2019高考数学空间向量与立体几何(专用):空间向量及其运算
2019届高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算课件理北师大版
又因为向量(-3,-4,5)的模为 -32+-42+52=5 2,
所以与向量(-3,-4,5)共线的单位向量是
1 ±5
2(-3,-4,5)=±102(-3,-4,5).
123456
解析 答案
6.O 为空间中任意一点,A,B,C 三点不共线,且O→P=34O→A+81O→B+tO→C, 1
若 P,A,B,C 四点共面,则实数 t=_8__. 解析 ∵P,A,B,C四点共面,
第八章 立体几何与空间向量
§8.6 空间向量及其运算
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
1.空间向量的有关概念
知识梳理
名称 零向量 单位向
量
概念 模为 0 的向量
1 相同 相等
长度相(反模)为相的等 向量
相等向 方向平行或重且合模
的向量
量
平面
表示 0
a=b
_________a_21+_a_22_+_a_23 _________
cos〈a,b〉=
a1b1+a2b2+a3b3 a21+a22+a23· b21+b22+b23
___________________
【知识拓展】 1.向量三点共线定理 在平面中 A,B,C 三点共线的充要条件是:O→A=xO→B+yO→C(其中 x+y =1),O 为平面内任意一点. 几何画板展示 2.向量四点共面定理 在空间中 P,A,B,C 四点共面的充要条件是:O→P=xO→A+yO→B+zO→C(其 中 x+y+z=1),O 为空间中任意一点. 几何画板展示
123456
解析 答案
题组三 易错自纠
4. 在 空 间 直 角 坐 标 系 中 , 已 知 A(1,2,3) , B( - 2 , - 1,6) , C(3,2,1) ,
2019年高考理数:立体几何与空间向量.docx
核心考点解读一—立体几何与空间向量平面的基本性质⑴空间点、线、而的位置关系(II)空间直线、平面平行的判定定理与性质定理(II)空间直线、平面垂直的判定定理与性质定理(11)空可向量在立体几何屮的应用1. 从考查题型来看,涉及本知识点的选择题、填空题一般从宏观的角度,结合实际观察、判断空间点、线、而的位置关系,确定命题的真假;解答题中则从微观的角度,严密推导线面平行、垂直,利用空间向量的有关形式表示、求解空间的距离、夹角等.2. 从考查内容来看,主要考查空间点、线、面位置关系的命题的判断及证明,重点是根据平行、垂直的判定定理与性质定理证明线面平行、垂直,难点则是如何计算空间屮有关角与距离的问题.3. 从考查热点来看,证明空间线面平行、垂直是高考命题的热点,结合平行、垂直的判定定理及性质定理,通过添加辅助线的方式证明是常考的方式.要注意结合空间儿何体的特征严格推理论证.1. 平面的基本性质(1) 熟悉三个公理的三种语言的描述(自然语言、图形语言、符号语言),明白各自的作用,能够依据这三个公理及其推论对点与平面、直线与平面、平面与平面的位置关系作简单的判断. (2) 掌握确定一个平面的依据:不共线的三点确定一个平面、直线与直线外一点确定一个平面、两相交直线确定一个平面、两平行直线确定一个平面.2. 空I'可直线、平血的位置关系(1) 空间两条直线与直线的位置关系:相交、平行、异面.判断依据:是否在同一个平面上;公共点的个数情况.理解平行公理与等角定理:平行公理:平行于同一条直线的两条直线平行;等角定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.(2) 直线与平面的位置关系:直线在平面内、直线与平面平行或相交判断依据:直线与平而的公共点的个数.理解直线与平面平行的定义.(3) 空间两个平面的位置关系:相交、平行判断依据:没有公共点则平行,有一条公共直线则相交.要证明平面与平面垂直,关键是在其中一个平面内找到一条与另一个平面垂直的直线. 4)面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:错误!未找到引用源。
高考数学知识点总结之空间向量与立体几何
2019高考数学知识点总结之空间向量与立体几何一、考点概要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量基本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量(平行向量):ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在内,则说向量平行于平面,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,则向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:已知空间两个非零向量、,则叫做向量、的数量积,记作,即:。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
空间向量及其线性运算高二(人教A版2019选修一)
探究
如图1.1 6, 在平行六面体ABCD ABCD中,分别标出AB AD AA,
AB AA AD表示的向量.从中你能体会向量加法运算的交换律和结 合律吗 ? 一般地, 三个不共面的向量的和与这三个向量有什么关系?
可以发现, AB AD AA AB AA AD AC,
一般地, 对于三个不共面的向量a, b, c,以任意点O
为起点, a, b, c为邻边作平行六面体, 则a, b, c的和
等于以O为起点的平行六面体对角线所表示的向
量. 另外, 利用向量加法的交换律和结合律,还可
以得到 : 有限个向量求和, 交换相加向量的顺序,
与平面向量一样,在空间,我们把具有大小和方向的量叫做空 间向量(space vector),空间向量的大小叫做空间向量的长度或 模(modulus).
空间向量用字母a, b, c, 表示. 空间中点的位移、物体运动的速度、 物体受到的力等都可以用空间向量表示.
与平面向量一样, 空间向量也用有向线段表示, 有向线段的长度表示 空间向量的模. 如图1.1 1, 向量a的起点是A, 终点是B, 则向量a也可以 记作 AB, 其模记为 a 或 AB .
模为1的向量叫做单位向量 (unit vector). 与向量a长度相等而方向相反的向量,叫做a的相反向量, 记作 a.
如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么 这些向量叫做共线向量(colliner vectors)或平行向量( parallel vectors).
我们规定:零向量与任意向量平行,即对于任意向量a, 都有0 // a.
第一章 空间向量与立体几何 1.1 空间向量及其运算
1.3 空间向量的坐标表示及其运算(共47张PPT)
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
高中数学第3章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算课件新人教A版选修2_1
[解] O→G=O→M+M→G =12O→A+23M→N =12O→A+23(M→A+A→B+B→N) =12O→A+2312O→A+O→B-O→A+21B→C =12O→A+23O→B-12O→A+12(O→C-O→B) =16O→A+13O→B+13O→C=16a+13b+13c.
②字母表示法:用字母 a,b,c,…表示;若向量 a 的起点是 A, 终点是 B,也可记作: A→B ,其模记为 |a| 或 |A→B| .
2.几类常见的空间向量
名称
方向
零向量
_任__意__
单位向量
任意
相反向量
_相__反__
相等向量
相同
模 _0__ _1 _
相等
相__等__
记法 _0 _
a 的相反向量:__-__a__ A→B的相反向量:_B→_A_ a=b
2.利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用三 角形法则、平行四边形法则,将目标向量转化为已知向量. (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性 质.
2.如图,已知空间四边形OABC,M,N分别 是边OA,BC的中点,点G在MN上,且MG= 2GN,设O→A=a,O→B=b,O→C=c,试用a,b,c表 示向量O→G.
