5,7},02x A B x x -⎧⎫==⎨⎬-⎩⎭∣,则A B =( ) A. {1,3} B. {3,5}C. {5,7}D. {1,7}【答案】B 【解析】 【详解】由502x x -≤-,得(2)(5)020x x x --≤⎧⎨-≠⎩,解得25x <≤, 所以{}25B x x =<≤, 因为{}1,3,5,7A =所以{3,5}AB =.故选:B .2. 函数()f x =的定义域为( )A. [0,1)B. (-∞,1)C. (1,+∞)D. [0,+∞)【答案】A 【解析】【详解】已知()f x则()1210log 10x x ->⎧⎪⎨-≥⎪⎩,解得01x ≤<,即函数()f x 的定义域为[)0,1.故选:A3. 已知角α的终边过点P (4,-3),则sinα+cosα的值是( ) A.15B. 15-C.75D. 75-【答案】A 【解析】【详解】∵知角α的终边经过点P (4,-3), ∴sin α35-==,cos α45=, ∴sin α+cos α15=. 故选:A .4. 已知R α∈则“1cos 2α=-”是“22,Z 3k k παπ=+∈”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【详解】因为1cos 2α=-,解得22,3k k παπ=±∈Z , ∴“1cos 2α=-”是“22,3k k παπ=+∈Z ”的必要不充分条件. 故选:B .5. 已知函数()2222()1m m f x m m x --=--是幂函数,且为偶函数,则实数m =( )A. 2或1-B.1-C. 4D. 2【答案】D 【解析】【详解】由幂函数的定义知211m m --=,解得1m =-或2m =.又因为()f x 为偶函数,所以指数222m m --为偶数,故只有2m =满足.故选:D . 6. 设12a =,2log 3b =,51log 4c =,则下列选项正确的是( ) A. a b c << B. a c b <<C. c a b <<D. b a c <<【答案】C 【解析】【详解】根据对数函数2log yx =和5log y x =在()0,∞+都是单调递增函数可知,22log 3log 21>=,即1b >;551log log 104=<,即0c <; 可得c a b <<. 故选:C7. 中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A. 2032 B. 2035 C. 2038 D. 2040【答案】D 【解析】【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg 32lg 5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg32(1lg 2)3lg32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.8. 已知函数ln ,0()21,0xx x f x e x ⎧>=⎨-≤⎩,若关于x 的方程()f x a =有且仅有一个实数根,则实数a 的取值范围为( ) A.(]0,1B. [1,)+∞C. (,1)-∞D.()1,0-【答案】D 【解析】【详解】作出函数ln ,0()21,0xx x f x e x ⎧>=⎨-≤⎩的图象如下,由图可知,当10a -<<时,直线y a =与()f x 的图象仅有一个交点, 即关于x 的方程()f x a =有且仅有一个实数根,所以10a -<<. 故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 如果2θ是第四象限角,那么θ可能是( ) A. 第一象限角 B. 第二象限角C. 第三象限角D. 第四象限角【解析】【详解】解:由已知得2222k k ππθπ-<<,Z k ∈,所以4k k ππθπ-<<,Z k ∈,当k 为偶数时,θ在第四象限,当k 为奇数时,θ在第二象限,即θ在第二或第四象限.故选:BD .10. 命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( ) A. 74-B. 32-C. 2D.52【答案】B 【解析】【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 11. 若函数()x f x a b =-(0a >且1a ≠)的图像经过第一、二、三象限,则( )A. 01b a <<B. 01a b <<C. 1b a >D. 1a b >【答案】BC 【解析】【详解】解:因为函数()x f x a b =-(0a >且1a ≠)的图像经过第一、二、三象限,所以1a >,()()010,101f b b =-∈⇒<<,所以x ya =是增函数,x yb =是减函数,则01b a a >=,101a b b <<<, 故选:BC. 12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4xf x x+=- B. ()f x =C. 25()22f x x x =-+D. ()f x x =【解析】【详解】对于A ,3(4)77()1444x x f x x x x +--+===-+---,由于704x≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立. 对于C ,令2222(1)1u x x x =-+=-+,则()5f x u =,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 半径和圆心角都是π3的扇形的面积为____________. 【答案】3π54【解析】【详解】解:扇形的面积23211πππ223354S r α⎛⎫==⨯⨯= ⎪⎝⎭,故答案:3π5414. 已知函数()3log 26x f x x =+-的零点为,则()(),1N a n n n ∈+∈,则n =______.【答案】2 【解析】【详解】∵函数()3log 26x f x x =+-,函数在()0,∞+上单调递增,又()()233332log 226log 220,3log 32630f f =+-=-<=+-=>,∴()2,3a ∈,即2n =.故答案为:2. 15. 若111(0,0)a b a b+=>>,则2a b +的最小值为___________.【答案】3+ 【解析】 【详解】由111(0,0)a b a b+=>>,得11222(2)21323a b a a b a b a b b a b ⎛⎫+=++=++++=+ ⎪⎝⎭当且仅当2a b b a =,即22a +=,1b =时,2a b +取得最小值3+故答案:3+.16. 已知定义在R 上的偶函数()f x 满足()32()0x f x x x =+≥,若()()1f m f m -≥,则实数m 的取值范围是________________________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】 【详解】因为3,2x y x y ==在[0,)+∞上递增,所以()f x 在[0,)+∞上递增.因为()f x 为偶函数,所以()()1f m f m -≥等价于()()|1|f m f m -≥,即1mm -≥,解得12m ≤, 故答案为: 1,2⎛⎤-∞ ⎥⎝⎦.