空间向量的线性运算 【例2】 (1)如图所示,在正方体ABCD-A1B1C1D1中,下列各式
空间向量与立体几何知识点
立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角但要注意两异面直线所成角与两向量的夹角在取值范围上的区别,再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 1线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.2线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.3线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.4线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.5面面平行①证明两个平面的法向量平行即是共线向量; ②转化为线面平行、线线平行问题.6面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 1求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.2求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.3求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.1点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.2点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +;3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++其中1x y z ++=这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理 1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z,使p =xa yb +zc +2、注意以下问题1空间任意三个不共面的向量都可以作为空间向量的一个基底.2由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面;那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底;a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 1单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.2空间直角坐标系在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量. 3空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组x,y,z 使a xi y j zk =++,有序数组x,y,z 叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z ;对坐标系中任一点A,对应一个向量OA ,则OA =a xi y j zk =++;在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组x,y,z,叫做点A 在此空间直角坐标系中的坐标,记为Ax,y,z. 四、空间向量的运算 1、空间向量的加法三角形法则注意首尾相连、平行四边形法则, 加法的运算律:交换律 a b b a +=+ 结合律()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 1定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下: ①a aλλ=⋅② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ=注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大当λ>1时,也可以缩小λ< 1 时,同时,我们可以不改变向量a 的方向当0λ>时,也可以改变向量a 的方向当0λ<时; .② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=;③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算; 2实数与空间向量的积满足的运算律 设λ、μ是实数,则有()()a aλμλμ= 结合律()a a a λμλμ+=+ 第一分配律()a b a bλλλ+=+ 第二分配律实数与向量的积也叫数乘向量.4、共线向量 1共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量;若a 与b 是共线向量,则记为a b a b b 0a b a b a =+OP OA ta a AB a=(),(1)OP OA t AB OP OA t OB OA t OA tOB=+∴=+-=-+12t =1122OP OA OB =+AB λ111OP OA OB λλλ=+++11112222(,,),(,,)P x y z P x y z 12PP =222z y x |OP |++=→→→→><b a b ,a 与为性质若→→b a 、是非零向量,→e 是与→b 方向相同的单位向量,θ是→→e a 与的夹角,则 1θcos |a |e a a e →→→→→=⋅=⋅ 20b a b a =⋅⇔⊥→→→→3若→→b a 与同向,则|b ||a |b a →→→→⋅=⋅; 若→→b a 与反向,则|b ||a |b a →→→→⋅-=⋅;特别地:→→→→→→⋅==⋅a a |a ||a |a a 2或4若θ为|b ||a |ba cosb a →→→→→→⋅⋅=θ的夹角,则、5|b ||a ||b a |→→→→≤⋅2. 运算律 1结合律)b a (b )a (→→→→⋅=⋅λλ 2交换律→→→→⋅=⋅a b b a3分配律→→→→→→→⋅+⋅=+⋅c a b a )c b (a不满足消去律和结合律即:典型例题例1. 已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心;求证:E 、F 、G 、H 四点共面; 证明:分别延长PE 、PF 、PG 、PH 交对边于M 、N 、Q 、R ∵E 、F 、G 、H 分别是所在三角形的重心∴M 、N 、Q 、R 为所在边的中点,顺次连结MNQR 所得四边形为平行四边形,且有 ∵MNQR 为平行四边形,则∴由共面向量定理得E 、F 、G 、H 四点共面;例2. 如图所示,在平行六面体'D 'C 'B 'A ABCD -中,→=→a AB ,→=→b AD ,→=→c AA ,P 是CA'的中点,M 是CD'的中点,N 是C'D'的中点,点Q 是CA'上的点,且CQ :QA'=4:1,用基底}c b a {→→→,,表示以下向量: 1→AP ;2→AM ;3→AN ;4→AQ ;解:连结AC 、AD'1)c b a (21)'AA AD AB (21)'AA AC (21AP →+→+→=→+→+→=→+→=→;2→+→+→=→+→+→=→+→=→c21b a 21)'AA AD 2AB (21)AD AC (21AM ;3)'AD AC (21AN →+→=→4)AC 'AA (54AC CQ AC AQ →-→+→=→+→=→点评:本例是空间向量基本定理的推论的应用.此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量.并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3. 已知空间四边形OABC 中,∠AOB=∠BOC=∠AOC,且OA=OB=OC;M 、N 分别是OA 、BC 的中点,G 是MN 的中点;求证:OG ⊥BC;证明:连结ON,设∠AOB=∠BOC=∠AOC=θ又设→=→a OA ,→=→b OB ,→=→c OC ,则|c ||b ||a |→=→=→;又)ON OM (21OG →+→=→∴)b c ()c b a (41BC OG →-→⋅→+→+→=→⋅→∴OG ⊥BC例4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5; 1求以→→AC AB 和为邻边的平行四边形面积;2若3|a |=→,且→→→AC AB a 、分别与垂直,求向量→a 的坐标;解:1由题中条件可知∴23AC AB sin >=→→<, ∴以→→AC AB 、为邻边的平行四边形面积:2设),,(z y x a =→由题意得解得⎪⎩⎪⎨⎧-=-=-=⎪⎩⎪⎨⎧===1z 1y 1x 1z 1y 1x 或∴),,=()或,,(111a 111a ---→=→第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行或共线的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.1若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P,一定存在实数t,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.2空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对x ,y ,使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的. 三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用 1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 1v 2v ⇔1v 2v ⇔1v 2v u v ⇔u v ⇔u v (,,)n x y z =111222(,,),(,,)a a b c b a b c ==00n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b a b ()a kbk R =∈a αn //l α⊥a n 0⋅=a n2根据线面平行的判定定理:“如果直线平面外与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.3根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可. 3、面面平行1由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2若能求出平面α、β的法向量u 、v ,则要证明αu v a b a b 0a b ⋅=a u a u ////,//a a b b /a /b02πθ<≤a b ϕcos |cos |a b a bθϕ⋅==⋅02πθ≤≤a u a u ϕsin |cos |cos sin a u a uθϕθϕ⋅===⋅或[0,]πl αβ--AB CD 1n 2n l αβ--1n 2n BO BA =cos cos BA BO ABOABO BO⋅⋅∠∠=nAB n BO n⋅=n n n=0d AB n =⋅nCD n d AB n⋅==设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系; 1→a =2,3,-1,→b =-6,-9,3; 2→a =5,0,2,→b =0,4,0;3→a =-2,1,4,→b =6,3,3解:1∵),,(132a -=→,→b =-6,-9,3∴→→-=b31a ,∴→→b //a ,∴l 1→a →b 0b a =⋅→→→→⊥b a =→a →b →→b a 与设→→v u 、分别是平面α、β的法向量,根据下列条件判断α、β的位置关系:1→u =1,-1,2,→v =3,2,21-;2→u =0,3,0,→v =0,-5,0;3→u =2,-3,4,→v =4,-2,1;解:1∵→u =1,-1,2,→v =3,2,21-∴0v u =⋅→→ →→⊥∴v u∴α⊥β2∵→u =0,3,0,→v =0,-5,0∴βα//v//u v53u ∴∴-=→→→→3∵→u =2,-3,4,→v =4,-2,1∴→→v u 与既不共线、也不垂直,∴α与β相交点评:应熟练掌握利用向量共线、垂直的条件;例3. 已知点A3,0,0,B0,4,0,C0,0,5,求平面ABC 的一个单位法向量; 解:由于A3,0,0,B0,4,0,C0,0,5,∴→AB =-3,4,0,→AC =-3,0,5设平面ABC 的法向量为→n x,y,z则有0AC n 0AB n =→⋅→=→⋅→且即⎩⎨⎧=+-=+-0z 5x 30y 4x 3 取z=1,得35x =,45y =于是→n =14535,,,又12769|n |=→∴平面α的单位法向量是)769127691576920(n ,,=→例4. 若直线l 的方向向量是→a =1,2,2,平面α的法向量是→n =-1,3,0,试求直线l 与平面α所成角的余弦值;分析:如图所示,直线l 与平面α所成的角就是直线l 与它在平面内的射影所成的角,即∠ABO,而在Rt △ABO 中,∠ABO=-2π∠BAO,又∠BAO 可以看作是直线l 与平面α的垂线所成的锐角,这样∠BAO 就与直线l 的方向向量a 与平面α的法向量n 的夹角建立了联系,故可借助向量的运算求出∠BAO,从而求出∠ABO,得到直线与平面所成的角; 解:∵→a =1,2,2,,→n =-1,3,0∴3|a |=→,10|n |=→,5n a =⋅→→∴610|n ||a |na n ,a cos =⋅⋅>=<→→→→→→若设直线l 与平面α所成的角是θ则有><=→→n ,a sin cos θ∵610n ,a cos >=<→→ ∴626n ,a sin >=<→→因此626cos =θ,即直线l 与平面α所成角的余弦值等于626;例5. 如图a 所示,在正方体1111D C B A ABCD -中,M 、N 分别是C C 1、11C B 的中点;求证:1MN BD A 1C D B //BD A 111平面1DD 21211A →MN 2121BD A 1→n 0DB n 0DA n 1=⋅=⋅→→→→且⎩⎨⎧=+=+0y x 0z x 1y -=1z -=→∴n →→⋅n MN 2121→⊥→n MN BDA 1→=→-→=→-→=→-→=→111111111DA 21)D D A D (21C C 21B C 21M C N C MN →→1DA //MN BD A //MN 1平面→-→=→M C N C MN 11→-→=D D 21A D 21111→→→DB DA MN 1与可用→→→DB DA MN 1、与→MN BD A 1→n →m→→n //m 如图,在正方体1111D C B A ABCD -中,O 为AC 与BD 的交点,G 为CC 1的中点;求证:A 1O ⊥平面GBD;证明:设→=→→=→→=→c A A b D A a B A 11111,,,则 而)b a (21c )AD AB (21A A AO A A O A 111→+→+→=→+→+→=→+→=→∴)a b ()b 21a 21c (BD O A 1→-→⋅→+→+→=→⋅→同理0OG O A 1=→⋅→∴BD O A 1⊥,OG O A 1⊥又O OG BD = ,∴⊥O A 1面GBD; 例7. 2004年天津如图a 所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,E 是PC 的中点;1证明:PA 2a 2a 2a 2a →PA →EG 2a 2a -→=→EG 2PA ⊂⊄2a →FE 2a →FB 2a →DC 0FB FE =→⋅→0DC FE =→⋅→55a 252a |FB ||FE |==→→=55正方体1111D C B A ABCD -中,E 、F 分别是11D A 、11C A 的中点,求:1异面直线AE 与CF 所成角的余弦值;2二面角C —AE —F 的余弦值的大小; 解:不妨设正方体棱长为2,分别取DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A2,0,0,C0,2,0,E1,0,2,F1,1,21由→AE =-1,0,2,→CF =1,-1,2,得5|AE |=→,6|CF |=→∴→⋅→CF AE =-1+0+4=3 又>→→<>=→→<⋅→⋅→=→⋅→CF ,AE cos 30CF ,AE cos |CF ||AE |CF AE∴1030CF ,AE cos >=→→<,∴所求值为10302∵→EF =0,1,0 ∴→⋅→EF AE =-1,0,2·0,1,0=0∴AE ⊥EF,过C 作CM ⊥AE 于M则二面角C —AE —F 的大小等于>→→<MC ,EF∵M 在AE 上,∴→=→AE m AM 设则→AM =-m,0,2m,→-→=→AM AC MC =-2,2,0--m,0,2m=m -2,2,-2m∵MC ⊥AE ∴→⋅→AE MC =m -2,2,-2m ·-1,0,2=0∴52m =,∴)54,2,58(MC --=→,556|MC |=→ ∴→⋅→MC EF =0,1,0·58-,2,54-=0+2+0=2又>→→<>=→→<⋅→⋅→=→⋅→MC ,EF cos 556MC ,EF cos |MC ||EF |MC EF∴35MC ,EF cos >=→→< ∴二面角C —AE —F 的余弦值的大小为35例9. 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,H 是EF 与AC 的交点,CG ⊥面ABCD,且CG=2;求BD 到面EFG 的距离;分析:因BD//平面EFG,故O 到面EFG 与BD 到面EFG 距离相等,证明OM 垂直于面EFG 即可;解:如图所示,分别以CD 、CB 、CG 所在直线为x 、y 、z 轴建立空间直角坐标系; 易证BD//面EFG,设BD AC =O,EF ⊥面CGH,O 到面EFG 的距离等于BD 到面EFG 的距离,过O 作OM ⊥HG 于M,易证OM ⊥面EFG,可知OM 为所求距离;另易知H3,3,0,G0,0,2,O2,2,0;设→=→GH GM λ,→GH =3,3,-2则)22,23,23()2,2,2()2,3,3(GO GM OM +---=---=→-→=→λλλλ 又0GH OM =→⋅→,∴0)22(2)23(3)23(3=---+-λλλ∴118=λ,∴)116,112,112(OM =→ ∴11112)116()112(2|OM |22=+⨯=→即BD 到平面EFG 的距离等于11112励志故事习惯父子俩住山上,每天都要赶牛车下山卖柴;老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦”有一次父亲因病没有下山,儿子一人驾车;到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动;到底是怎么回事 儿子百思不得其解;最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦”牛应声而动;牛用条件反射的方式活着,而人则以习惯生活;一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生;。
2019届高考数学一轮复习第七篇立体几何与空间向量第6节空间向量的运算及应用训练理新人教版
第6节空间向量的运算及应用知识点、方法题号夹角和距离5,7,8,10空间向量的线性运算6,13共线、共面向量定理及应用1,9空间向量的数量积及应用2,3,4,11,12,14基础巩固(时间:30分钟)1.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.其中正确命题的个数是( A )(A)0 (B)1 (C)2 (D)3解析: a与b共线,a,b所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a,b都共面,故②错误;三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故④不正确,综上可知四个命题中正确的个数为0,故选A.2.在空间四边形ABCD中,·+·+·等于( B )(A)-1 (B)0 (C)1 (D)不确定解析:令=a,=b,=c,则·+·+·=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.3.如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos<,>=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为( A )(A)(1,1,1) (B)(1,1,)(C)(1,1,) (D)(1,1,2)解析:设PD=a,则A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),所以=(0,0,a),=(-1,1,).因为cos<,>=,所以=a·,所以a=2.所以E的坐标为(1,1,1).4.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则·的值为( C )(A)a2 (B) a2 (C) a2(D) a2解析:如图,设=a,=b,=c,则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.= (a+b),= c,所以·= (a+b)·c= (a·c+b·c)= (a2cos 60°+a2cos 60°)= a2.5.导学号 38486158如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=,则cos<,>的值为( A )(A)0 (B)(C)(D)解析:设=a,=b,=c,由已知条件<a,b>=<a,c>=,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|-|a||b|=0,所以cos<,>=0.6.在四面体OABC中,=a,=b,=c,D为BC的中点,E为AD的中点,则= .(用a,b,c表示).解析:=+=+=+× (+)=++=+ (-)+ (-)=++=a+b+c.答案: a+b+c7.若向量a=(1,λ,2),b=(2,-1,2)且a与b的夹角的余弦值为,则λ= .解析:由条件知|a|=,|b|=3,a·b=6-λ.所以cos<a,b>===.整理得55λ2+108λ-4=0,解得λ=-2或λ=.答案:-2或8.如图所示,已知二面角αlβ的平面角为θ(θ∈(0,)),AB⊥BC,BC⊥CD,AB在平面β内,BC 在l上,CD在平面α内,若AB=BC=CD=1,则AD的长为.解析:=++,所以=+++2·+2·+2·=1+1+1+2cos(π-θ)=3-2cos θ,所以||=,即AD的长为.答案:能力提升(时间:15分钟)9.导学号 38486159O为空间任意一点,若=++,则A,B,C,P四点( B )(A)一定不共面(B)一定共面(C)不一定共面(D)无法判断解析: 因为=++,且++=1.所以P,A,B,C四点共面.10.正方体ABCDA1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为( A )(A) a (B) a (C) a (D) a解析:以D为原点建立如图所示的空间直角坐标系D-xyz,则A(a,0,0),C1(0,a,a),N(a,a,).设M(x,y,z),因为点M在AC1上且=,所以(x-a,y,z)= (-x,a-y,a-z),所以x=a,y=,z=.所以M(, ,),所以||== a.11.正方体ABCD-A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则·的取值范围是.解析:如图所示,由题意,设=λ,其中λ∈[0,1],·=·(+)=·(+λ)=+λ·=1+λ·(-)=1-λ∈[0,1].因此·的取值范围是[0,1].答案:[0,1]12.(2017·江苏徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当·取得最小值时,的坐标是.解析:因为点Q在直线OP上,所以设点Q(λ,λ,2λ),则=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),·=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6(λ-)2-.即当λ=时,·取得最小值-.此时=(, ,).答案:(, ,)13.如图,已知平行六面体ABCDA′B′C′D′,E,F,G,H分别是棱A′D′,D′C′,C′C和AB 的中点,求证E,F,G,H四点共面.证明:取=a,=b,=c,则=++=+2+=b-a+2a+ (++)=b+a+ (b-a-c-a)=b-c,所以与b,c共面,即E,F,G,H四点共面.14.已知a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).(1)求|2a+b|;(2)在直线AB上,是否存在一点E,使得⊥b?(O为原点) 解:(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a+b|==5.(2)令=t(t∈R),所以=+=+t=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),若⊥b,则·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=.所以-3+t=-,-1-t=-,4-2t=,因此存在点E,使得⊥b,此时E点的坐标为(-,-,).。
空间向量与立体几何知识点和习题(含答案)
空间向量与立体几何【知识要点】1.空间向量及其运算: (1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律: 加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b . (2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉; ②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0; |a |2=a ·a ;|a ·b |≤|a ||b |. ③空间向量的数量积的运算律: (λ a )·b =λ (a ·b ); 交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3); λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3. ③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. ④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b 得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴⋅AD AC AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC . ∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
2019高考数学理专题考点33 空间向量与立体几何Word版含解析知识点讲解加真题练习
1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. (2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. (3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.一、空间直角坐标系及有关概念 1.空间直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系,如图所示.2.空间一点M 的坐标(1)空间一点M 的坐标可以用有序实数组(,,)x y z 来表示,记作(),,M x y z ,其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.(2)建立了空间直角坐标系后,空间中的点M 与有序实数组(,,)x y z 可建立一一对应的关系. 3.空间两点间的距离公式、中点公式 (1)距离公式①设点111(,,)A x y z ,222(,,)B x y z 为空间两点,则,A B两点间的距离||AB =. ②设点(),,P x y z ,则点(),,P x y z 与坐标原点O之间的距离为||OP =.(2)中点公式设点(),,P x y z 为1111,),(P x y z ,2222,),(P x y z 的中点,则121212222x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩. 4.空间向量的有关概念二、空间向量的有关定理及运算 1.共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 牢记两个推论:(1)对空间任意一点O ,点P 在直线AB 上的充要条件是存在实数t ,使(1)OP t OA tOB =-+或OP xOA yOB =+(其中1x y +=).(2)如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA t =+a ,其中向量a 叫做直线l 的方向向量,该式称为直线方程的向量表示式. 2.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使x y =+p a b .牢记推论:空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使AP xAB yAC =+;或对空间任意一点O ,有OP OA xAB yAC =++. 3.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.注意:(1)空间任意三个不共面的向量都可构成基底. (2)基底选定后,空间的所有向量均可由基底唯一表示. (3)0不能作为基向量. 4.空间向量的运算(1)空间向量的加法、减法、数乘及数量积运算都可类比平面向量.(2)空间向量的坐标运算设123123(,,),(,,)a a a b b b ==a b ,则112233(,,)a b a b a b ±=±±±a b ,123(,,)()a a a λλλλλ=∈R a ,112233a b a b a b ⋅=++a b ,112233,,()b a b a b a λλλλλ⇔=⇔===∈R ab b a ,1122330a b a b a b ⊥⇔⋅=++=a b a b ,==acos ,⋅==a ba b a b 三、利用空间向量解决立体几何问题 1.