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}1128x A x +=≤≤,()(){}10B x x a x a =---<,a R ∈.(1)若1B ∈,求实数a 取值范围;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围. 【答案】(1)01a <<;(2)[1,1]-. 【解析】【详解】(1)若1B ∈,则()10aa --<,得01a <<;(2)由1128x +≤≤,得013x ≤+≤,即12x -≤≤,所以{}12A x x =-≤≤,()(){}{}101B x x a x a x a x a =---<=<<+, 因为“x B ∈”是“x A ∈”的充分不必要条件,所以B 是A 的真子集,即112a a ≥-⎧⎨+≤⎩,解得11a -≤≤.即实数a 的取值范围是[]1,1-.18.已知cos α=,α是第三象限角,求: (1)tan α的值;(2)3sin cos()tan()2cos(2)sin()tan()παπααππαπαα⎛⎫-+-- ⎪⎝⎭---的值. 【答案】(1)2 (2)12 【解析】【详解】(1)由题意,α是第三象限角,则sin 0α<,又cos α=,sin α∴== sin tan 2cos ααα∴== (2)由诱导公式 原式cos (cos )(tan )cos sin (tan )αααααα-⋅-⋅-=⋅⋅-cos sin αα=12=19. 已知函数()f x 是定义在R 上的偶函数,且当0x ≤时,2()f x x mx =+,函数()f x 在y轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)讨论关于x 的方程()0f x a -=的根的个数.【答案】(1)222,(0),()2,(0),x x x f x x x x ⎧+≤=⎨->⎩;(2)具体见解析.【解析】【详解】解:(1)由图可知2(2)(2)(2)0f m -=-+⨯-=,解得2m =.设0x >,则0x -<,∵函数()f x 是定义在R 上的偶函数, ∴22()()2()2()f x x x x x f x -=-+-=-=, ∴2()2(0)f x x x x =->.∴222,(0),()2,(0),x x x f x x x x ⎧+≤=⎨->⎩.(2)作出函数()f x 的图象如图所示:min ()(1)(1)1f x f f =-==-.由图可知,当1a <-时,关于x 的方程()0f x a -=的根的个数为0; 当0a >或1a =-时,关于x 的方程()0f x a -=的根的个数为2; 当10a -<<时,关于x 的方程()0f x a -=的根的个数为4; 当0a =时,关于x 的方程()0f x a -=的根的个数为3. 20. 已知函数()()()log 1log 1a a f x bx x =+--(0a >且1,0a b ≠>)为奇函数.(1)求()f x 的定义域;(2)求关于的不等式()0f x >的解集.【答案】(1)()1,1-;(2)当1a >时,解集为()0,1;当01a <<时,解集为()1,0-; 【解析】【详解】(1)因为函数()f x 为奇函数,所以()()f x f x -=-,即()()()()log 1log 1log 1log 1aa a a bx x bx x --+=-++-,所以22211b x x -=-,得21b =,又因为0b >,所以1b = 根据解析式可得,1010x x +>⎧⎨->⎩,所以11x -<<.所以()f x 的定义域为()1,1-,(2)解不等式()()()log 1log 10a a f x x x =+-->,即解1log 01axx+>- 当1a >时,1log 01ax x +>-等价于111x x +>-,即201xx >-,解得01x <<; 当01a <<时,1log 01ax x +>-等价于111x x +<-,即201xx<-,解得0x <或1x >, 又因为11x -<<,所以解集为10x -<<. 综上,当1a >时,解集为()0,1;当01a <<时,解集为()1,0-;21. 某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为元时,销售量可达到()100.1x -万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价供货价格.(1)求每套丛书利润y 与售价的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.【答案】(1)()100200100100y x x x=--<<-,总利润为110(万元);(2)当90元时,每套利润最大为60元.【解析】【详解】(1)∵0100.10x x >⎧⎨->⎩∴0100x <<()1010020200100100.1100y x x x x x ⎛⎫=-+=--<< ⎪--⎝⎭当80x =时,10080205510080y =--=-(元) 此时销量为100.1802-⨯=(万件)总利润为255110⨯=(万元)(2)10020100y x x=--- ∵0100x <<∴1000x ->∴()100100808060100y x x ⎡⎤=-+-+≤-=⎢⎥-⎣⎦当且仅当100100100x x=--,即x =90元时,每套利润最大为60元.. 22. 已知e 是自然对数的底数,()e e1x x f x =+. (1)判断函数()f x 在[)0+∞,上的单调性并证明你的判断是正确的; (2)记()(){}ln 3()e 1ln 32x g x a f x a x -⎡⎤=--+--⎣⎦,若()0g x ≤对任意的[)0,x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)函数()f x 在[)0+∞,上单调递增,证明见解析 (2)[1,3]【解析】【小问1详解】解:函数()f x 在[)0+∞,上单调递增,证明如下:任取12,[0,)x x ∈+∞,且12x x <, 则()()12121211e e e e x x x x f x f x ⎛⎫⎛⎫-=+-+ ⎪ ⎪⎝⎭⎝⎭()()12121212111e e e e 1e e e e x x x x x x x x ⎛⎫⎛⎫=-+-=-- ⎪ ⎪⎝⎭⎝⎭ 因为12,[0,)x x ∈+∞,且12x x <,所以21e e 1x x >≥, 所以12e e 0x x -<,12e e 1x x >,12110e e x x ->, 故()()120f x f x -<,即()()12f x f x <,所以()f x 在[0,)+∞上单调递增.【小问2详解】()ln (3)e 1ln32x g x a a x ⎡⎤=-+--⎣⎦,问题即为ln (3)e 1ln32xa a x ⎡⎤-+≤+⎣⎦恒成立,显然0a >, 首先(3)e 10x a -+>对任意[0,)x ∈+∞成立,即13,e 0,x a a ⎧<+⎪⎨⎪>⎩ 因为[0,)x ∈+∞,则1334e x <+≤,所以03a <≤. 其次,ln (3)e 1ln32x a a x ⎡⎤-+≤+⎣⎦,即为2(3)e 13e x x a a -+≤,即23e (3)e 10x x a a +--≥成立,亦即()()3e 1e 10x x a +-≥成立, 因为3e 10x +>,所以e 10x a -≥对于任意[0,)x ∈+∞成立, 即max1e x a ⎛⎫≥ ⎪⎝⎭,所以1a ≥. 综上,实数的取值范围为[1,3].。