直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作l ,显然一条直线的方向向量可以有无数个.(2)若直线l α⊥,则该直线l 的方向向量即为该平面的法向量,平面的法向量记作α,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为(,,)x y z =α.在平面内找出(或求出)两个不共线的向量123123(,,),(,,)a a a b b b ==a b ,根据定义建立方程组,得到0⋅=⎧⎨⋅=⎩a b αα,通过赋值,取其中一组解,得到平面的法向量.2.利用空间向量表示空间线面平行、垂直设直线,l m 的方向向量分别为,l m ,平面,αβ的法向量分别为,αβ. (1)线线平行:若//l m ,则()λλ⇔=∈R lm l m ;线面平行:若//l α,则0⊥⇔⋅=l l αα; 面面平行:若//αβ,则()λλ⇔=∈R αβαβ.(2)线线垂直:若l m ⊥,则0⊥⇔⋅=l m l m ; 线面垂直:若l α⊥,则()λλ⇔=∈R ll αα;面面垂直:若αβ⊥,则0⊥⇔⋅=αβαβ. 3.利用空间向量求空间角设直线,l m 的方向向量分别为,l m ,平面,αβ的法向量分别为12,n n . (1)直线,l m 所成的角为θ,则π02θ≤≤,计算方法:cos θ⋅=l m l m; (2)直线l 与平面α所成的角为θ,则π02θ≤≤,计算方法:11sin θ⋅=l n l n ; (3)平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212⋅n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).4.利用空间向量求距离 (1)两点间的距离设点111(,,)A x y z ,222(,,)B x y z 为空间两点, 则,A B 两点间的距离||||(AB AB x == (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为||||||AB BO ⋅=n n .考向一 空间直角坐标系对于空间几何问题,可以通过建立空间直角坐标系,把空间中的点用有序实数组(即坐标)表示出来,通过坐标的代数运算解决空间几何问题,实现了几何问题(形)与代数问题(数)的结合.典例1 如图,以长方体1111ABCD A BC D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为()4,3,2,则1AC 的坐标为________.【答案】()4,3,2-【解析】 如图所示,以长方体1111ABCD A BC D -的顶点D 为坐标原点,过D 的三条棱所在直线为坐标轴,建立空间直角坐标系,因为1DB 的坐标为()4,3,2,所以()()14,0,0,0,3,2A C ,所以()14,3,2AC =-.1.如图所示,在长方体ABCD -A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.考向二 共线、共面向量定理的应用1.判断两非零向量,a b 平行,就是判断λ=a b 是否成立,若成立则共线,若不成立则不共线.2.证明空间三点P 、A 、B 共线的方法: ①PA PB λ=(λ∈R );②对空间任一点O ,OP OA t AB =+(t ∈R ); ③对空间任一点O ,(1)OP xOA yAB x y =++=. 3.证明空间四点P 、M 、A 、B 共面的方法: ①MP xMA yMB =+;②对空间任一点O ,OP OM xMA yMB =++;③对空间任一点O ,OP xOM yOA zOB =++(x +y +z =1); ④∥PM AB (或∥PA MB 或∥PB AM ).典例2 如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 在A 1D 1上,且=2,F 在体对角线A 1C 上,且123A F FC =.求证:E ,F ,B 三点共线.【解析】设=a ,=b ,=c .∵=2,123A F FC =,∴b ,112255A F AC ==(-)=25(+-)=25a +25b -25c . ∴1125EF A F A E -==a -415b -25c =25(a -23b -c ).又++=-23b -c +a =a -23b -c ,∴25EF EB =.∴E ,F ,B 三点共线.2.如图,已知、、、、、、、、为空间中的个点,且OE kOA =,OF kOB =,OH kOD =,+AC AD mAB =,+EG EH mEF =,,.求证:(1)、、、四点共面,、、、四点共面;(2)AC EG ∥; (3)OG kOC =.考向三 利用向量法证明平行问题1.证明线线平行:证明两条直线的方向向量平行.2.证明线面平行:(1)该直线的方向向量与平面的某一法向量垂直;(2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示. 3.证明面面平行:两个平面的法向量平行.典例3 如图,已知长方体ABCD -A 1B 1C 1D 1中,E 、M 、N 分别是BC 、AE 、CD 1的中点,AD =AA 1=a ,AB =2a .求证:MN ∥平面ADD 1A 1.【解析】以D 为坐标原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系, 则A (a,0,0),B (a,2a,0),C (0,2a,0),D 1(0,0,a ),E (12a,2a,0),∵M 、N 分别为AE 、CD 1的中点, ∴M (34a ,a,0),N (0,a ,2a ).∴3,0(,)42a MN a =-. 取n =(0,1,0),显然n ⊥平面A 1D 1DA ,且·n =0,∴⊥n.又MN⊄平面ADD1A1,∴MN∥平面ADD1A1.3.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.考向四利用向量法证明垂直问题1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.典例4 如图,已知正四棱锥V-ABCD中,E是VC的中点, 正四棱锥的侧面VBC为正三角形.求证:平面VAC⊥平面EBD.【解析】如图,以V在底面ABCD内的射影O为坐标原点,建立空间直角坐标系O-xyz,设VB=VC=BC=2a,在Rt△VOC中,VO=a,∴V (0,0,a ),A (a ,0,0),C (-a ,0,0),B (0, a ,0),D (0,-a ,0),E (2-,0,2a ),则=(2-a ,a ,2a ),=(0,-2a ,0),=(-a ,0,-a ).∵·=a 2+0-a 2=0,·=0,∴⊥,⊥,即DE ⊥VC ,BD ⊥VC .∵DE ∩BD =D , ∴VC ⊥平面EBD . 又VC ⊂平面VAC , ∴平面VAC ⊥平面EBD .典例5 如图所示,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)AE ⊥CD ; (2)PD ⊥平面ABE .【解析】(1)易知AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系.设PA =AB =BC =1,则A (0,0,0),B (1,0,0),P (0,0,1).∵∠ABC=60°,∴△ABC为正三角形,∴C(12E(1412).设D(0,y0,0),由AC⊥CD,得·=0,即(12,0)·(-12,y0,0)=0,解得y0∴D,0),∴=(12-,6,0).又=(14,4,12),∴·=-++0=0,∴⊥,即AE⊥CD.(2)方法一:由(1)知,-1),∴·=0+12×(-1)=0,∴⊥,即PD⊥AE.∵=(1,0,0),∴·=0, ∴PD⊥AB.又AB∩AE=A,∴PD⊥平面ABE.方法二:由(1)知=(1,0,0),=(14,4,12).设平面ABE的法向量为n=(x,y,z),则n ·=0,n ·=0,得110 42xx y z=⎧⎪⎨+=⎪⎩,令y=2,则z=-,∴平面ABE的一个法向量为n=(0,2,-).∵=(0,3,-1),显然n ,∴∥n ,∴⊥平面ABE ,即PD ⊥平面ABE .4.如图,正方体1111ABCD A BC D -中,E ,F ,H 分别为11A B ,11B C ,1CC 的中点. (1)证明:BE AH ⊥;(2)在棱11D C 上是否存在一点G ,使得AG ∥平面BEF ?若存在,求出点G 的位置;若不存在,请说明理由.考向五 用向量法求空间角1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.典例6 如图,在五棱锥P ABCDE -中,PA ⊥平面ABCDE ,222PA AB AE BC DE =====,∠DEA = ∠EAB =∠ABC =90°.(1)求二面角P DE A --的大小; (2)求直线PC 与平面PDE 所成角的正弦值.【解析】由题可知,以AB 、AE 、AP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则()()()()()0,0,0,0,2,0,1,2,0,0,0,2,2,1,0A E D P C . 设平面PDE 的法向量为(),,x y z =n ,又=(1,0,0),=(0,-2,2).由0220ED x EP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩n n ,得0x y z =⎧⎨=⎩,令y =1,得()0,1,1=n .(1)由于PA ⊥平面ABCDE ,则平面ADE 的一个法向量为=(0,0,2),于是cos<n ,>=AP AP⋅⋅n n=所以<n ,>=45°,则二面角P DE A --的大小为45°. (2)由于=(2,1,-2),所以cos<,n >=PCPC ⋅⋅n n=201121⨯+⨯+-⨯=故PC 与平面PDE . 典例7 如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成角的大小; (2)证明:平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.【解析】如图所示,建立空间直角坐标系A -xyz .设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12). (1)=(-1,0,1),=(0,-1,1),于是cos 〈,〉=BF DE BF DE⋅==,所以异面直线BF 与DE 所成角的大小为60°.(2)由=(12,1,12),=(-1,0,1),=(0,2,0),可得·=0,·=0.因此,CE ⊥AM ,CE ⊥AD . 又AD ∩AM =A , 故CE ⊥平面AMD . 而CE ⊂平面CDE , 所以平面AMD ⊥平面CDE .(3)设平面CDE 的法向量为u =(x ,y ,z ),则0CE DE ⎧⋅=⎪⎨⋅=⎪⎩u u ,于是00x z y z -+=⎧⎨-+=⎩,令x =1,可得u =(1,1,1).又由题设,可知平面ACD 的一个法向量为v =(0,0,1). 所以cos 〈u ,v 〉=3. 因为二面角A -CD -E 为锐角,所以其余弦值为3.5.如图,在斜三棱柱111ABC A B C -中,底面ABC 是边长为2的正三角形,13BB =,1AB =160CBB ∠=.(1)求证:平面ABC ⊥平面11BCC B ; (2)求二面角1B AB C --的正弦值.考向六 用向量法求空间距离1.空间中两点间的距离的求法两点间的距离就是以这两点为端点的向量的模.因此,要求两点间的距离除使用距离公式外,还可转化为求向量的模.2. 求点P 到平面α的距离的三个步骤:(1)在平面α内取一点A ,确定向量PA 的坐标. (2)确定平面α的法向量n . (3)代入公式||||PA d ⋅=n n 求解.典例8 如图,已知长方体ABCD-A 1B 1C 1D 1中,A 1A =5,AB =12,则直线B 1C 1到平面A 1BCD 1的距离是A .5B .132C .6013D .8【答案】C【解析】∵B 1C 1∥BC ,且11B C ⊄平面A 1BCD 1,BC ⊂平面A 1BCD 1,∴B 1C 1∥平面A 1BCD 1,从而点B 1到平面A 1BCD 1的距离为所求距离.方法一:过点B 1作B 1E ⊥A 1B 于点E .∵BC ⊥平面A 1ABB 1,且B 1E ⊂平面A 1ABB 1,∴BC ⊥B 1E . 又BC ∩A 1B =B ,∴B 1E ⊥平面A 1BCD 1.在11Rt △A B B 中,B 1E=11116013A B B B A B ⨯==, ∴直线B 1C 1到平面A 1BCD 1的距离为6013. 方法二:以D 为坐标原点,,,的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则C (0,12,0),D 1(0,0,5),设B (x ,12,0),B 1(x ,12,5)(x ≠0),平面A 1BCD 1的法向量为n =(a ,b ,c ), 由n ⊥,n ⊥,得n ·=(a ,b ,c )·(-x ,0,0)=-ax =0,∴a =0,n ·=(a ,b ,c )·(0,-12,5)=-12b+5c =0,∴b =512c ,令c =12,则b =5,∴n =(0,5,12)为平面A 1BCD 1的一个法向量.又=(0,0,-5),∴点B 1到平面A 1BCD 1的距离d =16013B B ⋅=n n. 典例9 如图,直三棱柱111ABC A B C -中,AC =BC =1,AA 1=3,∠ACB =90°,D 为CC 1上的点,二面角1A A B D--的余弦值为6-.(1)求证:CD =2;(2)求点A 到平面1A BD 的距离.【解析】(1)以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,则()()()11,0,00,1,01,0,3、、A B A .设()0,0,D a .m =(1,1,0)是平面1A AB 的一个法向量,设(),,x y z =n 是平面1A BD 的法向量.=(1,0,3-a ),=(0,1,-a ),由·n =0,·n =0,得()30x a z +-=,0y az -=,取3x a =-,得y a =-,1z =-,即()3,,1a a =---n . 由题设,知cos ,|⋅====m n m n m n解得a =2或a =1, 所以DC =2或DC =1.但当DC =1时,显然二面角1A A B D --为锐角,故舍去. 综上,DC =2.(2)由(1),知n =(1,-2,-1)为平面1A BD 的一个法向量,又=(0,0,3),所以点A 到平面1A BD 的距离d =1AA ⋅n n6.如图,在四棱锥O −ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M ,N ,R 分别为OA ,BC ,AD 的中点,求直线MN 与平面OCD 的距离及平面MNR与平面OCD 的距离.7.如图,在四棱锥P ABCD -中,底面ABCD为正方形,1,2,PB PD AB AP Q ====是CD 中点. (1)求点C 到平面BPQ 的距离;--的余弦值.(2)求二面角A PQ B考向七用向量法求立体几何中的探索性问题1.