高一上学期期末数学考试卷及答案

高一上学期期末数学考试卷及答案

2020~2021学年度上学期高一年级期末考试卷数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,请认真阅读答题卡上的注意事项,将答案写在答题卡上。

写在本试卷上无效。

一、单选题 本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1}, 则(C U A)∩B= ( )A.{-1}B.{0,1}C{-1,2,3} D.{-1,0,1,3}2.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知函数,则( )A.B.C.6D.74.已知f(x)=(x-a)(x-b)+2(a<b),且α,β(α<β)是方程f(x)=0的两根,则α,β,a,b的大小关系是( )A.a<α<β<b B.a<α<b<βC.α<a<b<βD.α<a<β<b5.是定义在上的偶函数,在上是增函数,且,则使的的范围是( )A.B.C. D.6.已知,,且,则( )A.B.C.D.7.函数的定义域是( )A.B.C.D.8.函数的零点个数有( )A.0个B.1个C.2个D.3个二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列命题是“,”的表述方法的是()A.有一个,使得成立B.对有些,使得成立C.任选一个,都有成立D.至少有一个,使得成立10.下列命题中是真命题的有( )A.幂函数的图象都经过点和B.幂函数的图象不可能过第四象限C.当时,幂函数是增函数D.当时,幂函数在第一象限内函数值随值的增大而减小11.如果函数在上是增函数,对于任意的,则下列结论中正确的是( )A.B.C.D.12.已知函数有两个零点,,以下结论正确的是( )A.B.若,则C.D.函数有四个零点三、填空题 (每题5分,满分20分,将答案填在答题纸上)13.已知,则的解析式为___________.14.用二分法研究函数f(x)=x3+3x-1的零点时,第一次计算得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1=________.15.已知函数,若,则____.16.已知函数 (a>0,且a≠1),若在区间[1,2]上恒成立,则实数a的取值范围是________.四 解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1);(2).18.(12分)已知函数,试画出的图象,并根据图象解决下列两个问题.(1)写出函数的单调区间;(2)求函数在区间上的最大值.19.(12分)已知函数f(x)=,g(x)=(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.20.(12分)已知函数(1)判断函数在上的单调性,并给予证明;(2)求函数在,的最大值和最小值.21.(12分)已知函数(1)若在恒成立,求的取值范围;(2)设函数,解不等式.22.(12分)设函数是定义域为R的奇函数.(1)求的值;(2)若,试判断的单调性(不需证明),并求使不等式恒成立的t的取值范围;(3),求在上的最小值.数 学 试 卷 参考答案1 A 2.B 3.A 4.A 5.B 6.C 7.A 8.C9.ABD 10.BD 11.AB 12.ABC13. 14.0.25 15.1或-2 16.17.(1)原式;(2)原式.18. 的图象如图所示.(1) 在和上是增函数,在上是减函数,∴单调递增区间为,;单调递减区间为;(2)∵,,∴在区间上的最大值为.19. 解:(1)φ(x)=f(x)+g(x)的定义域为:,解得:,所以定义域为.(2) f(x)≤g(x),即为,定义域为.当时,,解得:,所以x的取值范围为.当时,,解得:,所以x的取值范围为.综上可得:当时,x的取值范围为.当时,x的取值范围为.20(1),函数在上是增函数,证明:任取,,且,则,,,,,即,在上是增函数;(2)在上是增函数,在,上单调递增,它的最大值是,最小值是.21.(1)在恒成立,即在恒成立, 分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是22.(1) ∵是定义域为R的奇函数,∴ f(0)=0,∴ 1-(k-1)=0,∴ k=2, (2)单减,单增,故f(x)在R上单减 ,故不等式化为∴,解得令∵在上为递增的 ∴∴设∴.即在上的最小值为.。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

高一上学期期末考试数学试题(原卷版)

高一上学期期末考试数学试题(原卷版)
11.若将函数 的图象先向右平移 个单位长度再将所得的图象上所有点的横坐标缩短为原来的 (纵坐标不变)得到函数 的图象则()
A. 的最小正周期为
B. 图象的一个对称中心为
C. 的值域为
D. 图象的一条对称轴方程为
12.定义:实数 满足 则称 比 远离 .已知函数 的定义域为 任取 等于 和 中远离0的那个值则()
高一数学试卷
试卷120分钟满分:150分
一选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.下列函数中周期为 的是()
A. B.
C. D.
2.函数 的单调递增区间为()
A. B.
C. D.
3.函数 的部分图象如图所示则 可能是()
A B.
C. D.
4.已知角 的终边在射线 上则 的值为()
17.已知复数 .
(1)若 是实数求 的值;
(2)若复数 在复平面内对应的点在第三象限且 求实数 的取值范围.
18 已知 .
(1)若 三点共线求 满足的等量关系;
(2)在(1)条件下求 的最小值.
19.问题:在 中内角A 所对的边分别为a .
(1)求A;
(2)若 的面积为 ________求 .
请在① ;② ;③ 这三个条件中选择一个补充在上面的横线上并完成解答.
20.某网红景区拟开辟一个平面示意图如图 五边形 观光步行道 为景点电瓶车专用道 .
(1)求 的长;
(2)请设计一个方案使得折线步行道 最长(即 最大).
21.如图所示在 中 与 相交于点 . 的延长线与边 交于点 .
(1)试用 表示 ;
(2)设 求 的值.
22.已知 的内角 所对的边分别为 向量 .

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

高一上学期期末考试数学试卷

高一上学期期末考试数学试卷

高一上学期数学期 末 试 卷一、选择题(5′×12=60′)1.设集合},2,1,0,2{}2,0,2{},1,0{}1,0,1{-=-⋃=-⋂A A 则满足上述条件的集合A 的个数为 ( ) A .1 B .2 C .3 D .4 2.若)21(),0(1)]([,21)(22g x x x x f g x x f 则≠-=-=的值为( )A .1B .3C .15D .303.奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的表达式为 f (x )= ( ) A .x x +- B .x x -- C .x x -+- D .x x --- 4.设f(x)是定义在R 上的偶函数,它在)(log ,0)31(,),0[81>>+∞x f f 则不等式且上为增函数的解集为 ( )A .)21,0(B .(2,+∞)C .),2()1,21(+∞⋃D .),2()21,0(+∞⋃5.已知a x ax y a则的减函数上为在,]1,0[)2(log -=的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .),2[+∞6.在等差数列{a n }中,公差4231731,,,,0a aa aa a a d ++≠则成等比数列且的值为( ) A .43B .32C .65D .1 7.等差数列{a n }中,a 10〈0, a 11〉0, a 11〉|a 10|, S n 为前n项和,则有( )B .S 1,S 2,…,S 19都小于0,S 20,S 21,…都大于0C .S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0D .S 1,S 2,…,S 20都大于0,S 21,S 22,…都小于08.某商品零售价2000年比1999年上涨25%,欲控制2001年比1999年上涨10%,则2001年比2000年应降价 ( )A .15%B .12%C .10%D .5%9.设)()()(,0,0,0,,,,)(3211332213213x f x f x f x x x x x x R xx x x x x f ++>+>+>+∈--=则且的值( ) A .一定大于零 B .一定小于零 C .小于等于零D .正负均有可能10.一等比数列{a n }的首项a 1=2-5,前11项的几何平均数为25,现从这11项中抽去一项,下余的十项的几何平均数为24,则抽去的一定是( )A .第8页B .第9页C .第10页D .第11页11.从1998年到2001年期间,甲每年5月1日都到银行存入m 元的一年定期储蓄,若年利率为t 保持不变且计复利,到2002年5月1日,甲仅去取款,则可取回本息共( )A .元4)1(t m + B .元5)1(t m + C .元)]1()1[(4t t t m +-+ D .元)]1()1[(5t t tm +-+12.设函数f (x )是实数集上的奇函数,且满足),1(log )(,)1,0(),()1(21x x f x x f x f -=∈-=+时当则f (x )在(1,2)上是 ( )A .增函数且f (x )〈0B .增函数且f (x )〉0C .减函数且f (x )<0D .减函数且f (x )〉013.已知函数⎩⎨⎧<+≥=)4()2()4(2)(x x f x x f x,那么)3(log 21f 的值 为 .14.已知y =f (x )为偶函数,且在),0[+∞上是减函数,则f (1-x 2)的增函数区间为 。

2022-2023学年吉林省高一上学期期末考试数学试题(解析版)