通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若推导出与条件或实际情况相矛盾的结论,则说明假设不成立,即不存在.2.探索线段上是否存在点时,注意三点共线条件的应用,这样可减少坐标未知量.典例10 如下图所示,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.(1)求二面角C1-BD-C的余弦值;(2)在侧棱AA1上是否存在点P,使得CP⊥平面BDC1?并证明你的结论.【解析】(1)建立如下图所示的空间直角坐标系,则C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0),D(1,3,0),所以(0,3,2),(1,3,0).设n=(x1,y1,z1)是平面BDC1的法向量,则所以111132030y z x y +=⎧⎨+=⎩,令x 1=1,得n =(1,13-,12)是平面BDC 1的一个法向量,易知(0,3,0)是平面ABC 的一个法向量,所以cos<n ,11127736C C C C⋅-==-⋅⨯n n , 而二面角C 1-BD -C 为锐角,故其余弦值为27. (2)假设侧棱AA 1上存在一点P (2,y ,0)(0≤y ≤3),使得CP ⊥平面BDC 1. 因为(2,y -3,0),所以即()()3302330y y -=⎧⎪⎨+-=⎪⎩,得y =3且y73, 所以方程组无解.则假设不成立,即侧棱AA 1上不存在点P ,使CP ⊥平面BDC 1. 典例11已知四棱锥P-ABCD 的底面是直角梯形,,,,且,M 点为PC 的中点.(1)求证:.(2)在平面PAD 内找一点N ,使.【解析】(1)因为PD ⊥底面ABCD ,CD//AB ,CD ⊥AD ,所以以D 为坐标原点,建立空间直角坐标系D-xyz (如图所示).由于PD =CD =DA =2AB =2,所以D (0,0,0),B (2,1,0),C (0,2,0),P (0,0,2),M (0,1,1),所以. 因为平面PAD,所以是平面PAD的法向量,又因为,所以//平面PAD,所以BM//平面PAD.(2)设N(x,0,z)是平面PAD内一点,则若MN⊥平面PBD,则,所以()210210zx⎧-=⎨-=⎩,即121xz⎧=⎪⎨⎪=⎩,所以在平面PAD内存在点1,0,12N⎛⎫⎪⎝⎭使得MN⊥平面PBD.8.如图,在四棱锥P ABCD-中,平面PAD⊥平面ABCD,PA PD⊥,PA PD=,AB AD⊥,1AB=,2AD=,AC CD==(1)求直线PB与平面PCD所成角的正弦值.(2)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求AMAP的值;若不存在,说明理由.1.向量()1,1,0=a ,()0,1,1=b ,()1,0,1=c ,()1,0,1=-d 中,共面的三个向量是 A .a ,b ,c B .b ,c ,d C .c ,d ,aD .d ,a ,b2.已知向量()()2,4,5,3,,x y ==a b 分别是直线12,l l 的方向向量,若12l l ∥,则 A .6,15x y == B .153,2x y ==C .3,15x y ==D .156,2x y ==3.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为 A .45°B .135°C .45°或135°D .90°4.如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线BC 1与直线AB 1夹角的余弦值为A BC D .355.如图所示,在直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,△AEB 是等腰直角三角形,其中∠AEB =90°,则点D 到平面ACE 的距离d 为A BC D .6.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于A .23BC .3D .137.已知向量()1,0,1=-a ,()1,2,1=-b ,且k +a b 与23-a b 互相垂直,则k 的值是______________. 8.如图所示,在直三棱柱ABC-A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥平面B 1DE ,则AE =______________.9.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=2,点G 与E 分别是A 1B 1和CC 1的中点,点D 与F 分别是AC 和AB 上的动点.若GD ⊥EF ,则线段DF 长度的最小值为______________.10.在如图所示的几何体中,四边形为平行四边形,平面平面,,//,,,.(1)求证:.时,求三棱锥的体积.(2)当二面角的平面角的余弦值为311.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.若M,N分别为棱PD,PC上的点,O为AC的中点,且AC=2OM=2ON.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的正弦值;(3)求点N到平面ACM的距离.12.如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD, PA=AB=AD=1,点F是PB的中点,点E在边BC上移动.(1)求证:无论点E在BC边的何处,都有PE⊥AF;(2)BC(包括端点B,C)上是否存在一点E,使PD∥平面AEF?若存在,求出点E的位置;若不存在,请说明理由.13.如图,矩形ABCD所在的平面和直角梯形CDEF所在的平面成60°的二面角,DE∥CF,CD⊥DE,AD=2,EF=3,CF=6,∠CFE=45°.(1)求证:BF∥平面ADE;(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为14.14.如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF DE=,点M为棱AE的中点.(1)求证:平面BMD ∥平面EFC ;(2)若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值.1.(2018新课标全国II 理科)在长方体1111ABCD A BC D -中,1AB BC ==,1AA 则异面直线1AD 与1DB 所成角的余弦值为A .15BCD 2.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,EF 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.3.(2018新课标全国II 理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.4.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M 是CD上异于C,D的点.(1)证明:平面AM D⊥平面BMC;体积最大时,求面MAB与面MCD所成二面角的正弦值.(2)当三棱锥M ABC5.(2018江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.6.(2018北京理科)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.7.(2018天津理科)如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.8.(2017新课标全国Ⅰ理科)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.∵N 为CD 1的中点, ∴N (32,3,1). ∵M 是A 1C 1的三分之一分点且靠近A 1点, ∴M (1,1,2).由两点间距离公式,得|MN |. 【名师点睛】本题考查空间直角坐标系的建立、点坐标的求法以及距离公式,建系时注意要利用两两垂直的三条线建系,由线段比例求坐标时,注意由坐标特征求,不要直接乘比例系数求坐标.建立空间直角坐标系,分别由比例关系求出点M 、点N 的坐标,由两点间的距离公式求出线段长度,即可得到结果. 2.【解析】(1)∵+AC AD mAB =,,∴,,AC AD AB 共面,即A 、B 、C 、D 四点共面. ∵+EG EH mEF =,,∴,,EG EH EF 共面,即E 、F 、G 、H 四点共面.(2)()()()EF OH OE OF OE OD OA OB OA EG EH m m k km =+=-+-=-+-()k AD AB AD km k m k AB AC +=+==,∴AC EG ∥.(3)()OG OE EG OA AC OA k k AC k OC k =+=+=+=.3.【解析】如图所示,建立空间直角坐标系D −xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以()1021FC =,,,()200DA =,,,()021AE =,,.(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则1DA ⊥n ,1AE ⊥n ,即11111·20·20DA x AE y z ⎧==⎪⎨=+=⎪⎩,,n n得4.【解析】(1)建立如图所示的空间直角坐标系D xyz -,设1AB =,则()1,0,0A ,()1,1,0B ,11,,12E ⎛⎫⎪⎝⎭, 10,1,2H ⎛⎫ ⎪⎝⎭,11,1,2AH ⎛⎫∴=- ⎪⎝⎭,10,,12BE ⎛⎫=- ⎪⎝⎭,0AH BE ⋅=,BE AH ∴⊥.5.【解析】(1)取BC 的中点O ,连接1,OA OB , 因为底面ABC 是边长为2的正三角形,所以OA BC ⊥,且OA =因为13BB =,160CBB ∠=,1OB =, 所以222113213cos607OB =+-⨯⨯⨯=,所以1OB ,又因为1AB所以2221110OA OB AB +==, 所以1OA OB ⊥,所以11,2AB ⎛=⎝⎭,()1,AB =-,()1,AC =, 设()1111,,x y z =n 为平面1ABB 的法向量,则11100AB AB ⎧⋅=⎪⎨⋅=⎪⎩n n,即111110,1022x x z ⎧-=⎪⎨+=⎪⎩,令11y =,得()1=n ;设()2222,,x y z =n 为平面1ABC 的法向量,则22100AC AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即222220,102x x z ⎧-=⎪⎨-+=⎪⎩,令21y =,得213⎫=⎪⎭n .所以121212131cos,-++⋅===n nn nn n所以二面角1B AB C--=【名师点睛】利用空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.6.【解析】因为M,R分别为AO,AD的中点,所以NC=(0,1,0),OD=(0,2,−2),CD=(−2,0,0),设平面OCD的法向量为n=(x,y,z),则·220·20OD y zCD x⎧=-=⎪⎨=-=⎪⎩nn,令z=1,得n=(0,1,1)为平面OCD的一个法向量.所以点N 到平面OCD 的距离d =|NC ·n n |所以直线MN 与平面OCD 的距离、平面MNR 与平面OCD7.【解析】∵正方形边长1,2AB PB PD AP ====, ∴222222,PB PA AB PD PA AD =+=+, ∴,PA AB PA AD ⊥⊥, ∴PA ⊥平面ABCD ,∴分别以AB AD AP 、、所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,(2)设平面APQ 的一个法向量为()2222,,x y z =n ,则22222220·0120·02z AP x y z PQ =⎧⎧=⎪⎪⇒⎨⎨+-==⎪⎪⎩⎩n n ,令22x =,得()22,1,0=-n ,∴121212cos 10⋅===n n n ,n n n ,∴二面角A PQ B --【方法点晴】空间向量解答立体几何问题的一般步骤是: (1)观察图形,建立恰当的空间直角坐标系; (2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量; (4)将空间位置关系转化为向量关系; (5)根据定理结论求出相应的角和距离.8.【解析】(1)取AD 的中点O ,连接PO ,CO .因为PA =PD ,所以PO ⊥AD . 又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .以O 为坐标原点,建立空间直角坐标系如图:设PB 与平面PCD 的夹角为θ,则sin |cos |PB PB PBθ⋅==,n n n=111||3--=. (2)假设存在M 点使得BM ∥平面PCD ,设AMAPλ=,M (0,y 1,z 1), 由(1)知,A (0,1,0),P (0,0,1),B (1,1,0),()011AP =-,,,()1101AM y z =-,,, 则有AM AP λ=,可得M (0,1﹣λ,λ), ∴()1BM λλ=--,,,∵BM ∥平面PCD ,1112⎛⎫=- ⎪⎝⎭,,n 为平面PCD 的法向量, ∴0BM ⋅=n ,即102λλ-++=,解得14λ=. 综上,存在点M ,即当14AM AP =时,使得BM ∥平面PCD . 【名师点睛】利用法向量求解空间线面角的关键在于“四破”: 第一,破“建系关”,构建恰当的空间直角坐标系; 第二,破“求坐标关”,准确求解相关点的坐标; 第三,破“求法向量关”,求出平面的法向量; 第四,破“应用公式关”.1.【答案】D【名师点睛】本题考查了判断空间向量是否共面的问题,属于基础题.假设三向量共面,根据共面定理,得出向量的线性表示,列出方程组,求出方程组的解,即可判断这组向量是否共面. 2.【答案】D【解析】12l l ∥,∴存在实数k 使得k =b a ,即()()3,,2,4,5x y k =,3245kx k y k=⎧⎪∴=⎨⎪=⎩,解得156,2x y ==,故选D.【名师点睛】本题主要考查空间向量共线的性质,意在考查对基本性质的掌握情况,属于简单题. 3.【答案】C【解析】∵两平面的法向量分别为(0,1,0),(0,1,1),==m n ∴两平面所成的二面角与,m n 相等或互补,cos 2⋅===⋅,m n m n m n ∴45=︒,m n .故两平面所成的二面角为45°或135°,故选C .【名师点睛】本题考查的知识点是二面角的平面角及求法,其中一定要注意两平面所成的二面角与,m n 相等或互补,属基础题.4.【答案】A【解析】设CA =2,则()()()()()110,0,0,2,0,0,0,0,1,0,2,0,0,2,1C A B C B ,可得向量=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos<,202211-⨯+⨯+⨯-=,故选A.5.【答案】B6.【答案】A【方法点晴】本题主要考查利用空间向量求线面角,属于难题.利用空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量; (4)将空间位置关系转化为向量关系; (5)根据定理结论求出相应的角和距离. 7.