2022-2023学年吉林省高一上学期期末考试数学试题(解析版)
9.下列说法不正确的是()
A.735°与15°是终边相同的角
B.若一扇形的圆心角为 ,半径为3cm,则该扇形面积为
C.设 是锐角,则角 为第一或第二象限角
D.函数 的图象可由函数 的图象向右平移 之后得到
【答案】BC
【解析】
【分析】A选项,利用角的定义得到 与 终边相同;B选项,将角度化为弧度,利用扇形面积公式求出答案;C选项,举出反例即可;D选项,利用左加右减求出函数的平移过程.
【详解】集合 , ,
则 .
故选:D.
2.若函数 的定义域为 ,则函数 的定义域为()
A. B. C. D.
【答案】A
【解析】
【分析】由函数 的定义域,可得 ,求出 的范围,即可得到函数 的定义域.
【详解】因为函数 的定义域为 ,
所以 ,解得 ,
所以函数 的定义域为 .
故选:A.
3.在同一坐标系中,函数 与函数 的图象可能为()
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图像与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图像交点的个数:将函数变形为两个函数的差,画两个函数的图像,看其交点的横坐标有几个不同的零点,则 的可能值为()
A.0B.1C. D.2
【答案】AD
【解析】
【分析】由 得 ,利用数形结合即可得到结论.
【详解】由 得 ,作出函数 , |的图像,如图所示.
当 ,满足条件,
当 时,此时 与 有三个交点,
故符合条件的 满足 或 .
故选:AD
【点睛】方法点睛:函数零点 求解与判断方法:

(完整版)大一第一学期期末高等数学(上)试题及答案

(完整版)大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222Λ16、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222Λ =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。

高一上学期期末考试数学试卷及答案

高一上学期期末考试数学试卷及答案

高一上学期期末考试数学试卷(总分:150分时间:120分钟)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1。

已知集合,则=()A.B.C.D.2.等于()A.B.C.D.3.如果幂函数的图像不过原点,则的取值范围是()A.B.或C.D.或4。

要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位5。

锐角满足,则的值是( )A.B.C.D.6.函数的最小值和最大值分别为()A。

-3,1 B. -2,2 C. -3, D. -2,7.若的内角满足,则角的取值范围是( )A.B.C.D.8.已知函数在区间上的最小值是,则的最小值为( )A.B.C.2 D.39.动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。

已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是()A. B。

C. D.和10。

设曲线的一条对称轴为,则曲线的一个对称点为( )A. B。

C。

D。

第II卷(非选择题,共100分)二、填空题(本大题共5小题,每题5分,共25分,把答案填在题中横线上)11.已知扇形半径为8,弧长为12, 则中心角为弧度, 扇形面积是12.13.已知函数,若,则14.化简:_________15.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形"函数.给出下列四个函数:①②,③,④其中“同形”函数有.(填序号)三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知,且,求的值.17.(本小题满分12分)已知函数。

(1)求的定义域;(2)若角在第一象限且,求的值.18.(本小题满分12分)已知二次函数:(1) 若函数的最小值是—60,求实数的值;(2) 若函数在区间上存在零点,求实数的取值范围.19.(本小题满分12分)已知定义在区间上的函数的图像关于直线对称,当时,的图像如图所示.(1)求在上的表达式;(2)求方程的解.20.(本小题满分13分)已知函数,。

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷附答案解析

2023-2024学年酒泉市高一数学上学期期末考试卷考生注意:1.本试卷满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:必修第一册第1章至第5章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各角中,与760︒角终边相同的角是()A.60︒B.360︒C.320-︒D.440-︒2.已知集合{}1A x x =<,{}2280B x x x =--≤,则A B ⋂=()A.[]1,4B.[2,1)-C.(2,4]D.(,4]-∞3.函数ln(4)y x =+-的定义域为()A.[2,4)B.(2,4)C.[2,4]D.[2,)+∞4.函数3()20f x x x =+-的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.已知0.12a =,2log 0.1b =,0.13c =,则a ,b ,c 的大小关系是()A.c a b>> B.a c b>> C.b a c>> D.b c a>>6.将函数()sin(2)(0π)f x x ϕϕ=+<<的图象向右平移π6个单位长度后得到函数()g x =πsin 212x ⎛⎫- ⎪⎝⎭的图象,则ϕ的值为()A.π6B.π4C.π3D.2π37.由于我国与以美国为首的西方国家在科技领域内的竞争日益激烈,美国加大了对我国一些高科技公司的打压.为突破西方的技术封锁和打压,我国的一些科技企业积极实施了独立自主、自力更生的策略,在一些领域取得了骄人的成绩.我国某科技公司为突破“芯片卡脖子”问题,实现芯片制造的国产化,加大了对相关产业的研发投入.若该公司2020年全年投入芯片制造方面的研发资金为120亿元,在此基础上,计划以后每年投入的研发资金比上一年增长9%,则该公司全年投入芯片制造方面的研发资金开始超过200亿元的年份是()参考数据:lg1.090.0374≈,lg20. 3010≈,lg30.4771≈.A.2024年B.2025年C.2026年D.2027年8.已知函数()2f x ax =-,122,13,()1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A.[1,1]- B.[]0,4 C.[]1,3 D.[2,2]-二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若sin cos 0αα⋅>,则α终边可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.设函数()||2f x x x x =-,则()f x ()A.是奇函数B.是偶函数C.在(1,1)-上单调递减D.在(,1)-∞-上单调递减11.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示,下列说法正确的是()A.2ω=B.函数π6y f x ⎛⎫=-⎪⎝⎭为偶函数C.函数()y f x =的图象关于直线5π12x =-对称D.函数()y f x =在ππ,312⎡⎤-⎢⎥⎣⎦上的最小值为12.若242log 42log a ba b +=+,则下列结论错误的是()A.2a b >B.2a b< C.2a b > D.2a b <三、填空题:本题共4小题,每小题5分,共20分.13.已知角α的终边经过点(5,12)P -,则sin α=__________.14.如果函数()f x 对任意的正实数a ,b ,都有()()()f ab f a f b =+,则()f x 的解析式可以是()f x =__________.(写出一个即可)15.建于明朝的杜氏雕花楼被誉为“松江最美的一座楼”,该建筑内有很多精美的砖雕,砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖墙精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分,已知1m AD =,弧 πm 3AB =,弧 2πm 3CD =,则此扇环形砖雕的面积为__________2m.16.已知函数()|lg |f x x =,()()f a f b =,a b <,则2023a b +的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知命题:p x ∃∈R ,2260x x a -+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设非空集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.18.(12分)已知幂函数()23()69m f x m m x +=++在(0,)+∞上单调递减.(1)求实数m 的值;(2)若11(32)(4)m m a a -----<+,求实数a 的取值范围.19.(12分)(1)已知4cos 5α=-,且α为第二象限角,求sin α的值;(2)已知tan 3α=,计算4sin 2cos 5cos 3sin αααα-+的值.20.(12分)已知函数1()(,)f x a b ax b =∈+R ,且1(1)3f =,(1)1f -=-.(1)求a ,b 的值;(2)试判断函数()f x 在(2,)+∞上的单调性,并证明;(3)求函数()f x 在[2,6]x ∈上的最大值和最小值.21.(12分)已知函数()x f x a b =+(0a >,且1a ≠)的部分图象如图所示.(1)求()f x 的解析式;(2)若关于x 的不等式1(2)0xx b m a ⎛⎫+--≤ ⎪⎝⎭在[1,)+∞上有解,求实数m 的取值范围.22.(12分)已知点()()11,A x f x ,()()22,B x f x 是函数π())0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭图象上的任意两点,(0)1f =,且当()()12f x f x -=时,12x x -的最小值为π2.(1)求()f x 的解析式;(2)当ππ,88x ⎡⎤∈-⎢⎥⎣⎦时,2[()]()0f x mf x m --≤恒成立,求实数m 的取值范围.参考答案、提示及评分细则1.C 与760 角终边相同的角为()360760k k ⋅+∈Z.当1k =时,3607601120+= ;当1k =-时,360760300-+= ;当2k =-时,236076040-⨯+= ;当3k =-时,3360760320-⨯+=- ,所以320- 角的终边与760 角的终边相同.2.B 由2280x x -- ,得24x - ,所以{}24,{21}B xx A B x x =-⋂=-<∣∣ .3.A 由题知20,40,x x -⎧⎨->⎩ 得24x < .4.C()y f x =的图象是一条连续不断的曲线,且()f x 在R 上递增,而()()()020,118,210f f f =-=-=-,()()310,448f f ==,可得()()230f f ⋅<,满足零点存在性定理,故()f x 零点所在的区间是()2,3.5.A 因为函数0.1y x =在()0,∞+上单调递增,所以0.10.1023<<,即a c <,又22log 0.1log 10<=,所以c a b >>.6.B 函数()f x 的图象向右平移π6个单位长度后得到函数为ππsin 2sin 263y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,()ππsin 2sin 2123g x x x ϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭,则ππ2π123k ϕ-+=-+,得π2π,4k k ϕ=+∈Z ,因为0πϕ<<,所以π4ϕ=.7.C 设2020年后第n 年该公司全年投入芯片制造方面的研发资金开始超过200亿元,由120(19%)n ⨯+>200,得5(1.09)3n,两边同取常用对数,得lg5lg31lg2lg3 5.93lg1.09lg1.09n --->=≈,所以6n ,所以从2026年开始,该公司全年投入芯片制造方面的研发资金开始超过200亿元.8.D 当[]3,3x ∈-时,记()f x 和()g x 的值域分别为集合,A B .