【答案】115【解析】向量()1,0,1=-a ,()1,2,1=-b ,∴()1,2,1k k k +=--+a b ,()235,6,5-=--a b ,k +a b 与23-a b 互相垂直,∴()()()()1526150k k -⋅+⋅-+-+⋅-=,解得115k =. 【名师点睛】先由向量的坐标运算求k +a b 与23-a b ,再由它们互相垂直列方程求出k 的值.空间两个向量垂直的充要条件:设()123,,a a a =a ,()123,,b b b =b ,则11223300a b a b a b ⊥⇔⋅=⇔⋅+⋅+⋅=a b a b . 8.【答案】a 或2a【解析】建立如图所示的空间直角坐标系,则B 1(0,0,3a ),C (0,a ,0).设点E 的坐标为(a ,0,z ),则=(a ,-a ,z ),=(a ,0,z-3a ).由⊥,得2a 2+z 2-3az =0,解得z =a 或2a ,即AE =a 或2a .9.【名师点睛】建立空间直角坐标系后,可将立体几何问题转化为数的运算的问题来处理,解题时要注意建立的坐标系要合理,尽量多地把已知点放在坐标轴上,同时求点的坐标时要准确.建立空间直角坐标系,设出点F,D的坐标,求出向量GD,EF,利用GD⊥EF求得关系式,然后可得到DF长度的表达式,最后利用二次函数求最值.10.【解析】(1)因为,平面⊥平面,,设平面的法向量为()1,,1x y =n ,则由1100EC ED ⎧⋅=⎪⎨⋅=⎪⎩n n ,即020x m x y m -=⎧⎨-+-=⎩,得,则1n . 由(1)知平面,所以平面的法向量为()20,1,0FE ==n ,121212cos ,⋅〈〉===n n n n n n ,,所以11111123323△A EFC F AEC ACE V V EF S --==⋅=⨯⨯⨯⨯=.11.【解析】(1)AC=2OM,AM⊥MC.则A(0,0,0),P(0,0,4),B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2).,,设平面ACM的法向量为n=(x,y,z),则有240 220 x yy z+=⎧⎨+=⎩,令=1,则n=(–2,1,–1).12.【解析】(1)以A 为坐标原点建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,1),F (0,12,12),D (1,0,0), ∴=(0,12,12), 设BE =a ,则E (a ,1,0),=(a ,1,-1).∵·=(a ,1,-1)·(0,12,12)=0,∴PE ⊥AF , ∴无论点E 在BC 边的何处,都有PE ⊥AF . (2)假设存在点E ,使PD ∥平面AEF , 设BE =a (0≤a ≤1),则E (a ,1,0),=(a ,1,0).∵PD ∥平面AEF ,=(1,0,-1),∴设=λ1+λ2,即(1,0,-1)=λ1(a ,1,0)+λ2(0,12,12),即11221102112a λλλλ⎧⎪=⎪⎪+=⎨⎪⎪=-⎪⎩,解得12112a λλ=⎧⎪=⎨⎪=-⎩,∴BC 上存在一点E ,且E 在C 点时,PD ∥平面AEF .13.【解析】(1)因为BC ∥AD ,AD ⊂平面ADE ,BC ⊄平面ADE ,所以BC ∥平面ADE,设G (3,t ,0),-1≤t ≤5, 则=(-3,2,-),=(0,t ,-).14.【解析】(1)连接AC ,交BD 于点N ,连接MN ,易知N 为AC 的中点,∴MN EC ∥.∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵,BF DE 都垂直于底面ABCD , ∴BF DE ∥. ∵BF DE =,∴四边形BDEF 为平行四边形, ∴BD EF ∥.∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC . 又∵MNBD N =,∴平面BDM ∥平面EFC .(2)由已知,DE ⊥平面ABCD ,四边形ABCD 是正方形. ∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz -.。
高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2 空间向量的数乘运算学案(
3.1.2 空间向量的数乘运算[目标] 1.掌握空间向量的数乘运算的定义和运算律,了解共线(平行)向量的意义.2.理解共线向量定理和共面向量定理及其推论,会证明空间三点共线与四点共面问题.[重点] 应用共线定理与共面定理解决共线问题与共面问题.[难点] 证明线面平行与面面平行.知识点一空间向量的数乘运算[填一填][答一答]1.空间向量的数乘运算与平面向量的数乘运算有什么关系?提示:相同.2.类比平面向量,空间向量的数乘运算满足(λ+μ)a=λa+μa(λ,μ∈R),对吗?提示:正确.类比平面向量的运算律可知.知识点二共线、共面定理[填一填][答一答]3.a =λb 是向量a 与b 共线的充要条件吗?提示:不是.由a =λb 可得出a ,b 共线,而由a ,b 共线不一定能得出a =λb ,如当b =0,a ≠0时.4.空间中任意两个向量一定共面吗?任意三个向量呢?提示:空间任意两个向量一定共面,但空间任意三个向量不一定共面. 5.共面向量定理中为什么要求a ,b 不共线?提示:如果a ,b 共线,则p 一定与向量a ,b 共面,却不一定存在实数组(x ,y ),使p =x a +y b ,所以共面向量基本定理的充要条件要去掉a ,b 共线的情况.6.已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 是否共面?提示:四点共面.∵x +y +z =1,∴x =1-y -z ,又∵OP →=xOA →+yOB →+zOC →∴OP →=(1-y -z )OA →+yOB →+zOC →∴OP →-OA →=y (OB →-OA →)+z (OC →-OA →) ∴AP →=yAB →+zAC →, ∴点P 与点A ,B ,C 共面.1.共线向量、共面向量不具有传递性.2.共线向量定理及其推论是证明共线(平行)问题的重要依据.定理中的条件a ≠0不可遗漏.3.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.4.空间任意两个向量总是共面的,空间任意三个向量可能共面,也可能不共面. 5.向量p 与a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.类型一 空间向量的数乘运算【例1】 设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,试用向量OA →,OB →,OD →表示AE →.【分析】 将向量AE →分解成OA →,OB →,OD →的线性组合的形式. 【解】 由题意,可以作出如下图所示的几何图形.在封闭图形ADOE 中,有:AE →=AD →+DO →+OE →, ①在△AOD 中,AD →=OD →-OA →. ②在△BOC 中,OC →=BC →-BO →,∵AD →=BC →,∴OC →=AD →+OB →=OD →-OA →+OB →. 又∵OE →=12OC →,∴OE →=12(OD →-OA →+OB →)=-12OA →+12OB →+12OD →. ③又DO →=-OD →, ④ 将②、③、④代入①可得: AE →=(OD →-OA →)-OD →+⎝ ⎛⎭⎪⎫-12OA →+12OB →+12OD →=-32OA →+12OB →+12OD →,∴AE →=-32OA →+12OB →+12OD →.寻找到以欲表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系进行相应的向量运算是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的.但需知,无论哪一种途径,结果应是唯一的.如下图所示,在平行六面体ABCD A ′B ′C ′D ′中,设AB →=a ,AD →=b, AA ′→=c ,E 和F分别是AD ′和BD 的中点,用向量a ,b ,c 表示D ′B →,EF →.解:D ′B →=D ′A ′→+A ′B ′→+B ′B →=-b +a -c .EF →=EA →+AB →+BF →=12D ′A →+a +12BD →=12(-b -c )+a +12(-a +b )=12(a -c ).类型二 空间向量的共线问题【例2】 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.【解】 因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.判断向量共线就是充分利用已知条件找到实数λ,使a =λb 成立,同时要充分运用空间向量的运算法则,结合空间图形,化简得出a =λb ,从而得出a ∥b .如图所示,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.证明:设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25(a -23b -c ).又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →,所以E ,F ,B 三点共线.类型三 空间向量的共面问题【例3】 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.【解】 (1)∵OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →)=BM →+CM →,∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行或直线在平面内进行证明.2向量共面向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面向量的起点、终点共面.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: (1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH .证明:如下图,连接EG ,BG .(1)因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .1.下列命题中正确的是( C )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .零向量没有确定的方向D .若a ∥b ,则存在唯一的实数λ,使a =λb解析:A 中,若b =0,则a 与c 不一定共线;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;D 中,若b =0,a ≠0,则不存在λ.2.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( A ) A .共面 B .不共面 C .共线D .无法确定解析:a +b 与a -b 不共线,则它们共面.3.设O ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( A )A .(14,14,14)B .(34,34,34)C .(13,13,13)D .(23,23,23)解析:因为OG →=34OG 1→=34(OA →+AG 1→)=34OA →+34×23[12(AB →+AC →)]=34OA →+14[(OB →-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,而OG →=xOA →+yOB →+zOC →,所以x =14,y =14,z =14.4.已知A 、B 、C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A 、B 、C 共面,则λ=2.解析:M 与A 、B 、C 共面,则OM →=xOA →+yOB →+zOC →,其中x +y +z =1,结合题目有-2+1+λ=1,即λ=2.5.如下图,正方体ABCD A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →,B 1C →,EF →是共面向量.证明:EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →,B 1C →,EF →是共面向量.。
2019版高考数学第8章立体几何6第6讲空间向量及其运算教案
第6讲 空间向量及其运算1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底. 2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3,a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),cos 〈a ,b 〉=a ·b |a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个. (2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 5.空间位置关系的向量表示判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( ) (6)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√在空间直角坐标系中,已知A(1,-2,1),B(2,2,2),点P 在z 轴上,且满足|PA|=|PB|,则P 点坐标为( )A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)解析:选C .设P(0,0,z),则有 (1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.(教材习题改编)在平行六面体ABCDA1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( ) A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A.由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .(教材习题改编)已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为________.解析:因为a =(2,4,x ),|a |=6,则x =±4, 又b =(2,y ,2),a ⊥b , 当x =4时,y =-3,x +y =1. 当x =-4时,y =1,x +y =-3. 答案:1或-3若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.解析:因为α∥β,所以u 1∥u 2,所以-36=y -2=2z ,所以y =1,z =-4,所以y +z =-3. 答案:-3空间向量的线性运算[典例引领]如图,在长方体ABCD A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.【解析】 (1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA →=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 【答案】 (1)A 1A →(2)12AB →+12AD →+AA 1→若本例条件不变,结论改为:设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求x ,y ,z 的值. 