当13x 时,[]121,4x -∈,当31x -< 时,[]218,1x -+∈-,所以函数()g x 的值域为[]8,4B =-.因为对[][]123,3,3,3x x ∀∈-∃∈-,使得()()12f x g x =成立,所以A B ⊆.当0a =时,{}2A =-,满足题意;当0a >时,[]32,32A a a =---,则328,324,a a ---⎧⎨-⎩ 解得02a < ;当0a <时,[]32,32A a a =---,则324,328,a a --⎧⎨--⎩解得20a -< .综上,实数a 的取值范围是[]2,2-.9.AC 因为sin cos 0αα⋅>,若sin 0,cos 0αα>>,则α终边在第一象限;若sin 0,cos 0αα<<,则α终边在第三象限.10.AC11.ACD 由题意ππ2,4π312A T ⎛⎫==⨯-=⎪⎝⎭,则2π2T ω==,A 正确;ππ22π,122k k ϕ⨯+=+∈Z ,又π2ϕ<,所以π3ϕ=,所以()ππ2sin 2,2sin236f x x y f x x ⎛⎫⎛⎫=+=-= ⎪ ⎪⎝⎭⎝⎭为奇函数,B 错误;5ππ2sin 22123⎡⎤⎛⎫⨯-+=- ⎪⎢⎥⎝⎭⎣⎦,所以函数()y f x =的图象关于直线5π12x =-对称,C 正确;ππ,312x ⎡⎤∈-⎢⎥⎣⎦时,πππ2,336x ⎡⎤+∈-⎢⎥⎣⎦,所以min π()3f x f ⎛⎫=-= ⎪⎝⎭D 正确.12.ACD 设()22log xf x x =+,则()f x 在()0,∞+上为增函数,因为22422log 42log 2log a b b a b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <,故B 正确;()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b -=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >;当2b =时,()()21f a f b -=-<0,此时()()2f a f b <,有2a b <,所以A 、C 、D 均错误.13.1213点()5,12P -在角α的终边上,所以12sin 13α==.14.()lg f x x =(答案不唯一)由题意,函数()f x 对任意的正实数,a b ,都有()()()f ab f a f b =+,可考虑对数函数()lg f x x =,满足()()()()lg lg lg f ab ab a b f a f b ==+=+,故()lg f x x =.15.π2设圆心角为α,则 CDAB OD OA α==,所以2ππ331OA OA=+,解得1m OA =,所以2m OD =,所以此扇环形砖雕的面积为 21112π1ππ21m 2223232CD OD AB OA ⋅⋅-⋅=⨯⨯-⨯⨯=.16.()2024,∞+函数()lg f x x =的定义域为()0,∞+,由()(),f a f b a b =<,得lg lg a b =,即有lg lg 0a b +=,解得1ab =,即1a b =,又0b a >>,因此110,20232023b a a b b b>>>+=+,而函数12023y x x =+在()1,∞+上单调递增,于是120232023120232024a b b b+=+>+=,所以2023a b +的取值范围是()2024,∞+.17.解:(1)因为p 为真命题,所以方程2260x x a -+=有解,即2Δ3640a =- 得33a -<<,所以{}33A aa =-∣ .(2)因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集,且B ≠∅,则321,323,13,m m m m --⎧⎪--⎨⎪-⎩解得1132m - ,综上,实数m 的取值范围11,32⎡⎤-⎢⎥⎣⎦.18.解:(1)由幂函数的定义可得2691m m ++=,即2680m m ++=,解得2m =-或4m =-.因为()f x 在()0,∞+上单调递减,所以30m +<,即3m <-,则4m =-.(2)设()()3,g x x g x =是R 上的增函数.由(1)可知11(32)(4)m m a a -----<+,即33(32)(4)a a -<+,则324a a -<+,解得3a <,即实数a 的取值范围为(),3∞-.19.解:(1)因为4cos 5α=-,且α为第二象限角,则3sin 5α==,即sin α的值为35.(2)因为tan 3α=,则4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯.20.解:(1)因为()1f x ax b =+,且()()11,113f f =-=-,所以11,311,a b a b⎧=⎪⎪+⎨⎪=-⎪-+⎩解得2,1.a b =⎧⎨=⎩(2)函数()121f x x =+在()2,∞+上为减函数,证明如下:任取()12,2,x x ∞∈+,且12x x <,则()()()()()2112121221121212121x x f x f x x x x x --=-=++++因为()12,2,x x ∞∈+,且12x x <,所以21120,210,210x x x x ->+>+>,所以()()120f x f x ->,即()()12f x f x >,所以函数()121f x x =+在()2,∞+上为减函数,(3)由(2)可知()121f x x =+在[]2,6上为减函数,所以当2x =时,函数取得最大值,即max 11()2215f x ==⨯+,当6x =时,函数取得最小值,即min 11()26113f x ==⨯+.21.解:(1)由图象可知函数()xf x a b =+经过点()1,0-和()0,1-,所以100,1,a b a b -⎧+=⎨+=-⎩解得1,22,a b ⎧=⎪⎨⎪=-⎩所以函数()f x 的解析式是()122xf x ⎛⎫=- ⎪⎝⎭.(2)由(1)知12,24b a=-=,根据题意知240x x m +- ,即24x x m + 在[)1,∞+上有解,设()24x xg x =+,则min ()g x m ,因为2x y =和4x y =在[)1,∞+上都是单调递增函数,所以()g x 在[)1,∞+上是单调递增函数,故()min ()16g x g ==,所以6m ,实数m 的取值范围是[)6,∞+.22.解:(1)由()01,π02f ϕϕ⎧==⎪⎨<<⎪⎩得π,4ϕ=又因为当()()12f x f x -=12x x -的最小值为π2,所以1ππ22T ω==,即2,ω=所以故()π24f x x ⎛⎫=+⎪⎝⎭.(2)由ππ,88x ⎡⎤∈-⎢⎥⎣⎦,得ππ20,42x ⎡⎤+∈⎢⎥⎣⎦,于是[]πsin 20,14x ⎛⎫+∈ ⎪⎝⎭,则()f x ⎡∈⎣,令(),t f x t ⎡=∈⎣,不等式()()2[]0f x mf x m -- 恒成立,即20t mt m -- 恒成立,设()2,0h t t mt m t =--,因此()00,20,h m h m ⎧=-⎪⎨=--⎪⎩解得2m ,所以实数m的取值范围是)2,∞⎡-+⎣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年数学上学期期末考试卷
(全卷满分150分,考试时间120分钟。

)
注意事项:
①本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

答题时,必须把答案填写在答题卡的相应位置上,不按规定位置作答的答案一律无效。

②本次考试,所有计算问题均严禁使用计算器。

第Ⅰ卷(选择题 共60分)
一、
选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个答案中,
只有一项是符合题目要求的,请将每小题选出的答案的字母填在答案卡的对应的空格内
1.cos330
的值是( )
A .
12 B .2 C . 12- D .2
- 2.设全集是实数集R ,{|12},A x x =-<<{|0}B x x a =-≥,且()A B ⊆R ð,则实数a 的取值范围为( )
A . {|1}a a <-
B .{|1}a a ≤-
C . {|2}a a ≥
D . {|2}a a >
3.已知向量(1,2)a =- ,(2,1)b =- ,则()()a b a b ⋅+
等于( )
A .(1,1)
B .(4,4)--
C .4-
D .(2,2)-- 4.已知函数()sin(2)f x x π=-,则它( )
A .是最小正周期为π的奇函数
B .是最小正周期为π的偶函数
C .是最小正周期为2π的奇函数
D .是最小正周期为π的非奇非偶函数 5.设集合A =R ,集合B =正实数集,则从集合A 到集合B 的映射只可能是( )
A .||f x y x →=:
B .f x y →=

C .3x
f x y -→=: D .2lo
g (||1)f x y x →=+:
6.若函数2
()21f x ax x =--在(0,1)内恰有一个零点,则实数a 的取值范围是( ) A .1a <- B .1a > C . 11a -<< D .0a ≤<1
7.要得到函数2cos(2)6
y x π
=-的图象,只要将函数2cos 2y x =的图象( )
A .向左平行移动
6π个单位长度 B .向右平行移动6π
个单位长度 C .向左平行移动12π个单位长度 D .向右平行移动12
π
个单位长度
8.已知||1a = ,||2b =
,c a b =+ ,且c a ⊥ ,则a 与b 夹角为( )
A .30
B . 60
C .120 D.150
9. 函数]2,0[,sin 1π∈-=x x y 的大致图象是( )
A .
B .
C .
D .
.10.在ABC 中,已知D 是AB 边上一点,若2AD DB = ,13
CD CA CB
λ=+
,则λ等
于( ) A .
23 B .13
C .13-
D .23
- 11.右图是某池塘中的浮萍蔓延的面积2()y m 与时间()t 月的关系:t y a =的图象,有以下
叙述,其中正确的是( ) ① 这个指数函数的底数为2

② 第5个月时,浮萍面积就会超过302
m ; ③ 浮萍每月增加的面积都相等;
④ 若浮萍蔓延到22
m 、32
m 、62
m 所经过的
时间分别为123t t t 、、,则123t t t +=. A .①② B .①②③④ C .②③④ D .①②④
12.已知(3),(1),
()log ,(1).a
a x a x f x x x --<⎧=⎨≥⎩ 是(,)-∞+∞上的增
函数,那么实数a 的取值范围是 ( )
A .(1,)+∞
B .(,3)-∞
C . 3[,3)2
D .(1,3)
t(月)
第Ⅱ卷(非选择题 共90分)
二、
填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡对应题号的
横线上。

13.函数()f x =
的定义域为________;
14.设向量a 表示“向东走6m ”,b 表示“向北走6m ”,则||a b +
=______;
15.设点(,2)P x 是角α终边上的一点,且满足2
sin 3
α=
,则x 的值为______; 16.对于定义在R 上的函数()f x ,若实数0x 满足00()f x x =,则称0x 是函数()f x 的一个
不动点.若二次函数2()73f x x x a =++没有不动点,则实数a 的取值范围是____. 三、解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤,请
把答案写在答案卡对应的区域内 。

17.(本小题满分12分)
已知集合2{|0}S x x px q =-+=,2{|(3)60}T x x p x =-++=,且{3}S T = (1)求9log (3)p q +的值. (2)求S T ; 18.(本小题满分12分)
已知(7,1)a = ,(tan(),1)4
b π
α=+ ,且a ∥b ,
(1)求tan α的值;
(2)求2
sin cos 2cos ααα+的值. 19.(本小题满分12分)
已知函数2()cos cos f x x x a x =+的图象经过点(0 2) (1)求函数()f x 的单调递减区间; (2)当x ∈[,]64
ππ
-
时,求函数()f x 的值域.
20.(本小题满分12分)
已知向量(2,2),(4,1)OA OB ==-
,点P 在x 轴的非负半轴上(O 为原点). (1)当PA PB ⋅
取得最小值时,求OP 的坐标;
(2)设APB θ∠=,当点P 满足(1)时,求cos θ的值 21.(本小题满分12分) 已知函数1()lg
1x
f x x
-=+的定义域为集合A ,,a b A ∈ (1)判断函数()f x 的奇偶性; (2)求证:()()()1a b
f a f b f ab
++=+ 22.(本小题满分14分)
定义在R 上的函数()y f x =,(0)0f ≠,当0x >时,()1f x >,且对任意的a b R ∈、
,有()()()f a b f a f b +=⋅. (1)求(0)f 的值;
(2)求证:对任意的x R ∈,恒有()0f x >;
(3)若2()(2)1f x f x x ⋅->,求x 的取值范围.沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

相关文档
最新文档