解:EO →=ED →+DO → =-23DD 1→+12(DA →+DC →)=12AB →-12AD →-23AA 1→, 由条件知,x =12,y =-12,z =-23.用已知向量表示某一向量的方法[通关练习]1.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( ) A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B.因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →). 所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →)=12[(3,-5,-2)+(-7,-1,-4)] =12(-4,-6,-6)=(-2,-3,-3).2.在三棱锥O ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →. 解:(1)MG →=MA →+AG →=12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.(2)OG →=OM →+MG → =12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →.共线、共面向量定理的应用[典例引领]已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【证明】 (1)连接BG (图略), 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知,E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(1)证明空间三点P 、A 、B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P 、M 、A 、B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或PA →∥MB →或PB →∥AM →).[通关练习]1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2解析:选 A.因为a ∥b ,所以b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),所以⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12. 2.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.解:(1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内.空间向量的数量积[典例引领]如图,在平行六面体ABCD A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°. (1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.【解】 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, 所以a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,所以|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , 所以|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,所以cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.(1)空间向量数量积计算的两种方法 ①基向量法:a ·b =|a ||b |cos 〈a ,b 〉.②坐标法:设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则a ·b =x 1x 2+y 1y 2+z 1z 2.(2)利用数量积解决有关垂直、夹角、长度问题 ①a ≠0,b ≠0,a ⊥b ⇔a ·b =0. ②|a |=a 2.③cos 〈a ,b 〉=a ·b|a ||b |.[通关练习]1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2解析:选D.由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.2.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →. (1)求a 和b 夹角的余弦值; (2)设|c |=3,c ∥BC →,求c 的坐标.解:(1)因为AB →=(1,1,0),AC →=(-1,0,2), 所以a ·b =-1+0+0=-1,|a |=2,|b |=5,所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010.(2)BC →=(-2,-1,2).设c =(x ,y ,z ), 因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧x =-2λ,y =-λ,z =2λ,联立解得⎩⎪⎨⎪⎧x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧x =2,y =1,z =-2,λ=-1,所以c =(-2,-1,2)或c =(2,1,-2).利用空间向量证明平行和垂直(高频考点)空间几何中的平行与垂直问题是高考试题中的热点问题.考查形式灵活多样,可以是小题,也可以是解答题的一部分,或解答题的某个环节,是高考中的重要得分点.高考对空间向量解决此类问题常有以下两个命题角度:(1)证明平行问题; (2)证明垂直问题.[典例引领]角度一 证明平行问题如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证: (1)PB ∥平面EFG . (2)平面EFG ∥平面PBC .【证明】 (1)因为平面PAD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一:EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2), 所以PB →·n =0,所以n ⊥PB →,因为PB ⊄平面EFG ,所以PB ∥平面EFG .法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1). 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线,所以PB →,FE →与FG →共面. 因为PB ⊄平面EFG ,所以PB ∥平面EFG . (2)因为EF →=(0,1,0),BC →=(0,2,0), 所以BC →=2EF →,所以BC ∥EF .又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , 所以平面EFG ∥平面PBC .角度二 证明垂直问题如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【证明】 (1)如图所示,以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz . 则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4),BC →=(-8,0,0), 所以AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC .(2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, 所以AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BA →=(-4,-5,0),所以BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0,所以AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4). ①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4. ⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.[通关练习]1.如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定解析:选B.因为正方体棱长为a ,A 1M =AN =2a3, 所以MB →=23A 1B →,CN →=23CA →,所以MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又因为CD 是平面B 1BCC 1的法向量,且MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0,所以MN →⊥CD →,又MN ⊄平面B 1BCC 1, 所以MN ∥平面B 1BCC 1.2.在正三棱柱ABC A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系, 因为底面边长为1,侧棱长为2,则A ⎝ ⎛⎭⎪⎫0,32,0,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫12,0,0,C 1⎝ ⎛⎭⎪⎫12,0,2,M (0,0,0),设N ⎝ ⎛⎭⎪⎫12,0,t ,因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎫12,0,21+λ, 所以AB 1→=⎝ ⎛⎭⎪⎫-12,-32,2,MN →=⎝ ⎛⎭⎪⎫12,0,21+λ.又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:153.在四棱锥P ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说 明理由.解:(1)证明:由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,从而得EF ⊥CD . (2)假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. 所以G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0, 故存在满足条件的点G ,且点G 为AD 的中点.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直. (2)尽可能地让相关点落在坐标轴或坐标平面上.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.易错防范(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a ∥b ⇔存在唯一的实数λ∈R ,使a =λb 易忽视b ≠0.(3)在利用MN →=xAB →+yAC →①证明MN∥平面ABC 时,必须说明M 点或N 点不在面ABC 内(因为①式只表示MN →与AB →,AC →共面).(4)找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.(5)a ·b <0不等价为〈a ,b 〉为钝角,因为〈a ,b 〉可能为180°;a ·b >0不等价为〈a ,b 〉为锐角,因为〈a ,b 〉可能为0°.1.已知三棱锥O ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( )A.12(b +c -a ) B.12(a +b +c ) C.12(a -b +c ) D.12(c -a -b ) 解析:选D.MN →=MA →+AO →+ON →=12(c -a -b ).2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B .9 C.647D.657解析:选D.由题意知存在实数x ,y 使得c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2), 由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y .解得x =337,y =177,所以λ=997-347=657.3.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( ) A .±66 B.66C .-66D .± 6解析:选C.OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 4.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( ) A .平行四边形 B .梯形 C .长方形D .空间四边形解析:选 D.由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形.5.(2018·唐山统考)已知正方体ABCD A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B 的中点,则|MN →|为( )A.216a B.66a C.156a D.153a解析:选A.以D 为原点建立如图所示的空间直角坐标系Dxyz , 则A (a ,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上且AM →=12MC 1→,所以(x -a ,y ,z )=12(-x ,a -y ,a -z ),所以x =23a ,y =a3,z =a3.所以M ⎝⎛⎭⎪⎫2a 3,a 3,a 3,所以|MN→| =⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 6.已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a 、b 、c 表示向量MN →=________.解析:如图所示,MN →=12(MB →+MC →)=12[(OB →-OM →)+(OC →-OM →)]=12(OB →+OC →-2OM →)=12(OB →+OC→-OA →)=12(b +c -a ).答案:12(b +c -a )7.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos〈OA →,BC →〉的值为________. 解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:08.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 解析:因为AB →·AP →=0,AD →·AP →=0, 所以AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,所以AP →是平面ABCD 的法向量,则③正确.因为BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), 所以BD →与AP →不平行,故④错. 答案:①②③9.已知a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t ,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.所以-3+t =-65,-1-t =-145,4-2t =25,因此存在点E ,使得OE →⊥b , 此时E 点的坐标为(-65,-145,25).10.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB ,AC 为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. 解:(1)由题意可得: AB →=(-2,-1,3),AC →=(1,-3,2),所以cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.所以sin 〈AB →,AC →〉=32,所以以AB ,AC 为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3. (2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1,所以向量a 的坐标为(1,1,1)或(-1,-1,-1).1.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( ) A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝⎛⎭⎪⎫24,24,1 解析:选C.设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝ ⎛⎭⎪⎫22,22,0, 又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=(x -2,y -2,1),因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22,y -2=-22,⇒⎩⎪⎨⎪⎧x =22,y =22,所以M 点的坐标为⎝⎛⎭⎪⎫22,22,1. 2.已知ABCD A 1B 1C 1D 1为正方体,给出下列四个命题: ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确命题的序号是________.解析:①中(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确; ②中A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确; ④中|AB →·AA 1→·AD →|=0,故④也不正确.答案:①②3.如图,在多面体ABC A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1AB C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:因为二面角A 1AB C 是直二面角,四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC . 又因为AB =AC ,BC =2AB , 所以∠CAB =90°, 即CA ⊥AB ,所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2). (1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0). 所以A 1B 1→=2n , 即A 1B 1→∥n .所以A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1).所以AB 1→·m =0×1+2×(-1)+2×1=0, 所以AB 1→⊥m ,又AB 1⊄平面A 1C 1C , 所以AB 1∥平面A 1C 1C .4.如图所示,四棱锥S ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0, B ⎝⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a , 则OC →·SD →=0. 故OC ⊥SD . 从而AC ⊥SD .(2)棱SC 上存在一点E ,使BE ∥平面PAC . 理由如下:由已知条件知DS →是平面PAC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0,解得t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE ⊄平面PAC ,故BE ∥平面PAC .。
2019高考数学考点突破——空间向量与立体几何(理科专用):空间向量及其运算 Word版含解析.doc
空间向量及其运算【考点梳理】1.空间向量的有关概念(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ;③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).考点一、空间向量的线性运算【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.[解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP → =-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 【类题通法】1.选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.2.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则. 【对点训练】如图,三棱锥O -ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →=( )A .12(-a +b +c ) B .12(a +b -c ) C .12(a -b +c ) D .12(-a -b +c )[答案] B[解析] NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ).考点二、共线定理、共面定理的应用【例2】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[解析] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,因为E ,H ,B ,D 四点不共线,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . 【类题通法】1.证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=xOA →+yOB →(x +y =1). 2.证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ③PM →∥AB →(或PA →∥MB →或PB →∥AM →).3.三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明. 【对点训练】已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.[解析] (1)由已知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →). 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M . ∴四点M ,A ,B ,C 共面, 从而点M 在平面ABC 内.考点三、空间向量数量积的应用【例3】如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.[解析] (1)设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →, 即MN ⊥AB . 同理可证MN ⊥CD .(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r·p )] =14⎣⎢⎡⎦⎥⎤a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22 =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a . (3)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r·q -12r·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23,∴向量AN →与MC →的夹角的余弦值为23,因此异面直线AN 与CM 所成角的余弦值为23.【类题通法】利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.(1)a ≠0,b ≠0,a ⊥b ⇔a ·b =0; (2)|a |=a 2; (3)cos 〈a ,b 〉=a ·b|a ||b |. 【对点训练】如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.[解析] (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC →1|=6, 即AC 1的长为 6.(2)∵AC 1→=a +b +c ,BD →=b -a , ∴AC 1→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c=|b ||c |cos 60°-|a ||c |cos 60°=0. ∴AC 1→⊥BD →, ∴AC 1⊥BD .(3)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量及其运算【考点梳理】1.空间向量的有关概念(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ;③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).考点一、空间向量的线性运算【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.[解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP → =-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 【类题通法】1.选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.2.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则. 【对点训练】如图,三棱锥O -ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →=( )A .12(-a +b +c ) B .12(a +b -c ) C .12(a -b +c ) D .12(-a -b +c )[答案] B[解析] NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ).考点二、共线定理、共面定理的应用【例2】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[解析] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,因为E ,H ,B ,D 四点不共线,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH . 【类题通法】1.证明空间三点P ,A ,B 共线的方法 ①PA →=λPB →(λ∈R );②对空间任一点O ,OP →=xOA →+yOB →(x +y =1). 2.证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ③PM →∥AB →(或PA →∥MB →或PB →∥AM →).3.三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明. 【对点训练】已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内.[解析] (1)由已知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →). 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M . ∴四点M ,A ,B ,C 共面, 从而点M 在平面ABC 内.考点三、空间向量数量积的应用【例3】如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.[解析] (1)设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →, 即MN ⊥AB . 同理可证MN ⊥CD .(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r·p )] =14⎣⎢⎡⎦⎥⎤a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22 =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a . (3)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r·q -12r·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23,∴向量AN →与MC →的夹角的余弦值为23,因此异面直线AN 与CM 所成角的余弦值为23.【类题通法】利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.(1)a ≠0,b ≠0,a ⊥b ⇔a ·b =0; (2)|a |=a 2; (3)cos 〈a ,b 〉=a ·b|a ||b |. 【对点训练】如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.[解析] (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC →1|=6, 即AC 1的长为 6.(2)∵AC 1→=a +b +c ,BD →=b -a , ∴AC 1→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c=|b ||c |cos 60°-|a ||c |cos 60°=0. ∴AC 1→⊥BD →, ∴AC 1⊥BD .(3)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.。